The best way to learn a new framework is to build something with it. This first chapter walks
through how to build a small, but complete, application using ASPNET MVC, and introduces
some of the core concepts behind it.

The application we are going to build is called “NerdDinner.” NerdDinner provides an easy way
for people to find and organize dinners online (Figure 1-1).

NerdDinner enables registered users to create, edit and delete dinners. It enforces a consistent set
of validation and business rules across the application (Figure 1-2).

NerdDinner

Huosat a Dinner

e Title

SR AET Study Grouz

v Date:
SAHIIND 5 0D FR

Dezerption:
Gat rogesher snd Talk -
about the cool new
ATULNET IVT Lrumswurk

ortant Fhore =
426 Foza0i2

=

s Local itranet | Pectectes Made OFF Wi -

Figure 1-1

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed
according to those terms with the following attribution: “Chapter 1 “NerdDinner” from Professional ASPNET MVC 1.0
written by Rob Conery, Scott Hanselman, Phil Haack, Scott Guthrie published by Wrox (ISBN: 978-0-470-38461-9) may be
redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original electronic copy is
available athttp://tinyurl.com/aspnetmvc. The complete book Professional ASPNET MVC 1.0 is copyright 2009 by
Wiley Publishing Inc and may not redistributed without permission.”

84619c01.indd List1 @ 3/31/09 5:25:44 AM

Chapter 1: NerdDinner

| AnbiplocalhostA08a8 Taners/ Ed 01|

= | ¥y X WET L Search

T Favorizes | 8 Fie:

NerdDinner

Edit Dinner

Please correct the errors and bry again.

« Title is required
+ Phone number does not match country

Dinner Title

Event Date:

3/3/2009 5.00 PM
Dasoription:

Gat together and talk

akous The sonl new
ASP.HET MW framework

Address:
Ona Microzoft Way, Recdmand WA

Country:
UK =

Contact Phone #:

AZ5-T03-B072

£

ottgu! |

Find Dinner Host Dinner

Figure 1-2

Visitors to the site can search to find upcoming dinners being held near them (Figure 1-3):

] AttpellocalhostE03/

= | 42| % JET Live Search

o Favantes g Firdd a Dinner

NerdDinner

Find & Dinner

Enter your location; beleoaue, wa

ASE.MET Sty Groug

Gat tagather and talk about the
! ool new ASP.NET MVIC
framework

I3

it lacalhost AEAE Dinno s/ Lietails il

ASP.NET Study Group (1 ASYR)
{0 RSVEs)

i Lacal mtrarst | Pratected Made: O1F

B0% -

Figure 1-3

84619c01.indd List2

3/31/09

5:25:45 AM

Chapter 1: NerdDinner

Clicking a dinner will take them to a details page where they can learn more about it (Figure 1-4):

2] hitp:/ocalhost:0848/ Dinners/ Details/51 | | 3 02 Live Search

i Favorites | @ ASP.NET Study Group e] v = @ v Pagew

NerdDinner

Find Dinner

ASP.NET Study Group) (R =

sarial Hybrid

When: 2/3/2009 @ 5:00 FM

Where: One Microsoft Way, Redmond Wa,
usa

Description: Get together and talk about
the cool new ASP.NET MVC framewark

Organizer: scottgu (425-703-5072)

Logon to RSP for this event.

opitng 229 TR 84

L Local intranst | Protectsd Mode DF

Figure 1-4

If they are interested in attending the dinner they can log in or register on the site (Figure 1-5):

<+ Favorites]glogm [| fii - B - =1 & - Pagev Sufery~ Tooks~ @~ 2

NerdDinner

Host Dinner

Log On

Please enter your username and password. Register if you don't have an account.

Account Information
Username;

billg

Password:

[remember me?

€k Local intranet | Protected Mode: Off 0% ~

Figure 1-5

They can then easily RSVP to attend the event (Figures 1-6 and 1-7):

84619c01.indd List3 @ 3/31/09 5:25:46 AM

Chapter 1: NerdDinner

(ol | 81 hepe/localnost 60848, Dinners/ Details /61

¢ Favorites | (@ ASP.MET Study Group

NerdDinner

ASP.NET Study Group

When: 2/9/2009 @ 5:00 PM

Where: One Microsoft Way, Redmond Wa,
Usa

Description: Get together and talk about
the cool new ASP.NET MVC framework

Organizer: scottgu (425-703-8072)

RSVP for this event

Figure 1-6

Ll B hepr/localnost 60848, Dinners/ Details 61

¢ Favorites | (@ ASP.MET Study Group

NerdDinner

ASP.NET Study Group

When: 2/9/2009 @ 5:00 PM

Where: One Microsoft Way, Redmond Wa,
Usa

Description: Get together and talk about
the cool new ASP.NET MVC framework

Organizer: scottgu (425-703-8072)

Thanks - we'll see you there!

Figure 1-7

84619c01.indd List4

ue

v |+ | % QBT Live Search
ﬁ - [@ ~ Page~w Safety~ Tools~ 0' i

billg! [Log OFf]

Find Dinner Host Dinner

~——

Hybrid

%,

2 - NE 43 p|
s‘? ME 43w P
3

nEdonss o | ‘
--niaamaF }
i

3gl J
.bﬁ%s:m

o ME 30t St~ |

NEI.;‘BMSI'—; | -
4 08

fITE
.
3 A = z-;\g ug-;%:io-'pumé = 2oty

£ Hospial |

€& Local intranet | Protected Made: OFf

w | +3 | x W £T Live Search

| |
4
* -
i = |
A3ra | E:

2
F MEagm P
]

3

Find Dinner Host Dinner

—1 ¥
|

A

.NEIMEI -_ : -"
e
el

o
ey

i
~tsoh e ve_ Ji

€& Local intranet | Protected Made: OFf

Chapter 1: NerdDinner

We are going to begin implementing the NerdDinner application by using the File => New Project com-
mand within Visual Studio to create a brand new ASPNET MVC project. We'll then incrementally add
functionality and features. Along the way we’ll cover how to create a database, build a model with business
rule validations, implement data listing/details Ul, provide CRUD (Create, Update, Delete) form entry sup-
port, implement efficient data paging, reuse the Ul using master pages and partials, secure the application
using authentication and authorization, use AJAX to deliver dynamic updates and interactive map support,
and implement automated unit testing.

You can build your own copy of NerdDinner from scratch by completing each step we walk
through in this chapter. Alternatively, you can download a completed version of the source code
here: http://tinyurl.com/aspnetmvc.

You can use either Visual Studio 2008 or the free Visual Web Developer 2008 Express to build the
application. You can use either SQL Server or the free SQL Server Express to host the database.

You can install ASPNET MVC, Visual Web Developer 2008, and SQL Server Express using the
Microsoft Web Platform Installer available at www.microsoft.com/web/downloads.

File = New Project

We'll begin our NerdDinner application by selecting the File = New Project menu item within Visual
Studio 2008 or the free Visual Web Developer 2008 Express.

This will bring up the New Project dialog. To create a new ASP.NET MVC application, we’ll select the
Web node on the left side of the dialog and then choose the ASPNET MVC Web Application project
template on the right (Figure 1-8):

MNew Project (5 i |
Project types: Templates: |:NET Framework35 = |0

Visual CF = 1| Visugl Studio installed templates

W ncoi | ER ASP.NET Web Application B, ASPNET Web Service Agplication

) _ || a5k NET AlAK Server Contrcl (EASP.NET MAX Server Control Bxtender

::;m fas || EAASPMET Server Contral S5 WCF Service Application

Dlat:I:ase GBASP.NET MVE Web Application ¥ Dynamic Data Entities Web Applicstion

Clowd Service | ¥ Dynamic Data Web Applicstion

LING ko X5D Preview | My Ternplates

Reporting | Eflsesrch Online Templates...

Sikverlight

A project for creating an application using the ASPMET MVC framework (1.0) (MET Framework 3.5)

Mame: NerdDinne]
Socaion Beakprje :
Salut T MerdDinner 7] Creste directory for solution
-
Figure 1-8

We’ll name the new project NerdDinner and then click the OK button to create it.

When we click OK, Visual Studio will bring up an additional dialog that prompts us to optionally create a
unit test project for the new application as well (Figure 1-9). This unit test project enables us to create auto-
mated tests that verify the functionality and behavior of our application (something we’ll cover later in
this tutorial).

84619c01.indd List5 @ 3/31/09 5:25:46 AM

Chapter 1: NerdDinner

Would you like to create a unit test project for this application?

H @) Yes, create a unit test project

Test project name:

MerdDinner. Tests

Test framework:

Visual Studic Unit Test o Additional Info

(&) No, do not create a unit test project

Figure 1-9

The Test framework drop-down in Figure 1-9 is populated with all available ASPNET MVC unit test
project templates installed on the machine. Versions can be downloaded for NUnit, MBUnit, and XUnit.
The built-in Visual Studio Unit Test Framework is also supported.

The Visual Studio Unit Test Framework is only available with Visual Studio 2008 Professional and higher
versions). If you are using VS 2008 Standard Edition or Visual Web Developer 2008 Express, you will
need to download and install the NUnit, MBUnit, or XUnit extensions for ASP.NET MVC in order for
this dialog to be shown. The dialog will not display if there aren’t any test frameworks installed.

We'll use the default NerdDinner . Tests name for the test project we create, and use the Visual Studio
Unit Test Framework option. When we click the OK button, Visual Studio will create a solution for us
with two projects in it — one for our web application and one for our unit tests (Figure 1-10):

File

Edit View Project Build Debug Data Teools Test Window Help
P -5 e | % Ca R0 -0 - BB (6| @ maploaded =
D% % KRR BERERY

(=A%
4 Solution "NerdDinner (2 projects)
", (@ NerdDinner

i+ 5 Properties

[References
[App_Data
[d Content
3 Contrallers
3 Models
[Seripts
[Views
] Defeult.asps:
-] Global.asax
- [Web.config
= T icriDinner Tos)
= (=4 Properties
@ [References
=- @ Contrallers
- [App.config
- 2] AuthonngTests.tit

ﬂ Solutien Explorer és‘emr Explorer

0506

Ready
Figure 1-10

84619c01.indd List6 @ 3/31/09 5:25:46 AM

84619c01.indd List7

Chapter 1: NerdDinner

Examining the NerdDinner Directory Structure

When you create a new ASPNET MVC application with Visual Studio, it automatically adds a number

of files and directories to the project, as shown in Figure 1-11.

Solution Explorer - NerdDinner -~ I X

B2EA®

&

o]

A Solution ‘MerdDinner’ (2 projects)
BT crcimer

=d| Properties
g References
3 App_Data
Cd Content
d Controllers
3 Models
(@ Scripts

d Views

- ,_:] Default.aspx

&) Global.asax
i Web.config

o] 3 MerdDinner. Tests

;j-s-éi;;tloﬂ Explor;r %4 Server Explorer

Figure 1-11

ASP.NET MVC projects by default have six top-level directories, shown in the following table:

Directory Purpose

/Controllers Where you put Controller classes that handle URL requests

/Models Where you put classes that represent and manipulate data

/Views Where you put UI template files that are responsible for rendering output

/Scripts Where you put JavaScript library files and scripts (.js)

/Content Where you put CSS and image files, and other non-dynamic/non-JavaScript
content

/App_Data Where you store data files you want to read /write.

ASP.NET MVC does not require this structure. In fact, developers working on large applications will
typically partition the application up across multiple projects to make it more manageable (for example:
data model classes often go in a separate class library project from the web application). The default
project structure, however, does provide a nice default directory convention that we can use to keep our

application concerns clean.

When we expand the /Controllers directory, we'll find that Visual Studio added two controller classes

(Figure 1-12) — HomeController and AccountController — by default to the project:

3/31/09 5:25:46 AM

Chapter 1: NerdDinner

=Neall)
[Selution ‘NerdDinner' (2 projects)
- .‘;Q MNerdDinner
[#- [Properties
@~ [References
3 App_Data
®- 3 Content
W ool
.] AccountController.cs
- @) HomeController.cs
- [Models
- 3 Scripts
- 3 Views
=] Default.aspx
*J Global.asax
i3 Web.config
& \E MerdDinner. Tests

B ey

[Selution Explorer |5 Server Explorer

Figure 1-12

When we expand the /Views directory, we'll find three subdirectories — /Home, /Account and
/Shared — as well as several template files within them, were also added to the project by default
(Figure 1-13):

Bl aFE e
E- :ﬁ NerdDinner -

- Ed Properties
- i References
L [y App_Data
[#- £ Content
- 3 Controllers
L £ Models
- T Scripts
o o
i B & Account
. [E] ChangePassword.aspx
- [& changePasswordSuccess.aspe
- [Z] LogOn.aspx
- [l Register.aspx
Home
- @About,aspx
- @Index.asp:
£ Shared
=] Error.aspx
- [E] LogOnUserControl.asex
] Site.Master

m

i i Web.config
®] Defautt.aspx
“_] Global.asax
i Web.config
- 3 MerdDinner. Tests =

[Solution Explorer |5 Server Explorer

Figure 1-13

When we expand the /Content and /Scripts directories, we’ll find a Site.css file that is used to style
all HTML on the site, as well as JavaScript libraries that can enable ASPNET AJAX and jQuery support
within the application (Figure 1-14):

84619c01.indd List8 @ 3/31/09 5:25:46 AM

Chapter 1: NerdDinner

Solution Explorer - NerdDinner ~ I X
ReEAP
[Solution ‘NerdDinner’ (2 projects)
Y i
[#- &dl Properties
[#- [References
- j App_Data
= 5 Content
A] Site.css
@m- L Controllers
- [Models
- |57 Scripts
- 3] jquery-1.31-vsdocjs
- 5] jquery-1.3.1js
- 5] jquery-1.3.1.min-vsdoc.js
- 5] jquery-1.3.1.min,js
-] MicrosoftAjax.debug js
2] MicrosoftAjaxjs
2] MicrosofthMveAjax.debug.js
i8] MicrosofthMveAjaxjs
@ L Views
@ E Default.aspx
[4] Global.asax
.- i3 Web.config
- :ﬂ NerdDinner.Tests

[Selution Explorer ["_-;lgen?rgxpmrer

Figure 1-14

When we expand the NerdDinner . Tests project we’ll find two classes that contain unit tests for our
controller classes (Figure 1-15):

Solution Explorer - Solution 'NerdD... » I X
Blem
] Solution "NerdDinner' (2 projects)
] _{g MerdDinner
= ﬁ NerdDinner.Tests
- =d Properties
[#]- |22 References
[ERl =] Controllers
-] AccountControllerTest.cs
#] HomeControllerTest.cs
3 App.config

|55 Solution Explorer B Server Explorer |

Figure 1-15

These default files, added by Visual Studio, provide us with a basic structure for a working application —
complete with home page, about page, account login/logout/registration pages, and an unhandled error
page (all wired-up and working out of the box).

Running the NerdDinner Application

We can run the project by choosing either the Debug => Start Debugging or Debug = Start Without
Debugging menu items (Figure 1-16):

84619c01.indd List9 @ 3/31/09 5:25:46 AM

Chapter 1: NerdDinner

) NerdDinner - Microsoft Visual Studia
File Edit View Project Build [Debug| Data Tools Test Analyze Window Help

G 5 | 4 52l | Windows | LA

%% (K| 50 E Start Debugging F
<[Start Without Debugging Ctri+F5

o || Attach to Process...

3 Exceptions... Ctil+D, E

%_n S| Steplnto Fi1

3 (3| stepOver F10

% Toggle Breakpoint [

g New Breakpoint >

g 49 Delete All Breakpoints Cirl+Shift+ F9
()| Disable All Brezkpoints

Figure 1-16

This will launch the built-in ASP.NET web server that comes with Visual Studio, and run our applica-
tion (Figure 1-17):

@ ASP.NET Development Server x]
http://localhost:51615/

#®100% ~
E 1 <HTEE YEG 12eM

Figure 1-17

Flgure 1-18 is the home page for our new project (URL: /) when it runs:

Welcome to ASP.NET MVC!

To learn more about ASP.NET MVC visit http://asp.net/mvc.

Done €4 Local intranet | Protected Mode: OFf

Figure 1-18

Clicking the About tab displays an About page (URL: /Home/About, shown in Figure 1-19):

10

84619¢01.indd List10 @ 3/31/09 5:25:47 AM

Chapter 1: NerdDinner

/ _. ;

b2l £ http://localhost54643/Home/About v | #4 | X [l 87 Live Search

About

Put content here.

|
Figure 1-19

Clicking the Log On link on the top right takes us to a Login page shown in Figure 1-20 (URL:
/Account/LogOn)

Log On

Please enter your username and password. Register if you don't have an account.

Account Information -

Username:
Password:

[Remember me?

€ Local intranet | Protected Mode: Off

Figure 1-20

11

84619c01.indd List11 @ 3/31/09 5:25:47 AM

Chapter 1: NerdDinner

If we don't have a login account, we can click the Register link (URL: /Account /Register) to create
one (Figure 1-21):

Create a New Account

Use the form below to create a new account.

Passwords are required to be a minimum of 6 characters in length.

Account Information

Username:

Email:

Password:

Confirm password:

Register

€ Local intranet | Protected Mode: Off

Figure 1-21

The code to implement the above home, about, and login/register functionality was added by default
when we created our new project. We'll use it as the starting point of our application.

Testing the NerdDinner Application

If we are using the Professional Edition or higher version of Visual Studio 2008, we can use the built-in
unit-testing IDE support within Visual Studio to test the project.

Choosing one of the above options in Figure 1-22 will open the Test Results pane within the IDE
(Figure 1-23) and provide us with pass/fail status on the 27 unit tests included in our new project
that cover the built-in functionality.

12

84619c01.indd List12 @ 3/31/09 5:25:47 AM

Chapter 1: NerdDinner

Debug Tools [Test| Window Help

8| - - O BY| NewTest.. -
%3 | Load Metadata File...
wd | Create Mew Test List...

[|

Run » | % Testsin Cument Context Ctrl+R, T
Debug » '_é; | Al Tests in Sokution Ctrl+R, A
Select Active Test Run Configuration »

Edit Test Run Configurations 3
Windows 3

Figure 1-22

File Edit View Project Build Debug Tools Test Window Help
(- EE @k DR[9-CH D[P 4| meplosded
()[4 % KB B B3 E S

RaE|A

[Selution ‘MerdDinner' (2 projects)
= 8 NerdDinner

@] = Properties

@ [References

- [App_Data

&~ CJ Content

- C3 Controllers

.. [Models

- [Seripts
5 [Views
H
H

32 1%5- | @y scottgu@SCOTTGU-WINT 20090 ~ | %, Run -~ KPDebug - 1 W |7 - %3 G
() Testrun completed Results: 27/27 passed; ltem(s) checked: 0
Result Test Name Project Error Message @ Nae:;::::;gts
O4A@ Passed ChangeP i Vi iderRe NerdDinner.Tests i [Properties
[14@ Passed LoginGet NerdDinner. Tests b il References
[145]@ Passed RegisterP ViewlfU NotSpecif NerdDinner, Tests @ £3 Controllers
[14A@ Passed RegisterP Vi lsMull MerdDinner.Tests - i App.config
EDQ_OH NerdDinner.Tests o] Solution Explorer [aguvu Explorer |

n, \ ' AMn ooB BT Teose

- FE] Default.aspx
- s Global.asax

Build succeeded

Figure 1-23

Creating the Database

We’ll be using a database to store all of the Dinner and RSVP data for our NerdDinner application.

The steps below show creating the database using the free SQL Server Express edition. All of the code
we’ll write works with both SQL Server Express and the full SQL Server.

13

84619c01.indd List13 @ 3/31/09 5:25:47 AM

Chapter 1: NerdDinner

Creating a New SQL Server Express Database

We'll begin by right-clicking on our web project, and then selecting the Add = New Item menu command

(Figure 1-24).

This will bring up the Add New Item dialog (Figure 1-25). We'll filter by the Data category and select

Solution Explorer - NerdDinner

B HEAP
. 'J Eouli.u.ti.on.:Nercilf)i.ﬁnet' (2 projects)
7 Jg_-‘ Pro [| Build

- [0 Refl Rebuild

L5 App Clean

&3 Cor Publish...

- O3 Con
el Mo

bl nas

[Newhem. | A

[z Existing lkem...
[C4 | New Folder

Add ASP.NET Folder »
4] | Component... f?)_ View Class Diagram

| Class... Set as StartUp Project

— — | Debug
Figure 1-24

the SQL Server Database item template.

We'll name the SQL Server Express database we want to create NerdDinner.mdf and hit OK. Visual
Studio will then ask us if we want to add this file to our \App_Data directory (Figure 1-26), which is a

Run Code Analysis
. E3 Seri Convert to Web Application
L:*J' 3 Viey @ | Check Accessibility...

Add Reference...
Add Web Reference...
Add Service Reference..,

Add New Item - NerdDinner [[
Lategories: Templates: D
Vigual C# Visual Studio installed templates
Code da 3l "J
L & 3| U
General ADD.NET DataSet LINQto SOL| SOL Server

Web

Windows Forms
WPF

Reporting
Silverlight

Test

Workflow

Entity Da...

AMLFile XML Schema X5LT File

My Templstes

i

Search
Online Te..,

An empty SQL Server database

Name: MerdDinner.mdf

Classes Database

Fia

Figure 1-25

directory already set up with both read and write security ACLs.

We'll click Yes and our new database will be created and added to our Solution Explorer (Figure 1-27).

14

84619c01.indd List14

3/31/09 5:25:47 AM

84619c01.indd List15

Chapter 1: NerdDinner

‘You are attempting to add a special file type (.mdf) to an ASP.NET Web
site, In general, to use this type of item in your site, you should place it
in the "App_Data’ folder. Do you want to place the file in the "App_Data’
folder?

Yes I [No Cancel

Figure 1-26

BlaE®
[Solution ‘NerdDinner' (2 projects)
= (%8 NerdDinner
! [~ B4 Properties
I [~ (3 References
. B & App_Data
]
.- [Content
3 Controllers
[Helpers
- [Models
3 Scripts
- O Views
EE Default.aspx
‘J Global.asax
i i Web.config
@- 3 NerdDinner,Tests

&

o -

Solution Explorer |45 Server Explorer
= P

Figure 1-27

Creating Tables within Our Database

We now have a new empty database. Let’s add some tables to it.

To do this we’ll navigate to the Server Explorer tab window within Visual Studio, which enables us to
manage databases and servers. SQL Server Express databases stored in the \App_Data folder of our
application will automatically show up within the Server Explorer. We can optionally use the Connect
to Database icon on the top of the Server Explorer window to add additional SQL Server databases

(both local and remote) to the list as well (Figure 1-28).

Femerbplomr = L X
EIREERS. |

= [§) Data Connections
& o [T

@ [J Database Diagrams
- [Tables
- [Views
- [Stored Procedures
@~ 3 Functions
@ £3 Synonyms
& 3 Types
- [Assemblies

[T4 Servers

23l Selution Explo. .. | % Server Explorer

Figure 1-28

15

3/31/09 5:25:47 AM

Chapter 1: NerdDinner

We will add two tables to our NerdDinner database — one to store our Dinners, and the other to track
RSVP acceptances to them. We can create new tables by right-clicking on the Tables folder within our
database and choosing the Add New Table menu command (Figure 1-29).

rer - x
ERENRS. |
&+ (41 Data Connections

% NerdDinner.mdf
[Database Diagrams

—JF-
- B3 Add New Table

- [§ New Query
g A Compare Data
&- S
w0 T __i-l Refresh
- £ £ B3| Properties
s Servers
Figure 1-29

This will open up a table designer that allows us to configure the schema of our table. For our Dinners

table, we will add 10 columns of data (Figure 1-30).

|| Fle Edit View Project Build Debug

Data Table Designer Tools Test

@ 5@ % B9 - G5 b (8] @ thevap
Slalsaida -
‘_,’dbo.Dhners:Ta...NERDD]NNER.MDH* -
Column Name Data Type Allow Nulls =
13! Dinnedd int Bl
....... Title rvarchar(50) Ll
EventDate datetime &l
Description rivarchar(256) [l
HostedBy nvarchar(20) B 3
ContactPhone nvarchar(20)]
Address nivarchar(50) Bl
Country nvarchar(30) al
Latitude float |
Longitude float [l or
Figure 1-30

We want the DinnerID column to be a unique primary key for the table. We can configure this by right-
clicking on the DinnerID column and choosing the Set Primary Key menu item (Figure 1-31).

In addition to making DinnerID a primary key, we also want configure it as an identity column whose
value is automatically incremented as new rows of data are added to the table (meaning the first inserted
Dinner row will have a DinnerID of 1, the second inserted row will have a DinnerID of 2, etc.).

We can do this by selecting the DinnerID column and then using the Column Properties editor to
set the “(Is Identity)” property on the column to Yes (Figure 1-32). We will use the standard identity

defaults (start at 1 and increment 1 on each new Dinner row).

16

84619c01.indd List16

3/31/09 5:25:48 AM

Chapter 1: NerdDinner
(e e v S B =

File Edit View Project Build Debug Data Table Designer To|
Test Analyze Window Help
@ ESh@| B0 -8-5|»
iRl ERSE -
 dbo.Dinners: Tabl...I08-2.NerdDinner)*
i Column Name Data Type | Allow Nulls |
4 DinnedD int |
[[2 setPrimary Key Jknarsoy]
4" | Insert Column ime B
‘Y| Delete Column har(256)
3 Relationships... char(50) B
2| Indexes/Keys... char(50) Fl
#) | Fulttext Index... har(50) 5l
& XML Indexes... har(30)
B | Check Constraints... 5]
Spatial Indexes...
8 g Generate Change Script... =
[y | Properties
Figure 1-31

Column Properties
Bz
Has Mon-SQL Server Subscriber Mo -
[S] Identity Specification Yes
(Is Identity) Yes
Identity Increment 1
Identity Seed 1
Indexable Yes §|
Figure 1-32

We'll then save our table by pressing Ctrl-S or by clicking the File ©> Save menu command. This will
prompt us to name the table. We’ll name it Dinners (Figure 1-33).

Enter a name for the table:

Dinners

Figure 1-33

Our new Dinners table will then show up in our database in the Server Explorer.

We’ll then repeat the above steps and create a RSVP table. This table will have three columns. We will
set up the RsvpID column as the primary key, and also make it an identity column (Figure 1-34).

We'll save it and give it the name RSVP.

17

84619c01.indd List17 @ 3/31/09 5:25:48 AM

Chapter 1: NerdDinner

&) NerdDinner - Microsoft Visual ¢

File Edit View Project Build Debug Data Table Designer
X RIERT=2= R T RN R =R
Gllsaaam -

- dbo.RSVP: Table..\NERDDINNER.MDF)

CoTur;'m MName Da-i.:a Type | Allow Mulls |
int]
DinnerlD int =]
AttendeeMName nvarchar(30) [l
]
Figure 1-34

Setting Up a Foreign Key Relationship Between Tables

We now have two tables within our database. Our last schema design step will be to set up a “one-to-
many” relationship between these two tables — so that we can associate each Dinner row with zero or
more RSVP rows that apply to it. We will do this by configuring the RSVP table’s DinnerID column to
have a foreign-key relationship to the DinnerID column in the Dinners table.

To do this we’ll open up the RSVP table within the table designer by double-clicking it in the Server
Explorer. We'll then select the DinnerID column within it, right-click, and choose the Relationships...
context menu command (Figure 1-35):

File Edit View Project Build Debug Data Table Designer Tools Test Ana
il S PN RAB|9 O E | b vy o Anych
o dba.RSVP: Table(sql08-2.NerdDinner)
§ Column Name Data Type Allow Nulls
; 7 RevplD int]
= || » Dinnedd int 8 - =]
@ AttendesMame mvar # | SetPrimary Key
&' Insert Column
W' Delete Column
| =3 Relationships...
| Indexes/Keys...
w2 | Fulltexdt Index...
@l XML Indexes...
Figure 1-35

This will bring up a dialog that we can use to set up relationships between tables (Figure 1-36).
We'll click the Add button to add a new relationship to the dialog. Once a relationship has been added,
we’ll expand the Tables and Column Specification tree-view node within the property grid to the right

of the dialog, and then click the “...” button to the right of it (Figure 1-37).

Clicking the “...” button will bring up another dialog that allows us to specify which tables and col-
umns are involved in the relationship, as well as allow us to name the relationship.

18

84619c01.indd List18 @ 3/31/09 5:25:48 AM

Chapter 1: NerdDinner

Selected Relationship:

Use the add button to create a new relationship.

Figure 1-36

Foreign Key Relationships L@_JL?I_XS J

Selected Relationship:
FK_RSVP_Dinners Editing properties for existing relationship.

B (General) -
Check Existing Data On Creatic Yes
B Tables And Columns Specifical |
Foreign Key Base Table RSVP
Foreign Key Columns DinnerlD

n

Primary/Unique Key Base Ta Dinners
Primary/Unique Key Columi DinnerlD
@ Identity
(Name) FK_RSVP_Dinners
Description
&1 Table Designer i

[Add || Delete

Figure 1-37

We will change the Primary Key Table to be Dinners, and select the DinnerID column within the Dinners
table as the primary key. Our RSVP table will be the foreign-key table, and the RSVP.DinnerID column
will be associated as the foreign-key (Figure 1-38).

Now each row in the RSVP table will be associated with a row in the Dinner table. SQL Server will
maintain referential integrity for us — and prevent us from adding a new RSVP row if it does not point
to a valid Dinner row. It will also prevent us from deleting a Dinner row if there are still RSVP rows
referring to it.

19

84619c01.indd List19 @ 3/31/09 5:25:48 AM

Chapter 1: NerdDinner

Tables and Columns B2 =

Relationship name:

FK_RSVP_Dinners

Primary key table: Foreign key table:
Dinners = REVP
DinnerlD DinnerID

Figure 1-38

Adding Data to Our Tables

Let’s finish by adding some sample data to our Dinners table. We can add data to a table by right-clicking
on it in the Server Explorer and choosing the Show Table Data command (Figure 1-39):

Server Explorer -1 x
EINERRS. |

& (3 Data Connections

{ [[NerdDinner.mdf |
i 4. 3 Database Diagrams

= [Tables
fome @ - T
& = RS Add New Table
- 3 Views Add Mew Trigger
#- [l Stored| New Query
d-- 3 Functi
5 B Synom Compare Data
: - [Types Open Table Definition

{1 @ [Assemi[R Show Table Data I
[4 Servers

. M quadpows =@ Copy
Delete

Refresh

@ E X

= Properties

Figure 1-39

Let’s add a few rows of Dinner data that we can use later as we start implementing the application
(Figure 1-40).

Building the Model

In a Model-View-Controller framework the term Model refers to the objects that represent the data of
the application, as well as the corresponding domain logic that integrates validation and business rules

with it. The Model is in many ways the “heart” of an MVC-based application, and as we’ll see later, it
fundamentally drives the behavior of the application.

20

84619c01.indd List20 @ 3/31/09 5:25:48 AM

Chapter 1: NerdDinner

/’c@ NerdDinner - Microsoft Visual Studio (Ad
File Edit View Project Build Debug Data QueryDesigner Tools Test Window Help
-S| ¥ GBS0 b @ theMap -
i[5 5 g [5]| ChangeType~ | 7 b | | 23 (8] <
 Dinners: Query(..NERDDINNER.MDF)| - x
| DinnerlD Title EventDate Description HostedBy ContactPhone Address Country Latitude Longitude
1 MET Futures 12/6/2009 ... Come talk about cool t... scottgu 425-085-3648 One Microsoft ... USA 4764312 -122130609
2 Geek Qut 12/6/2009 ... Allthings geek allowed scottha 425-555-1212 One Microsoft ... USA 4764312 -122130609
3 Fine Wine 12/1/2009 ... Sample some fine Was... philha 425-555-1212 One Microsoft ... USA 47632546 -122.21201
4 Surfing Lessons 12/8/2009 ... Ride the waves with Rob robcon 425-555-1212 One Microsoft ... USA 47632546 -122.21201
» 5 Curing Polio 12/9/2009 ... Discuss how we can er... billg 425-555-1212 One Microsoft ... [TEQ 47632546 -122.21201
55 Dinner with Sus ~ 2/28/2009 ... Fun dinner with the wife scottgu 425-985-3648 One Microsoft ... USA 47632546 -122.21201
56 XBOX Gaming 3/1/2009 5... Game Fest with the ne.., scottgu 425-703-8072 One Microsoft ... USA 4764312 -122130609
#* NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL
H 4|5 of 7| b M b
Ready
e ——
Figure 1-40

The ASPNET MVC framework supports using any data access technology. Developers can choose from
a variety of rich .NET data options to implement their models including: LINQ to Entities, LINQ to SQL,
NHibernate, LLBLGen Pro, SubSonic, WilsonORM, or just raw ADO.NET DataReaders or DataSets.

For our NerdDinner application, we are going to use LINQ to SQL to create a simple domain model that
corresponds fairly closely to our database design, and add some custom validation logic and business
rules. We will then implement a repository class that helps abstract away the data persistence imple-
mentation from the rest of the application, and enables us to easily unit test it.

LINQ to SQL

LINQ to SQL is an ORM (object relational mapper) that ships as part of .NET 3.5.

LINQ to SQL provides an easy way to map database tables to .NET classes we can code against. For our
NerdDinner application, we’ll use it to map the Dinners and RSVP tables within our database to Dinner
and RsvP model classes. The columns of the Dinners and RSVP tables will correspond to properties on
the Dinner and RSVP classes. Each Dinner and RSVP object will represent a separate row within the
Dinners or RSVP tables in the database.

LINQ to SQL allows us to avoid having to manually construct SQL statements to retrieve and update

Dinner and RSVP objects with database data. Instead, we’ll define the Dinner and RSVP classes, how
they map to/from the database, and the relationships between them. LINQ to SQL will then take care
of generating the appropriate SQL execution logic to use at runtime when we interact and use them.

We can use the LINQ language support within VB and C# to write expressive queries that retrieve Dinner
and RSVP objects. This minimizes the amount of data code we need to write, and allows us to build really
clean applications.

Adding LINQ to SQL Classes to Our Project

We'll begin by right-clicking on the Models folder in our project, and select the Add = New Item menu
command (Figure 1-41).

21

84619c01.indd List21 @ 3/31/09 5:25:48 AM

Chapter 1: NerdDinner

[Salution Explarer - Solution 'NerdDinner... » & X |

| HE e

| [5A Solution 'MerdDinner' (2 projects)

o @

Add
[z | Edsting Item... Exclude From Project
[y | MNew Folder % | Cut
Add ASP.MET Folder » | 53 | Copy
@] | Component... L[Paste
b 4 Class... X Delete
Rename
[§ | Open Folder in Windows Explorer
2| Properties
Figure 1-41

NerdDinner
(=4 Properties

- =2 References
- [App_Data
i @~ L3 Content

: & [l Controllers
o =]

Convert to Web Application
Check Accessibility...

sapadold &

B | Open Command Prompt

This will bring up the Add New Item dialog (Figure 1-42). We'll filter by the Data category and select

the LINQ to SQL Classes template within it.

