
Part I

Prototype

Chapter 1: Extending and Enhancing DOM Elements

Chapter 2: Handling Cross-Browser Events

Chapter 3: Simplifying AJAX and Dynamic Data

Chapter 4: Working with Forms

Chapter 5: Manipulating Common Data Structures
and Functions

Chapter 6: Extending Prototype

c01.indd 1c01.indd 1 7/22/09 9:33:14 AM7/22/09 9:33:14 AM

CO
PYRIG

HTED
 M

ATERIA
L

2

Part I: Prototype

 Prototype was one of the first JavaScript libraries to gain prominence during the Web 2.0 resurgence.
When the term AJAX was first coined in 2005, making cross - browser XMLHttpRequests was a minefield
of browser - specific code. Prototype assists you in your quest for cross - browser compatibility by
smoothing out the rough edges of event handling by providing a common method for binding events to
their respective handlers and providing a common interface for creating AJAX requests that work in all
browsers. It also gives you a cross - browser way to manipulate the DOM, by handling the special cases in
all browsers, and allowing you to focus on just writing code without cluttering up your code with
browser - specific “ if - else ” statements.

 Prototype extends the JavaScript language as well as the elements. The native JavaScript Object is
extended to include methods for determining the type of data the object represents as well as helpful
serialization methods. The Enumerable class allows you to easily traverse and manipulate your arrays of
both JavaScript objects and DOM elements by providing useful methods such as each() and map()
directly on your arrays. The native Function object is also extended with useful methods, such as
 wrap() , which let you write interceptors for your methods that provide useful features like logging.

Prototype eases inheritance with the Class object. You can easily extend your objects and create
hierarchies without the headaches associated with normal inheritance in statically typed languages. All
of these features make Prototype the best choice for writing logic in JavaScript, and it provides you with
an excellent base for writing your own JavaScript library. Since Prototype does all of the heavy lifting for
you, you can focus on the fun parts of library development — creating new widgets and data structures.

c01.indd 2c01.indd 2 7/22/09 9:33:15 AM7/22/09 9:33:15 AM

 Extending and Enhancing
DOM Elements

 Prototype is an excellent framework to use either as your main JavaScript library or as the
foundation of another library. Part of the magic of Prototype is the extension of DOM elements
by the framework. By adding new methods to elements, Prototype makes it easier to write
cross - browser code in a more eloquent manner. There are also several methods for taking care of
the dirty details involved in positioning elements. It is easier to write unobtrusive JavaScript by
taking advantage of helper methods such as getElementsByClassName and
 getElementsBySelectors , making it easy to apply styling or events to groups of elements with
something in common.

 In this chapter, you ’ ll learn about:

 Extending a DOM element with Prototype

 Altering and manipulating content and size

 Using CSS to style an element

 Extending a DOM element
 Before Prototype came along, cross-browser code often looked a lot like a road map: a lot of
branches and a lot of the same checks over and over again. By extending the elements you are
working on, Prototype is able to centralize all of the cross - browser hacks that make JavaScript
programming such a chore. Prototype keeps its extension methods for all elements in the
 Element.Methods and Element.Methods.Simulated object. If the element is an input ,
 select , or textarea tag, the methods in Form.Element.Methods are also included. Form
elements themselves are extended with the methods in Form.Methods . Most of these methods
return the original element, so you can chain together methods like so: $(myElement)
.update(“ updated ”).show(); . It is important to note that not only is the element you choose
extended, but all of the child elements of that element are also extended.

❑

❑

❑

c01.indd 3c01.indd 3 7/22/09 9:33:15 AM7/22/09 9:33:15 AM

4

Part I: Prototype

 In browsers that support modification of the HTMLElement.prototype , Prototype adds the methods to
 HTMLElement for you. That means you don ’ t have to call Element.extends() on any element you
create by hand. You can start using Prototype methods immediately.

var newDiv = document.createElement(“div”);
newDiv.update(“Insert some text”);
newDiv.addClassName(“highlight”);

 Internet Explorer doesn ’ t support modifying HTMLElement , so you have to call Element.extends() or
get a reference to the element using the $() or $$() methods.