Add New Item - NerdDinner

LCategories:
Visual C#
Code

General

Web

Windows Forms
WPF

Reparting
Silverlight

Test

Worlkdlow

L7 e
Templates: '__|

Visual Studio installed templates =

2 =23 |a

- EE = -

ADO.NET DataSet | LINQ to SOL | SOL Server
Entity Da... Classes Database s

- L

= [zl (5T

XML File XML Schema X5LT File

My Templates

HName: NerdDinner.dom|

LING to SOL classes mapped to relational objects.

Figure 1-42

We’ll name the item NerdDinner and click the Add button. Visual Studio will add a NerdDbinner.
dbml file under our \Models directory, and then open the LINQ to SQL object relational designer

(Figure 1-43).

Creating Data Model Classes with LINQ to SQL

LINQ to SQL enables us to quickly create data model classes from an existing database schema. To do
this we’ll open the NerdDinner database in the Server Explorer, and select the Tables we want to model

in it (Figure 1-44).

22

84619c01.indd List22

3/31/09 5:25:49 AM

Chapter 1: NerdDinner

File Edit View Project Build Debug Tools Test Window Help
i - - bl O % Ga |9 - L35 | & | (@ maploaded .
IR T EEL
| NerdDinner.dbml ~ x| Soldtion Ex
[J=2l2EEE]
[& Solution 'NerdDinner’ (2 projects)
- %8 NerdDinner

|:+|-- i5dl Properties
71~ [References
(5 App_Diata
- (3 Content
- @ Controllers
- & Models
Create data classes by dragging items from Server Explorer or Toolbox onto this design ; . |<__Ja|

surface. 3 Scripts

A Views
=] Default.aspx
h] Global.asax

"o [i% Web.config
- i MerdDinner. Tests

The Object Relational Designer allows you to visualize data classes in your code.

OB E-E-E

E-E-E-E

4 I 3 3l Solution Explo... |{3$ewe{ Explorer

Figure 1-43

Bl & e

=~ (44 Data Connections
g [NerdDinner.mdf
(6~ [Database Diagrams
£ £l Tables
w- 3
w- B
Cd Views
3 Stored Procedures
- [Functions
- 4 Synonyms
L*:'J" [Types
[@~ £ Assemblies
g&w!rs

oy —

(E5olution Explorer | Sig Server Explorer []

Figure 1-44

We can then drag the tables onto the LINQ to SQL designer surface. When we do this, LINQ to SQL will
automatically create Dinner and RSVP classes using the schema of the tables (with class properties that
map to the database table columns as shown in Figure 1-45).

By default the LINQ to SQL designer automatically pluralizes table and column names when it creates
classes based on a database schema. For example: the “Dinners” table in our example above resulted in a
Dinner class. This class naming helps make our models consistent with .NET naming conventions, and
I'usually find that having the designer fix this up is convenient (especially when adding lots of tables). If
you don't like the name of a class or property that the designer generates, though, you can always over-
ride it and change it to any name you want. You can do this either by editing the entity/property name
in-line within the designer or by modifying it via the property grid.

23

84619c01.indd List23 @ 3/31/09 5:25:49 AM

Chapter 1: NerdDinner

File Edit View Project Build Debug Tools Test Window Help
- - s % B0 - -] b S [theMap B
 NerdDinner.dbm” x [Sevebolow 3
s il A ITEIET Y 1
T £+ (43 Data Connections
- =l | =~ [% NerdDinner.mdf
Dinner 2l (- [Database Diagrams
3 Tables
= Properties [=
25 DinnerlD RSVP 3] LB =
d @ L Views
= Title i [Stored Proced
T EventDate = Properties E Dre. rocedures
P Descripti prop— e @ [Functions
' Description ?EF RsvplD @+ 3 Synonyms
B HostedBy % DinnerD 4. B Types
j ContactPhore 5 AttendeeName i @ £ Assemblies
B Address i
- 53_' Servers
= Country
ST Latitude
= Longitude
s A
4 | I 3] Solution Explorer | & Server Explorer
Ready
Figure 1-45

By default the LINQ to SQL designer also inspects the primary key/foreign key relationships of the
tables, and based on them automatically creates default relationship associations between the different
model classes it creates. For example, when we modeled the Dinners and RSVP tables onto the LINQ to
SQL designer, a one-to-many relationship association between the two was inferred based on the fact
that the RSVP table had a foreign key to the Dinners table (this is indicated by the arrow in the designer

in Figure 1-46).

-

Dinner

= Properties
75 DinnerdD

= Title

ZF EventDate
'-ﬁ' Description
= HostedBy
5 ContactPhone
B Address

B Country

B Latitude

iy Longitude

-

RSVP

Figure 1-46

|_ Properties
75 RevplD
ZF DinnerD

= AttendeeName

The association in Figure 1-46 will cause LINQ to SQL to add a strongly typed Dinner property to the
RSVP class that developers can use to access the Dinner entity associated with a given RSVP. It will also
cause the Dinner class to have a strongly typed RSVPs collection property that enables developers to

retrieve and update RSVP objects associated with that Dinner.

24

84619c01.indd List24

3/31/09 5:25:49 AM

84619c01.indd List25

Chapter 1: NerdDinner

In Figure 1-47, you can see an example of IntelliSense within Visual Studio when we create a new RSVP
object and add it to a Dinner’s RSVPs collection.

Dinner dinner = db.Dinners,Single(d => d.DinnerID == 1);
SVE myRSVP = new RSVE():
myRSVE.AttendeeName = "ScottGu”;

dinner ,RI

'Ei HostedBy -
= LValid

= Latitude
ﬁlLongitudz

PropertyChanged
PropertyChanging
= Title

@ ToString -

Figure 1-47

Notice how LINQ to SQL created a “RSVPs” collection on the Dinner object. We can use this to associate
a foreign-key relationship between a Dinner and a RSVP row in our database (Figure 1-48):

Dinner dinner = db.Dinners.Single(d => d.DinnerID == 1);
RSVP myRSVE = new RSVP():
myRSVP.AttendesName = "ScottGu";

dinner.RSVEs.Add (myRSVF) ;

Figure 1-48

If you don't like how the designer has modeled or named a table association, you can override it. Just click
on the association arrow within the designer and access its properties via the property grid to rename,
delete, or modify it. For our NerdDinner application, though, the default association rules work well for
the data model classes we are building and we can just use the default behavior.

NerdDinnerDataContext Class

Visual Studio automatically generates NET classes that represent the models and database relation-
ships defined using the LINQ to SQL designer. A LINQ to SQL DataContext class is also generated
for each LINQ to SQL designer file added to the solution. Because we named our LINQ to SQL class
item “NerdDinner,” the DataContext class created will be called NerdDinnerDataContext. This
NerdDinnerDataContext class is the primary way we will interact with the database.

Our NerdbinnerDataContext class exposes two properties — Dinners and RSVP — that represent
the two tables we modeled within the database. We can use C# to write LINQ queries against those

properties to query and retrieve Dinner and RSVP objects from the database.

The following code (Figure 1-49) demonstrates how to instantiate a NerdDinnerDataContext object
and perform a LINQ query against it to obtain a sequence of Dinners that occur in the future.

25

@ 3/31/09 5:25:49 AM

Chapter 1: NerdDinner

HerdDinnerDataContext db = new WNerdDinmerDataContext ():

var upcomingDinners = from dinner in db.Dinners

where dinner.EventDate > DateTime.Now
orderby dinner.EventDate
select dinner;
foreach (Dinner dinner in upcomingDinners) {
di::::er‘|
string Dinner.Description
@ Equals
7 EventDate -
¥ GetErrors
¥ GetHashCode
W GetType
= HostedBy
=F Latitude bs
Figure 1-49

A NerdDinnerDataContext object tracks any changes made to Dinner and RSVP objects retrieved
using it, and enable us to easily save the changes back to the database. The code that follows demon-
strates how we can use a LINQ query to retrieve a single Dinner object from the database, update two
of its properties, and then save the changes back to the database:

NerdDinnerDataContext db = new NerdDinnerDataContext () ;

// Retrieve Dinner object that reprents row with DinnerID of 1
Dinner dinner = db.Dinners.Single(d => d.DinnerID == 1);

// Update two properties on Dinner
dinner.Title = "Changed Title";
dinner.Description = "This dinner will be fun";

// Persist changes to database
db. SubmitChanges () ;

The NerdDinnerDataContext object in the code automatically tracked the property changes made to
the Dinner object we retrieved from it. When we called the submitChanges method, it executed an
appropriate SQL “UPDATE" statement to the database to persist the updated values back.

Creating a DinnerRepository Class

For small applications, it is sometimes fine to have Controllers work directly against a LINQ to SQL
DataContext class, and embed LINQ queries within the Controllers. As applications get larger, though,
this approach becomes cumbersome to maintain and test. It can also lead to us duplicating the same
LINQ queries in multiple places.

One approach that can make applications easier to maintain and test is to use a repository pattern. A
repository class helps encapsulate data querying and persistence logic, and abstracts away the imple-
mentation details of the data persistence from the application. In addition to making application code
cleaner, using a repository pattern can make it easier to change data storage implementations in the
future, and it can help facilitate unit testing an application without requiring a real database.

26

84619¢01.indd List26 @

3/31/09 5:25:49 AM

Chapter 1: NerdDinner

For our NerdDinner application we’ll define a DinnerRepository class with the following signature:
public class DinnerRepository {

// Query Methods

public IQueryable<Dinner> FindAllDinners/();
public IQueryable<Dinner> FindUpcomingDinners() ;
public Dinner GetDinner (int id);

// Insert/Delete
public void Add(Dinner dinner) ;
public void Delete(Dinner dinner);

// Persistence
public void Save();

Later in this chapter, we’ll extract an IDinnerRepository interface from this class and enable depen-
dency injection with it on our Controllers. To begin with, though, we are going to start simple and just
work directly with the DinnerRepository class.

To implement this class we'll right-click on our Models folder and choose the Add = New Item
menu command. Within the Add New Item dialog, we’ll select the Class template and name the
file DinnerRepository.cs (Figure 1-50).

File Edit View Refactor Project Build Debug Tools Test Window Help

A S H @[%[00 @ 5P Q@ mploed

A% @ BRED 0% EE]
- DinnerRepository.cs| ~ X |Selution Explorer - Solution ..~ & %
= iy 17 | E
“§ MerdDinner.Madels.DinnerRepository = -l E-' ‘3: j | 5| é%‘ ﬁ
- . o] Solution 'NerdDinner' (2 prejects)
lFlusing System; i ‘3 e
2 |_us:mg System.Collecticns.Generic; ~ ||| B G Ne el
& - A - Edl Properties
3i-using System.Ling:
a £ [l References
5{F nameapace NerdDinner.Models - [App_Data
.;J.I 1 i @ [Content
TiH public class DinnerRepository S| ¢ & C3 Controllers
i =- 5 Models
4] Dinnerfepository.cs
} & [NerdDinner.dbml
11ty i - [Scripts
@ C3 Views
- [Defaultaspx
- 4] Global.asax
i i 3 Web.config
- (8 MerdDinner Tests
s i + ||| solution Explo... [Ha Server Explorer
Tkem(s) Saved Ln9 Col9 Chg NS
Figure 1-50

We can then implement our DinnerRespository class using the code that follows:

public class DinnerRepository {

private NerdDinnerDataContext db = new NerdDinnerDataContext () ;

27

84619c01.indd List27 @ 3/31/09 5:25:49 AM

Chapter 1: NerdDinner

//
// Query Methods

public IQueryable<Dinner> FindAllDinners() ({
return db.Dinners;

}

public IQueryable<Dinner> FindUpcomingDinners() {
return from dinner in db.Dinners
where dinner.EventDate > DateTime.Now
orderby dinner.EventDate
select dinner;

}
public Dinner GetDinner (int id) {
return db.Dinners.SingleOrDefault(d => d.DinnerID == id);
}
//

// Insert/Delete Methods

public void Add(Dinner dinner) {
db.Dinners.InsertOnSubmit (dinner) ;

}
public void Delete(Dinner dinner) {
db.RSVPs.DeleteAllOnSubmit (dinner.RSVPs) ;

db.Dinners.DeleteOnSubmit (dinner) ;

}

//
// Persistence

public void Save() {

db. SubmitChanges () ;
}

Retrieving, Updating, Inserting, and Deleting
Using the DinnerRepository Class

Now that we’ve created our DinnerRepository class, let’s look at a few code examples that demonstrate
common tasks we can do with it.

Querying Examples
The code that follows retrieves a single Dinner using the DinnerID value:

DinnerRepository dinnerRepository = new DinnerRepository();

// Retrieve specific dinner by its DinnerID
Dinner dinner = dinnerRepository.GetDinner (5);

28

84619c01.indd List28 @ 3/31/09 5:25:49 AM

84619c01.indd List29

Chapter 1: NerdDinner

The code that follows retrieves all upcoming dinners and loops over them:
DinnerRepository dinnerRepository = new DinnerRepository();

// Retrieve all upcoming Dinners
var upcomingDinners = dinnerRepository.FindUpcomingDinners () ;

// Loop over each upcoming Dinner
foreach (Dinner dinner in upcomingDinners) {

Insert and Update Examples

The code that follows demonstrates adding two new dinners. Additions/modifications to the repository
aren’t committed to the database until the save method is called on it. LINQ to SQL automatically wraps
all changes in a database transaction — so either all changes happen or none of them does when our
repository saves:

DinnerRepository dinnerRepository = new DinnerRepository();

// Create First Dinner
Dinner newDinnerl = new Dinner();

newDinnerl.Title = "Dinner with Scott";
newDinnerl.HostedBy = "ScotGu";
newDinnerl.ContactPhone = "425-703-8072";

// Create Second Dinner

Dinner newDinner2 = new Dinner();
newDinner2.Title = "Dinner with Bill";
newDinner2.HostedBy = "BillG";
newDinner2.ContactPhone = "425-555-5151";

// Add Dinners to Repository
dinnerRepository.Add (newDinnerl) ;

dinnerRepository.Add (newDinner2) ;

// Persist Changes
dinnerRepository.Save () ;

The code that follows retrieves an existing Dinner object and modifies two properties on it. The
changes are committed back to the database when the Save method is called on our repository:

DinnerRepository dinnerRepository = new DinnerRepository();

// Retrieve specific dinner by its DinnerID
Dinner dinner = dinnerRepository.GetDinner (5);

// Update Dinner properties
dinner.Title = "Update Title";

dinner.HostedBy = "New Owner";

// Persist changes
dinnerRepository.Save() ;

29

@ 3/31/09 5:25:50 AM

Chapter 1: NerdDinner

The code that follows retrieves a dinner and then adds an RSVP to it. It does this using the RSVPs collec-
tion on the Dinner object that LINQ to SQL created for us (because there is a primary-key/foreign-key
relationship between the two in the database). This change is persisted back to the database as a new RSVP
table row when the Save method is called on the repository:

DinnerRepository dinnerRepository = new DinnerRepository () ;

// Retrieve specific dinner by its DinnerID
Dinner dinner = dinnerRepository.GetDinner (5);

// Create a new RSVP object
RSVP myRSVP = new RSVP() ;
myRSVP.AttendeeName = "ScottGu";

// Add RSVP to Dinner's RSVP Collection
dinner.RSVPs.Add (myRSVP) ;

// Persist changes
dinnerRepository.Save () ;

Delete Example

The code that follows retrieves an existing Dinner object, and then marks it to be deleted. When the
Save method is called on the repository, it will commit the delete back to the database:

DinnerRepository dinnerRepository = new DinnerRepository();

// Retrieve specific dinner by its DinnerID
Dinner dinner = dinnerRepository.GetDinner (5);

// Mark dinner to be deleted
dinnerRepository.Delete(dinner) ;

// Persist changes
dinnerRepository.Save () ;

Integrating Validation and Business Rule Logic
with Model Classes

Integrating validation and business rule logic is a key part of any application that works with data.

Schema Validation

When model classes are defined using the LINQ to SQL designer, the datatypes of the properties in the
data model classes will correspond to the datatypes of the database table. For example: if the EventDate
column in the Dinners table is a datetime, the data model class created by LINQ to SQL will be of type
DateTime (which is a built-in NET datatype). This means you will get compile errors if you attempt

to assign an integer or boolean to it from code, and it will raise an error automatically if you attempt to
implicitly convert a non-valid string type to it at runtime.

LINQ to SQL will also automatically handle escaping SQL values for you when you use strings — so
you don’t need to worry about SQL injection attacks when using it.

30

84619c01.indd List30 @ 3/31/09 5:25:50 AM

Chapter 1: NerdDinner

Validation and Business Rule Logic

Datatype validation is useful as a first step but is rarely sufficient. Most real-world scenarios require
the ability to specify richer validation logic that can span multiple properties, execute code, and often
have awareness of a model’s state (for example: is it being created /updated/deleted, or within a
domain-specific state like “archived”).

There are a variety of different patterns and frameworks that can be used to define and apply validation
rules to model classes, and there are several .NET based frameworks out there that can be used to help
with this. You can use pretty much any of them within ASPNET MVC applications.

For the purposes of our NerdDinner application, we'll use a relatively simple and straightforward pattern
where we expose an IsvValid property and a GetRuleViolations method on our Dinner model object.
The 1svalid property will return true or false depending on whether the validation and business rules
are all valid. The GetRuleViolations method will return a list of any rule errors.

We'll implement Isvalid and GetRuleViolations by adding a partial class to our project. Partial
classes can be used to add methods/properties/events to classes maintained by a VS designer (like the
Dinner class generated by the LINQ to SQL designer) and help avoid having the tool from messing with
our code.

We can add a new partial class to our project by right-clicking on the \Mode1ls folder, and then selecting
the Add New Item menu command. We can then choose the Class template within the Add New Item
dialog (Figure 1-51) and name it Dinner.cs.

Add New Item - NerdDinner L? W
Lategories: Templates: ﬁ'_"
Visual C# Ej :1 ij == ol -
Code = =5 ESl _‘ﬁ
Data ASK Client AJAX Client AJAX Master AJAX Web AlAX-enab...
General Control Library Page Form WCF Service |
Web . = o
o ch_ i ch. g =
Windows Forms l}] ::']]_1 = rJ‘L |
WPF Application Assembly Browser File Class Class
Reporting Manifest File Diagram
Sibverlight =] —
E3 (L == 5= .
2 @ @ 5 8
Warkflow Code File Databet Debugger Cymamic Genenic
Visualizer Data Field Handler
An empty class declaration
tome
Add | Cancel
y
Figure 1-51

Clicking the Add button will add a Dinner. cs file to our project and open it within the IDE. We can
then implement a basic rule/validation enforcement framework using the following code:

public partial class Dinner {

public bool IsValid {
get { return (GetRuleViolations().Count() == 0); }
}

31

84619c01.indd List31 @ 3/31/09 5:25:50 AM

Chapter 1: NerdDinner

public IEnumerable<RuleViolation> GetRuleViolations() {
vield break;
}

partial void OnValidate (ChangeAction action) {
if (!'IsvValid)
throw new ApplicationException("Rule violations prevent saving");
}
}

public class RuleViolation {

public string ErrorMessage { get; private set; }
public string PropertyName { get; private set; }

public RuleViolation(string errorMessage) {
ErrorMessage = errorMessage;

}

public RuleViolation(string errorMessage, string propertyName) {
ErrorMessage = errorMessage;
PropertyName = propertyName;

A few notes about this code:

Q The Dinner class is prefaced with a partial keyword — which means the code contained within it
will be combined with the class generated /maintained by the LINQ to SQL designer and compiled
into a single class.

QO Invoking the GetRuleViolations method will cause our validation and business rules to be
evaluated (we’ll implement them shortly). The GetRulevViolations method returns back a
sequence of RuleViolation objects that provide more details about each rule error.

Q The Isvalid property provides a convenient helper property that indicates whether the Dinner
object has any active Ruleviolations. It can be proactively checked by a developer using the
Dinner object at any time (and does not raise an exception).

Q The onvalidate partial method is a hook that LINQ to SQL provides that allows us to be noti-
fied any time the Dinner object is about to be persisted within the database. Our onvalidate
implementation in the previous code ensures that the Dinner has no RulevViolations before it
is saved. If it is in an invalid state, it raises an exception, which will cause LINQ to SQL to abort
the transaction.

This approach provides a simple framework that we can integrate validation and business rules into.
For now let’s add the below rules to our GetRuleViolations method:

public IEnumerable<RuleViolation> GetRuleViolations() {

if (String.IsNullOrEmpty (Title))
vield return new RuleViolation("Title required", "Title");

if (String.IsNullOrEmpty (Description))
yvield return new RuleViolation("Description required", "Description");

32

84619c01.indd List32 @

3/31/09 5:25:50 AM

84619c01.indd List33

Chapter 1: NerdDinner

if (String.IsNullOrEmpty (HostedBy))
yvield return new RuleViolation ("HostedBy required", "HostedBy");

if (String.IsNullOrEmpty (Address))
yvield return new RuleViolation("Address required", "Address");

if (String.IsNullOrEmpty (Country))
yvield return new RuleViolation("Country required", "Country");

if (String.IsNullOrEmpty (ContactPhone))
vield return new RuleViolation("Phone# required", "ContactPhone");

if (!PhonevValidator.IsValidNumber (ContactPhone, Country))
yield return new RuleViolation ("Phone# does not match country",
"ContactPhone") ;

yvield break;

We are using the yield return feature of C# to return a sequence of any RuleViolations. The first six
rule checks in the previous code simply enforce that string properties on our Dinner cannot be null or
empty. The last rule is a little more interesting and calls a Phonevalidator.IsValidNumber helper
method that we can add to our project to verify that the ContactPhone number format matches the
Dinner’s country.

We can use .NET’s regular expression support to implement this phone validation support. The code
that follows is a simple Phonevalidator implementation that we can add to our project that enables us
to add country-specific Regex pattern checks:

public class PhoneValidator {

static IDictionary<string, Regex> countryRegex =
new Dictionary<string, Regex>() {
{ "USA", new Regex(""[2-91\\d{2}-\\d{3}-\\d{4}$")},
{ "UK", new Regex (" (~1300\\d{6}$)|(~1800]1900|1902\\d{6}$)|(~0[2]3]7]8]
{1310-91{8}$) | (*13\\d{4}$) | ("04\\d{2,3}\\d{6}$)")},
{ "Netherlands", new Regex (" (“\\+[0-91{2}|“\\+[0-9]1{2}\\ (0\\) |~\\
(\\+[0-97{23\\)\\(0\\) [~00[0-9]1{2}|~0) ([0-91{9}$|[0-9\\-\\s]{10}$)")},
Y

public static bool IsValidNumber (string phoneNumber, string country) {
if (country != null && countryRegex.ContainsKey (country))
return countryRegex[country].IsMatch (phoneNumber) ;
else
return false;

}

public static IEnumerable<string> Countries {
get {
return countryRegex.Keys;

}

33

@ 3/31/09 5:25:50 AM

Chapter 1: NerdDinner

Now when we try to create or update a Dinner, our validation logic rules will be enforced. Developers
can proactively determine if a Dinner object is valid, and retrieve a list of all violations in it without
raising any exceptions:

Dinner dinner = dinnerRepository.GetDinner (5);

dinner.Country = "USA";
dinner.ContactPhone = "425-555-BOGUS";

if (!dinner.IsValid) {
var errors = dinner.GetRuleViolations();

// do something to fix errors

If we attempt to save a Dinner in an invalid state, an exception will be raised when we call the save
method on the DinnerRepository. This occurs because our Dinner.Onvalidate partial method
raises an exception if any rule violations exist in the Dinner. We can catch this exception and reactively
retrieve a list of the violations to fix:

Dinner dinner = dinnerRepository.GetDinner (5);

try {
dinner.Country = "USA";
dinner.ContactPhone = "425-555-BOGUS";

dinnerRepository.Save() ;

}
catch {

var errors = dinner.GetRuleViolations();

// do something to fix errors

Because our validation and business rules are implemented within our domain model layer, and not
within the Ul layer, they will be applied and used across all scenarios within our application. We can
later change or add business rules and have all code that works with our Dinner objects honor them.
Having the flexibility to change business rules in one place, without having these changes ripple
throughout the application and Ul logic, is a sign of a well-written application, and a benefit that an
MVC framework helps encourage.

Controllers and Views

With traditional web frameworks (classic ASF, PHP, ASPNET Web Forms, etc.), incoming URLs are typi-
cally mapped to files on disk. For example: a request for a URL like /Products.aspx or /Products.php
might be processed by a Products.aspx or Products. php file.

34

84619c01.indd List34 @ 3/31/09 5:25:50 AM

Chapter 1: NerdDinner

Web-based MVC frameworks map URLs to server code in a slightly different way. Instead of map-
ping incoming URLs to files, they instead map URLs to methods on classes. These classes are called
Controllers and they are responsible for processing incoming HTTP requests, handling user input,
retrieving and saving data, and determining the response to send back to the client (display HTML,
download a file, redirect to a different URL, etc.).

Now that we have built up a basic model for our NerdDinner application, our next step will be to add
a Controller to the application that takes advantage of it to provide users with a data listing/details
navigation experience for dinners on our site.

Adding a DinnersController Controller

We'll begin by right-clicking on the Controllers folder within our web project, and then selecting the
Add = Controller menu command (Figure 1-52).

You can also execute this command by typing Ctrl-M, Ctrl-C.

- NerdDinner 1=
- [5d Properties
- [:2 References

Convert to Web Application
Check Accessibility...
P Open Command Prompt
| |5] Controller... | Add L4
i | New kem... Exclude From Project
[z Bxsting lkem... & | Cut
4 | MNew Folder 43 | Copy
Add ASP.NET Folder » | (| Paste
4] | Component... K| Delete
%g| Class.. Rename
i : j Open Folder in Windows Explorer
_‘3 Properties
Figure 1-52

This will bring up the Add Controller dialog (Figure 1-53):

Add Controller

Controller Name:

DinnersController

[] Add action methods for Create, Update, and Details scenarios

Add | [cancel

Figure 1-53

35

84619c01.indd List35 @ 3/31/09 5:25:50 AM

Chapter 1: NerdDinner

We'll name the new controller DinnersController and click the Add button. Visual Studio will then
add a DinnersController.cs file under our \Controllers directory (Figure 1-54).

Solution Explorer - Solution .. + I X
BAEIEA|D
A Selution ‘NerdDinner' (2 projects)
- %8 NerdDinner
- | Properties
i3 References
3 App_Data
£3 Content
(& Controllers
-~ @) AccountController.cs
| O T
- ¢4 HomeController.cs
£3 Models
[3 Scripts
A Views
- (2| Default.aspx
- 4] Global.asax
- 9 Web.config
- ﬁ NerdDinner. Tests

- -l

- E-E-E

=31 Selution Explo rer |’5 Server Explors;-

Figure 1-54

It will also open up the new DinnersController class within the code-editor.

Adding Index and Details Action Methods
to the DinnersController Class

We want to enable visitors using our application to browse the list of upcoming dinners, and enable
them to click on any dinner in the list to see specific details about it. We’ll do this by publishing the
following URLs from our application:

URL Purpose
/Dinners/ Display an HTML list of upcoming dinners.
/Dinners/Details/[id] Display details about a specific dinner indicated by an “id”

parameter embedded within the URL — which will match the
DinnerID of the dinner in the database.

For example: /Dinners/Details/2 would display an HTML
page with details about the Dinner whose DinnerID value is 2.

We can publish initial implementations of these URLs by adding two public “action methods” to our
DinnersController class:

public class DinnersController : Controller {

//
// GET: /Dinners/

36

84619c01.indd List36 @ 3/31/09 5:25:50 AM

Chapter 1: NerdDinner

public void Index () {
Response.Write("<hl>Coming Soon: Dinners</hl>");

}

//
// GET: /Dinners/Details/2

public void Details(int id) {
Response.Write("<hl>Details DinnerID: " + id + "</hl>");

}
}

We can then run the application and use our browser to invoke them. Typing in the /Dinners/ URL
will cause our Index method to run, and it will send back the following response (Figure 1-55):

2 o 13/D

Ko) 4|] htp://localnost64643/Dinners | 43 | X [l 87 Live Search

hittp:

& hitp:/flocalhost64643/... | | - v] dmh v Pagev Safetyv Tools~

Coming Soon: Dinners

€ Local intranet | Protected Mode: Off

Figure 1-55

Typing in the /Dinners/Details/2 URL will cause our Details method to run, and send back the
response in Figure 1-56.

(6 oot

E" , A £ http://localhost:64643/Dinners/Details/2 v | #3 | Xl &7 Live Search

¢ Favorites | @ hitp://localhost:64643/Dinners... | | & - ~ & g v Pagev Safety~ Tools~ @~ =

Details DinnerID: 2

€L Local intranet | Protected Mode: Off

Figure 1-56

You might be wondering — how did ASPNET MVC know to create our DinnersController class and
invoke those methods? To understand that let’s take a quick look at how routing works.

Understanding ASP.NET MVC Routing

ASPNET MVC includes a powerful URL routing engine that provides a lot of flexibility in controlling
how URLs are mapped to controller classes. It allows us to completely customize how ASPNET MVC

37

84619c01.indd List37 @ 3/31/09 5:25:50 AM

Chapter 1: NerdDinner

chooses which controller class to create, which method to invoke on it, as well as configure different
ways that variables can be automatically parsed from the URL/querystring and passed to the method
as parameter arguments. It delivers the flexibility to totally optimize a site for SEO (search engine opti-
mization) as well as publish any URL structure we want from an application.

By default, new ASPNET MVC projects come with a preconfigured set of URL routing rules already
registered. This enables us to easily get started on an application without having to explicitly config-
ure anything. The default routing rule registrations can be found within the Application class of
our projects — which we can open by double-clicking the G1obal . asax file in the root of our project
(Figure 1-57).

Solution Explorer - Solution 'NerdDinner... » & X
iz | & E] E | @

| [Solution ‘NerdDinner’ (2 projects)

2 8 NerdDinner

=d| Properties

i [@- [zl References

i ®
3]

3 App_Diata
i d Content
| [E- CF Controllers
i - CF Models
L@ _d Scripts
| - [Views
: =] Default.aspx
i i [Web.config
@] MerdDinner. Tests

._g Solution Explorer [_/?'E!gss View|

Figure 1-57

The default ASPNET MVC routing rules are registered within the RegisterRoutes method of this class:
public void RegisterRoutes (RouteCollection routes)
{

routes.IgnoreRoute (" {resource}.axd/{*pathInfo}");

routes.MapRoute (

"Default", // Route name
"{controller}/{action}/{id}", // URL w/ params
new { controller="Home", action="Index", id="" } // Param defaults

)

The routes.MapRoute method call in the previous code registers a default routing rule that maps
incoming URLs to controller classes using the URL format: / { controller}/{action}/{id} — where
controller is the name of the controller class to instantiate, action is the name of a public method to
invoke on it, and idis an optional parameter embedded within the URL that can be passed as an argu-
ment to the method. The third parameter passed to the MapRoute method call is a set of default values
to use for the controller/action/id values in the event that they are not present in the URL (controller
= "Home", action="Index", id=" “).

The following table demonstrates how a variety of URLs are mapped using the default / { controllers}/
{action}/{1id} route rule:

38

84619c01.indd List38 @

6/5/09 7:17:22 AM

Chapter 1: NerdDinner

URL Controller Class Action Method Parameters Passed
/Dinners/Details/2 DinnersController Details (id) id=2
/Dinners/Edit/5 DinnersController Edit(id) id=5
/Dinners/Create DinnersController Create() N/A
/Dinners DinnersController Index () N/A
/Home HomeController Index () N/A
/ HomeController Index () N/A
The last three rows show the default values (Controller = Home, Action = Index, Id = "")

being used. Because the Index method is registered as the default action name if one isn’t specified, the
/Dinners and /Home URLs cause the Index action method to be invoked on their Controller classes.
Because the “Home” controller is registered as the default controller if one isn't specified, the / URL
causes the HomeController to be created, and the Index action method on it to be invoked.

If you don't like these default URL routing rules, the good news is that they are easy to change — just edit
them within the RegisterRoutes method in the previous code. For our NerdDinner application, though,
we aren’t going to change any of the default URL routing rules — instead we’ll just use them as-is.

Using the DinnerRepository from Our DinnersController

Let’s now replace the current implementation of our Index and Details action methods with imple-
mentations that use our model.

We'll use the DinnerRepository class we built earlier to implement the behavior. We'll begin by adding
a using statement that references the NerdDinner .Models namespace, and then declare an instance of
our DinnerRepository as a field on our DinnerController class.

Later in this chapter, we’ll introduce the concept of Dependency Injection and show another way for our
Controllers to obtain a reference to a DinnerRepository that enables better unit testing — but for right
now we’ll just create an instance of our DinnerRepository inline like the code that follows.

using System;
using System.Collections.Generic;
using System.Ling;
using System.Web;
using System.Web.Mvc;
using NerdDinner.Models;
namespace NerdDinner.Controllers ({
public class DinnersController : Controller {

DinnerRepository dinnerRepository = new DinnerRepository();

/7

39

84619c01.indd List39 @ 3/31/09 5:25:51 AM

Chapter 1: NerdDinner

// GET: /Dinners/

public void Index () {
var dinners = dinnerRepository.FindUpcomingDinners () .ToList () ;

}

//
// GET: /Dinners/Details/2

public void Details(int id) {
Dinner dinner = dinnerRepository.GetDinner (id);

}

}

Now we are ready to generate a HTML response back using our retrieved data model objects.

Using Views with Our Controller

While it is possible to write code within our action methods to assemble HTML and then use the
Response.Write helper method to send it back to the client, that approach becomes fairly unwieldy
quickly. A much better approach is for us to only perform application and data logic inside our
DinnersController action methods, and to then pass the data needed to render a HTML response to
a separate view template that is responsible for outputting the HTML representation of it. As we'll see
in a moment, a view template is a text file that typically contains a combination of HTML markup and
embedded rendering code.

Separating our controller logic from our view rendering brings several big benefits. In particular it
helps enforce a clear separation of concerns between the application code and Ul formatting/rendering
code. This makes it much easier to unit test application logic in isolation from UI rendering logic. It
makes it easier to later modify the Ul rendering templates without having to make application code
changes. And it can make it easier for developers and designers to collaborate together on projects.

We can update our DinnersController class to indicate that we want to use a view template to send
back an HTML Ul response by changing the method signatures of our two action methods from having
a return type of “void” to instead have a return type of ActionResult. We can then call the View helper
method on the Controller base class to return back a ViewResult object:

public class DinnersController : Controller {

DinnerRepository dinnerRepository = new DinnerRepository();

//
// GET: /Dinners/

public ActionResult Index() {
var dinners = dinnerRepository.FindUpcomingDinners () .ToList () ;

return View("Index", dinners);

//

40

84619c01.indd List40 @ 3/31/09 5:25:51 AM

Chapter 1: NerdDinner

// GET: /Dinners/Details/2
public ActionResult Details(int id) {
Dinner dinner = dinnerRepository.GetDinner (id);
if (dinner == null)
return View("NotFound") ;

else
return View("Details", dinner);

The signature of the View helper method we are using in the previous code looks like Figure 1-58.

ViewResult View(string viewName, object model);

Figure 1-58

The first parameter to the View helper method is the name of the view template file we want to use to
render the HTML response. The second parameter is a model object that contains the data that the view
template needs in order to render the HTML response.

Within our Index action method we are calling the view helper method and indicating that we want to
render an HTML listing of dinners using an “Index” view template. We are passing the view template a
sequence of Dinner objects to generate the list from:

//
// GET: /Dinners/

public ActionResult Index() {
var dinners = dinnerRepository.FindUpcomingDinners().ToList () ;

return View("Index", dinners);

}

Within our Details action method, we attempt to retrieve a Dinner object using the id provided
within the URL. If a valid Dinner is found we call the vView helper method, indicating we want to use
a "Details" view template to render the retrieved Dinner object. If an invalid dinner is requested, we
render a helpful error message that indicates that the dinner doesn’t exist using a "NotFound" view
template (and an overloaded version of the View () helper method that just takes the template name):

!/
// GET: /Dinners/Details/2

public ActionResult Details(int id) {
Dinner dinner = dinnerRepository.FindDinner (id);
if (dinner == null)

return View("NotFound") ;
else

41

84619c01.indd List41 @ 3/31/09 5:25:51 AM

Chapter 1: NerdDinner

return View("Details",

}

Let’s now implement the "NotFound", "Details", and "Index" view templates.

Implementing the “NotFound” View Template

We'll begin by implementing the "NotFound" view template — which displays a friendly error message
indicating that the requested dinner can’t be found.

We'll create a new view template by positioning our text cursor within a controller action method, and
then by right clicking and choosing the Add View menu command (Figure 1-59; we can also execute
this command by pressing Ctrl-M, Ctrl-V):

ult Details(int id) {

if (dinner == null)
return View("NotFound™) ;"

Dinner dinner = dinnerRepository.GetDinner (id):

B AddView..

return View(dinner);

Go To View...
Refactor

Organize Usings

Figure 1-59

This will bring up an Add View dialog shown in Figure 1-60. By default, the dialog will pre-populate
the name of the view to create to match the name of the action method the cursor was in when the dia-
log was launched (in this case “Details”). Because we want to first implement the "NotFound" template,

we’ll override this view name and set it instead to be NotFound:

l View name:

MotFound

Empty

Create a partial view (.ascx)

| Create a strongly-typed view

View data class:

View content:

| Select master page
~/Views/Shared/Site. Master

ContentPlaceHolder ID:

MainContent

=

=

Figure 1-60

42

84619c01.indd List42

3/31/09 5:25:51 AM

Chapter 1: NerdDinner

84619c01.indd List43

When we click the Add button, Visual Studio will create a new NotFound. aspx (Figure 1-61) view
template for us within the \Views\Dinners directory (which it will also create if the directory doesn’t
already exist):

[Solution Explorer - Solution . v & X |
S2EIEE P
oA Solution ‘MerdDinner' (2 projects)
& & NerdDinner
Lo Zd| Properties
- (53 References
3 App_Data
Cd Content
1 Controllers
d Models

E - E-E -

B- B Views
| @ B3 Account
= £ Dinners
" e e
Cd Home
3 Shared
- [Web.config
Default.zspx
(- &) Global.asax
L L [Web.config
ﬁ MerdDinner.Tests

|5 Solution Explorer (5 Server Explorer |

Figure 1-61

It will also open up our new NotFound. aspx view template within the code-editor (Figure 1-62):

- NotFound.aspx | DinnersController.cs =X

Server Objects & Events | (Mo Events) -

<%@ Page Langquage="C§" Inherits="System.Web.Mvc.ViewPage™ MasterPageFile="-/Views/S

:E‘:a.:p:C:nt,cnt ID="Title™ ContentPlaceHolderID="TitleContent™ runat="server”>
HotFound
</asp:Content>

o s W

j:(asp:C:ntent ID="Main" ContentPlaceHolderID="MainContent™ runat="szerver">»
£ <h2>NotFound</h2>

11 </asp:Content>
12;

4 i
3 Design | O Split | E Source ﬂ <asp:Content#Main >
Figure 1-62

View templates by default have two content regions where we can add content and code. The first allows
us to customize the “title” of the HTML page sent back. The second allows us to customize the “main
content” of the HTML page sent back.

To implement our "NotFound" view template, we’ll add some basic content:

<asp:Content ID="Title" ContentPlaceHolderID="TitleContent" runat="server">
Dinner Not Found

43

@ 3/31/09 5:25:51 AM

Chapter 1: NerdDinner

</asp:Content>
<asp:Content ID="Main" ContentPlaceHolderID="MainContent" runat="server">
<h2>Dinner Not Found</h2>
<p>Sorry - but the dinner you requested doesn't exist or was deleted.</p>
</asp:Content>

We can then try it out within the browser. To do this let’s request the /Dinners/Details/9999 URL. This
will refer to a dinner that doesn’t currently exist in the database, and will cause our DinnersController
.Details action method to render our "NotFound" view template (Figure 1-63).

@ Nerd Dinner Not Found - Windows Internet Explorer [E=N e]
@O . |E| http://localhost:60848 [Dinners/Details/3999 " "fJ X | | 8 Google tad ']
il Favorites |? Nerd Dinner Mot Found . | - v I # v Pagev Safety> Tooks~ @~ |

[LogOn]

n

I

Dinner Not Found

Sorry - but the dinner you requested doesn't exist or was deleted.

€& Local intranet | Protected Mode: Off v ®10% v

Figure 1-63

One thing you'll notice in Figure 1-63 is that our basic view template has inherited a bunch of HTML
that surrounds the main content on the screen. This is because our view template is using a master page
template that enables us to apply a consistent layout across all views on the site. We'll discuss how master

pages work more in a later part of this chapter.

Implementing the “Details” View Template

Let’s now implement the "Details" view template — which will generate HTML for a single
Dinner model.

We'll do this by positioning our text cursor within the Details action method, and then right-clicking
and choosing the Add View menu command — Figure 1-64 — or pressing Ctrl-M, Ctrl-V.

This will bring up the Add View dialog. We’ll keep the default view name (Details). We’ll also select
the “Create a strongly typed view” checkbox in the dialog and select (using the combobox drop-down)
the name of the model type we are passing from the Controller to the View. For this view we are pass-
ing a Dinner object (the fully qualified name for this type is: NerdDinner .Models.Dinner) as shown
in Figure 1-65.

44

84619c01.indd List44 @ 3/31/09 5:25:51 AM

Chapter 1: NerdDinner

if (dinner == null)

=] Add View...

Go To View...

return View("NotFound™): il

[|z

return View(dinner);
Refactor 3

Organize Usings 3

Figure 1-64

Add View =

View name:

Details

_| Create a partial view (.ascx)

7] Create a strongly-typed view
View data class:

MerdDinner.Models.Dinner -

View gontent:

Details -

7] Select master page
~/Views/Shared/Site.Master D

ContentPlaceHolder ID:
MainContent

Add I Cancel]

Figure 1-65

Unlike the previous template, where we chose to create an “Empty View,” this time we will choose to
automatically scaffold the view using a "Details" template. We can indicate this by changing the View
content drop-down in the dialog above.

Scaffolding will generate an initial implementation of our details view template based on the Dinner
model we are passing to it. This provides an easy way for us to quickly get started on our view template

implementation.

When we click the Add button, Visual Studio will create a new Details.aspx view template file for us
within our \Views\Dinners directory (Figure 1-66).

45

84619c01.indd List45 @ 3/31/09 5:25:52 AM

Chapter 1: NerdDinner

Solution Explorer - Solution ... + & X
=il
A Solution ‘MerdDinner' (2 projects)
2 (2 NerdDinner
- Ed Properties
4 3 References
0} App_Data
3 Content
3 Controllers
3 Models
[Scripts
=7 Views
- (@ Account
=
L] Details.aspx
i L[] MotFound.aspx
| @~ CF Home
| @~ O3 Shared
{1 L [ils Web.config
i m] Default.aspx
o] ‘] Global.asax
- [Web.config
(- (5 NerdDinner. Tests

-

&

o [T B E -

50lution Explorer [Server Bxplorer |

Figure 1-66

It will also open up our new Details.aspx view template within the code-editor. It will contain an initial
scaffold implementation of a details view based on a Dinner model. The scaffolding engine uses .NET
reflection to look at the public properties exposed on the class passed to it, and will add appropriate
content based on each type it finds:

<asp:Content ID="Title" ContentPlaceHolderID="TitleContent" runat="server">

Details

</asp:Content>

<asp:Content ID="Main" ContentPlaceHolderID="MainContent" runat="server">

46

84619c01.indd List46

<h2>Details</h2>

<fieldset>

<legend>Fields</legend>
<p>

DinnerID:

<%= Html.Encode (Model .DinnerID) %>
</p>
<p>

Title:

<%= Html.Encode (Model.Title) %>
</p>
<p>

EventDate:

<%= Html.Encode (String.Format ("{0:g}", Model.EventDate))

</p>
<p>
Description:
<%= Html.Encode (Model.Description) %>
</p>
<p>
HostedBy:

%>

3/31/09 5:25:52 AM

Chapter 1: NerdDinner

84619c01.indd List47

<%= Html.Encode (Model .HostedBy) %>

</p>
<p>
ContactPhone:
<%= Html.Encode (Model.ContactPhone) %>
</p>
<p>
Address:
<%= Html.Encode (Model.Address) %>
</p>
<p>
Country:
<%= Html.Encode (Model.Country) %>
</p>
<p>
Latitude:
<%= Html.Encode (String.Format ("{0:F}", Model.Latitude)) %>
</p>
<p>
Longitude:
<%= Html.Encode (String.Format ("{0:F}", Model.Longitude)) %>
</p>
</fieldset>
<p>
<%=Html.ActionLink ("Edit", "Edit", new { id=Model.DinnerID }) %> |
<%=Html.ActionLink ("Back to List", "Index") %>
</p>

</asp:Content>

We can request the /Dinners/Details/1 URL to see what this “details” scaffold implementation looks
like in the browser. Using this URL will display one of the dinners we manually added to our database
when we first created it (Figure 1-67).

8 Densils2 - Wrdcws Interet Cxplarer o
@O = B et ieaihostieds| Derers Detalsd | ‘tl % | [P scrccus o~
i Fi B Detaik? B B - O v Pages Sefelyr Taske e

Details

Fields

DinreriD: 1

Desaiptin: Come Lalk aboul ool things cumng with NET
HraradAy: senttau

ContactPhone: 425-558-1512

Letilude: 47,64

onohuga: 127,17

tzvald: Truz

i | gadk o Uit

"%k Local intranet | Pratect=d Mode OFF (¥ - mox -

Figure 1-67
47

@ 3/31/09 5:25:52 AM

Chapter 1: NerdDinner

This gets us up and running quickly, and provides us with an initial implementation of our Details.
aspx view. We can then go and tweak it to customize the UI to our satisfaction.

When we look at the Details.aspx template more closely, we’ll find that it contains static HTML as well
as embedded rendering code. <% %> code nuggets execute code when the view template renders, and
<%= %> code nuggets execute the code contained within them and then render the result to the output
stream of the template.

We can write code within our View that accesses the Dinner model object that was passed from our
controller using a strongly typed Model property. Visual Studio provides us with full code-IntelliSense
when accessing this Model property within the editor (Figure 1-68).

<p>
Description:
<%= Html.Encode (Model.Dj 3>

\ P SRR
/e “r Address -
“F ContactPhone I
ey Country
E) Discrpion |
7 DinnerdD
W Equals
T EventDate
@ GetHashCode
@ GetType

|strir|g Dinncr.Ducript'an:

Figure 1-68

Let’s make some tweaks so that the source for our final Details view template looks like that below:
P
<asp:Content ID="Title" ContentPlaceHolderID="TitleContent" runat="server">
Dinner: <%= Html.Encode (Model.Title) %>
</asp:Content>

<asp:Content ID="Main" ContentPlaceHolderID="MainContent" runat="server">

<h2><%= Html.Encode (Model.Title) $%></h2>

<p>
When:
<%= Model .EventDate.ToShortDateString() %>
@
<%= Model .EventDate.ToShortTimeString() %>
</p>
<p>
Where:
<%= Html.Encode (Model .Address) %>,
<%= Html.Encode (Model.Country) %>
</p>
<p>
Description:
<%= Html.Encode (Model.Description) %>
</p>
<p>

48

84619c01.indd List48 @

3/31/09 5:25:52 AM

Chapter 1: NerdDinner

Organizer:

<%= Html.Encode (Model .HostedBy) %>

(<%= Html.Encode (Model.ContactPhone) %>)
</p>

<%= Html.ActionLink("Edit Dinner", "Edit", new { id=Model.DinnerID })%> |
<%= Html.ActionLink("Delete Dinner", "Delete", new { id=Model.DinnerID}) %>

</asp:Content>

When we access the /Dinners/Details/1 URL again, it will render like so (Figure 1-69):

. = g‘, http://localhost:64643/Dinners/Details/1 ‘f Live Search

| {zFﬂlei‘B g[)innen JMET Futures | | ﬁ - * [@ ~ Page~ Safety~ Tools~ o' i

d My MVC Application

.NET Futures

When: 12/6/2009 @ 5:00 PM

Where: One Microsoft Way, Redmond WA, USA
Description: Come talk about cool things coming with .NET
Organizer: scottgu (425-985-3648)

Edit Dinner | Delete Dinner

€4 Local intranet | Protected Mode: OFf BI00% v

Figure 1-69

Implementing the “Index” View Template

Let’s now implement the "Index" view template — which will generate a listing of upcoming dinners.
To do this we'll position our text cursor within the Index action method, and then right-click and choose
the Add View menu command (or press Ctrl-M, Ctrl-V).

Within the Add View dialog (Figure 1-70), we’ll keep the view template named Index and select the
“Create a strongly-typed view” checkbox. This time we will choose to automatically generate a List
view template, and select NerdDinner .Models.Dinner as the model type passed to the view (which
because we have indicated we are creating a List scaffold will cause the Add View dialog to assume we
are passing a sequence of Dinner objects from our Controller to the View):

49

84619c01.indd List49 @ 3/31/09 5:25:52 AM

Chapter 1: NerdDinner

View name:

Index

[7] Create a partial view (.ascd)

Create a strongly-typed view
View data class:
NerdDinner.Medels.Dinner

View content:
[List

Select master page
~{Views/Shared/Site.Master
ContentPlaceHolder ID:
MainContent

Figure 1-70

When we click the Add button, Visual Studio will create a new Index.aspx view template file for us
within our \Views\Dinners directory. It will scaffold an initial implementation within it that provides
an HTML table listing of the Dinners we pass to the view.

When we run the application and access the /Dinners/ URL, it will render our list of dinners like so
(Figure 1-71):

Sl £ i/ ocalhast 64643 Dinners | 42| o 7 Live Sesncn

My MVC Application

DinnerlD Title EventDate Description HostedBy ContactPhone Address Country Latitude Longitude

one
Microsoft
way,
Redmond
Wa

Game Fest

with the

newest 425-703-B072
XBox

Games!

¥BOX 3/1/200%
Gaming 5:00 PM

Q98052

2416
95th Ave
/22009 Celebrate

5:00 BM LK scottgu 425-703-8072

NE,
Clyde Hill
W,

98004
All things

geak scottha 425-555-1212 W
allowed

12/5/2009
12:00 AM

Come talk

=bout cocl

things sCottgu 425-985-3648
coming

wiith .NET

-NET 12/5/2009
Futures 5:00 PM

R Local intranet | Protected Mode: OFf

Figure 1-71

50

84619¢01.indd List50 @ 3/31/09 5:25:52 AM

Chapter 1: NerdDinner

84619c01.indd List51

The table solution in Figure 1-71 gives us a grid-like layout of our Dinner data — which isn’t quite what
we want for our consumer-facing Dinner listing. We can update the Index.aspx view template and modify
it to list fewer columns of data, and use a element to render them instead of a table using the code

that follows:
<asp:Content ID="Main" ContentPlaceHolderID="MainContent" runat="server">
<h2>Upcoming Dinners</h2>

<% foreach (var dinner in Model) { %>

<%= Html.Encode (dinner.Title) %>
on
<%= Html.Encode (dinner.EventDate.ToShortDateString()) %>
@
<%= Html.Encode (dinner.EventDate.ToShortTimeString()) %>
</1li>
<% } %>

</asp:Content>

We are using the var keyword within the foreach statement as we loop over each dinner in our
model. Those unfamiliar with C# 3.0 might think that using var means that the Dinner object is late-
bound. It, instead, means that the compiler is using type-inference against the strongly typed Model
property (which is of type IEnumerable<Dinner>) and compiling the local “dinner” variable as a
Dinner type — which means we get full IntelliSense and compile-time checking for it within code

blocks (Figure 1-72).

<% foreach (var dinner in Model) { %>

<lix>
<%= Html.Encode (dinner. %>

= Description
= Dinnerdd —
@ Equals
=F EventDate
% GetHashCode

9 Getlype i

Figure 1-72

When we press the Refresh button on the /Dinners URL in our browser, our updated view now looks
like Figure 1-73.

51

@ 3/31/09 5:25:52 AM

Chapter 1: NerdDinner

£] http://localhost:64643/Dinners v &7 Live Search

i/ Favorites | @ Upcoming Dinners [| - ~ 2] @ v Pagev Safety~ Tools~+

My MVC Application

Upcoming Dinners

¥BOX Gaming on 3/1/2009 @ 5:00 PM

Dinner with the Team on 2/2/2009 @ 5:00 PM
Geek Out on 12/6/2009 @ 12:00 AM

.NET Futures on 12/6/2009 @ 5:00 PM

Fine Wine on 12/7/2009 @ 12:00 AM

Surfing Lessons on 12/8/2009 @ 12:00 AM
Curing Polio on 12/9/2009 @ 12:00 AM

Done € Local intranet | Protected Mode: Off

Figure 1-73

This is looking better — but isn't entirely there yet. Our last step is to enable end users to click individual
dinners in the list and see details about them. We’ll implement this by rendering HTML hyperlink ele-
ments that link to the Details action method on our DinnersController.

We can generate these hyperlinks within our Index view in one of two ways. The first is to manually
create HTML <a> elements like Figure 1-74, where we embed <% %> blocks within the <a> HTML
element:

<% foreach (var dinner in Model) { %>

<1ix

<a href="/Dinners/Details/<%= dinner.DinnerID %>
<%= Html.Encode (dinner.Title) >

</faxr

on

<%= Hutml.Encode (dinner.EventDate.ToShortDateString()) %>

@

<%= Huml.Encode (dinner.EventDate.ToShortTimeString())$>

</1lix

<% } 3>

Figure 1-74

An alternative approach we can use is to take advantage of the built-in Html . ActionLink helper
method within ASPNET MVC that supports programmatically creating an HTML <a> element that
links to another action method on a Controller:

<%= Html.ActionLink(dinner.Title, "Details", new { id=dinner.DinnerID }) %>

The first parameter to the Html . ActionLink helper method is the link-text to display (in this case the
title of the dinner), the second parameter is the Controller action name we want to generate the link to

52

84619c01.indd List52 @ 3/31/09 5:25:53 AM

Chapter 1: NerdDinner

(in this case the “Details" method), and the third parameter is a set of parameters to send to the action
(implemented as an anonymous type with property name/values). In this case we are specifying the id
parameter of the dinner we want to link to, and because the default URL routing rule in ASPNET MVC is
{Controller}/{Action}/{id} the Html.ActionLink helper method will generate the following output:

.NET Futures

For our Index.aspx view we'll use the Html . ActionLink helper method approach and have each dinner
in the list link to the appropriate details URL:

<asp:Content ID="Title" ContentPlaceHolderID="TitleContent" runat="server">
Upcoming Dinners
</asp:Content>

<asp:Content ID="Main" ContentPlaceHolderID="MainContent" runat="server">

<h2>Upcoming Dinners</h2>

<% foreach (var dinner in Model) { %>

<%= Html.ActionLink(dinner.Title, "Details",
new { id=dinner.DinnerID }) %>
on
<%= Html.Encode (dinner.EventDate.ToShortDateString()) %>
@
<%= Html.Encode (dinner.EventDate.ToShortTimeString ())%>
</1li>
<% } %>

</asp:Content>

And now when we hit the /Dinners URL, our dinner list looks like Figure 1-75:

£ httpflocalhostf6d3 Dinners | 43 | % [l BT Live Search

7 Favorites |QLIp:amingDinner; | - + [M ~ Pagew Safety~ Tools~

My MVC Application

[Log©nl

Upcoming Dinners

XBOX Gaming on 3/1/2009 @ 5:00 PM

Yinner with the Team on 3/2/2009 @ 5:00 PM
Geek Out on 12/6/2009 @ 12:00 AM

NET Futures on 12/6/200% @ 5:00 PM

Fine Wine on 12/7/2009 @ 12:00 AM

Surfing Lessons on 12/8/2009 @ 12:00 AM
Curing Polie on 12/9/2000 @ 12:00 AM

| € Local intranet | Protected Mode: OFf _
Figure 1-75
53

84619c01.indd List53 @ 3/31/09 5:25:53 AM

Chapter 1: NerdDinner

When we click any of the dinners in the list, we’ll navigate to see details about it (Figure 1-76):

| & Dinner: Geek Out - Windows Internet B

bl B hitp://localnost:64643/Dinners/Details2 &7 Live Search

¢ Favorites & Dinner: Geek Out F} ¥ * =3 % ~ Page~ Safety~ Tools~ 0'

My MVC Application

Geek Out

When: 12/6/2009 @ 12:00 AM

Where: One Microsoft Way, Redmond WA, USA
Description: All things geek allowed
Organizer: scottha (425-555-1212)

Edit Dinner | Delete Dinner

Done & Local intranet | Protected Mode: Off

Figure 1-76

Convention-Based Naming and the \Views
Directory Structure

ASPNET MVC applications, by default, use a convention-based directory naming structure when
resolving view templates. This allows developers to avoid having to fully qualify a location path when
referencing views from within a Controller class. By default ASPNET MVC will look for the view tem-
plate file within the \Views\[ControllerName]\ directory underneath the application.

For example, we've been working on the DinnersController class — which explicitly references three
view templates: "Index", "Details", and "NotFound". ASPNET MVC will, by default, look for these
views within the \Views\Dinners directory underneath our application root directory (Figure 1-77).

Notice in Figure 1-77 how there are currently three controller classes within the project
(DinnersController, HomeController, and AccountController — the last two were added by
default when we created the project), and there are three subdirectories (one for each controller) within
the \views directory.

Views referenced from the Home and Accounts controllers will automatically resolve their view
templates from the respective \Views\Home and \Views\ Account directories. The \Views\Shared sub-
directory provides a way to store view templates that are reused across multiple controllers within the
application. When ASPNET MVC attempts to resolve a view template, it will first check within the
\Views\[Controller] specific directory, and if it can’t find the view template there it will look within

the \Views\Shared directory.

54

84619c01.indd List54 @ 3/31/09 5:25:53 AM

Chapter 1: NerdDinner

84619c01.indd List55

Solution Explorer - Solution ", » & X

A

A Solution ‘MerdDinner' (2 projects)
£ 2 NerdDinner
:.+|- =dl Properties
[(23 References
- (53 App_Data
[~ Cd Content
i @~ & Controllers
i) AccountController.cs
] DinnersController.cs
i 4] HomeController.cs
- L Models
(@ Scripts
B- & Views
Lo _ Account

.

| Details.aspx
- ﬂlndu.nspx

=] MeotFound.aspx
i @~ Cd Home
i m- O3 Shared
ioE i3 Web.config
®- [E] Default.aspx
- 4] Global.asax
i - |23 Web.config
i3] m MerdDinner. Tests

public class DinnersController

var dinners

return View (dinners) ;

|53 Solution Explorer (5§ Server Explorer

Figure 1-77

Controller {

DinnerRepository dinnerRepository = new DinnerRepository();

public ActionResult Index() {

dinnerRepository.FindUpcomingDinners () .ToList () ;

When it comes to naming individual view templates, the recommended guidance is to have the view
template share the same name as the action method that caused it to render. For example, above our
Index action method is using the "Index" view to render the view result, and the Details action
method is using the "Details" view to render its results. This makes it easy to quickly see which
template is associated with each action.

Developers do not need to explicitly specify the view template name when the view template has the
same name as the action method being invoked on the controller. We can instead just pass the model
object to the View helper method (without specifying the view name), and ASPNET MVC will auto-
matically infer that we want to use the \Views\[ControllerName]\[ActionName] view template on disk

This allows us to clean up our controller code a little, and avoid duplicating the name twice in our code:

55

3/31/09 5:25:53 AM

Chapter 1: NerdDinner

//
// GET: /Dinners/Details/2

public ActionResult Details (int id) {
Dinner dinner = dinnerRepository.GetDinner (id);
if (dinner == null)
return View("NotFound") ;
else
return View(dinner) ;

}

The previous code is all that is needed to implement a nice Dinner listing/details experience for the site.

Create, Update, Delete Form Scenarios

We’ve introduced controllers and views, and covered how to use them to implement a listing/details
experience for dinners on the site. Our next step will be to take our DinnersController class further
and enable support for editing, creating, and deleting dinners with it as well.

URLs Handled by DinnersController

We previously added action methods to DinnersController that implemented support for two
URLSs: /Dinners and /Dinners/Details/[id].

URL Verb Purpose
/Dinners/ GET Display an HTML list of upcoming dinners.
/Dinners/Details/[id] GET Display details about a specific dinner.

We will now add action methods to implement three additional URLs: /Dinners/Edit/[id], /Dinners
/Create, and /Dinners/Delete/[id]. These URLs will enable support for editing existing dinners,
creating new dinners, and deleting dinners.

We will support both HTTP GET and HTTP POST verb interactions with these new URLs. HTTP GET
requests to these URLs will display the initial HTML view of the data (a form populated with the Dinner
data in the case of “edit,” a blank form in the case of “create,” and a delete confirmation screen in the
case of “delete”). HTTP POST requests to these URLs will save/update/delete the Dinner data in our
DinnerRepository (and from there to the database).

56

84619c01.indd List56 @

3/31/09 5:25:53 AM

84619c01.indd List57

Chapter 1: NerdDinner

URL Verb Purpose

/Dinners/Edit/[id] GET Display an editable HTML form populated with Dinner data.
POST Save the form changes for a particular Dinner to the database.

/Dinners/Create GET Display an empty HTML form that allows users to define

new Dinners.

POST Create a new Dinner and save it in the database.

/Dinners/Delete/ [id] GET Display a confirmation screen that asks the user whether
they want to delete the specified dinner.

POST Deletes the specified dinner from the database.

Let’s begin by implementing the “edit” scenario.

Implementing the HTTP-GET Edit Action Method

We'll start by implementing the HTTP GET behavior of our edit action method. This method will be
invoked when the /Dinners/Edit/[1d] URL is requested. Our implementation will look like:

//
// GET: /Dinners/Edit/2

public ActionResult Edit (int id) {
Dinner dinner = dinnerRepository.GetDinner (id);

return View(dinner) ;

}

The code above uses the DinnerRepository to retrieve a Dinner object. It then renders a view tem-
plate using the Dinner object. Because we haven't explicitly passed a template name to the View helper
method, it will use the convention based default path to resolve the view template: /Views/Dinners/
Edit.aspx.

Let’s now create this view template. We will do this by right-clicking within the Edit method and
selecting the Add View context menu command (Figure 1-78).

public ActionResult Edic (inc id) {

Dinner dinner = dinnerRepository.GecDinner (id);

recturn View(dinnex| =] Add View.. |

|=l| Go To View...
Refactor 3
Organize Usings 3

Figure 1-78

57

@ 3/31/09 5:25:53 AM

Chapter 1: NerdDinner

Within the Add View dialog, we'll indicate that we are passing a Dinner object to our view template as
its model, and choose to auto-scaffold an Edit template (Figure 1-79).

View name:
Edit

[T Create a partial view (.ascd)

[¥] Create a strongly-typed view
View data class:
NerdDinner.Medels.Dinner

View content:
[Edit

elect master page
Sel pag
~{Views/Shared/Site.Master

ContentPlaceHolder ID:
MainContent

Figure 1-79

When we click the Add button, Visual Studio will add a new Edit.aspx view template file for us
within the \Views\Dinners directory. It will also open up the new Edit.aspx view template within
the code-editor — populated with an initial “Edit” scaffold implementation like that in Figure 1-80.

. Editaspx | DinnersControllercs | =X
Server Objects & Events * (MNo Events) ¥

<&@ Page Language="C#" Inherits="System.Web.Mvc.ViewPage<NerdDinner.Models.Dinner>" vl
-

[<asp:Content ID="Contentl™ ContentPlaceHolderID="TitleContent" runat="server™>»
L Edit
</asp:Content>

m

) oy N B W R

130 <asp:Content ID="Content2" ContentPlaceHolderIl="MainContent"™ runat="server">

g <h2>Edit</h2>

U
11 <%= Heml.ValidactionSummary("Edit was unsuccessful. Please correct the errors and
1z
13 <% using (Html.BeginForm()) (%>
14
15 <fieldset>
1 I <legend>Fields</legend>
<p>

<label for="DinnerID">DinnerID:</label
<%= Html.TextBox ("DinnerID", Model.DinnerID} %>
<%= Html.ValidationMessage ("DinnerID", "*") %>

1: - </p>

227 <p>

23 <label for="Title">Title:</label>

24 <%= Hrml.TextBox("Title", Model.Title) %>

25 <%= Hrml.ValidationMessage ("Title™, "*") %>

26 </p> -
S W - —— .
4 Design | Spht | B Source | B <aspiContent®Content2 > B

Figure 1-80

58

84619c01.indd Lists8 @ 3/31/09 5:25:53 AM

Chapter 1: NerdDinner

Let’s make a few changes to the default “Edit” scaffold generated, and update the Edit view template to
have the content below (which removes a few of the properties we don’t want to expose):

<asp:Content ID="Title" ContentPlaceHolderID="TitleContent" runat="server">
Edit: <%=Html.Encode (Model.Title) %>
</asp:Content>

<asp:Content ID="Main" ContentPlaceHolderID="MainContent" runat="server">

<h2>Edit Dinner</h2>

<%= Html.ValidationSummary ("Please correct the errors and try again.") %>
<% using (Html.BeginForm()) { %>
<fieldset>
<p>

<label for="Title">Dinner Title:</label>
<%= Html.TextBox("Title") %>
<%= Html.ValidationMessage("Title", "*") %>
</p>
<p>
<label for="EventDate">Event Date:</label>
<%= Html.TextBox("EventDate", String.Format("{0:g}",
Model .EventDate)) %>

<%= Html.ValidationMessage ("EventDate", "*") %>
</p>
<p>
<label for="Description">Description:</label>
<%= Html.TextArea ("Description") %>
<%= Html.ValidationMessage ("Description", "*")%>
</p>
<p>

<label for="Address">Address:</label>

<%= Html.TextBox("Address") %>

<%= Html.ValidationMessage ("Address", "*") %>
</p>
<p>

<label for="Country">Country:</label>

<%= Html.TextBox ("Country") %>

<%= Html.ValidationMessage ("Country", "*") %>
</p>
<p>
<label for="ContactPhone">Contact Phone #:</label>
<%= Html.TextBox("ContactPhone") %>
<%= Html.ValidationMessage ("ContactPhone", "*") %>
</p>
<p>
<label for="Latitude">Latitude:</label>
<%= Html.TextBox("Latitude") %>
<%= Html.ValidationMessage ("Latitude", "*") %>
</p>
<p>

<label for="Longitude">Longitude:</label>

59

84619c01.indd List59 @ 3/31/09 5:25:53 AM

Chapter 1: NerdDinner

<%= Html.TextBox("Longitude") %>

<%= Html.ValidationMessage ("Longitude", "*") %>
</p>
<p>
<input type="submit" value="Save" />
</p>
</fieldset>

<% } %>

</asp:Content>

When we run the application and request the /Dinners/Edit/1 URL we will see the page in
Figure 1-81:

[LogOn]

My MVC Application

Edit Dinner

Dinner Title:
MET Futures

Event Date:
12/6/2009 5:00 PM

Description:

Come talk about cool
things coming
with .NET

Address:
One Microsoft Way, Redmond WA

Country:
UsA

Contact Phone #:
425-985-3648

Latitude:
47.64312

Longitude:
-122.130609

Done €k Local intranet | Protected Mode: OFf

Figure 1-81

60

84619¢01.indd List60 @

3/31/09 5:25:53 AM

Chapter 1: NerdDinner

The HTML markup generated by our view looks like that below. It is standard HTML — with a
<form> element that performs an HTTP POST to the /Dinners/Edit/1 URL when the Save <input
type="submit" /> button is pushed. A HTML <input type="text"/> elementhas been output for
each editable property (Figure 1-82).

|<:0:m action="/Dinners/Edit/1" method="post">
<fieldsec>
<p>
<label for="Title">Dinner Title:</label>
<input id="Title” name="Title" type="text" wvalue=".NET Futures" />
</p>
<p>
<label f "‘EventDate”>Event Date:</label>
<input 1 iventDate™ name="EventDate™ type="text” value="12/6/2009 5:00 BM" />
</p>
—— Some Fields Omitted for Brevity —->
<p>
<input type="submit® value="Save" />
</p>
</fieldsec>
</form>
Figure 1-82

Html.BeginForm and Html.TextBox Html Helper Methods

Our Edit.aspx view template is using several “Html Helper” methods: Html.vValidationSummary,
Html.BeginForm, Html.TextBox, and Html .ValidationMessage. In addition to generating HTML
markup for us, these helper methods provide built-in error handling and validation support.

Html.BeginForm Helper Method

The Html . BeginForm helper method is what output the HTML <form> element in our markup. In our
Edit.aspx view template, you'll notice that we are applying a C# “using” statement when using this
method. The open curly brace indicates the beginning of the <form> content, and the closing curly
brace is what indicates the end of the </ form> element:

<% using (Html.BeginForm()) { %>

<fieldset>
<!-- Fields Omitted for Brevity -->
<p>
<input type="submit" value="Save" />
</p>
</fieldset>
<% } %>

Alternatively, if you find the “using” statement approach unnatural for a scenario like this, you can use
a Html.BeginForm and Html .EndForm combination (which does the same thing):

<% Html.BeginForm(); %>

61

84619c01.indd List61 @ 6/5/09 7:32:45 AM

Chapter 1: NerdDinner

<fieldset>
<!-- Fields Omitted for Brevity -->
<p>
<input type="submit" value="Save" />
</p>
</fieldset>
<% Html.EndForm(); %>

Calling Html . BeginForm without any parameters will cause it to output a form element that does

an HTTP-POST to the current request’s URL. That is why our Edit view generates a <form action="
/Dinners/Edit/1" method="post"> element. We could have alternatively passed explicit parameters
to Html . BeginForm if we wanted to post to a different URL.