 $() — “ The dollar function ”
 The easiest way to extend a DOM element is to use the $() function to get a reference to the element
rather than using document.getElementById or some other method. When you obtain a reference this
way, Prototype automatically adds all of the methods in Element.Methods to the element. If you pass a
string to the method, it will get a reference to the element with the ID you specify for you. If you pass in
a reference to the element, it will return the same reference but with the extension methods. This is the
most common way to extend an element.

 < body >
 < div id=”myId” > Hello Prototype < /div >
 < script type=”text/javascript” >
 $(“myId”).hide();
 < /script >
 < /body >

 $$()
 This works in a similar manner to the $() function. It takes a CSS selector as an argument and returns an
array of elements that match the selector. CSS selectors are a powerful tool for getting a specific element
back from the DOM. The elements in the array will be in the same order as they appear in the DOM and
each will be extended by Prototype.

$$(‘input’);
// select all of the input elements

$$(‘#myId’);
//select the element with the id “myId”

$$(‘input.validate’);
//select all of the input elements with the class “validate”

 Prototype does not use the browser ’ s built - in CSS selector parsing, so it is free to implement selectors
specified in newer versions of CSS than the browser supports. As a result, version 1.5.1 and higher of
Prototype includes support for almost all of CSS3.

c01.indd 4c01.indd 4 7/22/09 9:33:16 AM7/22/09 9:33:16 AM

Chapter 1: Extending and Enhancing DOM Elements

5

$$(‘#myId > input’);
//select all of the input elements that are children of the element with the id “myId”

$$(‘table < tr:nth-child(even)’);
//selects all of the even numbered rows of all table elements.

 Element.extend()
 This method accepts an element and extends the element using the methods found in Element
.Methods . It is very similar to $() except it only accepts references to DOM objects and will not fetch
a reference for you if you pass it an id.

 Here is a simple example of using Element.extend() :

Var newDiv = document.createElement(“div”);
Element.extend(newDiv);
newDiv.hide();

 Element as a Constructor
 You can also use the Element object as a way to construct new DOM elements rather than using the
built - in DOM methods. New elements created in this way are automatically extended by Prototype and
can be used immediately.

 < head >
 < meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” >
 < title > untitled < /title >
 < style >
 .redText { color: red;}
 < /style >
 < /head >
 < body >
 < div id=”myDiv” class=”main” > Here is my div < /div >

 < textarea id=”results” cols=”50” rows=”10” > < /textarea >
 < script type=”text/javascript” src=”prototype-1.6.0.2.js” > < /script >
 < script type=”text/javascript” >
 Event.observe(window,”load”, function(e) {
 $(“results”).value = “”;
 $(“results”).value += $(“myDiv”).id + “\n”;
 $(“results”).value += $$(“.main”)[0].id + “\n”;
 var newEl = new Element(“h1”,{“class”: “redText”});
 $(“myDiv”).insert(newEl);
 newEl.update(“I’m new here”);

 var manuallyCreated = document.createElement(“h2”);
 $(“myDiv”).insert(manuallyCreated);
 Element.extend(manuallyCreated);
 manuallyCreated.update(“I was extended”);
 });
 < /script > < /body >

c01.indd 5c01.indd 5 7/22/09 9:33:16 AM7/22/09 9:33:16 AM

6

Part I: Prototype

 Since $$() returns a DOM - ordered array of elements, you have to refer to the first element in the array
by the ordinal 0.

 Here you see some of the ways you can extend an element. First, you use the $() method to grab the
element by ID and extend the element. Next, you use the $$() method and pass in a CSS selector to get
the element by class name. Now you will use the Element object as a constructor and create a new H1
element with a class of redText , inserting it into the myDiv element and setting the text of the newly
created element. Finally, you create an element the old - fashioned way and use Element.extend() to
extend the element, as shown in Figure 1 - 1.