Html.TextBox Helper Method
Our Edit.aspx view uses the Html . TextBox helper method to output <input type="text"/> elements:

<%= Html.TextBox("Title") %>

The Html . TextBox method above takes a single parameter — which is being used to specify both the
id/name attributes of the <input type="text"/> element to output, as well as the model property
to populate the textbox value from. For example, the Dinner object we passed to the Edit view had a
"Title" property value of .NET Futures, and so our Html.TextBox ("Title") method call output
is: <input id="Title" name="Title" type="text" value=".NET Futures" />.

Alternatively, we can use the first Html . TextBox parameter to specify the id/name of the element, and
then explicitly pass in the value to use as a second parameter:

<%= Html.TextBox("Title", Model.Title) %>
Often we’ll want to perform custom formatting on the value that is output. The String.Format static
method built into .NET is useful for these scenarios. Our Edit . aspx view template is using this to format
the EventDate value (which is of type DateTime) so that it doesn’t show seconds for the time:

<%= Html.TextBox ("EventDate", String.Format("{0:g}", Model.EventDate)) %>
A third parameter to Html . TextBox can optionally be used to output additional HTML attributes.
The code-snippet below demonstrates how to render an additional size="30" attribute and a
class="mycssclass" attribute on the <input type="text"/> element. Note how we are escaping

the name of the class attribute using a @ character because class is a reserved keyword in C#:

<%= Html.TextBox("Title", Model.Title, new { size=30, @class="myclass" })%>

Implementing the HTTP-POST Edit Action Method

We now have the HTTP-GET version of our Edit action method implemented. When a user requests the
/Dinners/Edit/1 URL they receive an HTML page like the one in Figure 1-83:

62

84619c01.indd List62 @

6/5/09 7:32:57 AM

Chapter 1: NerdDinner

[LegOnl

My MVC Application

Edit Dinner

Dinner Title:
MET Futures

Event Date:
12/6/2009 5:00 PM

Description:

Come talk about cool
things coming
with .NET

Address:
One Microsoft Way, Redmond WA

Country:
UsA

Contact Phone #:
425-985-3648

Latitude:
4764312

Longitude:
-122.130609

Done €k Local intranet | Protected Mode: Off H100% - J

Figure 1-83

Pressing the Save button causes a form post to the /Dinners/Edit/1 URL, and submits the HTML
<input> form values using the HTTP POST verb. Let’s now implement the HTTP poST behavior of our
edit action method — which will handle saving the dinner.

We'll begin by adding an overloaded Edit action method to our DinnersController that has an
“AcceptVerbs” attribute on it that indicates it handles HTTP POST scenarios:

//
// POST: /Dinners/Edit/2

[AcceptVerbs (HttpVerbs.Post)]
public ActionResult Edit(int id, FormCollection formValues) {

}

63

84619c01.indd List63 @ 3/31/09 5:25:54 AM

®

Chapter 1: NerdDinner

When the [AcceptVerbs] attribute is applied to overloaded action methods, ASPNET MVC automati-
cally handles dispatching requests to the appropriate action method depending on the incoming HTTP
verb. HTTP POST requests to /Dinners/Edit/[id] URLs will go to the above Edit method, while all
other HTTP verb requests to /Dinners/Edit/[id] URLs will go to the first Edit method we imple-
mented (which did not have an [AcceptVerbs] attribute).

Why Differentiate via HTTP Verbs?

You might ask — why are we using a single URL and differentiating its behavior via
the HTTP verb? Why not just have two separate URLs to handle loading and saving
edit changes? For example: /Dinners/Edit/[id] to display the initial form and
/Dinners/Save/ [id] to handle the form post to save it?

The downside with publishing two separate URLs is that in cases where we post to
/Dinners/Save/2, and then need to redisplay the HTML form because of an input
error, the end user will end up having the /Dinners/save/2 URL in their browser’s
address bar (since that was the URL the form posted to). If the end user bookmarks

this redisplayed page to their browser favorites list, or copy/pastes the URL and
emails it to a friend, they will end up saving a URL that won't work in the future
(since that URL depends on post values).

By exposing a single URL (like: /Dinners/Edit/[id]) and differentiating the pro-
cessing of it by HTTP verb, it is safe for end users to bookmark the edit page and/or
send the URL to others.

Retrieving Form Post Values

There are a variety of ways we can access posted form parameters within our HTTP pOST Edit method.

One simple approach is to just use the Request property on the Controller base class to access the form
collection and retrieve the posted values directly:

//

// POST:

/Dinners/Edit/2

[AcceptVerbs (HttpVerbs.Post)]
public ActionResult Edit (int id, FormCollection formvalues) ({

64

84619c01.indd List64

// Retrieve existing dinner

Dinner

dinner = dinnerRepository.GetDinner (id) ;

// Update dinner with form posted values

dinner.
dinner.
dinner.
dinner.
dinner.
dinner.

Title = Request.Form["Title"];

Description = Request.Form["Description"];

EventDate = DateTime.Parse(Request.Form["EventDate"]);
Address = Request.Form["Address"];

Country = Request.Form["Country"];

ContactPhone = Request.Form["ContactPhone"];

// Persist changes back to database
dinnerRepository.Save() ;

3/31/09 5:25:54 AM

Chapter 1: NerdDinner

// Perform HTTP redirect to details page for the saved Dinner
return RedirectToAction("Details", new { id = dinner.DinnerID });

The approach in the previous code is a little verbose, though, especially once we add error handling logic.

A better approach for this scenario is to leverage the built-in UpdateModel helper method on the
Controller base class. It supports updating the properties of an object we pass it using the incoming
form parameters. It uses reflection to determine the property names on the object, and then automati-
cally converts and assigns values to them based on the input values submitted by the client.

We could use the UpdateModel method to implement our HTTP-POST Edit action using this code:

//
// POST: /Dinners/Edit/2

[AcceptVerbs (HttpVerbs.Post)]
public ActionResult Edit(int id, FormCollection formvValues) {

Dinner dinner = dinnerRepository.GetDinner (id);
UpdateModel (dinner) ;
dinnerRepository.Save() ;

return RedirectToAction("Details", new { id = dinner.DinnerID });

}

We can now visit the /Dinners/Edit/1 URL, and change the title of our dinner (Figure 1-84).

Edit Dinner

Dinner Title:
MET Futures (Modified)|

Event Date:
12/6/2009 5:00 PM

Description:

Come talk about cool

Figure 1-84

When we click the Save button, we’ll perform a form post to our Edit action, and the updated values will
be persisted in the database. We will then be redirected to the Details URL for the dinner (which will dis-
play the newly saved values like those in Figure 1-85).

65

84619c01.indd List65 @ 3/31/09 5:25:54 AM

Chapter 1: NerdDinner

Kol -l E] hitp://localnost:64643/Dinners/Details/L = | 43 | X [7 Live Search

H' My MVC Application

.NET Futures (Modified)

When: 12/6/2009 @ 5:00 PM

Where: One Microsoft Way, Redmond WA, USA
Description: Come talk about cool things coming with .NET
Organizer: scottgu (425-985-3648)

Edit Dinner | Delete Dinner

€ Local intranet | Protected Mode: Off HI00% v

Figure 1-85

Handling Edit Errors

Our current HTTP-POST implementation works fine — except when there are errors.

When a user makes a mistake editing a form, we need to make sure that the form is redisplayed with
an informative error message that guides them to fix it. This includes cases where an end-user posts
incorrect input (for example: a malformed date string), as well as cases where the input format is valid
but there is a business rule violation. When errors occur, the form should preserve the input data the
user originally entered so that they don’t have to refill their changes manually. This process should
repeat as many times as necessary until the form successfully completes.

ASPNET MVC includes some nice built-in features that make error handling and form redisplay easy.
To see these features in action, let’s update our Edit action method with the following code:

//
// POST: /Dinners/Edit/2

[AcceptVerbs (HttpVerbs.Post)]
public ActionResult Edit(int id, FormCollection formvValues) {

Dinner dinner = dinnerRepository.GetDinner (id) ;

try {

UpdateModel (dinner) ;

66

84619¢01.indd List66 @ 3/31/09 5:25:54 AM

Chapter 1: NerdDinner

dinnerRepository.Save() ;

return RedirectToAction("Details", new { id=dinner.DinnerID });

}
catch {
foreach (var issue in dinner.GetRuleViolations()) {
ModelState.AddModelError (issue.PropertyName, issue.ErrorMessage);
}
return View(dinner) ;
}

The previous code is similar to our previous implementation — except that we are now wrapping a try/
catch error handling block around our work. If an exception occurs either when calling UpdateModel, or
when we try and save the DinnerRepository (which will raise an exception if the Dinner object we are
trying to save is invalid because of a rule violation), our catch error handling block will execute. Within
it, we loop over any rule violations that exist in the Dinner object and add them to a ModelState object
(which we'll discuss shortly). We then redisplay the view.

To see this working let’s re-run the application, edit a dinner, and change it to have an empty Title, an

Event Date of BOGUS, and use a UK phone number with a country value of USA. When we press the

Save button our HTTP POST Edit method will not be able to save the dinner (because there are errors)
and will redisplay the form in Figure 1-86.

£ hitpi/ilocelbost 643 Dirners/ Tl | 4¢ | % [M7 Live Search T

e Favotes g Edis | I =L #m e Pagew Salety e Tocke e

My MVC Application

I Log on]

Edit Dinner

Please correct the errors and try again.

« Title is required
+ Phone# does not match country

Dinner Title:

Evertt Date:
BOGUS

Description:

Come Talk about coal

things comaing
with JHET

Addrass:
One Microsoll Way, Redmond WA

Contact Phone =
OETDEO1010D
Latitude:

4T 4317
Longitude:
122130609

ks Local intranet | Pratocted Made off

Figure 1-86
67

84619c01.indd List67 @ 3/31/09 5:25:54 AM

Chapter 1: NerdDinner

Our application has a decent error experience. The text elements with the invalid input are highlighted in
red, and validation error messages are displayed to the end user about them. The form is also preserving
the input data the user originally entered — so that they don't have to refill anything.

How, you might ask, did this occur? How did the Title, Event Date, and Contact Phone textboxes
highlight themselves in red and know to output the originally entered user values? And how

did error messages get displayed in the list at the top? The good news is that this didn’t occur by
magic — rather it was because we used some of the built-in ASPNET MVC features that make input
validation and error handling scenarios easy.

Understanding ModelState and the Validation
HTML Helper Methods

Controller classes have a ModelState property collection that provides a way to indicate that errors exist
with a model object being passed to a View. Error entries within the ModelState collection identify the
name of the model property with the issue (for example: “Title”, “EventDate”, or “ContactPhone”), and
allow a human-friendly error message to be specified (for example: “Title is required”).

The UpdateModel () helper method automatically populates the ModelState collection when it
encounters errors while trying to assign form values to properties on the model object. For example, our
Dinner object’s EventDate property is of type DateTime. When the UpdateModel method was unable
to assign the string value BOGUS to it in the previous scenario, the UpdateModel method added an entry
to the Modelstate collection indicating an assignment error had occurred with that property.

Developers can also write code to explicitly add error entries into the ModelState collection as we are
doing below within our “catch” error handling block, which is populating the ModelState collection
with entries based on the active Rule Violations in the Dinner object:

[AcceptVerbs (HttpVerbs.Post)]
public ActionResult Edit (int id, FormCollection formvalues) ({

Dinner dinner = dinnerRepository.GetDinner (id);

try {
UpdateModel (dinner) ;

dinnerRepository.Save() ;
return RedirectToAction("Details", new { id=dinner.DinnerID });
}
catch {
foreach (var issue in dinner.GetRuleViolations()) {
ModelState.AddModelError (issue.PropertyName, issue.ErrorMessage);

}

return View(dinner) ;

68

84619c01.indd List68 @ 3/31/09 5:25:54 AM

84619c01.indd List69

Chapter 1: NerdDinner

Html Helper Integration with ModelState

HTML helper methods — like Html . TextBox — check the ModelState collection when rendering output.
If an error for the item exists, they render the user-entered value and a CSS error class.

For example, in our "Edit" view we are using the Html . TextBox helper method to render the
EventDate of our Dinner object:

<%= Html.TextBox ("EventDate", String.Format("{0:g}", Model.EventDate)) %>

When the view was rendered in the error scenario, the Html . Text Box method checked the ModelState
collection to see if there were any errors associated with the "EventDate" property of our Dinner object.
When it determined that there was an error, it rendered the submitted user input (*BoGUs") as the value,

and added a CSS error class to the <input type="textbox"/> markup it generated:

<input class="input-validation-error" id="EventDate" name="EventDate" type="text"
value="BOGUS" />

You can customize the appearance of the CSS error class to look however you want. The default CSS
error class — input-validation-error —is defined in the \content\site.css stylesheet and
looks like the code below:

.input-validation-error

{
border: 1lpx solid #££0000;
background-color: #ffeeee;

This CSS rule is what caused our invalid input elements to be highlighted, as in Figure 1-87.

Event Date:

BOGUS

Figure 1-87

Html .ValidationMessage Helper Method

The Html.ValidationMessage helper method can be used to output the ModelState error message
associated with a particular model property:

<%= Html.ValidationMessage ("EventDate") %>

The previous code outputs: The value 'BOGUS' is
invalid

The Html .ValidationMessage helper method also supports a second parameter that allows developers
to override the error text message that is displayed:

<%= Html.ValidationMessage ("EventDate", "*") %>

The previous code outputs: * instead of the
default error text when an error is present for the EventDate property.

69

@ 6/5/09 7:33:09 AM

Chapter 1: NerdDinner

Html.ValidationSummary() Helper Method

The Html.ValidationSummary helper method can be used to render a summary error message,

accompanied by a <1i/> list of all detailed error messages in the Modelstate collection
(Figure 1-88):

Edit Dinner

Please correct the errors and try again.

« Title is required
+ Phone# does not match country

Dinner Title:

Event Date:
BOGUS *

Description:

Come talk about cool =
things coming

Figure 1-88

The Html.ValidationSummary helper method takes an optional string parameter — which defines a
summary error message to display above the list of detailed errors:

<%= Html.ValidationSummary ("Please correct the errors and try again.") %>

You can optionally use CSS to override what the error list looks like.

Using a AddRuleViolations Helper Method

Our initial HTTP-POST Edit implementation used a foreach statement within its catch block to loop
over the Dinner object’s Rule Violations and add them to the controller’s ModelState collection:

catch {
foreach (var issue in dinner.GetRuleViolations()) {

ModelState.AddModelError (issue.PropertyName, issue.ErrorMessage);

}

return View(dinner) ;

We can make this code a little cleaner by adding a ControllerHelpers class to the NerdDinner project,
and implement an AddRuleViolations extension method within it that adds a helper method to the
ASPNET MVC ModelStateDictionary class. This extension method can encapsulate the logic neces-
sary to populate the ModelStateDictionary with a list of Ruleviolation errors:

public static class ControllerHelpers ({

public static void AddRuleViolations(this ModelStateDictionary modelState,

70

84619¢01.indd List70 @ 3/31/09 5:25:54 AM

Chapter 1: NerdDinner

IEnumerable<RuleViolation> errors) {

foreach (RuleViolation issue in errors) {
modelState.AddModelError (issue.PropertyName, issue.ErrorMessage);

We can then update our HTTP-POST Edit action method to use this extension method to populate the
ModelState collection with our Dinner Rule Violations.

Complete Edit Action Method Implementations

The following code implements all of the controller logic necessary for our Edit scenario:

//
// GET: /Dinners/Edit/2

public ActionResult Edit (int id) {
Dinner dinner = dinnerRepository.GetDinner (id);

return View(dinner) ;
}

//
// POST: /Dinners/Edit/2

[AcceptVerbs (HttpVerbs.Post)]
public ActionResult Edit(int id, FormCollection formvalues) {

Dinner dinner = dinnerRepository.GetDinner (id);

try {
UpdateModel (dinner) ;

dinnerRepository.Save () ;

return RedirectToAction("Details", new { id=dinner.DinnerID });

}
catch {
ModelState.AddModelErrors (dinner.GetRuleViolations());

return View(dinner) ;

The nice thing about our Edit implementation is that neither our Controller class nor our view template
has to know anything about the specific validation or business rules being enforced by our Dinner model.
We can add additional rules to our model in the future and do not have to make any code changes to our con-
troller or view in order for them to be supported. This provides us with the flexibility to easily evolve our
application requirements in the future with a minimum of code changes.

71

84619c01.indd List71 @ 6/5/09 7:22:57 AM

Chapter 1: NerdDinner

Implementing the HTTP-GET Create Action Method

We've finished implementing the Edit behavior of our DinnersController class. Let's now move on
to implement the Create support on it — which will enable users to add new dinners.

We'll begin by implementing the HTTP GET behavior of our create action method. This method will be
called when someone visits the /Dinners/Create URL. Our implementation looks like:

//
// GET: /Dinners/Create

public ActionResult Create() {

Dinner dinner = new Dinner () {
EventDate = DateTime.Now.AddDays (7)
Y

return View(dinner) ;

}

The previous code creates a new Dinner object, and assigns its EventDate property to be one week in
the future. It then renders a View that is based on the new Dinner object. Because we haven't explicitly
passed a name to the view helper method, it will use the convention based default path to resolve the
view template: /Views/Dinners/Create.aspx.

Let’s now create this view template. We can do this by right-clicking within the Create action method
and selecting the Add View context menu command. Within the Add View dialog we’ll indicate that

we are passing a Dinner object to the view template, and choose to auto-scaffold a Create template
(Figure 1-89).

Add View B
View name:
Create

| Create a partial view (.ascx)

¥] Create a strongly-typed view

View data class:

MerdDinner.Models. Dinner -
View content:
Create o

| Select master page
~Wiews/Shared/Site.Master .

ContentPlaceHolder ID:

MainContent

Add ' Cancel

Figure 1-89

When we click the Add button, Visual Studio will save a new scaffold-based Create.aspx view to
the \Views\Dinners directory, and open it up within the IDE (Figure 1-90).

72

84619¢01.indd List72 @

3/31/09 5:25:54 AM

Chapter 1: NerdDinner

" Create.aspx| DinnersController.cs | s

Server Objects & Events * (Mo Events) -

{ €3@ Page Title="" Language="C$" MasterPageFile="-/Views/Shared/Site.Master” Int

C="Eerverts

<azp:Content ID="Contentl®™ ContentPlaceHolderID="TitleContent" ru
4 Create
5 «</asp:Content>

! <asp:Content ID="Content2™ ContentPlaceHolderID="MainContent” runat="server">

<h2>Create</h2>

<&= Html.ValidationSummary ("Create was unsuccessful. Please correct the errc

<% using (Heml.BeginForm()) {%>
<fieldset>
<legend>Fields</legend>
<p>

<label for="DinnerID">DinnerID:</label>
<%= Html.TextBox ("DinnerID™) %>
<%= Html.ValidationMeasage ("DinnerID", "*") %>
</p>
<p>
<label for="Title">Title:</label>
<%= Html.TextBox ("Title™) %>
<%= Html.ValidacionMeszage ("Title"™, "*") 3>
</p> o

4 n +

Figure 1-90

Let’s make a few changes to the default “create” scaffold file that was generated for us, and modify it up
to look like the code below:

<asp:Content ID="Title" ContentPlaceHolderID="TitleContent" runat="server">
Host a Dinner
</asp:Content>

<asp:Content ID="Main" ContentPlaceHolderID="MainContent" runat="server">
<h2>Host a Dinner</h2>
<%= Html.ValidationSummary ("Please correct the errors and try again.") %>
<% using (Html.BeginForm()) {%>

<fieldset>
<p>
<label for="Title">Title:</label>
<%= Html.TextBox("Title") %>
<%= Html.ValidationMessage("Title", "*") %>
</p>
<p>
<label for="EventDate">Event Date:</label>
<%= Html.TextBox ("EventDate") %>
<%= Html.ValidationMessage ("EventDate", "*") %>
</p>
<p>
<label for="Description">Description:</label>
<%= Html.TextArea ("Description") %>
<%= Html.ValidationMessage ("Description", "*") %>
</p>

73

84619c01.indd List73 @ 3/31/09 5:25:54 AM

Chapter 1: NerdDinner

<p>
<label for="Address">Address:</label>
<%= Html.TextBox ("Address") %>
<%= Html.ValidationMessage ("Address", "*") %>
</p>
<p>
<label for="Country">Country:</label>
<%= Html.TextBox("Country") %>
<%= Html.ValidationMessage ("Country", "*") %>
</p>
<p>
<label for="ContactPhone">ContactPhone:</label>
<%= Html.TextBox("ContactPhone") %>
<%= Html.ValidationMessage ("ContactPhone", "*") %>
</p>
<p>
<label for="Latitude">Latitude:</label>
<%= Html.TextBox("Latitude") %>
<%= Html.ValidationMessage ("Latitude", "*") %>
</p>
<p>
<label for="Longitude">Longitude:</label>
<%= Html.TextBox ("Longitude") %>
<%= Html.ValidationMessage ("Longitude", "*") %>
</p>
<p>
<input type="submit" value="Save" />
</p>
</fieldset>

</asp:Content>

And now when we run our application and access the /Dinners/Create URL within the browser, it
will render the Ul as in Figure 1-91 from our Create action implementation.

Implementing the HTTP-POST Create Action Method

We have the HTTP-GET version of our Create action method implemented. When a user clicks the
Save button, it performs a form post to the /Dinners/Create URL, and submits the HTML <input>
form values using the HTTP pOST verb.

Let’s now implement the HTTP poST behavior of our create action method. We'll begin by adding an
overloaded Create action method to our DinnersController that has an AcceptVerbs attribute on it
that indicates it handles HTTP POST scenarios:

//
// POST: /Dinners/Create

[AcceptVerbs (HttpVerbs.Post)]
public ActionResult Create(FormCollection formValues) {

}

74

84619¢01.indd List74 @

3/31/09 5:25:55 AM

Chapter 1: NerdDinner

e | £] hitp://localhost64643/Dinners/Create v | 1| X |

54 Favorites & Host a Dinner ﬁ - > [@ ~ Page~ Safety~ Tools+ Ov

[Log On]

My MVC Application

Host a Dinner

Title:
Event Date:

3/5/2009 2:47:28 PM

Description:

Address:
Country:
ContactPhone:

Latitude:
0

Longitude:

€4 Local intranet | Protected Mode: Off

Figure 1-91

There are a variety of ways we can access the posted form parameters within our HTTP-POST-enabled
Create method.

One approach is to create a new Dinner object and then use the UpdateModel helper method (as
we did with the Edit action) to populate it with the posted form values. We can then add it to our
DinnerRepository, persist it to the database, and redirect the user to our Details action to show
the newly created dinner, using the following code:

//
// POST: /Dinners/Create

[AcceptVerbs (HttpVerbs.Post)]
public ActionResult Create(FormCollection formValues) {

Dinner dinner = new Dinner();

75

84619c01.indd List75 @ 3/31/09 5:25:55 AM

Chapter 1: NerdDinner

try {
UpdateModel (dinner) ;

dinnerRepository.Add (dinner) ;
dinnerRepository.Save() ;

return RedirectToAction("Details", new {id=dinner.DinnerID});

}
catch {
ModelState.AddModelErrors (dinner.GetRuleViolations());

return View(dinner) ;

Alternatively, we can use an approach where we have our Create action method take a Dinner object
as a method parameter. ASPNET MVC will then automatically instantiate a new Dinner object for us,
populate its properties using the form inputs, and pass it to our action method:

//
// POST: /Dinners/Create

[AcceptVerbs (HttpVerbs.Post)]
public ActionResult Create(Dinner dinner) ({

if (ModelState.IsValid) {

try {
dinner.HostedBy = "SomeUser";

dinnerRepository.Add (dinner) ;
dinnerRepository.Save() ;

return RedirectToAction("Details", new {id = dinner.DinnerID });

}
catch {
ModelState.AddModelErrors (dinner.GetRuleViolations());

}
}

return View(dinner) ;

Our action method in the previous code verifies that the Dinner object has been successfully populated
with the form post values by checking the ModelState.Isvalid property. This will return false if
there are input conversion issues (for example: a string of "BoGUs" for the EventDate property), and

if there are any issues, our action method redisplays the form.

If the input values are valid, then the action method attempts to add and save the new dinner to the
DinnerRepository. It wraps this work within a try/catch block and redisplays the form if there are

any business rule violations (which would cause the dinnerRepository.Save method to raise an
exception).

76

84619¢01.indd List76 @

6/5/09 7:24:28 AM

Chapter 1: NerdDinner

To see this error handling behavior in action, we can request the /Dinners/Create URL and fill out
details about a new dinner. Incorrect input or values will cause the create form to be redisplayed with
the errors highlighted in Figure 1-92.

1 Hiost 2 Dinner - Win end Feedhack (] N=l WRE S

£] hitpyocalhostf4643/ Dinners/Create v 4 | 3 [l B Live Search o |

| * [v Pagew Sfety= Tookw dgh~

i Favorites & Host a Dinner

[Log On]

e [e |

My MVC Application

Host a Dinner

Please correct the errors and try again.

» Phone# does not match country
» Address is required

Title:
Dinner with Friznds

Event Date:
3/5/2009 5:00 PM 1

Dascription:
Hang out with fnends

Address:
Country:

Usa

ContactPhone:

BOGUS E
Latitude:
a
Lengitude:
0
Dane & Local intranet | Protected Maode: OFf BAU0%E -
Figure 1-92

Notice how our Create form is honoring the exact same validation and business rules as our Edit form.
This is because our validation and business rules were defined in the model, and were not embedded
within the UI or controller of the application. This means we can later change/evolve our validation or
business rules in a single place and have them apply throughout our application. We will not have to
change any code within either our Edit or Create action methods to automatically honor any new rules
or modifications to existing ones.

When we fix the input values and click the Save button again, our addition to the DinnerRepository
will succeed, and a new dinner will be added to the database. We will then be redirected to the

/Dinners/Details/[id] URL — where we will be presented with details about the newly created
dinner (Figure 1-93):

7

84619c01.indd List77 @ 3/31/09 5:25:55 AM

Chapter 1: NerdDinner

& http://localhost:64643/Dinners/Details/59 w | ¥4 | % WET Live Search

& Dinner: Dinner with Friends | | - ~ [dm v Pagev Safety~ Tools~ @~

My MVC Application

Dinner with Friends

When: 3/5/2009 @ 5:00 PM

Where: One Microsoft Way, Redmond WA 98052, USA
Description: Hang out with friends

Organizer: Somelser (425-703-8072)

Edit Dinner | Delete Dinner

€L Local intranet | Protected Mode: Off H®100% ~

Figure 1-93

Implementing the HTTP-GET Delete Action Method

Let’s now add “Delete” support to our DinnersController.

We'll begin by implementing the HTTP GET behavior of our delete action method. This method will get
called when someone visits the /Dinners/Delete/[id] URL . Below is the implementation:

//
// HTTP GET: /Dinners/Delete/1

public ActionResult Delete(int id) {
Dinner dinner = dinnerRepository.GetDinner (id) ;

if (dinner == null)

return View("NotFound") ;
else

return View(dinner) ;

}

The action method attempts to retrieve the dinner to be deleted. If the dinner exists it renders a View
based on the Dinner object. If the object doesn't exist (or has already been deleted) it returns a View that
renders the “NotFound” view template we created earlier for our “Details” action method.

We can create the “Delete” view template by right-clicking within the Delete action method and selecting

the “Add View” context menu command. Within the “Add View” dialog we'll indicate that we are passing
a Dinner object to our view template as its model, and choose to create an empty template (Figure 1-94):

78

84619c01.indd List78 @ 3/31/09 5:25:55 AM

Chapter 1: NerdDinner

Add View

View name:

Deics

[7] Create a partial view (.ascd)

[¥] Create a strongly-typed view
View data class:
MerdDinner.Models.Dinner
View content:

[Empty

[¥] Select master page
~{Views/Shared/Site.Master

ContentPlaceHolder ID:
MainContent

Figure 1-94

When we click the Add button, Visual Studio will add a new Delete.aspx view template file for us
within our \Views\Dinners directory. We'll add some HTML and code to the template to implement
a delete confirmation screen as shown below:

<asp:Content ID="Title" ContentPlaceHolderID="head" runat="server">
Delete Confirmation: <%=Html.Encode (Model.Title) %>
</asp:Content>
<asp:Content ID="Main" ContentPlaceHolderID="MainContent" runat="server">
<h2>
Delete Confirmation
</h2>
<div>
<p>Please confirm you want to cancel the dinner titled:
<i> <%=Html.Encode (Model.Title) %>? </i> </p>
</div>
<% using (Html.BeginForm()) { %>
<input name="confirmButton" type="submit" value="Delete" />

<% } %>

</asp:Content>

The code above displays the title of the dinner to be deleted, and outputs a <form> element that does a
POST to the /Dinners/Delete/ [1d] URL if the end user clicks the Delete button within it.

When we run our application and access the /Dinners/Delete/ [1d] URL for a valid Dinner object, it
renders the Ul as in Figure 1-95.

79

84619c01.indd List79 @ 3/31/09 5:25:55 AM

Chapter 1: NerdDinner

Delete Confirmation

Please confirm you want to cancel the dinner titled: Geek Dinner?

€4 Local intranet | Protected Mode: Off

Figure 1-95

Why Are We Doing a POST

You might ask — why did we go through the effort of creating a <form> within our
Delete confirmation screen? Why not just use a standard hyperlink to link to an action
method that does the actual delete operation?

The reason is because we want to be careful to guard against web-crawlers and search
engines discovering our URLs and inadvertently causing data to be deleted when they
follow the links. HTTP-GET-based URLs are considered “safe” for them to access/crawl,
and they are supposed to not follow HTTP-POST ones.

A good rule is to make sure you always put destructive or data modifying operations
behind HTTP-POST requests.

Implementing the HTTP-POST Delete Action Method

We now have the HTTP-GET version of our Delete action method implemented that displays a delete
confirmation screen. When an end user clicks the Delete button, it will perform a form post to the
/Dinners/Dinner/ [id] URL.

Let’s now implement the HTTP POST behavior of the delete action method using the code that follows:

//
// HTTP POST: /Dinners/Delete/l

[AcceptVerbs (HttpVerbs.Post)]
public ActionResult Delete(int id, string confirmButton) {

Dinner dinner = dinnerRepository.GetDinner (id);

80

84619c01.indd List80 @ 3/31/09 5:25:55 AM

Chapter 1: NerdDinner

if (dinner == null)
return View("NotFound") ;

dinnerRepository.Delete (dinner) ;
dinnerRepository.Save () ;

return View("Deleted");

The HTTP-POST version of our Delete action method attempts to retrieve the Dinner object to delete.
If it can’t find it (because it has already been deleted) it renders our "NotFound" template. If it finds the
dinner, it deletes it from the DinnerRepository. It then renders a “Deleted” template.

To implement the “Deleted” template, we’ll right-click in the action method and choose the Add View
context menu. We'll name our view Deleted and have it be an empty template (and not take a strongly
typed model object). We’ll then add some HTML content to it:

<asp:Content ID="Title" ContentPlaceHolderID="TitleContent" runat="server">
Dinner Deleted
</asp:Content>

<asp:Content ID="Main" ContentPlaceHolderID="MainContent" runat="server">
<h2>Dinner Deleted</h2>

<div>
<p>Your dinner was successfully deleted.</p>
</div>
<div>
<p>Click for Upcoming Dinners</p>
</div>
</asp:Content>

And now when we run our application and access the /Dinners/Delete/[id] URL for a valid Dinner
object, it will render our Dinner delete confirmation screen as in Figure 1-96.

£] http://localhost:64643/Dinners/Delete/59 v | 3 | X

[Log On]

My MVC Application

Delete Confirmation

Please confirm you want to cancel the dinner titled: Dinner with Friends?

€4 Local intranet | Protected Mode: Off

Figure 1-96

81

84619¢01.indd Lists1 @ 3/31/09 5:25:55 AM

Chapter 1: NerdDinner

®

82

When we click the Delete button, it will perform an HTTP-POST to the /Dinners/Delete/[1d] URL,
which will delete the dinner from our database, and display our “Deleted” view template (Figure 1-97).

Cl| B hitp://localhost:64643/Dinners/Delete/59 = | #4 | 3 [l £ Live Search

— e
{}Fa\rulilu .g[)innerﬁdued | | ﬁ - - D.@,v Page v Safety v Tools~ e- b

Dinner Deleted

Your dinner was successfully deleted.

Click for Upcoming Dinners

€L Local intranet | Protected Mode: Off

Figure 1-97

Model Binding Security

We've discussed two different ways to use the built-in model-binding features of ASPNET MVC. The
first using the UpdateModel method to update properties on an existing model object, and the second
using ASPNET MVC’s support for passing model objects in as action method parameters. Both of these
techniques are very powerful and extremely useful.

This power also brings with it responsibility. It is important to always be paranoid about security when
accepting any user input, and this is also true when binding objects to form input. You should be care-
ful to always HTML encode any user-entered values to avoid HTML and JavaScript injection attacks,
and be careful of SQL injection attacks (note: we are using LINQ to SQL for our application, which auto-
matically encodes parameters to prevent these types of attacks). You should never rely on client-side
validation alone, and always employ server-side validation to guard against hackers attempting to send
you bogus values.

One additional security item to make sure you think about when using the binding features of ASP.
NET MVC is the scope of the objects you are binding. Specifically, you want to make sure you under-
stand the security implications of the properties you are allowing to be bound, and make sure you only
allow those properties that really should be updatable by an end user to be updated.

By default, the UpdateModel method will attempt to update all properties on the model object that
match incoming form parameter values. Likewise, objects passed as action method parameters also,
by default, can have all of their properties set via form parameters.

84619c01.indd List82 @

3/31/09 5:25:55 AM

Chapter 1: NerdDinner

Locking Down Binding on a Per-Usage Basis

You can lock down the binding policy on a per-usage basis by providing an explicit include list of
properties that can be updated. This can be done by passing an extra string array parameter to the
UpdateModel method like the following code:

string[] allowedProperties = new[]{ "Title", "Description",
"ContactPhone", "Address",
"EventDate", "Latitude",

"Longitude"};

UpdateModel (dinner, allowedProperties);

Objects passed as action method parameters also supporta [Bind] attribute that enables an include list
of allowed properties to be specified like the code that follows:

//
// POST: /Dinners/Create

[AcceptVerbs (HttpVerbs.Post)]
public ActionResult Create([Bind(Include="Title,Address")] Dinner dinner) {

}

Locking Down Binding on a Type Basis

You can also lock down the binding rules on a per-type basis. This allows you to specify the binding
rules once and then have them apply in all scenarios (including both UpdateModel and action method
parameter scenarios) across all controllers and action methods.