 Figure 1 - 1

c01.indd 6c01.indd 6 7/22/09 9:33:16 AM7/22/09 9:33:16 AM

Chapter 1: Extending and Enhancing DOM Elements

7

 Navigating the DOM
 Trying to figure out where the element you are interested in is located in the DOM and what elements
are surrounding that element is no easy task. Prototype ’ s Element object provides a multitude of ways
to traverse the DOM. Several methods allow you to specify CSS rules to narrow your search. All of
Prototype ’ s DOM navigation methods ignore white space and only return element nodes.

 adjacent
 This method finds all of an element ’ s siblings that match the selector you specify. This method is useful
for dealing with lists or table columns.

 < body >
 < ul id=”PeopleList” >
 < li class=”female” id=”judy” > Judy < /li >
 < li class=”male” id=”sam” > Sam < /li >
 < li class=”female” id=”amelia” > Amelia < /li >
 < li class=”female” id=”kim” > Kim < /li >
 < li class=”male” id=”scott” > Scott < /li >
 < li class=”male” id=”brian” > Brian < /li >
 < li class=”female” id=”ava” > Ava < /li >
 < /ul >
 < textarea id=”results” cols=”50” rows=”10” > < /textarea >
 < script type=”text/javascript” src=”prototype-1.6.0.2.js” > < /script >
 < script type=”text/javascript” >
 Event.observe(window,”load”, function(e) {
 var els =$(“kim”).adjacent(“li.female”);
 $(“results”).value = “”;
 for(var i = 0;i < els.length; i++) {
 $(“results”).value += els[i].id + “\n”;
 }
 });
 < /script >
 < /body >

 Here you start with the list element with the ID “ kim ” and gather the li elements adjacent with the class
name female , as shown in Figure 1 - 2.

c01.indd 7c01.indd 7 7/22/09 9:33:17 AM7/22/09 9:33:17 AM

8

Part I: Prototype

 ancestors
 This collects all of the element ’ s ancestors in the order of their ancestry. The last ancestor of any given
element will always be the HTML element. Calling this method on the HTML element will just return an
empty array. Given the following HTML snippet:

 < html >
 < body >
 < div id=”myDiv” >
 < p id=”myParagraph” > Hello pops < /p >
 < /div >
 < /body >
 < /html >

 The array would be returned with the elements in the following order:

DIV @-- > BODY @-- > HTML

Figure 1-2

c01.indd 8c01.indd 8 7/22/09 9:33:17 AM7/22/09 9:33:17 AM

Chapter 1: Extending and Enhancing DOM Elements

9

 You can use the following code to verify this behavior:

 < html >
 < body >
 < div id=”myDiv” >
 < p id=”myParagraph” > Hello pops < /p >
 < /div >
 < textarea id=”results” cols=”50” rows=”10” > < /textarea >
 < script type=”text/javascript” src=”prototype-1.6.0.2.js” > < /script >
 < script type=”text/javascript” >
 Event.observe(window,”load”, function(e) {
 var a = $(‘myParagraph’).ancestors();
 $(‘results’).value = “”;
 for(var i = 0;i < a.length;i++) {
 $(‘results’).value += a[i].tagName + “\n”;
 }
 });
 < /script >

 < /body >
 < /html >

 up/down/next/previous
 These four methods comprise Prototype ’ s core DOM traversal functionality. They allow you to define a
starting element, and then walk around the DOM at your leisure. All of the methods are chainable,
allowing you to call each in succession on whatever element was returned by the preceding function. If
no element can be found that matches the criteria you define, undefined is returned. Each method
accepts two arguments: a CSS selector or a numeric index. If no argument is passed, the first element
matching the criteria is returned. If an index is passed, the element at that position in the element ’ s
corresponding array is returned. For example, the resulting array used for the down() method will
match the element ’ s descendants array. If a CSS selector is passed in, the first element that matches that
rule is returned. If both an index and a CSS rule are passed in, the CSS rule is processed first and then the
index is used to select the element from the array defined by the CSS rule.

 up
 Returns the first ancestor matching the specified index and/or CSS rule. If no ancestor matches the
criteria, undefined is returned. If no argument is specified, the element ’ s first ancestor is returned. This
is the same as calling element.parentNode and passing the parent through Element.extend .

 down
 Returns the first descendant matching the specified index and/or CSS rule. If no descendant matches the
criteria, undefined is returned. If no argument is specified, the element ’ s first descendant is returned.

 next
 Returns the element ’ s siblings that come after the element matching the specified index and/or CSS rule.
If no siblings match the CSS rule, all the following siblings are considered. If no siblings are found after
the element, undefined is returned.

c01.indd 9c01.indd 9 7/22/09 9:33:17 AM7/22/09 9:33:17 AM

10

Part I: Prototype

 previous
 Returns the element ’ s siblings that come before the element matching the specified index and/or CSS
rule. If no siblings match the CSS rule, all the previous siblings are considered. If no siblings are found
before the element, undefined is returned.

 Take a fragment of HTML that looks like the following example. Here you are defining four elements
that relate to each other like this:

 < div id=”up” >
 < p id=”prevSibling” > I’m a sibling < /p > < div id=”start” > < p id=”down” > Start
Here < /p > < /div > < span id=”nextSibling” > I’m next < /span >
 < /div >

 This code starts at the start DIV and looks at the previous, next, up, and down elements. You start at the
element with the ID start. The paragraph element containing the text “ Start Here ” is the first child of
the starting element and is returned by calling the down method. The up method returns the topDiv
div. The previous method returns the sibling paragraph element and next returns the nextSibling
span , as shown in Figure 1 - 3.

 < body >
 < div id=”up” >
 < p id=”prevSibling” > I’m a sibling < /p > < div id=”start” > < p id=”down” > Start
Here < /p > < /div > < span id=”nextSibling” > I’m next < /span >
 < /div >
 < textarea id=”results” cols=”50” rows=”10” > < /textarea >
 < script type=”text/javascript” src=”prototype-1.6.0.2.js” > < /script >
 < script type=”text/javascript” >
 Event.observe(window,”load”, function(e) {
 var startEl = $(‘start’);
 var previousEl = startEl.previous();
 var upEl = startEl.up();
 var downEl = startEl.down();
 var nextEl = startEl.next();

 var resultTextArea = $(“results”);
 resultTextArea.value = “”;
 resultTextArea.value += “start =” + startEl.id + “\n”;
 resultTextArea.value += “previous =” + previousEl.id + “\n”;
 resultTextArea.value += “next =” + nextEl.id + “\n”;
 resultTextArea.value += “down =” + downEl.id + “\n”;
 resultTextArea.value += “up =” + upEl.id + “\n”;
 });
 < /script >
 < /body >

c01.indd 10c01.indd 10 7/22/09 9:33:17 AM7/22/09 9:33:17 AM

Chapter 1: Extending and Enhancing DOM Elements

11

 descendants/descendantOf/firstDescendant/
immediateDescendants

 All of these methods allow you to work with the children of a given element. The methods
 descendants and immediateDescendants return arrays of child elements.

 descendants — This method returns an array containing the children of the element. If the
element has no children, an empty array is returned.

 descendantOf — This method returns a Boolean telling you whether or not the given element is
a descendant of the given ancestor.

 firstDescendant — This method returns the first child of a given element that is itself an
element.

 immediateDescendants — (deprecated) This method returns an array of the elements one level
down and no further.

❑

❑

❑

❑

Figure 1-3

c01.indd 11c01.indd 11 7/22/09 9:33:18 AM7/22/09 9:33:18 AM

12

Part I: Prototype

 getElementsBySelector/getElementsByClassName
 These methods allow you to select groups of elements based on their attributes or position and
manipulate the elements however you choose. Both of these methods have been deprecated and you
should use the $$() method in place of them.

 childElements
 This useful function gathers up all the children of an element and returns them as an array of extended
elements. The elements are returned in the same order as they are in the DOM. So, the element at index 0
is the closest child to the parent element and so forth.