You can customize the per-type binding rules by adding a [Bind] attribute onto a type, or by registering
it within the Global . asax file of the application (useful for scenarios where you don’t own the type).
You can then use the Bind attribute’s Include and Exclude properties to control which properties are
bindable for the particular class or interface.

We'll use this technique for the Dinner class in our NerdDinner application, and add a [Bind] attribute
to it that restricts the list of bindable properties to the following:

[Bind (Include="Title,Description, EventDate, Address, Country,ContactPhone, Latitude,
Longitude")]

public partial class Dinner {

}

Notice we are not allowing the RSVPs collection to be manipulated via binding, nor are we allowing
the DinnerID or HostedBy properties to be set via binding. For security reasons we’ll instead only
manipulate these particular properties using explicit code within our action methods.

CRUD Wrap-Up

ASPNET MVC includes a number of built-in features that help with implementing form posting scenarios.
We used a variety of these features to provide CRUD UI support on top of our DinnerRepository.

83

84619c01.indd List83 @ 3/31/09 5:25:55 AM

Chapter 1: NerdDinner

We are using a model-focused approach to implement our application. This means that all our valida-
tion and business rule logic is defined within our model layer — and not within our controllers or
views. Neither our Controller class nor our view templates know anything about the specific business
rules being enforced by our Dinner model class.

This will keep our application architecture clean and make it easier to test. We can add additional
business rules to our model layer in the future and not have to make any code changes to our Controller
or View in order for them to be supported. This is going to provide us with a great deal of agility to
evolve and change our application in the future.

Our DinnersController now enables dinner listings/details, as well as create, edit, and delete support.
The complete code for the class can be found below:

public class DinnersController : Controller {
DinnerRepository dinnerRepository = new DinnerRepository () ;

//
// GET: /Dinners/

public ActionResult Index() {
var dinners = dinnerRepository.FindUpcomingDinners().ToList();
return View(dinners) ;
//
// GET: /Dinners/Details/2
public ActionResult Details(int id) {
Dinner dinner = dinnerRepository.GetDinner (id);
if (dinner == null)
return View("NotFound") ;

else
return View(dinner) ;

//

// GET: /Dinners/Edit/2

public ActionResult Edit (int id) {
Dinner dinner = dinnerRepository.GetDinner (id);
return View(dinner) ;

//

// POST: /Dinners/Edit/2

[AcceptVerbs (HttpVerbs.Post)]
public ActionResult Edit (int id, FormCollection formvalues) ({

84

84619c01.indd List84 @

3/31/09 5:25:55 AM

Chapter 1: NerdDinner

Dinner dinner = dinnerRepository.GetDinner (id) ;

try {
UpdateModel (dinner) ;

dinnerRepository.Save() ;

return RedirectToAction("Details", new { id = dinner.DinnerID });

}
catch {
ModelState.AddModelErrors (dinner.GetRuleViolations()) ;

return View(dinner) ;

//
// GET: /Dinners/Create

public ActionResult Create() {

Dinner dinner = new Dinner () {
EventDate = DateTime.Now.AddDays (7)

Y

return View(dinner) ;
//
// POST: /Dinners/Create

[AcceptVerbs (HttpVerbs.Post)]
public ActionResult Create(Dinner dinner) {

if (ModelState.IsValid) {

try {
dinner.HostedBy = "SomeUser";

dinnerRepository.Add (dinner) ;
dinnerRepository.Save() ;

return RedirectToAction("Details", new{id=dinner.DinnerID}) ;

}
catch {
ModelState.AddRuleViolations (dinner.GetRuleViolations()) ;

return View(dinner) ;

//
// HTTP GET: /Dinners/Delete/1

85

84619c01.indd List85 @ 6/5/09 7:25:15 AM

Chapter 1: NerdDinner

public ActionResult Delete(int id) {
Dinner dinner = dinnerRepository.GetDinner (id);

if (dinner == null)
return View("NotFound") ;
else
return View(dinner) ;
}
//
// HTTP POST: /Dinners/Delete/1

[AcceptVerbs (HttpVerbs.Post)]
public ActionResult Delete(int id, string confirmButton) {

Dinner dinner = dinnerRepository.GetDinner (id) ;

if (dinner == null)
return View("NotFound") ;

dinnerRepository.Delete (dinner) ;
dinnerRepository.Save() ;

return View("Deleted") ;

ViewData and ViewModel

We’ve covered a number of form post scenarios, and discussed how to implement create, update and
delete (CRUD) support. We’ll now take our DinnersController implementation further and enable
support for richer form editing scenarios. While doing this we’ll discuss two approaches that can be

used to pass data from controllers to views: ViewData and ViewModel.

Passing Data from Controllers to View Templates

One of the defining characteristics of the MVC pattern is the strict separation of concerns it helps enforce
between the different components of an application. Models, Controllers, and Views each have well
defined roles and responsibilities, and they communicate amongst each other in well-defined ways.
This helps promote testability and code reuse.

When a Controller class decides to render an HTML response back to a client, it is responsible for
explicitly passing to the view template all of the data needed to render the response. View templates

should never perform any data retrieval or application logic — and should instead limit themselves to
only having rendering code that is driven off of the model/data passed to it by the controller.

86

84619c01.indd List86 @ 3/31/09 5:25:55 AM

Chapter 1: NerdDinner

Right now the model data being passed by our DinnersController class to our view templates is
simple and straightforward — a list of Dinner objects in the case of Index, and a single Dinner object
in the case of Details, Edit, Create, and Delete. As we add more Ul capabilities to our application,
we are often going to need to pass more than just this data to render HTML responses within our view
templates. For example, we might want to change the Country field within our Edit and Create views
from being an HTML textbox to a dropdownlist. Rather than hard-code the dropdownlist of country
names in the view template, we might want to generate it from a list of supported countries that we
populate dynamically. We will need a way to pass both the Dinner object and the list of supported
countries from our controller to our view templates.

Let’s look at two ways we can accomplish this.

Using the ViewData Dictionary

The Controller base class exposes a ViewData dictionary property that can be used to pass additional
data items from Controllers to Views.

For example, to support the scenario where we want to change the Country textbox within our Edit
view from being an HTML textbox to a dropdownlist, we can update our Edit action method to pass
(in addition to a Dinner object) a SelectList object that can be used as the model of a countries
dropdownlist.

//
// GET: /Dinners/Edit/5

[Authorize]
public ActionResult Edit(int id) {

Dinner dinner = dinnerRepository.GetDinner (id);

ViewData["Countries"] = new SelectList (PhoneValidator.Countries,
dinner.Country) ;

return View(dinner);
The constructor of the SelectList from the previous code is accepting a list of countries to populate
the dropdownlist with, as well as the currently selected value.

We can then update our Edit.aspx view template to use the Html.DropDownList helper method
instead of the Html . TextBox helper method we used previously:

<%= Html.DropDownList ("Country", ViewData["Countries"] as SelectList) %>
The Html . DropDownList helper method in the previous line of code takes two parameters. The first
is the name of the HTML form element to output. The second is the SelectList model we passed via

the ViewData dictionary. We are using the C# “as” keyword to cast the type within the dictionary as a
SelectList.

87

84619c01.indd List87 @ 3/31/09 5:25:55 AM

Chapter 1: NerdDinner

And now when we run our application and access the /Dinners/Edit/1 URL within our browser,
we'll see that our edit UI has been updated to display a drop-down list of countries instead of a textbox
(Figure 1-98):

Dinner Title:
Geek Out

Event Date:
12/6/2009 12:00 AM

Description:

A1l things geek
allowed

Address:

One Microsoft Way, Redmond WA
Country: /

USA -

UK i
Metherlands

Figure 1-98

Because we also render the Edit view template from the HTTP-POST Edit method (in scenarios when
errors occur), we'll want to make sure that we also update this method to add the SelectList to
ViewData when the view template is rendered in error scenarios:

//
// POST: /Dinners/Edit/5

[AcceptVerbs (HttpVerbs.Post)]
public ActionResult Edit(int id, FormCollection collection) ({

Dinner dinner = dinnerRepository.GetDinner (id);

try {
UpdateModel (dinner) ;

dinnerRepository.Save() ;

return RedirectToAction("Details", new { id=dinner.DinnerID });

}
catch {
ModelState.AddModelErrors (dinner.GetRuleViolations());
ViewData["countries"] = new SelectList (PhoneValidator.Countries,
dinner.Country) ;
return View(dinner) ;
}

And now our DinnersController edit scenario supports a drop-down list.

88

84619c01.indd List8s @ 6/5/09 7:26:18 AM

Chapter 1: NerdDinner

Using a ViewModel Pattern

The viewData dictionary approach has the benefit of being fairly fast and easy to implement. Some
developers don't like using string-based dictionaries, though, since typos can lead to errors that will not
be caught at compile-time. The un-typed viewData dictionary also requires using the “as” operator or
casting when using a strongly typed language like C# in a view template.

An alternative approach that we could use is one often referred to as the ViewModel pattern. When using
this pattern, we create strongly typed classes that are optimized for our specific view scenarios, and that
expose properties for the dynamic values/content needed by our view templates. Our controller classes
can then populate and pass these view-optimized classes to our view template to use. This enables type-
safety, compile-time checking, and editor IntelliSense within view templates.

For example, to enable dinner form editing scenarios, we can create a DinnerFormViewModel class like
the following code that exposes two strongly typed properties: a Dinner object and the SelectList
model needed to populate the countries drop-down list:

public class DinnerFormViewModel ({
// Properties
public Dinner Dinner { get; private set; }
public SelectList Countries { get; private set; }
// Constructor
public DinnerFormViewModel (Dinner dinner) {
Dinner = dinner;

Countries = new SelectList (PhoneValidator.Countries,
dinner.Country) ;

We can then update our Edit action method to create the DinnerFormviewModel using the Dinner
object we retrieve from our repository, and then pass it to our view template:

//
// GET: /Dinners/Edit/5

public ActionResult Edit (int id) {
Dinner dinner = dinnerRepository.GetDinner (id) ;
return View(new DinnerFormViewModel (dinner));
We'll then update our view template so that it expects a DinnerFormviewModel instead of a Dinner
object by changing the Inherits attribute at the top of the edit.aspx page like so:

Inherits="System.Web.Mvc.ViewPage<NerdDinner.Controllers.DinnerFormViewModel>

Once we do this, the IntelliSense of the Model property within our view template will be updated to
reflect the object model of the DinnerFormviewModel type we are passing it (see Figures 1-99 and 1-100):

89

84619c01.indd List89 @ 6/5/09 7:27:18 AM

Chapter 1: NerdDinner

<%= Html.TextBox("Title™, Model. %>

S Countries

¥ Equals

¥ GetHashCode
W GetType

@ ToString

Figure 1-99

<%= Html.TextBox("Title", Model.Dinner. %>

' ContactPhone
= Country

iy Description
P DinnerD |
@ Equals |
T EventDate

@ GetErrors

@ GetHashCode

n

Figure 1-100

We can then update our view code to work off of it. Notice in the following code how we are not
changing the names of the input elements we are creating (the form elements will still be named

"Title", "Country")— but we are updating the HTML Helper methods to retrieve the values using
the DinnerFormvViewModel class:

<p>

<label for="Title">Dinner Title:</label>

<%= Html.TextBox("Title", Model.Dinner.Title) %>
<%= Html.ValidationMessage("Title", "*") %>

</p>
<p>

<label for="Country">Country:</label>

<%= Html.DropDownList ("Country", Model.Countries) %>
<%= Html.ValidationMessage ("Country", "*")

%>
</p>

We'll also update our Edit post method to use the DinnerFormviewModel class when rendering errors
//

// POST: /Dinners/Edit/5

[AcceptVerbs (HttpVerbs.Post)]

public ActionResult Edit (int id, FormCollection collection) {

Dinner dinner = dinnerRepository.GetDinner (id);

try {
UpdateModel (dinner) ;

dinnerRepository.Save() ;

20

84619c01.indd List90

3/31/09 5:25:56 AM

Chapter 1: NerdDinner

return RedirectToAction("Details", new { id=dinner.DinnerID });

}
catch {
ModelState.AddModelErrors (dinner.GetRuleViolations());

return View(new DinnerFormViewModel (dinner)) ;

We can also update our Create action methods to reuse the exact same DinnerFormviewModel
class to enable the countries dropdownlist within those as well. The following code is the HTTP-GET

implementation:

//
// GET: /Dinners/Create

public ActionResult Create() {

Dinner dinner = new Dinner () {
EventDate = DateTime.Now.AddDays (7)

}i

return View(new DinnerFormViewModel (dinner));

The following code is the implementation of the HTTP-POST create method:

//
// POST: /Dinners/Create

[AcceptVerbs (HttpVerbs.Post)]
public ActionResult Create(Dinner dinner) {

if (ModelState.IsValid) {

try {
dinner.HostedBy = "SomeUser";

dinnerRepository.Add (dinner) ;
dinnerRepository.Save () ;

return RedirectToAction("Details", new { id=dinner.DinnerID });

}

catch {
ModelState.AddModelErrors (dinnerToCreate.GetRuleViolations());

}

return View(new DinnerFormViewModel (dinnerToCreate)) ;

And now both our Edit and Create screens support drop-down lists for picking the country.

91

84619c01.indd Listo1 @ 3/31/09 5:25:56 AM

Chapter 1: NerdDinner

Custom-Shaped ViewModel Classes

In the scenario above, our DinnerFormviewModel class directly exposes the Dinner model object as a
property, along with a supporting SelectList model property. This approach works fine for scenarios
where the HTML Ul we want to create within our view template corresponds relatively closely to our
domain model objects.

For scenarios where this isn’t the case, one option that you can use is to create a custom-shaped viewModel
class whose object model is more optimized for consumption by the view — and which might look com-
pletely different from the underlying domain model object. For example, it could potentially expose differ-
ent property names and/or aggregate properties collected from multiple model objects.

Custom-shaped viewModel classes can be used both to pass data from controllers to views to render
and to help handle form data posted back to a controller’s action method. For this later scenario, you
might have the action method update a ViewModel object with the form-posted data, and then use the
ViewModel instance to map or retrieve an actual domain model object.

Custom-shaped viewModel classes can provide a great deal of flexibility, and are something to investi-
gate any time you find the rendering code within your view templates or the form-posting code inside
your action methods starting to get too complicated. This is often a sign that your domain models don’t
cleanly correspond to the Ul you are generating, and that an intermediate custom-shaped viewModel
class can help.

® Partials and Master Pages

One of the design philosophies ASPNET MVC embraces is the Do Not Repeat Yourself principle (commonly
referred to as DRY). A DRY design helps eliminate the duplication of code and logic, which ultimately
makes applications faster to build and easier to maintain.

We've already seen the DRY principle applied in several of our NerdDinner scenarios. A few examples:
our validation logic is implemented within our model layer, which enables it to be enforced across
both edit and create scenarios in our controller; we are reusing the "NotFound" view template across
the Edit, Details and Delete action methods; we are using a convention-naming pattern with

our view templates, which eliminates the need to explicitly specify the name when we call the View
helper method; and we are reusing the DinnerFormviewModel class for both Edit and Create action
scenarios.

Let’s now look at ways we can apply the DRY Principle within our view templates to eliminate code
duplication there as well.

Revisiting Our Edit and Create View Templates

Currently we are using two different view templates — Edit.aspx and Create.aspx — to display our
Dinner form Ul A quick visual comparison of them highlights how similar they are. Figure 1-101 shows
what the create form looks like:

92

84619c01.indd List92 @ 3/31/09 5:25:56 AM

Chapter 1: NerdDinner

¢ Favorites | & Host a Dinner

My MVC Application

Host a Dinner

Title:
Event Date:

3/7/2009 9:45:24 PM

Description:

Address:

Country:

ContactPhone:

Latitude:
0

Longitude:
0

€ Local intranet | Protected Mode: Off 0% v

Figure 1-101

And Figure 1-102 is what our “Edit” form looks like.

Not much of a difference is there? Other than the title and header text, the form layout and input controls
are identical.

If we open up the Edit.aspx and Create.aspx view templates, we'll find that they contain identical

form layout and input control code. This duplication means we end up having to make changes twice
anytime we introduce or change a new Dinner property — which is not good.

Using Partial View Templates

ASPNET MVC supports the ability to define partial view templates that can be used to encapsulate view
rendering logic for a sub-portion of a page. Partials provide a useful way to define view rendering logic
once, and then reuse it in multiple places across an application.

93

84619c01.indd Listo3 @ 3/31/09 5:25:56 AM

Chapter 1: NerdDinner

it: Geek =

] htpe/locshost 64643 Dinners/Eds2 v | 44 | % &2 Live Search P

< Favartes ..Qgﬁqsmou | | & - - [b v Pagew Ssfeyw Tooke e
5 [«

App atlo

Edit Dinner

Dinner Title:
Geek Out

Event Date:

120672009 12 00 AM

Description: L

211 things geek =|
allowsd

Address:
Ona Microsaft Way, Redmand WA

Cauntry:

usa -

Contact Phone #:

4265561212

Latitude:
4764312

Longtude:

-122.130609

€ Local intranet | Protected Mode: Off HINE -

Figure 1-102

To help “DRY-up” our Edit.aspx and Create.aspx View template duplication, we can create a par-
tial View template named DinnerForm.ascx that encapsulates the form layout and input elements
common to both. We'll do this by right-clicking on our \Views\ Dinners directory and choosing the
Add = View menu command shown in Figure 1-103:

- [App_Data
- 3 Content

- 3 Controllers

-

- Ol Account
Convert to Web Application
Check Accessibility...
Open Command Prompt
|_' View... Add 2
] Newltem... Exclude From Project
Gall Brting tem... ¥ cut
4| Mew Folder E3 | Copy
| Add ASP.NET Folder » | 1% | Paste
] Component... X | Delete
g | Class.. Rename
: |j' ;Dpen Folder in Windows Explorer
= | Properties
[

Figure 1-103
94

84619c01.indd Listo4 @ 3/31/09 5:25:56 AM

Chapter 1: NerdDinner

This will display the Add View dialog. We'll name the new view we want to create DinnerForm, select the
“Create a partial view” checkbox on the dialog, and indicate that we will pass it a DinnerFormviewModel
class (see Figure 1-104).

Add View @

View pame:

DinnerForm|

|| Create a partial view [.asc)

[¥] Create a strongly-typed view
View data class:

MerdDinner.Controllers. DinnerFermViewMadel -
View content:

- -

~Views/Shared/Site.Master

ContentPlaceHolder |D:

MainContent

Add [Cancel

Figure 1-104

When we click the Add button, Visual Studio will create a new DinnerForm.ascx view template for us
within the \Views\Dinners directory.

We can then copy/paste the duplicate form layout/input control code from our Edit.aspx/ Create.aspx
view templates into our new DinnerForm.ascx partial view template:

<%= Html.ValidationSummary ("Please correct the errors and try again.") %>
<% using (Html.BeginForm()) { %>
<fieldset>
<p>

<label for="Title">Dinner Title:</label>
<%= Html.TextBox("Title", Model.Dinner.Title) %>
<%= Html.ValidationMessage ("Title", "*") %>
</p>
<p>
<label for="EventDate">Event Date:</label>
<%= Html.TextBox ("EventDate", Model.Dinner.EventDate) %>
<%= Html.ValidationMessage ("EventDate", "*") %>
</p>
<p>
<label for="Description">Description:</label>
<%= Html.TextArea ("Description", Model.Dinner.Description) %>
<%= Html.ValidationMessage ("Description", "*")%>
</p>
<p>
<label for="Address">Address:</label>
<%= Html.TextBox ("Address", Model.Dinner.Address) %>
<%= Html.ValidationMessage ("Address", "*") %>

95

84619c01.indd List95 @ 3/31/09 5:25:56 AM

Chapter 1: NerdDinner

</p>
<p>
<label for="Country">Country:</label>
<%= Html.DropDownList ("Country", Model.Countries) %>
<%= Html.ValidationMessage ("Country", "*") %>
</p>
<p>
<label for="ContactPhone">Contact Phone #:</label>
<%= Html.TextBox ("ContactPhone", Model.Dinner.ContactPhone) %>

<%= Html.ValidationMessage ("ContactPhone", "*") %>
</p>
<p>
<input type="submit" value="Save" />
</p>
</fieldset>
<% } %>

We can then update our Edit and Create view templates to call the DinnerForm partial template and
eliminate the form duplication. We can do this by calling Html .RenderPartial ("DinnerForm")
within our view templates:

Create.aspx

<asp:Content ID="Title" ContentPlaceHolderID="TitleContent" runat="server">
Host a Dinner

</asp:Content>

<asp:Content ID="Create" ContentPlaceHolderID="MainContent" runat="server">
<h2>Host a Dinner</h2>
<% Html.RenderPartial ("DinnerForm"); %>

</asp:Content>

Edit.aspx

<asp:Content ID="Title" ContentPlaceHolderID="TitleContent" runat="server">
Edit: <%=Html.Encode (Model.Dinner.Title) %>

</asp:Content>

<asp:Content ID="Edit" ContentPlaceHolderID="MainContent" runat="server">
<h2>Edit Dinner</h2>

<% Html.RenderPartial ("DinnerForm"); %>

</asp:Content>

You can explicitly qualify the path of the partial template you want when calling Html . RenderPartial (for
example: ~/Views/Dinners/DinnerForm.ascx). In our previous code, though, we are taking advantage

96

84619c01.indd List96 @

3/31/09 5:25:56 AM

Chapter 1: NerdDinner

of the convention-based naming pattern within ASPNET MVC, and just specifying DinnerForm as the
name of the partial to render. When we do this, ASPNET MVC will look first in the convention-based
views directory (for DinnersController this would be /Views/Dinners). If it doesn't find the partial
template there, it will then look for it in the /Views/Shared directory.

When Html .RenderPartial is called with just the name of the partial view, ASPNET MVC will pass
to the partial view the same Model and ViewData dictionary objects used by the calling view template.
Alternatively, there are overloaded versions of Html .RenderPartial that enable you to pass an alter-
nate Model object and/or ViewData dictionary for the partial view to use. This is useful for scenarios
where you only want to pass a subset of the full Model/ViewModel.

Why <% %> Instead of <%= %>?

One of the subtle things you might have noticed with the previous code is that we are
using a <& %> block instead of a <%= %> block when calling Html . RenderPartial.

<%= %> blocks in ASP.NET indicate that a developer wants to render a specified value
(for example: <%= "Hello" %> would render “Hello”). <% %> blocks instead indicate
that the developer wants to execute code, and that any rendered output within them
must be done explicitly (for example: < Response.Write("Hello"); %>).

The reason we are using a <% %> block with our previous Html .RenderPartial code
is because the Html .RenderPartial method doesn’t return a string, and instead
outputs the content directly to the calling the View template’s output stream. It does
this for performance efficiency reasons, and by doing so, it avoids the need to create

a (potentially very large) temporary string object. This reduces memory usage and
improves overall application throughput.

One common mistake when using Html . RenderPartial is to forget to add a semico-
lon at the end of the call when it is within a <% %> block. For example, this code will
cause a compiler error:

<% Html.RenderPartial ("DinnerForm") %>

You instead need to write:

<% Html.RenderPartial ("DinnerForm"); %>

This is because <% %> blocks are self-contained code statements, and when using
C# code statements, need to be terminated with a semicolon.

Using Partial View Templates to Clarify Code

We created the DinnerForm partial view template to avoid duplicating view rendering logic in multiple
places. This is the most common reason to create partial view templates.

Sometimes it still makes sense to create partial views even when they are only being called in a single
place. Very complicated view templates can often become much easier to read when their view rendering
logic is extracted and partitioned into one or more well-named partial templates.

97

84619c01.indd List97 @ 3/31/09 5:25:56 AM

Chapter 1: NerdDinner

For example, consider the below code-snippet from the e file in our project (which we will be looking at
shortly). The code is relatively straightforward to read — partly because the logic to display a login/logout
link at the top right of the screen is encapsulated within the LogOnUserControl partial:

<div id="header">
<div id="title">
<hl>My MVC Application</hl>
</div>

<div id="logindisplay">
<% Html.RenderPartial ("LogOnUserControl"); %>
</div>

<div id="menucontainer">

<ul id="menu">

<%= Html.ActionLink ("Home", "Index", "Home")%>
<%= Html.ActionLink ("About", "About", "Home")%>

</div>
</div>

Whenever you find yourself getting confused trying to understand the HTML/code markup within a
view template, consider whether it wouldn’t be clearer if some of it was extracted and refactored into
well-named partial views.

Master Pages

In addition to supporting partial views, ASPNET MVC also supports the ability to create master page tem-
plates that can be used to define the common layout and top-level HTML of a site. Content placeholder con-
trols can then be added to the master page to identify replaceable regions that can be overridden or filled in
by views. This provides a very effective (and DRY) way to apply a common layout across an application.

By default, new ASPNET MVC projects have a master page template automatically added to them.
This master page is named Site.master and lives within the \Views\Shared\ folder as shown in
Figure 1-105.

The default site.master file looks like the following code. It defines the outer HTML of the site, along
with a menu for navigation at the top. It contains two replaceable content placeholder controls — one for
the title, and the other for where the primary content of a page should be replaced:

<%@ Master Language="C#" Inherits="System.Web.Mvc.ViewMasterPage" %>
<1DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/
xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<title><asp:ContentPlaceHolder ID="TitleContent" runat="server" /></title>

<link href="../../Content/Site.css" rel="stylesheet" type="text/css" />
</head>

98

84619c01.indd Listos @ 3/31/09 5:25:56 AM

Chapter 1: NerdDinner

84619c01.indd List99

<body>
<div class="page">

<div id="header">
<div id="title">
<hl>My MVC Application</hl>
</div>

<div id="logindisplay">

<% Html.RenderPartial ("LogOnUserControl"); %>
</div>
<div id="menucontainer">
<ul id="menu">
<1i><%= Html.ActionLink ("Home", "Index", "Home")%>
<%= Html.ActionLink ("About", "About", "Home")%>

</div>

</div>

<div id="main">
<asp:ContentPlaceHolder ID="MainContent" runat="server" />
</div>
</div>
</body>
</html>

- _§ NerdDinner
[[5d Properties
[[References
I:&I- g App_Browsers
- [App_Data
[CodeTemplates
@~ Ll Content
@ Controllers
@~ 3 Helpers
- £3 Models
- [Scripts
Ii—l- [Views
| - [Account
. [Dinners
[d Home
&5 Shared
-] Error.aspx
LoginStatus.ascx
i Site Maste]
; |5 Web.config
(-) Global.asax
i [Web.config

Figure 1-105

-

=

o
o]

All of the view templates we've created for our NerdDinner application ("List", "Details", "Edit",
"Create", "NotFound", etc.) have been based on this Site.master template. This is indicated via the

29

@ 3/31/09 5:25:56 AM

Chapter 1: NerdDinner

MasterPageFile attribute that was added by default to the top <% @ Page %> directive when we created
our views using the Add View dialog:

<%@ Page Language="C#" Inherits="System.Web.Mvc.ViewPage<NerdDinner.Controllers
.DinnerViewModel>" MasterPageFile="~/Views/Shared/Site.Master" %>

What this means is that we can change the Site.master content, and have the changes automatically
be applied and used when we render any of our view templates.

Let’s update our Site.master’s header section so that the header of our application is “NerdDinner”
instead of “My MVC Application.” Let’s also update our navigation menu so that the first tab is “Find
a Dinner” (handled by the HomeController’s Index action method), and let’s add a new tab called
“Host a Dinner” (handled by the DinnersController’s Create action method):

<div id="header">
<div id="title">
<hl>NerdDinner</hl>
</div>

<div id="logindisplay">
<% Html.RenderPartial ("LoginStatus"); %>
</div>

<div id="menucontainer">
<ul id="menu">

<%= Html.ActionLink ("Find Dinner", "Index", "Dinners")%>
<%= Html.ActionLink ("Host Dinner", "Create", "Dinners")%></1li>
<%= Html.ActionLink ("About", "About", "Home")%>

</div>
</div>

When we save the Site.master file and refresh our browser, we’ll see our header changes show up
across all views within our application. For example, see Figure 1-106.

[LogOn]

NerdDinner

Find Dinner Host Dinner

Upcoming Dinners

» XBOX Gaming on 3/1/2009 @ 5:00 PM
+ Dinner with the Team on 3/2/2009 @ 5:00 PM
= Philosophy and Beer on 3/7/2009 & 5:00 PM
Kinder Music on 3/7/2002 @ 5:00 PM
MIX Planning Meeting on 3/7/2009 @ 3:00 PM
MYC Focus Group on 3/7/2009 @ 5:00 PM
Duke vs. Caroling on 3/7/2009 @ 10:12 PM
= Late Antiguity Study Group on 3/7/2009 @ 10:13 PM
Geek Out on 12/6/2009 @ 12:00 AM
Geek Dinner on 12/6/2009 @ 5:00 PM

€ Local intranet | Protected Mode: OFF H00% + |

100 Figure 1-106

84619c01.indd List100 @

6/5/09 7:28:32 AM

Chapter 1: NerdDinner

And with the /Dinners/Edit/ [1d] URL (Figure 1-107):

S Favorites ?Ednl: Geek Dinner | | ﬁ - 3 é!! * Page~ Safety~ Tools~ 07 i

NerdDinner

Find Dinner Host Dinner

Edit Dinner

Dinner Title:
Geek Dinner

Event Date:
12/6/2008 5:00 PM

Description: =

Come talk about cool
things coming
with .NET

Address:
One Microsoit Way, Redmond WA

Country:
USA -

Contact Phone #:
425-985-3648

Latitude:
4764312

Longitude:
-122.130609

Ea)

€ Local intranet | Protected Mode: OFf

Figure 1-107

Partials and master pages provide very flexible options that enable you to cleanly organize views. You'll
find that they help you avoid duplicating view content/code, and make your view templates easier to
read and maintain.

Paging Support

If our site is successful, it will have thousands of upcoming dinners. We need to make sure that our Ul
scales to handle all of these dinners and allows users to browse them. To enable this, we'll add paging
support to our /Dinners URL so that instead of displaying thousands of dinners at once, we’ll only
display 10 upcoming dinners at a time — and allow end users to page back and forward through the
entire list in an SEO friendly way.

101

84619¢01.indd List101 @ 3/31/09 5:25:57 AM

Chapter 1: NerdDinner

Index() Action Method Recap

The Index action method within our DinnersController class currently looks like the following code:

//
// GET: /Dinners/

public ActionResult Index () {
var dinners = dinnerRepository.FindUpcomingDinners () .ToList () ;

return View(dinners) ;

When a request is made to the /Dinners URL, it retrieves a list of all upcoming dinners and then renders
a listing of all of them (Figure 1-108):

i Favorites | & Upcoming Dinners

Find Dinner Host Dinner

H- NerdDinner

Upcoming Dinners

¥BOX Gaming on 3/1/2009 @ 5:00 PM

Dinner with the Team on 3/2/2009 @ 5:00 PM
Philosophy and Beer on 3/7/2009 @ 5:00 PM
Kinder Music on 3/7/2009 @ 5:00 PM

MVC Focus Group on 3/7/2009 @ 5:00 PM
MIX Planning Meeting on 3/7/2000 @ 5:00 PM
Duke vs. Carolina on 3/7/2009 @ 10:12 PM
Late Antiguity Study Group on 3/7/2009 @ 10:13 PM
Geek Out on 12/6/2009 @ 12:00 AM

Geek Dinner on 12/6/2009 @ 5:00 PM

Fine Wine on 12/7/2009 @ 12:00 AM

Surfing Lessons on 12/8/20090 @ 12:00 AM
Curing Polio on 12/9/2009 @ 12:00 AM

€ Local intranet | Protected Mode: Off

Figure 1-108

Understanding IQueryable<T>

IQueryable<T> is an interface that was introduced with LINQ in .NET 3.5. It enables powerful deferred
execution scenarios that we can take advantage of to implement paging support.

102

84619c01.indd List102 @ 3/31/09 5:25:57 AM

Chapter 1: NerdDinner

In our DinnerRepository in the following code we are returning an IQueryable<Dinner> sequence
from our FindUpcomingDinners method:

public class DinnerRepository {
private NerdDinnerDataContext db = new NerdDinnerDataContext () ;

//
// Query Methods

public IQueryable<Dinner> FindUpcomingDinners() {
return from dinner in db.Dinners
where dinner.EventDate > DateTime.Now
orderby dinner.EventDate
select dinner;

The IQueryable<Dinner> object returned by our FindUpcomingDinners method encapsulates a
query to retrieve Dinner objects from our database using LINQ to SQL. Importantly, it won't execute
the query against the database until we attempt to access/iterate over the data in the query, or until

we call the ToListmethod on it. The code calling our FindUpcomingDinners method can optionally
choose to add additional “chained” operations/filters to the IQueryable<Dinner> object before execut-
ing the query. LINQ to SQL is then smart enough to execute the combined query against the database
when the data is requested.

To implement paging logic, we can update our Index action method so that it applies additional Skip
and Take operators to the returned IQueryable<Dinner> sequence before calling ToList on it:

//
// GET: /Dinners/

public ActionResult Index () {

var upcomingDinners = dinnerRepository.FindUpcomingDinners() ;
var paginatedDinners = upcomingDinners.Skip(10).Take(20).ToList();

return View (paginatedDinners) ;

The above code skips over the first 10 upcoming dinners in the database, and then returns 20 dinners.
LINQ to SQL is smart enough to construct an optimized SQL query that performs this skipping logic in
the SQL database — and not in the web server. This means that even if we have millions of upcoming
dinners in the database, only the 10 we want will be retrieved as part of this request (making it efficient
and scalable).

Adding a “page” Value to the URL

Instead of hard-coding a specific page range, we’ll want our URLSs to include a page parameter that
indicates which Dinner range a user is requesting.

103

84619c01.indd List103 @ 3/31/09 5:25:57 AM

Chapter 1: NerdDinner

Using a Querystring Value

The code that follows demonstrates how we can update our Index action method to support a querystring
parameter and enable URLs like /Dinners?page=2:

//
// GET: /Dinners/
// /Dinners?page=2

public ActionResult Index(int? page) {
const int pageSize = 10;

var upcomingDinners = dinnerRepository.FindUpcomingDinners() ;

var paginatedDinners = upcomingDinners.Skip((page ?? 0) * pageSize)
.Take (pageSize)
.ToList () ;

return View(paginatedDinners) ;

The Index action method in the previous code has a parameter named page. The parameter is declared as
anullable integer. This means that the /Dinners?page=2 URL will cause a value of “2” to be passed as the
parameter value. The /Dinners URL (without a querystring value) will cause a null value to be passed.

We are multiplying the page value by the page size (in this case 10 rows) to determine how many dinners
to skip over. We are using the C# “coalescing” operator (??) which is useful when dealing with nullable
types. The previous code assigns page the value of 0 if the page parameter is null.

Using Embedded URL Values

An alternative to using a querystring value would be to embed the page parameter within the actual
URL itself. For example: /Dinners/Page/2 or /Dinners/2. ASPNET MVC includes a powerful URL
routing engine that makes it easy to support scenarios like this.