 Altering Page Content
 Prototype provides four methods for changing content on a page: insert, remove, replace, and update.
These methods can be called using the Element object and are added to any element that is extended.
They all take an optional argument, which is the element to be altered. The insert and replace methods
call eval() on any script tags contained in the content passed to them. Any of these methods that take a
content argument will accept plain text, an HTML fragment, or a JavaScript object that supports
 toString() .

 insert(element, content), insert(element,
{position:content)

 Insert takes the content you provide and inserts it into an element. If you do not specify a position (such
as top, bottom, before, or after), your content will be appended to the element. This method is useful for
dynamically inserting content retrieved from a web service or for loading elements into a page one piece
at a time for performance reasons.

 < script type=”text/javascript” >

 function insertSample() {
 $(“MainDiv”).insert(“New Content added at the end by default”);
 $(“MainDiv”).insert({top:”Added at the top”});
 $(“MainDiv”).insert({before:”Added before the element”})
 $(“MainDiv”).insert({after:”Added after the element”});
 $(“MainDiv”).insert({bottom:”Added at the bottom”});
 };
 insertSample();
 < /script >

 remove
 Calling remove on an extended element removes it completely from the DOM. The function returns the
removed element. This method is most often used to remove an element after a user has chosen to delete
whatever item the element represents in the UI.

c01.indd 12c01.indd 12 7/22/09 9:33:18 AM7/22/09 9:33:18 AM

Chapter 1: Extending and Enhancing DOM Elements

13

 < body >
 < table id=”myTable” >
 < tr id=”firstRow” > < td > First Row < /td > < /tr >
 < tr id=”secondRow” > < td > Second Row < /td > < /tr >
 < tr id=”thirdRow” > < td > Third Row < /td > < /tr >
 < /table >
 < script type=”text/javascript” src=”prototype-1.6.0.2.js” > < /script >
 < script type=”text/javascript” >

 function removeRow() {
 $(“secondRow”).remove();
 };
 removeRow();
 < /script >
 < /body >

 replace
 Replace takes away the element specified and replaces it with the content provided. This removes the
element and its children from the DOM.

 < body >
 < div id=”MainDiv” >
 < div id=”tempDiv” > Place holder < /div >
 < /div >
 < script type=”text/javascript” src=”prototype-1.6.0.2.js” > < /script >
 < script type=”text/javascript” >
 //simulate loading content from a web service
 setTimeout(function () {
 $(“MainDiv”).replace(“ < h1 > Replaced Content < /h2 > ”);
 }, 1000);
 < /script >
 < /body >

 update
 Update replaces the content of an element with the specified content. It does not remove the element
from the DOM, although it does remove any children of the element.

 < body >
 < div id=”MainDiv” > Here is some content to be updated < /div >
 < script type=”text/javascript” src=”prototype-1.6.0.2.js” > < /script >
 < script type=”text/javascript” >

 //simulate loading content from a web service
 setTimeout(function() {
 $(“MainDiv”).update(“updated the content”);
 }, 1000);
 < /script >
 < /body >

c01.indd 13c01.indd 13 7/22/09 9:33:18 AM7/22/09 9:33:18 AM

14

Part I: Prototype

 Manipulating Element Size, Position,
and Visibility

 One of the hardest things about working with the DOM in different browsers is getting the dimensions
of the elements contained in the DOM. Each browser has quirks relating to how it sizes elements in the
DOM and how its size affects the flow of the surrounding elements.

 Positioning an Element
 Setting an element ’ s position is one of the cornerstones of modern web page design. Often when
designing dynamic web pages, you need to be able to move elements around and place them on the
page exactly where you want them. To place an element precisely on the page, you should first set its
position CSS style. Setting the position style rule to absolute means that the element ’ s top and left
coordinates are calculated from the top - left corner of the document. Setting the position to relative
allows you to position the element using numbers calculated to the containing block ’ s top - left corner.
Prototype provides a few methods for easily setting an element ’ s position style.

 makePositioned, undoPositioned
 These methods allow you to easily make CSS - positioned blocks out of elements in your DOM. Calling
 makePositioned on an element sets its position to relative if its current position is static or
 undefined . The undoPositioned method sets the element ’ s position back to what it was before
 makePositioned was called.

$(“myElement”).makePositioned();
$(“myElement”).undoPositioned();

 absolutize, relativize
 These methods change the positioning setting of the given element by setting the position style to either
absolute or relative, respectively.

$(“myElement”).absolutize();
$(“myElement”).relativize();

 clonePosition
 This method creates a new element with the same position and dimensions as the current element. You
specify what settings are applied to the new element by using an optional parameter containing the
following options:

 Setting Description

 setLeft Applies the source ’ s CSS left property. Defaults to true.

 setTop Applies the source ’ s CSS top property. Defaults to true.

 setWidth Applies the source ’ s CSS width property. Defaults to true.

 setHeight Applies the source ’ s CSS height property. Defaults to true.

 offsetLeft Lets you offset the clone ’ s left CSS property by n value. Defaults to 0.

 offsetTop Lets you offset the clone ’ s top CSS property by n value. Defaults to 0.

c01.indd 14c01.indd 14 7/22/09 9:33:19 AM7/22/09 9:33:19 AM

Chapter 1: Extending and Enhancing DOM Elements

15

 Dealing with Offsets
 Prototype has a couple of different methods on its Element object that make finding the offset of an
element easier.

 cumulativeOffset, positionedOffset, viewportOffset
 Each of these methods returns two numbers, the top and left values of the given element in the form
{ left: number, top: number} . The cumulativeOffset method returns the total offset of an
element from the top left of the document. The positionedOffset method returns the total offset of
an element ’ s closest positioned (one whose position is set to ‘ static ’) ancestor. The viewportOffset
method returns the offset of the element relative to the viewport.

 getOffsetParent
 This method returns the nearest positioned ancestor of the element, and returns the body element if no
other ancestor is found.

 The following code illustrates how the different offsets are calculated. In it, you have two elements: a
parent DIV with one child. The parent has its position set to absolute and is positioned 240 pixels
from the top and 50 pixels from the left side of the document. When you call the getOffsetParent
method of the element with the ID of start , the positioned element positionedParent is returned.
The results textarea has no positioned ancestors. If you call getOffsetParen t on it, the BODY element
is returned. Since the start element itself is not positioned, calling positionedOffset returns 0,0, as
shown in Figure 1 - 4.

 < body >
 < div id=”positionedParent” style=”position:absolute;border:1px solid black;
top:240px;left:50px;” >
 < div id=”start” > Start Here < /div >
 < /div >

 < textarea id=”results” cols=”50” rows=”10” > < /textarea >
 < script type=”text/javascript” src=”prototype-1.6.0.2.js” > < /script >
 < script type=”text/javascript” >
 Event.observe(window,”load”, function(e) {
 $(“results”).value = “”;
 $(“results”).value += “offsetParent = “ + $(“start”).getOffsetParent()
.id + “\n”;
 $(“results”).value += “cumulativeOffset = “ + $(“start”)
.cumulativeOffset() + “\n”;
 $(“results”).value += “positionedOffset = “ + $(“start”)
.positionedOffset() + “\n”;
 $(“results”).value += “parent positionedOffset = “ + $(“start”)
.parentNode.positionedOffset() + “\n”;
 });
 < /script >
 < /body >

c01.indd 15c01.indd 15 7/22/09 9:33:19 AM7/22/09 9:33:19 AM

16

Part I: Prototype

 Showing/Hiding Elements
 Showing and hiding an element has been part of your web developer ’ s toolkit since you typed in your
first script tag.

 show/hide
 These methods allow you to quickly change an element ’ s visibility. They do this by setting the
elements display CSS style to none . Setting the display to none removes the element from the flow
of the document and causes the browser to render the other elements in the page as if the element were
not present.

$(“myElement”).show();
$(“myElement”).hide();

Figure 1-4

c01.indd 16c01.indd 16 7/22/09 9:33:19 AM7/22/09 9:33:19 AM

Chapter 1: Extending and Enhancing DOM Elements

17

 setOpacity
 This method sets the opacity of a given element, while relieving you of the burden of dealing with
various browser inconsistencies. It takes a floating - point number, with 0 being totally transparent and 1
being completely opaque. Using this method is the equivalent of setting the opacity via a CSS class or
using the setStyle method, passing in a value for opacity.