We can register custom routing rules that map any incoming URL or URL format to any controller
class or action method we want. All we need to do is to open the Global . asax file within our project
(Figure 1-109).

- (% NerdDinner
- [&d Properties
- (25 References
- [2§ App_Browsers
- [App_Data
. [CodeTemplates
. 3 Content
@ Controllers

B-E-E-E-E-E-E-E

3 Helpers
Cd Models
- L3 Seripts
- [CF Views
- |3 Web.config
[E MerdDinner.Tests

Figure 1-109

- -E

104

84619c01.indd List104 @ 3/31/09 5:25:57 AM

Chapter 1: NerdDinner

And then register a new mapping rule using the MapRoute helper method as in the first call to
routes.MapRoute that follows:

public void RegisterRoutes (RouteCollection routes) {
routes.IgnoreRoute (" {resource}.axd/{*pathInfo}");
routes.MapRoute (
"UpcomingDinners",
"Dinners/Page/{page}",
new { controller = "Dinners", action = "Index" }

)

routes.MapRoute (

"Default", // Route name
"{controller}/{action}/{id}", // URL with params
new { controller="Home", action="Index", id="" } // Param defaults

)

void Application_Start() {
RegisterRoutes (RouteTable.Routes) ;

}

In the previous code, we are registering a new routing rule named "UpcomingDinners". We are indicat-
ing it has the URL format "Dinners/Page/ {page}" — where {page} is a parameter value embedded
within the URL. The third parameter to the MapRoute method indicates that we should map URLs that
match this format to the Index action method on the DinnersController class.

We can use the exact same Index code we had before with our Querystring scenario — except now our
page parameter will come from the URL and not the querystring:

//
// GET: /Dinners/
// /Dinners/Page/2

public ActionResult Index(int? page) {
const int pageSize = 10;
var upcomingDinners = dinnerRepository.FindUpcomingDinners() ;
var paginatedDinners = upcomingDinners.Skip((page ?? 0) * pageSize)
.Take (pageSize)
.ToList();

return View (paginatedDinners) ;

And now when we run the application and type in /Dinners, we'll see the first 10 upcoming dinners,
as shown in Figure 1-110.

105

84619c01.indd List105 @ 3/31/09 5:25:57 AM

Chapter 1: NerdDinner

7 Favorites | @ Upcoming Dinners] b v I db v Pagev Safetyv Tookw

[Log On]

H NerdDinner

Find Dinner Host Dinner

Upcoming Dinners

XBOX Gaming on 3/1/2009 @ 5:00 PM

Dinner with the Team on 3/2/2009 @ 5:00 PM
Philosophy and Beer on 3/7/2009 @ 5:00 PM

Kinder Music on 3/7/2009 @ 5:00 PM

MIX Planning Meeting on 3/7/2009 @ 5:00 PM

MVC Focus Group on 3/7/2009 @ 5:00 PM

Duke vs. Carolina on 3/7/2009 @ 10:12 PM

Late Antiguity Study Group on 3/7/2009 @ 10:13 PM
Geek Out on 12/6/2009 @ 12:00 AM

Geek Dinner on 12/6/2009 @ 5:00 PM

€ Local intranet | Protected Mode: Off

Figure 1-110

And when we type in /Dinners/Page/1, we'll see the next page of dinners (Figure 1-111):

ke | £] hitp://localnost:64643/Dinners/Pagesl = | 43 | % A7 Live Search
| *Fﬂﬂli‘ﬁ IQUPmming Dinners T & - A & + Page~ Safety~ Tools~+ Ov 2

H NerdDinner

Find Dinner Host Dinner

Upcoming Dinners

+ Fine Wine on 12/7/2009 @ 12:00 AM

+ Surfing Lessons on 12/8/2009 @ 12:00 AM
» Curing Polio on 12/9/2009 @ 12:00 AM

€ Local intranet | Protected Mode: Off

Figure 1-111

Adding Page Navigation Ul

The last step to complete our paging scenario will be to implement “next” and “previous” navigation Ul
within our view template to enable users to easily skip over the Dinner data.

106

84619c01.indd List106 @

3/31/09 5:25:57 AM

Chapter 1: NerdDinner

To implement this correctly, we’ll need to know the total number of Dinners in the database, as well as
how many pages of data this translates to. We'll then need to calculate whether the currently requested
“page” value is at the beginning or end of the data, and show or hide the “previous” and “next” Ul
accordingly. We could implement this logic within our Index action method. Alternatively, we can add
a helper class to our project that encapsulates this logic in a more reusable way.

The following code is a simple PaginatedList helper class that derives from the List<T> collec-
tion class built into the .NET Framework. It implements a reusable collection class that can be used
to paginate any sequence of IQueryable data. In our NerdDinner application we’ll have it work over
IQueryable<Dinner> results, but it could just as easily be used against IQueryable<Product>

or IQueryable<Customer> results in other application scenarios:

public class PaginatedList<T> : List<T> {

public int PageIndex { get; private set;
public int PageSize { get; private set;
public int TotalCount { get; private set;
public int TotalPages { get; private set;

[N

public PaginatedList (IQueryable<T> source, int pagelIndex, int pageSize) {
PageIndex = pagelndex;
PageSize = pageSize;
TotalCount = source.Count () ;
TotalPages = (int) Math.Ceiling(TotalCount / (double)PageSize);

this.AddRange (source.Skip (PageIndex * PageSize) .Take (PageSize));
}

public bool HasPreviousPage {
get {
return (PageIndex > 0);
}
}

public bool HasNextPage {
get {
return (PageIndex+l < TotalPages) ;
}

Notice in the previous code how it calculates and then exposes properties like PageIndex, PaegeSize,
TotalCount, and TotalPages. It also then exposes two helper properties HasPreviousPage and
HasNextPage that indicate whether the page of data in the collection is at the beginning or end of the
original sequence. The above code will cause two SQL queries to be run — the first to retrieve the count
of the total number of Dinner objects (this doesn’t return the objects — rather it performs a SELECT
COUNT statement that returns an integer), and the second to retrieve just the rows of data we need from
our database for the current page of data.

We can then update our DinnersController. Index helper method to create a PaginatedList<Dinner>
from our DinnerRepository.FindUpcomingDinners result, and pass it to our view template:

//
// GET: /Dinners/

107

84619c01.indd List107 @ 3/31/09 5:25:57 AM

Chapter 1: NerdDinner

// /Dinners/Page/2
public ActionResult Index(int? page) {
const int pageSize = 10;

var upcomingDinners = dinnerRepository.FindUpcomingDinners() ;

var paginatedDinners = new PaginatedList<Dinner> (upcomingDinners,
page ?? 0,
pageSize) ;

return View(paginatedDinners) ;

We can then update the \Views\Dinners\Index.aspx view template to inherit
from ViewPage<NerdDinner.Helpers.PaginatedList<Dinner>> instead of
ViewPage<IEnumerable<Dinner>>, and then add the following code to the bottom
of our view template to show or hide next and previous navigation Ul:

<% if (Model.HasPreviousPage) { %>
<%= Html.RouteLink ("<<<",

"UpcomingDinners",
new { page=(Model.PageIndex-1) }) %>

A

o
-
oo
\%

<% if (Model.HasNextPage) { %>

<%= Html.RouteLink (">>>",
"UpcomingDinners",
new { page = (Model.PageIndex + 1) })%>

<% }

o
\%

Notice, in the previous code, how we are using the Html . RouteLink helper method to generate our
hyperlinks. This method is similar to the Html . ActionLink helper method we've used previously.
The difference is that we are generating the URL using the "UpcomingDinners" routing rule we set up
within our Global . asax file. This ensures that we’ll generate URLSs to our Index action method that
have the format: /Dinners/Page/{page} — where the {page} value is a variable we are providing
above based on the current PageIndex.

And now when we run our application again, we’ll see 10 dinners at a time in our browser, as shown in
Figure 1-112.

We also have <<< and >>> navigation Ul at the bottom of the page that allows us to skip forwards and
backwards over our data using search-engine-accessible URLs (Figure 1-113).

108

84619c01.indd List108 @

3/31/09 5:25:57 AM

Chapter 1: NerdDinner

bl o8| 2] http://localnost:54643/Dinners/ B2 Live Search

G Favorites !gUp:oming Dinners :. Ei > * 3 é ~ Page~ Safety~ Tools~

[Log On]

NerdDinner

Find Dinner Host Dinner

Upcoming Dinners

XBOX Gaming on 3/1/2009 @ 5:00 PM

Dinner with the Team on 3/2/2009 @ 5:00 PM
Philosophy and Beer on 3/7/2009 @ 5:00 PM

Kinder Music on 3/7/2009 @ 5:00 PM

MIX Planning Meeting on 3/7/2009 @ 5:00 PM

MVC Focus Group on 2/7/2009 @ 5:00 PM

Duke vs. Carolina on 3/7/2009 @ 10:12 PM

Late Antiquity Study Group on 3/7/2009 @ 10:13 PM
Geek Out on 12/6/2009 @ 12:00 AM

Geek Dinner on 12/6/2009 @ 5:00 PM

€4 Local intranet | Protected Mode: Off A

NerdDinner

Find Dinner Host Dinner

Upcoming Dinners

+ Fine Wine on 12/7/2009 @ 12:00 AM
» Surfing Lessons on 12/8/2009 @ 12:00 AM
+ Curing Polio on 12/9/2009 @ 12:00 AM

|
Figure 1-113

109

84619c01.indd List109 @ 3/31/09 5:25:57 AM

Chapter 1: NerdDinner

Understanding the Implications of IQueryable <T>

IQueryable<T> is a very powerful feature that enables a variety of interesting
deferred execution scenarios (like paging and composition-based queries). As with
all powerful features, you want to be careful with how you use it and make sure it is
not abused.

It is important to recognize that returning an IQueryable<T> result from your
repository enables calling code to append on chained operator methods to it and so
participate in the ultimate query execution. If you do not want to provide calling code
this ability, then you should return back IList<T>, List<T> or IEnumerable<T>
results — which contain the results of a query that has already executed.

For pagination scenarios, this would require you to push the actual data pagination
logic into the repository method being called. In this scenario, we might update our
FindUpcomingDinners finder method to have a signature that either returned a
PaginatedList:

PaginatedList< Dinner> FindUpcomingDinners (int pageIndex, int pageSize) { }
or returned an IList<Dinner>, and use a totalCount out param to return the total
count of Dinners:

IList<Dinner> FindUpcomingDinners (int pageIndex, int pageSize,
out int totalCount) { }

Authentication and Authorization

Right now our NerdDinner application grants anyone visiting the site the ability to create and edit the
details of any dinner. Let’s change this so that users need to register and log in to the site to create new
dinners, and add a restriction so that only the user who is hosting a dinner can edit it later.

To enable this we’ll use authentication and authorization to secure our application.

Understanding Authentication and Authorization

Authentication is the process of identifying and validating the identity of a client accessing an application.
Put more simply, it is about identifying who the end user is when they visit a website.

ASP.NET supports multiple ways to authenticate browser users. For Internet web applications, the
most common authentication approach used is called Forms Authentication. Forms Authentication
enables a developer to author an HTML login form within their application and then validate the
username/password an end user submits against a database or other password credential store. If
the username/password combination is correct, the developer can then ask ASP.NET to issue an
encrypted HTTP cookie to identify the user across future requests. We'll be using forms authentica-
tion with our NerdDinner application.

110

84619c01.indd List110 @ 3/31/09 5:25:57 AM

Chapter 1: NerdDinner

Authorization is the process of determining whether an authenticated user has permission to access a
particular URL/resource or to perform some action. For example, within our NerdDinner application
we’ll want to authorize only users who are logged in to access the /Dinners/Create URL and create
new dinners. We'll also want to add authorization logic so that only the user who is hosting a dinner
can edit it — and deny edit access to all other users.

Forms Authentication and the AccountController

The default Visual Studio project template for ASPNET MVC automatically enables forms authentica-
tion when new ASPNET MVC applications are created. It also automatically adds a pre-built account
login implementation to the project — which makes it really easy to integrate security within a site.

The default Site.master master page displays a [Log On] link (shown in Figure 1-114) at the top right
of the site when the user accessing it is not authenticated:

NerdDinner

Find Dinner Host Dinner

Host a Dinner

Dinner Title:

Event Date:
22472009 5:00 PM

i

Figure 1-114

Clicking the [Log On] link takes a user to the /Account/Logon URL (Figure 1-115)

Visitors who haven't registered can do so by clicking the Register link — which will take them to the
/Account/Register URL and allow them to enter account details (Figure 1-116).

Clicking the Register button will create a new user within the ASPNET Membership system, and
authenticate the user onto the site using forms authentication.

When a user is logged in, the Site.master changes the top right of the page to output a “Welcome
[username]!” message and renders a [Log Off] link instead of a [Log On] one. Clicking the [Log Off]
link logs out the user (Figure 1-117).

111

84619c01.indd List111 @ 3/31/09 5:25:57 AM

Chapter 1: NerdDinner

Sl £ hitp:/ Nocalhost60818/Account/Lagn v | 42| 3¢ [Live Search

i Favorites & LogOn

NerdDinner

Find Dinner Host Dinner

Log On

Flease entar your usemame and password. Registar if you don't have an account.

Account Information

Username:
Password:

[remember me?

szl

€ Local intranet | Pratected Mode: OFf

Figure 1-115

w | %4 | % [WET Live Search

| |t v B) v O dm v Pagew Safetyv Teokw @+

NerdDinner

Find Dinner Host Dinner

Create a New Account
use the form below to create a new account.
Passwords are required to be a minimum of & characters in length.

Account Information

Usemame:
scoitgu

Email:
scottgu@microsoft.com

Password:

Done €& Local intranet | Protected Mode: OFf

Figure 1-116

112

84619c01.indd List112 @

3/31/09 5:25:57 AM

Chapter 1: NerdDinner

i Favorites | (@8 Host a Dinner

NerdDinner

Find Dinner Host Dinner

Host a Dinner

Dinner Title:

Event Date:
2024120049 500 PM

Description:

Country:
UsA -

Centact Phone #:

)

s Local intranet | Protected Mode: DFf

Figure 1-117

The above login, logout, and registration functionality is implemented within the AccountController
class that was added to our project by VS when it created it. The UI for the AccountController is
implemented using view templates within the \Views\Account directory (Figure 1-118).

Solution Explorer - NerdDinner * 4%
S|aE4 W0
[SA Selution 'Step3' 2 projects) -

& [Solution ltems
21 (£# NerdDinner
o [Properties
- [References
i 24 App_Browsers
i @ L5 App_Data
- (3 CodeTemplates
- [Lll Content
- [E37_Controllers
T8 et |
- 2] DinnersController.cs
- 4] HomeController.cs
g [Helpers
- [Models =
[Cl Scripts
B Bz Views
B 5 Account
2| ChangePassword.aspx
ChangePasswordSuccess.asps
LogOn.aspx
Register.aspx
[_d Dinners
m- 3 Home
- (3 Shared
i |i2 Web.config
£] Global.asax
¥ Global.asax.cs —
[Web.config

¥ iJ_JE._NHdD'wnw Tarte
aiolutlun Explorer ﬁclass View |

Figure 1-118

i E
i B

113

84619c01.indd List113 @ 3/31/09 5:25:58 AM

Chapter 1: NerdDinner

The AccountController class uses the ASPNET Forms Authentication system to issue encrypted authen-
tication cookies, and the ASPNET Membership API to store and validate usernames/passwords. The ASP.
NET Membership API is extensible and enables any password credential store to be used. ASPNET ships
with built-in membership provider implementations that store username/passwords within a SQL data-
base, or within Active Directory.

We can configure which membership provider our NerdDinner application should use by opening

the web. config file at the root of the project and looking for the <membership> section within it. The
default web. config, added when the project was created, registers the SQL membership provider, and
configures it to use a connection-string named ApplicationServices to specify the database location.

The default ApplicationServices connection string (which is specified within the
<connectionStrings> section of the web. config file) is configured to use SQL Express. It points to a
SQL Express database named ASPNETDB . MDF under the application’s App_Data directory. If this database
doesn't exist the first time the Membership APl is used within the application, ASPNET will automatically
create the database and provision the appropriate membership database schema within it (Figure 1-119).

Solution Explorer - Solution 'Ner... ~ 3 X
=Rk

._j.é-él-ut-n-on .'I.\I"erdDinner'_\? projgc_tsj =
5 (2® NerdDinner [
4| Properties
3l References
= App_Data

[A SPNETDE.MDF

- £ bin
&~ CJ Content
_G1- (3 Controllers =

[Solution Explorer [Server Explorer F

Figure 1-119

m

- E-E

If instead of using SQL Express we wanted to use a full SQL Server instance (or connect to a remote
database), all we’d need to do is to update the ApplicationServices connection string within the
web.config file and make sure that the appropriate membership schema has been added to the data-
base it points at. You can run the aspnet_regsql . exe utility within the \Windows\Microsoft .NET\
Framework\v2.0.50727\ directory to add the appropriate schema for membership and the other
ASP.NET application services to a database.

Authorizing the /Dinners/Create URL Using
the [Authorize] Filter

We didn't have to write any code to enable a secure authentication and account management implementa-
tion for the NerdDinner application. Users can register new accounts with our application, and log in/log
out of the site. And now we can add authorization logic to the application, and use the authentication status
and username of visitors to control what they can and can’t do within the site.

Let’s begin by adding authorization logic to the Create action methods of our DinnersController
class. Specifically, we will require that users accessing the /Dinners/Create URL must be logged in.
If they aren’t logged in, we'll redirect them to the login page so that they can sign in.

114

84619c01.indd List114 @ 3/31/09 5:25:58 AM

Chapter 1: NerdDinner

Implementing this logic is pretty easy. All we need to do is to add an [Authorize] filter attribute to
our Create action methods like so:

/7
// GET: /Dinners/Create
[Authorize]

public ActionResult Create() {
}

//
// POST: /Dinners/Create

[AcceptVerbs (HttpVerbs.Post), Authorize]
public ActionResult Create(Dinner dinnerToCreate) {

}

ASPNET MVC supports the ability to create action filters that can be used to implement reusable logic
that can be declaratively applied to action methods. The [Authorize] filter is one of the built-in action
filters provided by ASPNET MVC, and it enables a developer to declaratively apply authorization rules
to action methods and controller classes.

When applied without any parameters (as in the previous code), the [Authorize] filter enforces that
the user making the action method request must be logged in — and it will automatically redirect the
browser to the login URL if they aren’t. When doing this redirect, the originally requested URL is passed
as a querystring argument (for example: /Account/LogOn?ReturnUrl=%2fDinners%2£fCreate). The
AccountController will then redirect the user back to the originally requested URL once they log in.

The [Authorize] filter optionally supports the ability to specify a Users or Roles property that can
be used to require that the user is both logged in and within a list of allowed users or a member of an
allowed security role. For example, the code below only allows two specific users, scottguand billg,
to access the /Dinners/Create URL:

[Authorize (Users="scottgu,billg")]
public ActionResult Create() {

}

Embedding specific user names within code tends to be pretty unmaintainable though. A better
approach is to define higher-level roles that the code checks against, and then to map users into the role
using either a database or active directory system (enabling the actual user mapping list to be stored
externally from the code). ASP.NET includes a built-in role management API as well as a built-in set of
role providers (including ones for SQL and Active Directory) that can help perform this user/role map-
ping. We could then update the code to only allow users within a specific "admin" role to access the
/Dinners/Create URL:

[Authorize (Roles="admin")]
public ActionResult Create() {

}

115

84619c01.indd List115 @ 3/31/09 5:25:58 AM

Chapter 1: NerdDinner

Using the User.ldentity.Name Property
When Creating Dinners

We can retrieve the username of the currently logged-in user of a request using the User . Identity.Name
property exposed on the Controller base class.

Earlier, when we implemented the HTTP-POST version of our Create action method, we had hard-coded
the HostedBy property of the dinner to a static string. We can now update this code to instead use the
User.Identity.Name property, as well as automatically add an RSVP for the host creating the dinner:

//
// POST: /Dinners/Create

[AcceptVerbs (HttpVerbs.Post), Authorize]
public ActionResult Create(Dinner dinner) {

if (ModelState.IsvValid) {
try {
dinner.HostedBy = User.Identity.Name;

RSVP rsvp = new RSVP();
rsvp.AttendeeName = User.Identity.Name;
dinner.RSVPs.Add (rsvp) ;

dinnerRepository.Add (dinner) ;
dinnerRepository.Save() ;

return RedirectToAction("Details", new { id=dinner.DinnerID });

}
catch {
ModelState.AddModelErrors (dinner.GetRuleViolations());

}
}

return View(new DinnerFormViewModel (dinner)) ;

}
Because we have added an [Authorize] attribute to the create method, ASPNET MVC ensures that

the action method only executes if the user visiting the /Dinners/create URL is logged in on the site.
As such, the User . Identity.Name property value will always contain a valid username.

Using the User.ldentity.Name Property
When Editing Dinners

Let’s now add some authorization logic that restricts users so that they can only edit the properties of
dinners they themselves are hosting.

To help with this, we'll first add an IsHostedBy (username) helper method to our Dinner object
(within the Dinner . cs partial class we built earlier). This helper method returns true or false,

116

84619c01.indd List116 @ 3/31/09 5:25:58 AM

Chapter 1: NerdDinner

84619c01.indd List117

depending on whether a supplied username matches the Dinner HostedBy property, and encapsulates
the logic necessary to perform a case-insensitive string comparison of them:

public partial class Dinner {
public bool IsHostedBy(string userName) {

return HostedBy.Equals (userName,
StringComparison.InvariantCultureIgnoreCase) ;

We'll then add an [Authorize] attribute to the Edit action methods within our DinnersController
class. This will ensure that users must be logged in to request a /Dinners/Edit/[id] URL.

We can then add code to our Edit methods that uses the Dinner . IsHostedBy (username) helper
method to verify that the logged-in user matches the dinner host. If the user is not the host, we’ll dis-
play an "InvalidOwner" view and terminate the request. The code to do this looks like the following:

//
// GET: /Dinners/Edit/5

[Authorize]
public ActionResult Edit (int id) {

Dinner dinner = dinnerRepository.GetDinner (id);

if (!dinner.IsHostedBy (User.Identity.Name))
return View("InvalidOwner") ;

return View(new DinnerFormViewModel (dinner)) ;
//
// POST: /Dinners/Edit/5

[AcceptVerbs (HttpVerbs.Post), Authorize]
public ActionResult Edit(int id, FormCollection collection) {

Dinner dinner = dinnerRepository.GetDinner (id);

if (!dinner.IsHostedBy (User.Identity.Name))
return View("InvalidOwner") ;

try {
UpdateModel (dinner) ;

dinnerRepository.Save () ;
return RedirectToAction("Details", new {id = dinner.DinnerID});
}

catch {
ModelState.AddModelErrors (dinnerToEdit.GetRuleViolations());

117

@ 3/31/09 5:25:58 AM

Chapter 1: NerdDinner

return View(new DinnerFormViewModel (dinner)) ;

We can then right-click on the \Views\Dinners directory and choose the Add => View menu command
to create a new "InvalidOwner" view. We'll populate it with the following error message:

<asp:Content ID="Title" ContentPlaceHolderID="TitleContent" runat="server">
You Don't Own This Dinner
</asp:Content>

<asp:Content ID="Main" ContentPlaceHolderID="MainContent" runat="server">
<h2>Error Accessing Dinner</h2>

<p>Sorry - but only the host of a Dinner can edit or delete it.</p>
</asp:Content>

And now when a user attempts to edit a dinner they don’t own, they’ll get the error message shown in
Figure 1-120.

o) |] hitp://localnost:60848/Dinners/Ediy2 + 7 Live Search

il Favorites | @ You Don't Own This Dinner | i~ ~ 2] d v Pagev Safety~ Tools~ @@~ 2

Welcome scottgu! [Log Off]

NerdDinner

Find Dinner Host Dinner

Error Accessing Dinner

Sorry - but only the host of 3 Dinner can edit or delete it.

€ Local intranet | Protected Mode: Off

Figure 1-120

We can repeat the same steps for the Delete action methods within our controller to lock down per-
mission to delete dinners as well, and ensure that only the host of a dinner can delete it.

Showing/Hiding Edit and Delete Links

We are linking to the Edit and Delete action method of our DinnersController class from our
/Details URL (Figure 1-121).

Currently we are showing the Edit and Delete action links regardless of whether the visitor to the details
URL is the host of the dinner. Let’s change this so that the links are only displayed if the visiting user is
the owner of the dinner.

118

84619c01.indd List118 @

3/31/09 5:25:58 AM

Chapter 1: NerdDinner

i Favorites | @8 NET Futures

NerdDinner

Find Dinner Host Dinner

.NET Futures

When: 12/6/2000 @ 5:00 PM

Where: One Microsft Way, Redmond WA 98052, ISA
Description: Come talk about cool things coming with JNET

Organizer: scottgu (425-985-3648)

Edit Dinner | Delete Dinner

€& Local intranet | Protected Made: OFf

Figure 1-121

The Details action method within our DinnersController retrieves a Dinner object and then passes
it as the model object to our view template:

//
// GET: /Dinners/Details/5

public ActionResult Details(int id) {

Dinner dinner = dinnerRepository.GetDinner (id);

if (dinner == null)
return View ("NotFound") ;

return View (dinner) ;

We can update our view template to conditionally show/hide the Edit and Delete links by using the
Dinner . IsHostedBy helper method as in the code that follows:

<% if (Model.IsHostedBy (Context.User.Identity.Name)) { %>

<%= Html.ActionLink ("Edit Dinner", "Edit", new { id=Model.DinnerID })%> |
<%= Html.ActionLink("Delete Dinner", "Delete", new {id=Model.DinnerID}) %>

<% } %>

AJAX Enabling RSVPs Accepts

Let’s now add support for logged-in users to RSVP their interest in attending a dinner. We’ll implement

this using an AJAX-based approach integrated within the dinner details page.
119

3/31/09 5:25:58 AM

84619c01.indd List119

Chapter 1: NerdDinner

Indicating Whether the User Is RSVP’ed
Users can visit the /Dinners/Details/ [id] URL to see details about a particular dinner

(Figure 1-122).

| & NET Futures - W

Kol -l £ hitp://localnost:60848/Dinners/Details/L | 43 | X M A7 Live Search

| {;F&\ruli{u QINE[FumrB | & - * @ +~ Page~ Safety~ Tools~ o' i

Welcome billg! [Log Off]

NerdDinner

Find Dinner Host Dinner

.NET Futures

When: 12/6/2002 @ 5:00 PM

Where: One Microsft Way, Redmond WA 98052, USA
Description: Come talk about cool things coming with .NET

Organizer: scottgu (425-985-3648)

€ Local intranet | Protected Mode: Off

Figure 1-122

The Details action method is implemented like so:

//
// GET: /Dinners/Details/2

public ActionResult Details(int id) {

Dinner dinner = dinnerRepository.GetDinner (id);

if (dinner == null)
return View("NotFound") ;

else
return View(dinner) ;

Our first step to implement RSVP support will be to add an IsUserRegistered (username) helper
method to our Dinner object (within the Dinner. cs partial class we built earlier). This helper method

returns true or false, depending on whether the user is currently RSVP'd for the dinner:

public partial class Dinner ({

public bool IsUserRegistered(string userName) {

120

84619c01.indd List120

3/31/09 5:25:58 AM

Chapter 1: NerdDinner

return RSVPs.Any(r => r.AttendeeName.Equals (userName,
StringComparison.InvariantCultureIgnoreCase)) ;

We can then add the following code to our Details.aspx view template to display an appropriate
message indicating whether the user is registered or not for the event:

<% 1f (Request.IsAuthenticated) { %>

<% if (Model.IsUserRegistered(Context.User.Identity.Name)) { %>

<p>You are registered for this event!</p>
<% } else { %>
<p>You are not registered for this event</p>
<% } %>
<% } else { %>

Logon to RSVP for this event.

<% } %>

And now when a user visits a dinner they are registered for they’ll see the message in Figure 1-123.

- 1 e seucy

http://localhost
G Favorites Q.NEI’Fuhuru @ ot | @ + Page~ Safety~ Tools~ 0' 2

o Welcome billg! [Log Off]
H NerdDinner

Find Dinner Host Dinner

.NET Futures

When: 12/6/2009 @ 5:00 PM

Where: One Microsft Way, Redmond WA 98052, USA
Description: Come talk about cool things coming with .NET
Organizer: scottgu (425-985-3648)

You are registred for this event!

€ Local intranet | Protected Mode: Off Rio% ~

Figure 1-123

121

84619¢01.indd List121 @ 3/31/09 5:25:58 AM

Chapter 1: NerdDinner

And when they visit a dinner they are not registered for, they’ll see the message in Figure 1-124.

:
bl B hitp://localnost:50848/Dinners/Details/1 v | + &7 Live Search

{zFﬂ\ruli{u Q‘NI:TFlerG | & - * [@ ~ Page~ Safety~ Tools~ o' g

Welcome billg! [Log Off]

NerdDinner

Find Dinner Host Dinner

.NET Futures

When: 12/6/2009 @ 5:00 PM

Where: One Microsft Way, Redmond WA 58052, USA
Description: Come talk about cool things coming with .NET
Organizer: scottgu (425-985-3548)

You are not registered for this event

€ Local intranet | Protected Mode: Off

Figure 1-124

Implementing the Register Action Method

Let’s now add the functionality necessary to enable users to RSVP for a dinner from the details page.

To implement this, we’ll create a new RSVPController class by right-clicking on the \Controllers
directory and choosing the Add = Controller menu command.

We'll implement a Register action method within the new RSVPController class that takes an ID for
a dinner as an argument, retrieves the appropriate Dinner object, checks to see if the logged-in user is
currently in the list of users who have registered for it, and if not adds an RSVP object for them:

public class RSVPController : Controller {
DinnerRepository dinnerRepository = new DinnerRepository();

//
// AJAX: /Dinners/Register/1

[Authorize, AcceptVerbs (HttpVerbs.Post)]
public ActionResult Register(int id) {

Dinner dinner = dinnerRepository.GetDinner (id);

if (!dinner.IsUserRegistered(User.Identity.Name)) {

122

84619c01.indd List122 @ 3/31/09 5:25:58 AM

Chapter 1: NerdDinner

RSVP rsvp = new RSVP();
rsvp.AttendeeName = User.Identity.Name;

dinner.RSVPs.Add (rsvp) ;
dinnerRepository.Save () ;

}

return Content ("Thanks - we'll see you there!");

Notice, in the previous code, how we are returning a simple string as the output of the action method.
We could have embedded this message within a view template — but since it is so small we’ll just use
the Content helper method on the controller base class and return a string message like that above.

Calling the Register Action Method Using AJAX

We'll use AJAX to invoke the Register action method from our Details view. Implementing this is
pretty easy. First we’ll add two script library references:

<script src="/Scripts/MicrosoftAjax.js" type="text/javascript"></script>
<script src="/Scripts/MicrosoftMvcAjax.js" type="text/javascript"></script>

The first library references the core ASPNET AJAX client-side script library. This file is approximately 24k
in size (compressed) and contains core client-side AJAX functionality. The second library contains utility
functions that integrate with ASPNET MVC’s built-in AJAX helper methods (which we’ll use shortly).

We can then update the view template code we added earlier so that, instead of outputing a “You are
not registered for this event” message, we render a link that when pushed performs an AJAX call that
invokes our Register action method on our RSVP controller and RSVPs the user:

<div id="rsvpmsg">
<% if (Request.IsAuthenticated) { %>
<% if (Model.IsUserRegistered(Context.User.Identity.Name)) { %>
<p>You are registered for this event!</p>
<% } else { %>
<%= Ajax.ActionLink("RSVP for this event",
"Register", "RSVP",
new { id=Model.DinnerID },
new AjaxOptions { UpdateTargetId="rsvpmsg" }) %>
<% } else { %>

Logon to RSVP for this event.

123

84619c01.indd List123 @ 3/31/09 5:25:58 AM

Chapter 1: NerdDinner

The Ajax.ActionLink helper method in the previous code is built into ASPNET MVC and is similar to
the Html . ActionLink helper method except that instead of performing a standard navigation, it makes
an AJAX call to the action method. Above we are calling the "Register" action method on the "rRSVP"
controller and passing the DinnerID as the id parameter to it. The final AjaxOptions parameter we

are passing indicates that we want to take the content returned from the action method and update the
HTML <div> element on the page whose id is "rsvpmsg".

And now when a user browses to a dinner they aren’t registered for yet, they’ll see a link to RSVP for it
(Figure 1-125).

=B £ | http:/flocalhost60B8/ Dinners/Details/L w | 43 | X BT Live Search 2

<= Favorites |Q.Nrrrmum [- v [@ v Pagev Safety~ Toolsv @~ =

Welcome billg! [Log Off]

NerdDinner

Find Dinner Host Dinner

-NET Futures

When: 12/6/2009 @ 5:00 PM
Where: One Microsft Way, Redmond WA 98052, USA

Description: Come talk about cool things coming with .NET

Organizer: scottgu (425-985-3648)

RSVE for this event

€R Local intranst | Protected Mode: OFF H100% -

Figure 1-125

If they click the “RSVP for this event” link, they’ll make an AJAX call to the Register action method
on the RSVP controller, and when it completes they’ll see an updated message like that in Figure 1-126.

The network bandwidth and traffic involved when making this AJAX call is really lightweight. When
the user clicks on the “RSVP for this event” link, a small HTTP POST network request is made to the
/Dinners/Register/1 URL that looks like the following on the wire:

POST /Dinners/Register/49 HTTP/1.1

X-Requested-With: XMLHttpRequest

Content-Type: application/x-www-form-urlencoded; charset=utf-8
Referer: http://localhost:8080/Dinners/Details/49

And the response from our Register action method is simply:

HTTP/1.1 200 OK

Content-Type: text/html; charset=utf-8
Content-Length: 29

Thanks - we'll see you there!

124

84619c01.indd List124 @ 3/31/09 5:25:59 AM

Chapter 1: NerdDinner

| {z Favorites @& NET Futures

Welcome billg! [Log Off]

NerdDinner

Find Dinner Host Dinner

.NET Futures

When: 12/6/2009 @ 5:00 PM

Where: One Microsft Way, Redmond WA 58052, USA
Description: Come talk about cool things coming with .NET
Organizer: scottgu (425-985-3548)

Thanks - we'll see you there!

€ Local intranet | Protected Mode: Off

Figure 1-126
This lightweight call is fast and will work even over a slow network.

Adding a jQuery Animation
The AJAX functionality we implemented works well and fast. Sometimes it can happen so fast, though,

that a user might not notice that the RSVP link has been replaced with new text. To make the outcome a
little more obvious, we can add a simple animation to draw attention to the updates message.

The default ASPNET MVC project template includes jQuery — an excellent (and very popular) open
source JavaScript library that is also supported by Microsoft. jQuery provides a number of features,
including a nice HTML DOM selection and effects library.

To use jQuery, we'll first add a script reference to it. Because we are going to be using jQuery within a
variety of places within our site, we’ll add the script reference within our Site.master master page file
so that all pages can use it.