$(“myElement”).setOpacity(0.5);

 Sizing an Element
 Every browser has some kind of quirk associated with the way it represents elements on the screen and
how it calculates the element ’ s dimensions. Different browsers calculate an element ’ s computed style
differently. Prototype equalizes the differences and returns the correct computed style for the browser.

 getDimensions, getHeight, getWidth
 Using these methods, you can get the computed dimensions of an element at run time. The
 getDimensions method returns an object containing the computed height and width of the element.
When you call getDimensions , it ’ s best to save the returned value in a local variable and refer to that
rather than making multiple calls. If you just want the width or height, it ’ s best to just call the
appropriate method.

Var dimensions = $(‘myDiv’).getDimensions();
Var currentWidth = dimensions.width;
Var currentHeight = dimensions.height;

 makeClipping, undoClipping
 The CSS clip property allows you to define whether or not the element ’ s content should be shown
if the content is wider or taller than the element ’ s width and height will allow. Since the clip property
is poorly supported amongst the browsers, Prototype provides this method that will set an element ’ s
 overflow property to hidden for you. You can use undoClipping to allow the element to resize
normally.

 Working with CSS and Styles
 CSS classes are useful for marking elements in response to some event. Say you are creating an online
survey form and you want to mark several fields as required, but you don ’ t want to get each element
that is required by ID and check them one by one to make sure the user has entered a proper value. You
can create a CSS class called “ required ” and apply it to each of the elements you need the user to enter a
value into. Sometimes you need to change an element ’ s style or class at run time in response to a user- or
data-driven event, say if you are changing a table row from read - only to editable. Classes are an
invaluable tool in any web developer ’ s toolkit. Prototype makes it easier for you to apply and remove
CSS classes from elements in your DOM.

c01.indd 17c01.indd 17 7/22/09 9:33:20 AM7/22/09 9:33:20 AM

18

Part I: Prototype

 addClassName, removeClassName, toggleClassNames
 These three methods all alter the className property of a given element. All of them check to make sure
the element has the given class name. These methods are useful when you need to set classes on an
element or need to turn a CSS style on or off. Their names are self - explanatory.

 < head >
 < meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” >
 < title > untitled < /title >
 < style >
 .invalid { background:red;}
 < /style >
 < /head >
 < body >
 < form id=”myForm” method=”post” >
 First Name: < input type=”text” id=”firstName” class=”required” > < br/ >
 Last Name: < input type=”text” id=”lastName” class=”required” > < br/ >
 Age: < input type=”text” id=”age” > < br/ >
 < input type=”button” id=”submitButton” value=”submit” >
 < /form >
 < script type=”text/javascript” src=”prototype-1.6.0.2.js” > < /script >
 < script type=”text/javascript” >

 function init() {
 var requiredInputs = $$(“.required”);
 for(i = 0;i < requiredInputs.length;i++) {
 $(requiredInputs[i]).insert({“after”:”*required”});
 Event.observe(requiredInputs[i], “change”, function(e) {
 if(this.hasClassName(“invalid”)) { this.removeClassName
(“invalid”)};
 });
 };
 Event.observe(“submitButton”, “click”, validateUserInput);

 };

function validateUserInput() {
 var requiredInputs = $$(“.required”);
 for(var i = 0; i < requiredInputs.length; i++) {
 if(requiredInputs[i].value == “”) {
 requiredInputs[i].addClassName(“invalid”);
 } else {
 if (requiredInputs[i].hasClassName(“invalid”)) {
 requiredInputs[i].removeClassName(invalid);
 };
 };
 };
 }; Event.observe(window, ‘load’, init);
 < /script >
 < /body >

c01.indd 18c01.indd 18 7/22/09 9:33:20 AM7/22/09 9:33:20 AM

Chapter 1: Extending and Enhancing DOM Elements

19

 One common task for JavaScript is form validation. Here, you ’ ve set up a simple form and defined a
simple rule; users have to enter some text into elements that have the “ required ” class. You can enforce
that rule by collecting all of the elements who have the required class using the $$() method and
passing in a CSS selector. Once you have an array containing those elements, you iterate over the array
and check that the value property of each element does not equal an empty string. If it does, you use the
 addClass method to add the invalid class to the element. You then also check to see if the class already
has the invalid class and the user has entered text. If an element contains text and has the invalid
class, you remove the class since it passes the validation rules, as shown in Figure 1 - 5 and Figure 1 - 6,
respectively.

Figure 1-5

c01.indd 19c01.indd 19 7/22/09 9:33:20 AM7/22/09 9:33:20 AM

20

Part I: Prototype

 hasClassName, classNames
 These methods tell you what classes have been applied to the element in question. The hasClassName
method allows you to determine if a given element has the class name in its className property. The
 classNames method has been deprecated; it returns an array containing the classes that have been
applied to the element.

 setStyle, getStyle
 These methods allow you to quickly set styles on your elements and get values for specific styles. You
may only query for styles defined by the Document Object Model (DOM) Level 2 Style Specification. To
set a style on your element, you pass in an object hash of key - value pairs of the styles you wish to set.

El.setStyle({ “font-family”: “Arial”, “color” : “#F3C” });

 To get the value for a specific style, pass in the style ’ s name as an argument.

El.getStyle(“font-size”);

Figure 1-6

c01.indd 20c01.indd 20 7/22/09 9:33:20 AM7/22/09 9:33:20 AM

Chapter 1: Extending and Enhancing DOM Elements

21

 Internet Explorer returns the literal value while all other browsers return the computed value for styles.
For example, if you specify the font - size as 1em, that is what IE will return. Other browsers may
return a pixel value for the font - size.

 Extending an Element with Your
Own Methods

 Prototype makes it easy to add your own methods to the Element object using the addMethods method.
The addMethods method takes a hash of the methods you want to add. Suppose you want to add a
method to any element that will allow you to strip all the whitespace out of the element ’ s text. Here ’ s
what that function might look like:

function removeWhiteSpace(element) {
 if(element.innerText) {
 return element.innerText.replace(“ “, “”, “gi”);
 } else if(element.textContent){
 return element.textContent.replace(“ “, “”, “gi”);
 }
};

 First, you need to rewrite the method a little to match what Prototype expects. Then you can call
 Element.addMethods .

 < body >
 < div id=”myDiv” > Remove the whitespace < /div >
 < script type=”text/javascript” src=”prototype-1.6.0.2.js” > < /script >
 < script type=”text/javascript” >
 var myFunc = {
 removeWhitespace : function (element) {
 if(element.innerText) {
 return element.innerText.replace(“ “, “”, “gi”);
 } else if(element.textContent){
 return element.textContent.replace(“ “, “”, “gi”);
 }
 }
 };

 Element.addMethods(myFunc);

 alert($(“myDiv”).removeWhitespace());
 < /script >
 < /body >

 What you did here was wrap your function with an intrinsic object so that addMethods can work its
magic. You can take this one step further and return the element itself to allow for chaining.

c01.indd 21c01.indd 21 7/22/09 9:33:21 AM7/22/09 9:33:21 AM

22

Part I: Prototype

var myFunc = {
 removeWhitespace : function (element) {
 if(element.innerText) {
 element.innertText = element.innerText.replace(“ “, “”, “gi”);
 } else if(element.textContent){
 element.textContent = element.textContent.replace(“ “, “”, “gi”);
 }
 return element;
 }
};

 So now your method is ready to be used by Prototype.

 Summary
 In this chapter, you looked at how Prototype makes it easy to obtain a reference to DOM elements by ID,
CSS class, and their position relative to other elements. Prototype automatically adds helper methods to
your elements when possible, and adds the methods when you use the Element.extends() , $() , or
 $$() methods to get a reference to the element. Prototype also smoothes out some of the bumps
associated with positioning elements and finding out the dimensions of a given element.

c01.indd 22c01.indd 22 7/22/09 9:33:21 AM7/22/09 9:33:21 AM