<script src="/Scripts/jQuery-1.3.2.js" type="text/javascript"></script>

Make sure you have installed the JavaScript IntelliSense hotfix for VS 2008 SP1 that enables richer
intellisense support for JavaScript files (including jQuery). You can download it from: http: //
tinyurl.com/vs2008javascripthotfix

Code written using JQuery often uses a global $ () JavaScript method that retrieves one or more HTML

elements using a CSS selector. For example, $ ("#rsvpmsg") selects any HTML element with the ID of
rsvpmsg, while $ (" . something") would select all elements with the "something" CSS class name.

125

84619c01.indd List125 @ 3/31/09 5:25:59 AM

Chapter 1: NerdDinner

You can also write more advanced queries like “return all of the checked radio buttons” using a selector
query like: $ ("input [@type=radio] [@checked]").

Once you've selected elements, you can call methods on them to take action, such as hiding them:
S ("#rsvpmsg") .hide () ;

For our RSVP scenario, we'll define a simple JavaScript function named AnimateRSVPMessage that
selects the “rsvpmsg” <div> and animates the size of its text content. The code below starts the text
small and then causes it to increase over a 400 milliseconds timeframe:

<script type="text/javascript">

function AnimateRSVPMessage () {
S("#rsvpmsg") .animate ({fontSize: "1.5em"}, 400);
}

</script>

We can then wire up this JavaScript function to be called after our AJAX call successfully completes
by passing its name to our Ajax.ActionLink helper method (via the AjaxOptions OnSuccess event

property):

<%= Ajax.ActionLink("RSVP for this event",
"Register", "RSVP",
new { id=Model.DinnerID },
new AjaxOptions { UpdateTargetId="rsvpmsg",
OnSuccess="AnimateRSVPMessage" }) %>

And now when the “RSVP for this event” link is clicked and our AJAX call completes successfully, the
content message sent back will animate and grow large (Figure 1-127).

i Favorites | (& Fine Wine

Welcome scottgu! [Log Off]

NerdDinner

Find Dinner Host Dinner

Fine Wine

When: 12/7/2009 @ 12:00 AM

Where: One Microsft Way, Redmond WA 98052, USA
Description:

Organizer: philha (425-555-1212)

Thanks - we'll see you there!

QJ Local intranst | Protected Mode: OFf

Figure 1-127

126

84619c01.indd List126 @ 3/31/09 5:25:59 AM

Chapter 1: NerdDinner

In addition to providing an OnSuccess event, the AjaxOptions object exposes OnBegin, OnFailure, and
OnComplete events that you can handle (along with a variety of other properties and useful options).

Cleanup — Refactor Out a RSVP Partial View

Our details view template is starting to get a little long, which over time will make it a little harder
to understand. To help improve the code readability, let’s finish up by creating a partial view —
RSVPStatus.ascx — that encapsulates all of the RSVP view code for our Details page.

We can do this by right-clicking on the \Views\Dinners folder and then choosing the Add = View
menu command. We’ll have it take a Dinner object as its strongly typed viewModel. We can then
copy/paste the RSVP content from our Details.aspx view into it.

Once we've done that, let’s also create another partial view — EditAndDeleteLinks.ascx — that
encapsulates our Edit and Delete link view code. We’ll also have it take a Dinner object as its strongly
typed viewModel, and copy/paste the Edit and Delete logic from our Details.aspx view into it.

Our details view template can then just include two Html . RenderPartial method calls at the bottom:

<% Html.RenderPartial ("RSVPStatus"); %>
<% Html.RenderPartial ("EditAndDeleteLinks"); %>

This makes the code cleaner to read and maintain.

Integrating an AJAX Map

We’ll now make our application a little more visually exciting by integrating AJAX mapping support.
This will enable users who are creating, editing, or viewing dinners to see the location of the dinner
graphically.

Creating a Map Partial View

We are going to use mapping functionality in several places within our application. To keep our code
DRY, we'll encapsulate the common map functionality within a single partial template that we can reuse
across multiple controller actions and views. We'll name this partial view map . ascx and create it within
the \Views\Dinners directory.

We can create the map . ascx partial by right-clicking on the \Views\Dinners directory and choosing
the Add = View menu command. We’ll name the view Map . ascx, check it as a partial view, and indicate

that we are going to pass it a strongly typed Dinner model class (Figure 1-128):

When we click the “Add” button our partial template will be created. We’ll then update the Map . ascx
file to have the following content:

<script src="http://dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=6.2"
type="text/javascript"></script>

<script src="/Scripts/Map.js" type="text/javascript"></script>

127

84619c01.indd List127 @ 3/31/09 5:25:59 AM

Chapter 1: NerdDinner

<div id="theMap">
</div>
<script type="text/javascript">

$ (document) .ready (function() {
var latitude = <%=Model.Latitude $%>;
var longitude = <%=Model.Longitude %>;

if ((latitude == 0) || (longitude == 0))
LoadMap () ;

else
LoadMap (latitude, longitude, mapLoaded) ;

1)
function mapLoaded() {
var title = "<%= Html.Encode(Model.Title) %>";
var address = "<%= Html.Encode (Model.Address) %>";

LoadPin(center, title, address);
map.SetzoomLevel (14) ;
}

</script>

View name:
Map

[¥] Create a partial view (.ascd)

[¥] Create a strongly-typed view
View data class:

MerdDinner.Models. Dinner
View content:

Empty

Select master page

~(Views/Shared/5ite. Master

ContentPlaceHolder ID:

MainContent

Figure 1-128

The first <script> reference points to the Microsoft Virtual Earth 6.2 mapping library. The second
<script> reference points to a map. js file that we will shortly create, which will encapsulate our com-
mon JavaScript mapping logic. The <div id="theMap"> element is the HTML container that Virtual
Earth will use to host the map.

We then have an embedded <script> block that contains two JavaScript functions specific to this view.
The first function uses jQuery to wire up a function that executes when the page is ready to run client-side

128

84619c01.indd List128 @ 3/31/09 5:25:59 AM

Chapter 1: NerdDinner

script. It calls a LoadMap helper function that we’ll define within our Map. js script file to load the Virtual
Earth map control. The second function is a callback event handler that adds a pin to the map that identi-
fies a location.

Notice how we are using a server-side <%= %> block within the client-side script block to embed the
latitude and longitude of the dinner we want to map into the JavaScript. This is a useful technique to
output dynamic values that can be used by client-side script (without requiring a separate AJAX call
back to the server to retrieve the values — which makes it faster). The <%= %> blocks will execute when
the view is rendering on the server — and so the output of the HTML will just end up with embedded
JavaScript values (for example: var latitude = 47.64312;).

Creating a Map.js Utility Library

Let’s now create the Map. js file that we can use to encapsulate the JavaScript functionality for our map
(and implement the LoadMap and LoadPin methods above). We can do this by right-clicking on the
\Scripts directory within our project, and then choose the Add = New Item menu command, select
the JScript item, and name it Map. js.

Below is the JavaScript code we’ll add to the Map . js file that will interact with Virtual Earth to display
our map and add locations pins to it for our dinners:

var map = null;
var points = [];
var shapes = [];
var center = null;

function LoadMap (latitude, longitude, onMapLoaded) {
map = new VEMap ('theMap') ;
options = new VEMapOptions() ;
options.EnableBirdseye = false;

// Makes the control bar less obtrusive.
map . SetDashboardSize (VEDashboardSize.Small) ;

if (onMapLoaded != null)
map.onlLoadMap = onMapLoaded;

if (latitude != null && longitude != null) {
center = new VELatLong(latitude, longitude);

}

map.LoadMap (center, null, null, null, null, null, null, options);

}

function LoadPin(LL, name, description) {
var shape = new VEShape (VEShapeType.Pushpin, LL);

//Make a nice Pushpin shape with a title and description
shape.SetTitle(" " + escape(name) + "");
if (description !== undefined) {

shape.SetDescription("<p class=\"pinDetails\">" +

escape (description) + "</p>");

129

84619c01.indd List129 @ 3/31/09 5:25:59 AM

Chapter 1: NerdDinner

map .AddShape (shape) ;
points.push (LL) ;
shapes.push (shape) ;

function FindAddressOnMap (where) {

var numberOfResults = 20;
var setBestMapView = true;
var showResults = true;

map.Find("", where, null, null, null,
numberOfResults, showResults, true, true,
setBestMapView, callbackForLocation) ;

function callbackForLocation(layer, resultsArray, places,

hasMore, VEErrorMessage) {

clearMap () ;
if (places == null)
return;

//Make a pushpin for each place we find
$S.each(places, function(i, item) {

var description = "";

if (item.Description !== undefined) {

description = item.Description;
}
var LL = new VELatLong (item.LatLong.Latitude,
item.LatLong.Longitude) ;

LoadPin(LL, item.Name, description);

1)

//Make sure all pushpins are visible
if (points.length > 1) {
map.SetMapView (points) ;

//If we've found exactly one place, that's our address.

if (points.length === 1) {
S("#Latitude") .val (points[0].Latitude) ;
$("#Longitude") .val (points[0].Longitude) ;

function clearMap() {

130

84619c01.indd List130

map.Clear();
points = [];
shapes = [];

3/31/09 5:25:59 AM

Chapter 1: NerdDinner

Integrating the Map with Create and Edit Forms

We'll now integrate the Map support with our existing Create and Edit scenarios. The good news is
that this is pretty easy to do, and doesn’t require us to change any of our Controller code. Because our
Create and Edit views share a common DinnerForm partial view used to implement the dinner form
Ul we can add the map in one place and have both our Create and Edit scenarios use it.

All we need to do is to open the \Views\Dinners\DinnerForm.ascx partial view and update it to
include our new map partial. Below is what the updated DinnerForm will look like once the map is
added (the HTML form elements are omitted from the code snippet below for brevity):

<%= Html.ValidationSummary () %>
<% using (Html.BeginForm()) { %>
<fieldset>

<div id="dinnerDiv">

<p>
[HTML Form Elements Removed for Brevity]
</p>
<p>
<input type="submit" value="Save" />
</p>
</div>

<div id="mapDiv">
<% Html.RenderPartial ("Map", Model.Dinner); %>
</div>

</fieldset>
<script type="text/javascript">
$ (document) .ready (function() {
S ("#Address") .blur (function(evt) {
$("#Latitude") .val("");
S ("#Longitude") .val("");
var address = jQuery.trim($ ("#Address").val());
if (address.length < 1)
return;
FindAddressOnMap (address) ;
)
)

</script>

The DinnerForm partial above takes an object of type DinnerFormviewModel as its model type
(because it needs both a Dinner object and a SelectList to populate the drop-down list of countries).

131

84619c01.indd List131 @ 3/31/09 5:25:59 AM

Chapter 1: NerdDinner

Our map partial just needs an object of type Dinner as its model type, and so when we render the map
partial we are passing just the Dinner sub-property of DinnerFormviewModel to it:

<% Html.RenderPartial ("Map", Model.Dinner); %>

The JavaScript function we’ve added to the partial uses jQuery to attach a blur event to the Address
HTML textbox. You've probably heard of focus events that fire when a user clicks or tabs into a textbox.
The opposite is a blur event that fires when a user exits a textbox. The event handler in the previous
code clears the latitude and longitude textbox values when this happens, and then plots the new address
location on our map. A callback event handler that we defined within the map. js file will then update
the longitude and latitude textboxes on our form using values returned by Virtual Earth based on the

address we gave it.

And now when we run our application again and click the Host Dinner tab, we’ll see a default map
displayed along with our standard Dinner form elements (Figure 1-129).

& http:/flocalhostE0848 Dinners/ Create

54 Favorites i 5 Host a Dinner

NerdDinner

Host a Dinner

Dinner Title:
Test Dinner

Event Data:
2/28/2009 5:00 PM

Description:

This is a teat
Address:
Country:

UsA -
Contack Phone #:

Latitude:

Longitudsa:

- | 44| % QBT Live Search

g - [] #k v Pagew Safetyv Toolsw i@hw &

Welcome scottgu! [Log Off]

Find Dinner Host Dinner

A1 REDTA

wnnipeg

o n;mpeg

MONTANA

i ! gn
“New Crlgars
] Houston_ iew Crlgars 6007 miles.

= e T

€ Local intranet | Protected Made: Off 0% -

Figure 1-129

When we type in an address, and then tab away, the map will dynamically update to display the loca-
tion, and our event handler will populate the latitude/longitude textboxes with the location values

(Figure 1-130).

132

84619c01.indd List132

3/31/09 5:25:59 AM

Chapter 1: NerdDinner

|] hitp://localhost:E0BAE Dinners/Creste v | +4 | 2 J BT Live Search

| Host a Dinner Fi~ B ~ 0 @ v Pagev Safety~ Took~ @

Welcome scottgu! [Log Off]

NerdDinner

Find Dinner Host Dinner

Host a Dinner

Dinner Title:
Test Dinner

Event Date:
2/28/2009 5:00 PM

Description:
This is a teat

Address:
One Microsoft Way, Redmond WA

Country:
UsA -

Contack Phone #:

Latitude:
4764312

Longituda:
-122.13060%

€ Local intranst | Protected Mode: OFf HI10% -

Figure 1-130

If we save the new dinner and then open it again for editing, we’ll find that the map location is displayed
when the page loads (Figure 1-131).

Every time the address field is changed, the map and the latitude/longitude coordinates will update.

Now that the map displays the dinner location, we can also change the Latitude and Longitude form fields
from being visible textboxes to instead be hidden elements (since the map is automatically updating them
each time an address is entered). To do this, we'll switch from using the Html . TextBox HTML helper to
using the Html . Hidden helper method:

<p>
<%= Html.Hidden("Latitude", Model.Dinner.Latitude)$%>
<%= Html.Hidden ("Longitude", Model.Dinner.Longitude) %>
</p>

And now our forms are a little more user-friendly (Figure 1-132) and avoid displaying the raw
latitude/longitude (while still storing them with each dinner in the database).

133

84619c01.indd List133 @ 3/31/09 5:26:00 AM

Chapter 1: NerdDinner

e AR Thinees il 5

v dy | % JET L Search

o Favaritss g Edit: Test Dinrer

NerdDinner

Edit Dinner

Dinner Tide:

Tast Dinnar

Event Date:
21282009 5:00 PM

Deseription:
Thia i3 a ceac

Addrags:
One Microsoll Way, Redmond WA

Courry:
uga -
Contad Phone £:
426-703-8072
Lakibude:
47.54312

Longitude:

122 120608

Host Dinner

HE a1 '.‘.E
Bvnrnks | - .:.';"

i Lezal intranet | Pratected Mede: Off i -

Figure 1-131

o A m——

vy | % [FT Live Search

5 Feverites | @ Edlie: Test Dinner

NerdDinner

Edit Dinner

Dineer Title:
Tast Dinner

Fuwent aka:
2MFEF200% 500 P

Descrigtian:
Thir 1= = tess -

Addrass:
One Microsall Way, Redmond WA

Counkry:
usa -

Contact Phone #
425-TU3-E072

scottgu! [Log Off |

Find Dinner Host Dinner

. -E
E e
E‘ AE i P g

Bl
“MEATR £

i Local intranet | Protectsd Mede Off HIN% -

Figure 1-132

134

84619c01.indd List134

3/31/09 5:26:00 AM

Chapter 1: NerdDinner

Integrating the Map with the Details View

Now that we have the map integrated with our Create and Edit scenarios, let’s also integrate it with
our Details scenario. All we need to do is to call <% Html.RenderPartial ("map"); %> within the
Details view.

Below is what the source code to the complete Details view (with map integration) looks like:

<asp:Content ID="Title" ContentPlaceHolderID="TitleContent" runat="server">
<%= Html.Encode (Model.Title) %>
</asp:Content>

<asp:Content ID="details" ContentPlaceHolderID="MainContent" runat="server">
<div id="dinnerDiv">

<h2><%= Html.Encode (Model.Title) %></h2>
<p>
When:
<%= Model .EventDate.ToShortDateString() %>

@

<%= Model.EventDate.ToShortTimeString() %>
</p>
<p>

Where:

<%= Html.Encode (Model.Address) %>,

<%= Html.Encode (Model.Country) %>
</p>
<p>

Description:

<%= Html.Encode (Model.Description) %>
</p>
<p>

0Organizer:

<%= Html.Encode (Model.HostedBy) %>

(<%= Html.Encode (Model.ContactPhone) %>)

</p>

<% Html.RenderPartial ("RSVPStatus"); %>

<% Html.RenderPartial ("EditAndDeleteLinks"); %>
</div>

<div id="mapDiv">
<% Html.RenderPartial ("map"); %>
</div>

</asp:Content>

And now when a user navigates to a /Dinners/Details/ [id] URL, they’ll see details about the dinner,
the location of the dinner on the map (complete with a pushpin that when hovered over displays the title
of the dinner and the address of it), and have an AJAX link to RSVP for it (Figure 1-133).

135

84619c01.indd List135 @ 3/31/09 5:26:00 AM

Chapter 1: NerdDinner

i Favorites | @ Test Dinner | Mo ~ [d@ v Pagev Safetyv Tooks~ @+

Welcome billg! [Log Off]

NerdDinner

Find Dinner Host Dinner

; BRI A
Test Dinner e e %:;F,m.

B e

When: 2/28/2009 @ 12:23 PM & =) [NEMS'

Where: One Microsft Way, Redmond WA ' | / : VE 6t g | [001]

28052, USA] g y
[Ny, oy

Description: Test Dinner Test Dinner

One Microsft Way, Redmond WA

Organizer: scottgu (425-703-8072) 98052

RSVP for this event

¥ oy
2

H
0.5 files

Virtuai Earth™NE 24h 5t S
1| | !

e — e Zxm ot
2 3605 Flirmanl S mrpmtation 2 3000 [L5UTE A

javascript://pushin hover Q, Local intranet | Protected Mode: Off H100% ~ 5

Figure 1-133

Implementing Location Search in Our Database
and Repository

To finish off our AJAX implementation, let’s add a map to the home page of the application that allows
users to graphically search for dinners near them (Figure 1-134).

We'll begin by implementing support within our database and data repository layer to efficiently

perform a location-based radius search for dinners. We could use the new geospatial features of SQL 2008
(www.microsoft.com/sglserver/2008/en/us/spatial-data.aspx) to implement this, or alterna-
tively we can use a SQL function approach that Gary Dryden discussed in article here: www . codeproject
.com/KB/cs/distancebetweenlocations.aspx and Rob Conery blogged about using with LINQ to
SQL here: http: //blog.wekeroad.com/2007/08/30/1ing-and-geocoding/.

To implement this technique, we will open the Server Explorer within Visual Studio, select the
NerdDinner database, and then right-click on the functions sub-node under it and choose to create a
new Scalar-valued function (Figure 1-135).

136

84619c01.indd List136 @ 3/31/09 5:26:00 AM

Chapter 1: NerdDinner

;1o L0 ||

* |2 | x [l F7 Live Search o~

<7 Favorites | @ Find a Dinner B~ B v @ v Pagev Safetyv Took+ @~

Welcome scottgu! [Log Off]

NerdDinner

Find Dinner Host Dinner About

Find a Dinner

Enter your location: Bellevue

Wl | wvarna paint oL TESER | + Dinner with Sus (2 R5VPs)
4] Aerial Hybri « XBOX Gaming (0 RSVPs)
i s R | » Geek Out (3 RSVPS)
= F X L + .NET Futures (2 RSVPs)

=4
N

1

1288 Awa SE 3N Y URTL

35 ey S0
1121h Ava 82

€& Local intranet | Protected Mode: OFF € 100% -

Figure 1-134

EEXY

&+ (40 Data Connections

=5 [y NerdDinner.mdf

- [[1 Database Diagrams
Cd Tables

L3 Views

3 Stored Procedures
=] Funct}
3 Synon Add New » Inline Function

[Types [2]| Refresh Table-valued Function

- [Assen i | Properties Scalar-valued Function

Figure 1-135

137

84619c01.indd List137 @ 3/31/09 5:26:00 AM

Chapter 1: NerdDinner

We'll then paste in the following DistanceBetween function:

CREATE FUNCTION [dbo].[DistanceBetween] (@Latl as real,
@Longl as real, @Lat2 as real, @Long2 as real)
RETURNS real
AS
BEGIN

DECLARE @dLatlInRad as float(53);

SET @dLatlInRad = @Latl * (PI()/180.0);
DECLARE @dLonglInRad as float(53);

SET @dLonglInRad = @Longl * (PI()/180.0);
DECLARE @dLat2InRad as float(53);

SET @dLat2InRad = @Lat2 * (PI()/180.0);
DECLARE @dLong2InRad as float(53);

SET @dLong2InRad = @Long2 * (PI()/180.0);

DECLARE @dLongitude as float(53);

SET @dLongitude = @dLong2InRad - @dLonglInRad;

DECLARE @dLatitude as float(53);

SET @dLatitude = @dLat2InRad - @dLatlInRad;

/* Intermediate result a. */

DECLARE @a as float(53);

SET @a = SQUARE (SIN (@dLatitude / 2.0)) + COS (@dLatlInRad)
* COS (@dLat2InRad)
* SQUARE (SIN (@dLongitude / 2.0));

/* Intermediate result c¢ (great circle distance in Radians). */

DECLARE @c as real;

SET @c = 2.0 * ATN2 (SQRT (@Qa), SQRT (1.0 - @a));

DECLARE @kEarthRadius as real;

/* SET kEarthRadius = 3956.0 miles */

SET @kEarthRadius = 6376.5; /* kms */

DECLARE @dDistance as real;

SET @dDistance = @kEarthRadius * @c;
return (@dDistance);

END

We'll then create a new table-valued function in SQL Server that we'll call NearestDinners (Figure 1-136):

Server Explorer - =X
EIREIRS. |

= (4) Data Connections

I g g NerdDinner. mdf

- [Database Diagrams

d Tables

CJ Views

-- 3@l Stored Procedures

Cd Synon
i [l Types El' Refresh Table-valued Function
- Ol Assert = |

. Add New » Inline Function

| Properties Scalar-valued Function

Figure 1-136

138

84619c01.indd List138 @

3/31/09 5:26:00 AM

Chapter 1: NerdDinner

84619c01.indd List139

This NearestDinners table function uses the DistanceBetween helper function to return all dinners
within 100 miles of the latitude and longitude we supply it:

CREATE FUNCTION [dbo].[NearestDinners]
(
@lat real,
@long real
)
RETURNS TABLE
AS
RETURN
SELECT Dinners.DinnerID
FROM Dinners

WHERE dbo.DistanceBetween (@lat, @long, <100

Latitude, Longitude)

To call this function, we'll first open up the LINQ to SQL designer by double-clicking on the
NerdDinner.dbml file within our \Models directory (Figure 1-137).

NerdDinner

[Zd Properties

[z References

[g App_Browsers

. @ [App_Data

@ 3 CodeTemplates

[Content

3 Controllers

3 Helpers

[Ez Models

<4 Dinner.cs
DinnerRepository.cs
3 Scripts

[Views

i ‘J Global.asax

i i [Web.config

- (G0 MerdDinner. Tests

]
(i3]

Figure 1-137

We'll then drag the NearestDinners and DistanceBetween functions onto the LINQ to SQL designer,
which will cause them to be added as methods on our LINQ to SQL NerdDinnerDataContext class
(Figure 1-138).

) StepZ - Microsoft Visual Studia =3
File Edit Wiew Project Build Debug Date Tools Test Analyze Window Help
il - - 5 | B 3 |9 - - TI-TE | b Dobug ~ Any CPU - [detail NE- TP =R
NerdDi | Ervar List - T Sxplarer = [F
. '3 P o
I = = |% DistancsBetween [Sysser Single 11, System Sing | L2021 B 3 3z
ner = - 2
@ NearestDinners (System Single lal, Systern Single lo]|| | 5 Oy MereDinner.me = =3
. @ 3 Database Diagrams 3
Fropsries 3 T =
- 3 Tables
¥ DinnedD RSV a Views
= Title 3 Stared Proceduses
' EveriDsse L = Properties &
' Deseripton P 125 Ravpld 4 B DistanceBetuesn =
2 HostedBy F CirnedD 4 [MearestDinners
2P ContactPhore - I T - [Synaryms
B Adceess B i Types
B Country B~ i Assemblies
I Lattude H
2 Longitude e — .
il » FETool,. |2iSolut.. | 1
- i | Server.. GEToow,, [y Soltl,, |2 Class v
Ready

Figure 1-138

139

3/31/09 5:26:00 AM

Chapter 1: NerdDinner

We can then expose a FindByLocation query method on our DinnerRepository class that uses the

NearestDinner function to return upcoming dinners that are within 100 miles of the specified location:

public IQueryable<Dinner> FindByLocation(float latitude, float longitude) {

var dinners = from dinner in FindUpcomingDinners ()
join 1 in db.NearestDinners (latitude, longitude)
on dinner.DinnerID equals i.DinnerID
select dinner;

return dinners;

Implementing a JSON-Based AJAX Search Action Method

We'll now implement a controller action method that takes advantage of the new FindByLocation
repository method to return a list of Dinner data that can be used to populate a map. We’ll have this
action method return the Dinner data in a JSON (JavaScript Object Notation) format so that it can be
easily manipulated using JavaScript on the client.

To implement this, we’ll create a new SearchController class by right-clicking on the
\Controllers directory and choosing the Add = >Controller menu command. We'll then
implement a SearchByLocation action method within the new SearchController class like
the one that follows:

public class JsonDinner {

public int DinnerID { get; set; }
public string Title { get; set; }
public double Latitude { get; set; }
public double Longitude { get; set; }
public string Description { get; set; }
public int RSVPCount { get; set; }

}
public class SearchController : Controller ({
DinnerRepository dinnerRepository = new DinnerRepository();

//
// AJAX: /Search/SearchByLocation

[AcceptVerbs (HttpVerbs.Post)]
public ActionResult SearchByLocation(float longitude, float latitude) {

var dinners = dinnerRepository.FindByLocation(latitude, longitude);
var jsonDinners = from dinner in dinners
select new JsonDinner {

DinnerID = dinner.DinnerID,
Latitude = dinner.Latitude,

140

84619c01.indd List140 @

3/31/09 5:26:01 AM

Chapter 1: NerdDinner

Longitude = dinner.Longitude,
Title = dinner.Title,
Description = dinner.Description,
RSVPCount = dinner.RSVPs.Count

}i

return Json(jsonDinners.ToList());

The SearchController’s SearchByLocation action method internally calls the FindByLocation
method on DinnerRespository to get a list of nearby dinners. Rather than return the Dinner objects
directly to the client, though, it instead returns JsonDinner objects. The JsonDinner class exposes

a subset of Dinner properties (for example: for security reasons it doesn’t disclose the names of the
people who have RSVP’ed for a dinner). It also includes an RSVPCount property that doesn’t exist in
Dinner — and that is dynamically calculated by counting the number of RSVP objects associated with
a particular dinner.

We are then using the Json helper method on the Controller base class to return the sequence of dinners
using a JSON-based wire format. JSON is a standard text format for representing simple data structures.
The following is an example of what a JSON-formatted list of two JsonDinner objects looks like when
returned from our action method:

[{"DinnerID":53,"Title":"Dinner with the Family", "Latitude":47.6431
2,"Longitude":-122.130609, "Description":"Fun dinner", "RSVPCount":2},

{"DinnerID":54,"Title":"Another Dinner", "Latitude":47.632546, "Longitude": -
122.21201, "Description":"Dinner with Friends", "RSVPCount":3}]

Calling the JSON-Based AJAX Method Using jQuery

We are now ready to update the home page of the NerdDinner application to use the SearchController’s
SearchByLocation action method. To do this, we’ll open the /Views/Home/Index.aspx view template
and update it to have a textbox, search button, our map, and a <div> element named dinnerList:

<h2>Find a Dinner</h2>
<div id="mapDivLeft">
<div id="searchBox">
Enter your location: <%= Html.TextBox("Location") %>
<input id="search" type="submit" value="Search" />

</div>

<div id="theMap">
</div>

</div>

<div id="mapDivRight">

141

84619c01.indd List141 @ 3/31/09 5:26:01 AM

Chapter 1: NerdDinner

<div id="dinnerList"></div>
</div>

We can then add two JavaScript functions to the page:

<script type="text/javascript">

$ (document) .ready (function() {
LoadMap () ;
1)

$("#search") .click(function(evt) {
var where = jQuery.trim($("#Location").val());
if (where.length < 1)
return;

FindDinnersGivenLocation (where) ;

1)

</script>

The first JavaScript function loads the map when the page first loads. The second JavaScript function
wires up a JavaScript click event handler on the search button. When the button is pressed, it calls the
FindDinnersGivenLocation JavaScript function which we’ll add to our Map. js file:

function FindDinnersGivenLocation (where) {
map.Find("", where, null, null, null, null, null, false,
null, null, callbackUpdateMapDinners) ;

This FindDinnersGivenLocation function calls map . Find on the Virtual Earth Control to center it on
the entered location. When the Virtual Earth map service returns, the map . Find method invokes the
callbackUpdateMapDinners callback method we passed it as the final argument.

The callbackUpdateMapDinners method is where the real work is done. It uses jQuery’s $.post
helper method to perform an AJAX call to our SearchController’s SearchByLocation action method —
passing it the latitude and longitude of the newly centered map. It defines an inline function that will
be called when the $.post helper method completes, and the JSON-formatted dinner results returned
from the SearchByLocation action method will be passed it using a variable called dinners. It then
does a foreach over each returned dinner, and uses the dinner’s latitude and longitude and other
properties to add a new pin on the map. It also adds a dinner entry to the HTML list of dinners to the
right of the map. It then wires up a hover event for both the pushpins and the HTML list so that details
about the dinner are displayed when a user hovers over them:

function callbackUpdateMapDinners (layer, resultsArray,
places, hasMore, VEErrorMessage) {

$("#dinnerList") .empty () ;
clearMap () ;

142

84619c01.indd List142 @ 3/31/09 5:26:01 AM

Chapter 1: NerdDinner

var center = map.GetCenter();

$.post ("/Search/SearchByLocation", { latitude: center.Latitude,
longitude: center.Longitude },
function (dinners) {
$.each(dinners, function(i, dinner) {

var LL = new VELatLong (dinner.Latitude,
dinner.Longitude, 0, null);

var RsvpMessage = "";

if (dinner.RSVPCount == 1)

RsvpMessage = "" + dinner.RSVPCount + " RSVP";
else

RsvpMessage = "" + dinner.RSVPCount + " RSVPs";

// Add Pin to Map

LoadPin (LL, ''
+ dinner.Title + '',
"<p>" + dinner.Description + "</p>" + RsvpMessage) ;

//Add a dinner to the dinnerList on the right
S('#dinnerList') .append($('<1li/>")
.attr("class", "dinnerItem")
.append($('<a/>") .attr("href",
"/Dinners/Details/" + dinner.DinnerID)
.html (dinner.Title))
.append (" ("+RsvpMessage+")"));
)

// Adjust zoom to display all the pins we just added.

if (points.length > 1) {
map.SetMapView (points) ;
}

// Display the event's pin-bubble on hover.
$(".dinnerItem") .each(function (i, dinner) {
S (dinner) .hover (
function() { map.ShowInfoBox (shapes[i]);
function() { map.HideInfoBox(shapes[i]);

’

o

)
)

}, "Jjson");

And now when we run the application and visit the home page, we'll be presented with a map. When
we enter the name of a city the map will display the upcoming dinners near it (Figure 1-139).

Hovering over a dinner will display details about it (Figure 1-140).

143

84619c01.indd List143 @ 3/31/09 5:26:01 AM

Chapter 1: NerdDinner

144

84619c01.indd List144

- - |#+| % B &7 Live Search A=

Bi ~ B ~ = oo+ Pagew Safeyv Tuols-@.“’

& Favorites | @ Find a Diner
{elcome scottgul [Lo =

NerdDinner

Host Dinner

Find a Dinner

Enter your location: |Bellewe

Linner with Sus (2 RSVPs)
XBOX Gaming (0 RSVPs)
Grek Out (3 REVPs)

(2 R5VPE)

ket Avet NE
0 Az HE

5";-«.;- ';n.“mi

4% glesd

1261h A SE 30 B0 AL

LSl R e e
L Localintranet | Pratected Maode: OFF H100% v
|
£ hitp://localhostE0RAE, x| ++| % W £7 Live Search p -
i Favorites | g Find a Dinner _ B~ B - = & v Pager Safetyr Tooksw @+
N dD. ‘Wealcoma scottgu! [Log =
er Inner
Find Dinner Host Dinner Aboul
Find a Dinner

Enter your location: Bellewe
o : LCinner with Sus (2 RSVPs)
HBOX Gaming (D RSVPs)
Geek Out (3 RSVPs)

JMET Fubures (2 RSVPs)

Come talk about cool things
coming with NET

javascript/fpushin haver & Local intranet | Pratected Mode: OFF F100% *

Figure 1-140

3/31/09

5:26:01 AM

Chapter 1: NerdDinner

Clicking the Dinner title either in the bubble or on the right-hand side in the HTML list will navigate us
to the dinner — which we can then optionally RSVP for (Figure 1-141).

CMET Futures -

£ hitps//localhostE0848, Dinners/ Details/L

- 44| o [l Live search FE

i Favorites | 4 \NET Futures

Ei v B v 0 & v Pagew Safetyv Tooksw @

- 11] a
Find Dinner Host Dinner About
-NET Futures e
e %

When: 12/6/2009 @ 5:00 PM ==

26/ @5 Nesary |

w
2 i i i ¥ e,
Where: Cne Microseft wWay, Redmaend WA, 3 L | b
usa | k1
Description: Come talk about cool things v ! | NET Fulures
caming with .NET B J One Microsoft Way, Redmand Wa
Organizer: scottgu (425-985-3645)
RSV for this event xx &j .
" = e 99

javascript/pushin haver € Local intranet | Protected Made: OFF Hn -

Figure 1-141

Unit Testing

Let’s develop a suite of automated unit tests that verify our NerdDinner functionality, and that will give

us the confidence to make changes and improvements to the application in the future.

Why Unit Test?

On the drive into work one morning you have a sudden flash of inspiration about an application you are
working on. You realize there is a change you can implement that will make the application dramatically

84619c01.indd List145

better. It might be a refactoring that cleans up the code, adds a new feature, or fixes a bug.

The question that confronts you when you arrive at your computer is — “how safe is it to make this
improvement?” What if making the change has side effects or breaks something? The change might be
simple and only take a few minutes to implement, but what if it takes hours to manually test out all of
the application scenarios? What if you forget to cover a scenario and a broken application goes into pro-

duction? Is making this improvement really worth all the effort?

Automated unit tests can provide a safety net that enables you to continually enhance your applications,
and avoid being afraid of the code you are working on. Having automated tests that quickly verify func-
tionality enables you to code with confidence — and empowers you to make improvements you might
otherwise not have felt comfortable doing. They also help create solutions that are more maintainable and

have a longer lifetime — which leads to a much higher return on investment.

145

3/31/09 5:26:01 AM

Chapter 1: NerdDinner

The ASPNET MVC Framework makes it easy and natural to unit test application functionality. It also
enables a Test Driven Development (TDD) workflow that enables test-first-based development.

NerdDinner.Tests Project

When we created our NerdDinner application at the beginning of this tutorial, we were prompted with
a dialog asking whether we wanted to create a unit test project to go along with the application project
(Figure 1-142).

Would you like to create a unit test project for this application?

@) Yes, create a unit test project

Test project name:

MerdDinner. Tests

Test framework:

[\fisual Studio Unit Test «| Additional Info

() Mo, do not create a unit test project

Figure 1-142

We kept the “Yes, create a unit test project” radio button selected — which resulted in a
NerdDinner.Tests project being added to our solution (Figure 1-143).

B 2E4

[Solution ‘MerdDinner’ (2 projects)
B (3R NerdDinner
[#- &4l Properties
d| References
3 App_Data
3 Content
3 Controllers
_d Helpers
_d Models
(3 Scripts
A Views
-] Default.aspx
- 4] Global.asax
- 5 Web.config
O [raDinner et
[~ &4 Properties
- 3l References
E- &5 Controllers
#] AccountControllerTest.cs
. &) HomeControllerTest.cs
. 2 App.config

B B - B - B

[Solution Explorer [Server Explorer

Figure 1-143

146

84619c01.indd List146 @ 3/31/09 5:26:01 AM

Chapter 1: NerdDinner

The NerdDinner . Tests project references the NerdDinner application project assembly, and enables
us to easily add automated tests to it that verify the application.

Creating Unit Tests for Our Dinner Model Class

Let’s add some tests to our NerdDinner . Tests project that verify the Dinner class we created when
we built our model layer.

84619c01.indd List147

We'll start by creating a new folder within our test project called “Models” where we’ll place our
model-related tests. We'll then right-click on the folder and choose the Add = New Test menu com-
mand. This will bring up the Add New Test dialog.

We'll choose to create a Unit Test and name it DinnerTest.cs (Figure 1-144).

Al P Tesk [
Templates:
= = [['—:'J 3] =
LET] F] L
Databaze GenericTest LosdTest MaruaiTes | Decrplion
Uit Test Ibest foomat) | e o urit test o esemcee s, OF, o
. 11 - Q s Visual Basic source code, Choesing Unit
& a7 = = Test also lets you create ASPNET unit
it i = tusts and data-decen uai tests.
Marwial Test Oredered Test Urst Test
[Word far., ‘Wizard A unit tesz calls the methods of a class,
nassing sutable parmeters, and verfies
@ thal the et value & whal yoa gt
ou £an code unik tests by hnd,
ek Test

Test Mame: DinrerTest.cx

il b Test Project; (58 MerdDinner Tests -

Figure 1-144

File Edit View Project Suild Debug Dat Tocks Test
f-E-E @ L RR| - -0 b theMap o
e B2 G E ST b PIEEIOMG M ARG

Window Help

= “®DinneTest
"= Solutian "NerdDinrer (2 prejects)
~1 3 @ NerdDinner
Z- 15 NerdDinner.Tests

[- [Properties

I+ (5 References

- & Controllers

using Syscem,Ling:
maing i fr.VinualStudic.TearTeola.UndzTeacing: 3

[
7= namespace NerdDinner.Testa.Models [
o

Teat o

] DinnerTestcs

15 Appicanfig

mrfess |
£ DimmerTeaz|) (

ODO: Add comscriccer lagic here

1k e ——— o T — e — 3 ‘.-cSnILtinerIo'erFﬁEw_\-:r

Figure 1-145

When we click the OK button, Visual Studio will add (and open) a DinnerTest. cs file to the project
(Figure 1-145).

147

3/31/09 5:26:01 AM

Chapter 1: NerdDinner

The default Visual Studio unit test template has a bunch of boilerplate code within it that I find a little
messy. Let’s clean it up to just contain the code that follows:

using System;

using System.Collections.Generic;

using System.Ling;

using Microsoft.VisualStudio.TestTools.UnitTesting;
using NerdDinner.Models;

namespace NerdDinner.Tests.Models ({

[TestClass]
public class DinnerTest {

}

The [TestClass] attribute on the DinnerTest class above identifies it as a class that will contain tests,
as well as optional test initialization and teardown code. We can define tests within it by adding public
methods that have a [TestMethod] attribute on them.

In the following code is the first of two tests we’ll add that exercise our Dinner class. The first test veri-
fies that our Dinner is invalid if a new Dinner is created without all properties being set correctly. The
second test verifies that our Dinner is valid when a Dinner has all properties set with valid values:

[TestClass]
public class DinnerTest {

[TestMethod]
public void Dinner_Should_Not_Be_Valid_When_Some_Properties_Incorrect () {

//Arrange

Dinner dinner = new Dinner () {
Title = "Test title",
Country = "USA",
ContactPhone = "BOGUS"

Y

// Act
bool isValid = dinner.IsValid;

//Assert
Assert.IsFalse(isvValid) ;

[TestMethod]
public void Dinner_Should_Be_Valid_When_All_Properties_Correct() {

//Arrange

Dinner dinner = new Dinner {
Title = "Test title",
Description = "Some description",
EventDate = DateTime.Now,

148

84619c01.indd List148 @ 3/31/09 5:26:02 AM

Chapter 1: NerdDinner

HostedBy = "ScottGu",
Address = "One Microsoft Way",
Country = "USA",
ContactPhone = "425-703-8072",
Latitude = 93,
Longitude = -92,

Y

// Act
bool isValid = dinner.IsValid;

//Assert
Assert.IsTrue(isvalid);

You'll notice above that our test names are very explicit (and somewhat verbose). We are doing this
because we might end up creating hundreds or thousands of small tests, and we want to make it easy to
quickly determine the intent and behavior of each of them (especially when we are looking through a
list of failures in a test runner). The test names should always be named after the functionality they are
testing. Above we are using a Noun_Should_Verb naming pattern.

We are structuring the tests using the AAA testing pattern — which stands for Arrange, Act, Assert:

0 Arrange: Set up the unit being tested
O Act: Exercise the unit under test and capture results

0 Assert: Verify the behavior

When we write tests, we want to avoid having the individual tests do too much. Instead each test
should verify only a single concept (which will make it much easier to pinpoint the cause of failures).

A good guideline is to try to only have a single assert statement for each test. If you have more than one
assert statement in a test method, make sure they are all being used to test the same concept. When in
doubt, make another test.

Running Tests

Visual Studio 2008 Professional (and higher editions) includes a built-in test runner that can be used

to run Visual Studio Unit Test projects within the IDE. We can select the Test => Run => All Tests in
Solution menu command (or press Ctrl-R, A) to run all of our unit tests. Or alternatively we can position
our cursor within a specific test class or test method and use the Test = Run = Tests in Current Context
menu command (or press Ctrl-R, T) to run a subset of the unit tests.

Let’s position our cursor within the DinnerTest class and press Ctrl-R, T to run the two tests we just
defined. When we do this, a Test Results window will appear within Visual Studio and we'll see the
results of our test run listed within it (Figure 1-146).

149

84619c01.indd List149 @ 3/31/09 5:26:02 AM

Chapter 1: NerdDinner

Test Results > I X
i 1% | iy scottgu@SCOTTGU-WINT 2009-0 = | % Run = k@ Debug » 1l @ | 2F - %9 3 | Group By: [Mone] - S
() Testrun completed Results: 2/2 passed; Item(s) checked: 0
Result Class Name Test Name - Error Message
ojj Passed DinnerTest Dinner_Should_Be_Valid_When_All_Properties_Correct
o_jd Passed DinnerTest Dinner_Should_MNot_Be_Valid_When_Some_Properties_Incormrect
Figure 1-146

The VS test results window does not show the Class Name column by default. You can add this by
right-clicking within the Test Results window and using the Add/Remove Columns menu command.

Our two tests took only a fraction of a second to run — and as you can see they both passed. We can
now go on and augment them by creating additional tests that verify specific rule validations, as well as
cover the two helper methods — IsUserHost and IsUserRegistered — that we added to the Dinner
class. Having all these tests in place for the Dinner class will make it much easier and safer to add new
business rules and validations to it in the future. We can add our new rule logic to Dinner, and then
within seconds verify that it hasn’t broken any of our previous logic functionality.

Notice how using a descriptive test name makes it easy to quickly understand what each test is verifying.
I recommend using the Tools = Options menu command, opening the Test Tools/Test Execution configu-
ration screen, and checking the “Double-clicking a failed or inconclusive unit test result displays the point
of failure in the test” checkbox. This will allow you to double-click on a failure in the test results window
and jump immediately to the assert failure.

Creating DinnersController Unit Tests

Let’s now create some unit tests that verify our DinnersController functionality. We’ll start by right-
clicking on the Controllers folder within our Test project and then choose the Add = New Test menu
command. We'll create a Unit Test and name it DinnersControllerTest.cs.

We'll create two test methods that verify the Details action method on the DinnersController. The
first will verify that a view is returned when an existing dinner is requested. The second will verify
that a "NotFound" view is returned when a nonexistent dinner is requested:

[TestClass]
public class DinnersControllerTest ({

[TestMethod]
public void DetailsAction_Should_Return View_For_ExistingDinner () {

// Arrange
var controller = new DinnersController();

// Act
var result = controller.Details(l) as ViewResult;

// Assert
Assert.IsNotNull (result, "Expected View");

150

84619c01.indd List150 @

3/31/09 5:26:02 AM

Chapter 1: NerdDinner

[TestMethod]
public void DetailsAction_Should_Return_NotFoundView_For_BogusDinner () {

// Arrange
var controller = new DinnersController();

// Act

var result =

// Assert

Assert.AreEqual ("NotFound",

controller.Details (999)

as ViewResult;

result.ViewName) ;

The previous code compiles cleanly. When we run the tests, though, they both fail (Figure 1-147).

Test Results

B=— %
==

gy scottgu .. U= [+ Run = ¥ Debug = Ul 4
@ scottgu@SCOTTGU-WINT 2003-0 » | %p Run = ¥¥) Debug

@ Testrunfailed Results: 072 passed: Item(s) checked: 2

-~ IX

=¥~ % 3 | Group By: [Mone] - | (Al Colurnr =

Result

v 43| @ Failed
vl 4] @ Failed

Class Name
DinnersControllerTest

DinnersControllerTest

Test Name Error Message
DetailsAction_Should_Return_MotFoundView_For_BogusDinner Test method NerdDinner. Tests.C
DetailsAction_Should_Return_View_For_ExistingDinner Test method NerdDinner.Tests.C

Figure 1-147

If we look at the error messages, we’ll see that the reason the tests failed was because our
DinnersRepository class was unable to connect to a database. Our NerdDinner application is
using a connection string to a local SQL Server Express file which lives under the \App_bData direc-
tory of the NerdDinner application project. Because our NerdDinner . Tests project compiles and
runs in a different directory than the application project, the relative path location of our connection

string is incorrect.

We could fix this by copying the SQL Express database file to our test project, and then add an appro-
priate test connection string to it in the App . config of our test project. This would get the above tests
unblocked and running,.

Unit testing code using a real database, though, brings with it a number of challenges. Specifically:

Q Itsignificantly slows down the execution time of unit tests. The longer it takes to run tests, the
less likely you are to execute them frequently. Ideally, you want your unit tests to be able to be
run in seconds — and have it be something you do as naturally as compiling the project.

Q It complicates the setup and cleanup logic within tests. You want each unit test to be isolated
and independent of others (with no side effects or dependencies). When working against a real
database you have to be mindful of state and reset it between tests.

Let’s look at a design pattern called dependency injection that can help us work around these issues and
avoid the need to use a real database with our tests.

84619c01.indd List151

151

3/31/09 5:26:02 AM

Chapter 1: NerdDinner

Dependency Injection

Right now DinnersController is tightly coupled to the DinnerRepository class. Coupling refers to a
situation where a class explicitly relies on another class in order to work:

public class DinnersController : Controller {
DinnerRepository dinnerRepository = new DinnerRepository();

//
// GET: /Dinners/Details/5

public ActionResult Details(int id) {
Dinner dinner = dinnerRepository.FindDinner (id) ;

if (dinner == null)
return View("NotFound") ;

return View(dinner) ;

Because the DinnerRepository class requires access to a database, the tightly coupled dependency the
DinnersController class has on the DinnerRepository ends up requiring us to have a database in
order for the DinnersController action methods to be tested.

We can get around this by employing a design pattern called “dependency injection” — which is

an approach where dependencies (like repository classes that provide data access) are no longer
implicitly created within classes that use them. Instead, dependencies can be explicitly passed to the
class that uses them, using constructor arguments. If the dependencies are defined using interfaces,
we then have the flexibility to pass in fake dependency implementations for unit test scenarios. This
enables us to create test-specific dependency implementations that do not actually require access to
a database.

To see this in action, let’s implement dependency injection with our DinnersController.

Extracting an IDinnerRepository Interface

Our first step will be to create a new IDinnerRepository interface that encapsulates the repository
contract our controllers require to retrieve and update dinners.

We can define this interface contract manually by right-clicking on the \Models folder, and then choosing
the Add = New Item menu command and creating a new interface named IDinnerRepository.cs.

Alternatively, we can use the refactoring tools built into Visual Studio Professional (and higher editions)
to automatically extract and create an interface for us from our existing DinnerRepository class. To

extract this interface using VS, simply position the cursor in the text editor on the DinnerRepository
class, and then right-click and choose the Refactor => Extract Interface menu command (Figure 1-148).

152

84619c01.indd List152 @ 3/31/09 5:26:02 AM

84619c01.indd List153

15§ public

Igueryable<binnery Fil
20 return from dinner in Fil

Breakpoint

Create Unit Tests...

Create Private Accessor #

i Insest Saippet.. Fromole Local Vanzble Lo Parameter
p Surrmund With... 2% | Remove Parameters...
Go To Definition ik | Reorder Parameters..,

Find All References

) .
Chapter 1: NerdDinner
- DinnerRepository.cs” | NerdDinnerdbml | Frror List
“& NerdDinner.Madels.DinnerRepository - Pdb
1Musing 3ystem;
2| using System.Ccllections.Generic;
3!| using System.Ling;
4'lusing System.Web;
fF nemespace MerdDinner.Modsls {
8§ public class DinnerRsposizary |
] Refactor ¥ | a*| Rename..
1 Nexdl aContext db = o DOrganize Usings » &, Extract Method...

% | Encapsulate Field...
Si Bxtract Interface...
%

Figure 1-148

This will launch the Extract Interface dialog and prompt us for the name of the interface to create.
It will default to IDinnerRepository and automatically select all public methods on the existing

DinnerRepository class to add to the interface (Figure

Mew interface name:

1-149).

IDinnelRepositoq{

Generated name:

MerdDinner.Models.IDinnerRepository

New file name:

IDinnerRepository.cs

Select public members to form interface

@ Add(Dinner)

“@ Delete(Dinner)

[#] “% FindAllDinners()

“¥ FindByLocation(float, float)
|?|I % FindDinner(int}

e

3

‘| Selectall |
4

ok][cance

Figure 1-149

When we click the OK button, Visual Studio will add a new IDinnerRepository interface to our

application:
public interface IDinnerRepository {

IQueryable<Dinner> FindAllDinners() ;

IQueryable<Dinner> FindByLocation(float latitude,

IQueryable<Dinner> FindUpcomingDinners() ;
Dinner GetDinner (int id);

void Add(Dinner dinner);
void Delete(Dinner dinner);

void Save();

float longitude);

153

3/31/09 5:26:02 AM

Chapter 1: NerdDinner

And our existing DinnerRepository class will be updated so that it implements the interface:

public class DinnerRepository : IDinnerRepository {

}

Updating DinnersController to Support
Constructor Injection

We'll now update the DinnersController class to use the new interface.

Currently DinnersController is hard-coded such that its dinnerRepository field is always a
DinnerRepository instance:

public class DinnersController : Controller {

DinnerRepository dinnerRepository = new DinnerRepository();

We’ll change it so that the dinnerRepository field is of type IDinnerRepository instead of
DinnerRepository. We'll then add two public DinnersController constructors. One of the
constructors allows an IDinnerRepository to be passed as an argument. The other is a default con-
structor that uses our existing DinnerRepository implementation:

public class DinnersController : Controller {
IDinnerRepository dinnerRepository;
public DinnersController ()
this (new DinnerRepository()) {
}
public DinnersController (IDinnerRepository repository) ({

dinnerRepository = repository;

}

Because ASPNET MVC, by default creates controller classes using default constructors, our
DinnersController at runtime will continue to use the DinnerRepository class to perform
data access.

We can now update our unit tests, though, to pass in a fake dinner repository implementation using

the parameter constructor. This fake dinner repository will not require access to a real database, and
instead will use in-memory sample data.

Creating the FakeDinnerRepository Class

Let’s create a FakeDinnerRepository class.

154

84619c01.indd List154 @

3/31/09 5:26:02 AM

84619c01.indd List155

Chapter 1: NerdDinner

We'll begin by creating a Fakes directory within our NerdDinner . Tests project and then add a new

FakeDinnerRepository class to it (right-click on the folder and choose Add => New Class, as shown in
Figure 1-150):

ution rer - n
& E
oA Solution "MerdDinner' (2 projects)
i (8 NerdDinner
NerdDinner.Tests
- [5dl Properties
- [l References
[Controllers
- @ AccountControllerTest.cs
#] DinnersControllerTest.cs
#] HomeControllerTest.cs
= 0 G
i .] FakeDinnerRepository.cs
[Models
- 4] DinnerTest.cs
i [App.config

[E) Solution Explorer 5 Server Explorer

Figure 1-150

We'll update the code so that the FakeDinnerRepository class implements the IDinnerRepository

interface. We can then right-click on it and choose the Implement interface IDinnerRepository context
menu command (Figure 1-151).

FakeDinnerRepository.cs® Dinnerl

.cs” | NerdDinner.dbml | Emor List|

% NerdDinner. Tests Fakes FakeDinnerRepository - -

1Husing System;

: using System.Collections.Generic;
3| using System.Ling;

- using System.Text:

L “u=zing NerdDinner.Models:
&l

k E| namespace NerdDinner.Tests.Fakes

|inlerfa ce NerdDinner.Models.IDinnerReposito ryI

erRepository {

Impl interface 'IDinr

P Y

| Explicitly implement interface 'IDinnerRepository’

Figure 1-151

This will cause Visual Studio to automatically add all of the IDinnerRepository interface members to
our FakeDinnerRepository class with default stub out implementations:

public class FakeDinnerRepository IDinnerRepository {

public IQueryable<Dinner> FindAllDinners () {
throw new NotImplementedException();

public IQueryable<Dinner> FindByLocation (float lat,

float long) {
throw new NotImplementedException();

155

@ 3/31/09 5:26:03 AM

Chapter 1: NerdDinner

public IQueryable<Dinner> FindUpcomingDinners() {
throw new NotImplementedException() ;

public Dinner GetDinner (int id) {
throw new NotImplementedException();

public void Add(Dinner dinner) {
throw new NotImplementedException() ;

public void Delete(Dinner dinner) {
throw new NotImplementedException() ;

public void Save() {
throw new NotImplementedException();

We can then update the FakeDinnerRepository implementation to work off of an in-memory
List<Dinner> collection passed to it as a constructor argument:

public class FakeDinnerRepository : IDinnerRepository {

156

84619c01.indd List156

private List<Dinner> dinnerList;

public FakeDinnerRepository (List<Dinner> dinners) {
dinnerList = dinners;

public IQueryable<Dinner> FindAllDinners() {
return dinnerList.AsQueryable();

public IQueryable<Dinner> FindUpcomingDinners() {
return (from dinner in dinnerList
where dinner.EventDate > DateTime.Now
select dinner) .AsQueryable();

public IQueryable<Dinner> FindByLocation(float lat, float lon) {
return (from dinner in dinnerList
where dinner.Latitude == lat && dinner.Longitude == lon
select dinner) .AsQueryable();

public Dinner GetDinner (int id) {
return dinnerList.SingleOrDefault(d => d.DinnerID == id);

public void Add(Dinner dinner) {
dinnerList.Add (dinner) ;

3/31/09 5:26:03 AM

Chapter 1: NerdDinner

public void Delete(Dinner dinner) {
dinnerList.Remove (dinner) ;

public void Save() {
foreach (Dinner dinner in dinnerList) {
if (!dinner.IsvValid)
throw new ApplicationException("Rule violations");

We now have a fake IDinnerRepository implementation that does not require a database and can
instead work off an in-memory list of Dinner objects.

Using the FakeDinnerRepository with Unit Tests

Let’s return to the DinnersController unit tests that failed earlier because the database wasn't available.
We can update the test methods to use a FakeDinnerRepository populated with sample in-memory
dinner data to the DinnersController using the code that follows:

[TestClass]
public class DinnersControllerTest ({

List<Dinner> CreateTestDinners() {
List<Dinner> dinners = new List<Dinner>();
for (int 1 = 0; 1 < 101; 1i++) {

Dinner sampleDinner = new Dinner() {
DinnerID = 1,

Title = "Sample Dinner",
HostedBy = "SomeUser",
Address = "Some Address",

Country = "USA",
ContactPhone = "425-555-1212",
Description = "Some description",
EventDate = DateTime.Now.AddDays (1),
Latitude = 99,
Longitude = -99

Y

dinners.Add (sampleDinner) ;

}

return dinners;

DinnersController CreateDinnersController() {
var repository = new FakeDinnerRepository (CreateTestDinners());
return new DinnersController (repository);

[TestMethod]
public void DetailsAction_Should_Return_View_For_Dinner () {

157

84619c01.indd List157 @ 3/31/09 5:26:03 AM

Chapter 1: NerdDinner

// Arrange
var controller = CreateDinnersController();

// Act
var result = controller.Details(1l);

// Assert
Assert.IsInstanceOfType (result, typeof (ViewResult));
[TestMethod]

public void DetailsAction_Should_Return_NotFoundView_For_BogusDinner () {

// Arrange
var controller = CreateDinnersController();

// Act
var result = controller.Details(999) as ViewResult;

// Assert
Assert.AreEqual ("NotFound", result.ViewName) ;

And now when we run these tests, they both pass (Figure 1-152).

Test Results > IX
|;‘§ 3 scottgu@SCOTTGU-WINT 2009-0 = | %, Run - §&Debug - 11 @ | =F - %9 3 | Group By: [Mone] = | (Al Columr » 7
v} Testrun completed Results: 2/2 passed; Itemis) checked: 0
Result Class Name Test Name - Duration Error Messag

ojd Passed DinnersControllerTest DetailsAction_Should_Return_MotFoundView_For_BogusDinner 00:00:00.0003707

q;]\) Passed DinnersControllerTest DretailsAction_Should_Return_View_For_Dinner 00:00:00.0233735

4 m | b
Figure 1-152

Best of all, they take only a fraction of a second to run, and do not require any complicated setup/cleanup
logic. We can now unit test all of our DinnersController action method code (including listing, paging,
details, create, update, and delete) without ever needing to connect to a real database.

Dependency Injection Frameworks

Performing manual dependency injection (like we are above) works fine, but does
become harder to maintain as the number of dependencies and components in an
application increases.

Several dependency injection frameworks exist for NET that can help provide even
more dependency management flexibility. These frameworks, also sometimes called
Inversion of Control (IoC) containers, provide mechanisms that enable an additional
level of configuration support for specifying and passing dependencies to objects

at runtime (most often using constructor injection). Some of the more popular OSS
Dependency Injection/IOC frameworks in .NET include: AutoFac, Ninject, Spring.
NET, StructureMap, and Windsor.

158

84619c01.indd List158 @ 3/31/09 5:26:03 AM

Chapter 1: NerdDinner

ASPNET MVC exposes extensibility APIs that enable developers to participate in the
resolution and instantiation of controllers, and that enables Dependency Injection/IoC
frameworks to be cleanly integrated within this process. Using a DI/IOC framework
would also enable us to remove the default constructor from our DinnersController —
which would completely remove the coupling between it and the DinnerRepositorys.

We won't be using a dependency injection/IOC framework with our NerdDinner appli-
cation. But it is something we could consider for the future if the NerdDinner code-base
and capabilities grew.

Creating Edit Action Unit Tests

Let’s now create some unit tests that verify the Edit functionality of the DinnersController. We'll

84619c01.indd List159

start by testing the HTTP-GET version of our Edit action:

//
// GET: /Dinners/Edit/5

[Authorize]
public ActionResult Edit (int id) {

Dinner dinner = dinnerRepository.GetDinner (id);

if (!dinner.IsHostedBy (User.Identity.Name))
return View("InvalidOwner") ;

return View(new DinnerFormViewModel (dinner));

}

We'll create a test that verifies that a View backed by a DinnerFormviewModel object is rendered back

when a valid dinner is requested:

[TestMethod]
public void EditAction_Should_Return View_For_ValidDinner() {

// Arrange
var controller = CreateDinnersController();

// Act
var result = controller.Edit(l) as ViewResult;

// Assert
Assert.IsInstanceOfType (result.ViewData.Model,
typeof (DinnerFormViewModel)) ;

When we run the test, though, we’ll find that it fails because a null reference exception is thrown when the
Edit method accesses the User . Identity.Name property to perform the Dinner . IsHostedBy check.

The User object on the Controller base class encapsulates details about the logged-in user, and is
populated by ASPNET MVC when it creates the controller at runtime. Because we are testing the
DinnersController outside of a web-server environment, the User object isn't set (hence the null

reference exception).

159

3/31/09 5:26:03 AM

Chapter 1: NerdDinner

Mocking the User.ldentity.Name Property

Mocking frameworks make testing easier by enabling us to dynamically create fake versions of depen-
dent objects that support our tests. For example, we can use a mocking framework in our Edit action
test to dynamically create a User object that our DinnersController can use to look up a simulated
username. This will avoid a null reference from being thrown when we run our test.

There are many .NET mocking frameworks that can be used with ASPNET MVC (you can see a list of
them here: www.mockframeworks . com/). For testing our NerdDinner application, we'll use an open
source mocking framework called Mog, which can be downloaded for free from www.mockframeworks
.com/mod.

Once it is downloaded, we’ll add a reference in our NerdDinner . Tests project to the Mog.d11
assembly (Figure 1-153).

[(® MerdDinner

E NerdDinner.Tests

| Properties

| References

+3 Microsoft.VisualStudio.Quality To
-3 MerdDinner

-3 System

-3 System.configuration
<3 System.Core

<3 System.Data

-2 System.Data Ling

3 System.Web

«3 System.Web Abstractions
-3 System.Web.Mvc

-3 System.Web.Routing
-3 System.Xml

- 3 Controllers

t [Fakes

(3 Helpers

[J Models

| App.config

Figure 1-153

We’ll then add an overloaded CreateDinnersControllerAs (username) helper method to the test
class that takes a username as a parameter, and which then mocks the User.Identity.Name property
on the DinnersController instance:

DinnersController CreateDinnersControllerAs (string userName) {
var mock = new Mock<ControllerContext> () ;
mock.SetupGet (p => p.HttpContext.User.Identity.Name) .Returns (userName) ;

mock.SetupGet (p => p.HttpContext.Request.IsAuthenticated) .Returns (true);

var controller = CreateDinnersController();
controller.ControllerContext = mock.Object;

return controller;

160

84619c01.indd List160 @ 3/31/09 5:26:03 AM

Chapter 1: NerdDinner

Above, we are using Moq to create a Mock object that fakes a ControllerContext object (which

is what ASPNET MVC passes to Controller classes to expose runtime objects like User, Request,
Response, and Session). We are calling the setupGet method on the Mock to indicate that the
HttpContext.User.Identity.Name property on ControllerContext should return the username
string we passed to the helper method.

We can mock any number of ControllerContext properties and methods. To illustrate this, I've also
added a setupGet call for the Request . IsAuthenticated property (which isn't actually needed

for the tests below — but which helps illustrate how you can mock Request properties). When we are
done we assign an instance of the ControllerContext mock to the DinnersController our helper
method returns.

We can now write unit tests that use this helper method to test Edit scenarios involving different users:

[TestMethod]
public void EditAction_Should_Return_EditView _When_ValidOwner () {

// Arrange
var controller = CreateDinnersControllerAs("SomeUser") ;

// Act
var result = controller.Edit(1l) as ViewResult;

// Assert

Assert.IsInstanceOfType (result.ViewData.Model,
typeof (DinnerFormViewModel)) ;

[TestMethod]
public void EditAction_Should_Return_InvalidOwnerView_When_InvalidOwner () {

// Arrange
var controller = CreateDinnersControllerAs ("NotOwnerUser") ;

// Act
var result = controller.Edit(1l) as ViewResult;

// Assert
Assert.AreEqual (result.ViewName, "InvalidOwner");

And now when we run the tests, they pass (Figure 1-154).

Test Results >~ I x
E“g: @y scottguBSCOTTGU-WINT 2009-0 + | %, Run ~ KB Debug - 1 W | g% - &g O i
() Test run completed Results: 4/4 passed; Item(s) checked: 0

Result Class Name Test Name 2 Error Message

:‘,i};) Passed DinnersControllerTest DetailsAction_Should_Return_MNotFoundView_For_BegusDinner
|43)@ Passed DinnersControllerTest DetailsAction_Should_Retum_View_For_Dinner

Qj‘j Passed DinnersControllerTest EditAction_Should_Return_View_For_InValidOwner

Q;']J Passed DinnersControllerTest EditAction_Should_Return_View_For_ValidDinner

1 1 | b

Figure 1-154

161

84619c01.indd List161 @ 3/31/09 5:26:03 AM

Chapter

1: NerdDinner

Testing UpdateModel() Scenarios

We've created tests that cover the HTTP-GET version of the Edit action. Let’s now create some tests that
verify the HTTP-POST version of the Edit action:

//

// POST: /Dinners/Edit/5

[AcceptVerbs (HttpVerbs.Post), Authorize]
public ActionResult Edit (int id, FormCollection collection) {

Dinner dinner = dinnerRepository.GetDinner (id);

if (!dinner.IsHostedBy (User.Identity.Name))
return View("InvalidOwner") ;

try {
UpdateModel (dinner) ;

dinnerRepository.Save() ;

return RedirectToAction("Details", new { id=dinner.DinnerID });

}

catch {
ModelState.AddModelErrors (dinner.GetRuleViolations());
return View(new DinnerFormViewModel (dinner)) ;

}

The interesting new testing scenario for us to support with this action method is its usage of the
UpdateModel helper method on the Controller base class. We are using this helper method to bind
form-post values to our Dinner object instance.

The following code has two tests that demonstrates how we can supply form posted values for the
UpdateModel helper method to use. We'll do this by creating and populating a FormCollection
object, and then assign it to the ValueProvider property on the Controller.

The first test verifies that on a successful save the browser is redirected to the details action. The
second test verifies that when invalid input is posted the action redisplays the Edit view again with
an error message.

public void EditAction_Should_Redirect_When_Update_Successful () {

162

84619c01.indd List162

// Arrange
var controller = CreateDinnersControllerAs("SomeUser") ;

var formValues = new FormCollection() {

{ "Title", "Another value" },

{ "Description", "Another description" }
}i

controller.ValueProvider = formValues.ToValueProvider () ;

// Act

3/31/09 5:26:03 AM

Chapter 1: NerdDinner

var result = controller.Edit(1l, formValues) as RedirectToRouteResult;

// Assert
Assert.AreEqual ("Details", result.RouteValues["Action"]);

[TestMethod]
public void EditAction_Should_Redisplay_With_Errors_When_Update_Fails () {

// Arrange
var controller = CreateDinnersControllerAs ("SomeUser");

var formValues = new FormCollection() {
{ "EventDate", "Bogus date value!!!"}

Y
controller.ValueProvider = formValues.ToValueProvider();

// Act
var result = controller.Edit(1l, formValues) as ViewResult;

// Assert
Assert.IsNotNull (result, "Expected redisplay of view");
Assert.IsTrue(result.ViewData.ModelState.Count > 0, "Expected errors");

Testing Wrap-Up

We've covered the core concepts involved in unit testing controller classes. We can use these techniques
to easily create hundreds of simple tests that verify the behavior of our application.

Because our controller and model tests do not require a real database, they are extremely fast and easy
to run. We'll be able to execute hundreds of automated tests in seconds, and immediately get feedback
as to whether a change we made broke something. This will help provide us the confidence to continu-
ally improve, refactor, and refine our application.

We covered testing as the last topic in this chapter — but not because testing is something you should
do at the end of a development process! On the contrary, you should write automated tests as early as
possible in your development process. Doing so enables you to get immediate feedback as you develop,
helps you think thoughtfully about your application’s use case scenarios, and guides you to design your
application with clean layering and coupling in mind.

A later chapter in this book will discuss Test Driven Development (TDD) and how to use it with
ASPNET MVC. TDD is an iterative coding practice where you first write the tests that your resulting
code will satisfy. With TDD you begin each feature by creating a test that verifies the functionality
you are about to implement. Writing the unit test first helps ensure that you clearly understand the
feature and how it is supposed to work. Only after the test is written (and you have verified that it
fails) do you then implement the actual functionality the test verifies. Because you've already spent
time thinking about the use case of how the feature is supposed to work, you will have a better
understanding of the requirements and how best to implement them. When you are done with the
implementation you can re-run the test — and get immediate feedback as to whether the feature
works correctly. We'll cover TDD more in Chapter 10.

163

84619c01.indd List163 @ 3/31/09 5:26:03 AM

Chapter 1: NerdDinner

NerdDinner Wrap-Up

Our initial version of our NerdDinner application is now complete and ready to deploy on the Web

(Figure 1-155).

)| 2] http://localhost60848 Dinners/Details 61

v | 4| X [l £ Live Search

. Favorites | @& ASP.NET Study Group

- v [o v Pagev Safetyv Took+ @@~

N dD_ Welcome billg! [Log Off]
Find Dinner Host Dinner
ASP.NET Study Group =Rl S = o AR \
ga Road Aerial Hybrid s
=1 ‘ :: we®0
When: 3/9/2009 @ 5:00 PM { | A=
s "-u-l et \Bet—_ E
) %, A HE 450 5t ' \ e
Where: One Microsoft Way, Redmond Wa, (R Ly | £ a0 R B e 4
e LY < L 4
usa NE azna P § b, 1 N~ —3 \ i
3] /Y T8
B R b =] [t
Description: Get together and talk about REsb S 1 Bl _“J n:-wis: g“ ST g B
Ll
the cool new ASP.NET MVC framework] 2 - L *_ 1 :
y g o T
Organizer: scottgu (425-703-8072) K 5 : 5 ? NS P EnEn
: B e A
RSVP for this event i B i"i_ g 5 % &f |
LiFY ¥ L
* .’3 . ' 0 NE!"?S‘
= !3 it . —T
™ Nmt ﬁ&l——- =
. Eastside, - > NE 288 51 e
& = Hospital | Fiip b L |
: v:m&l' . q L1, % 0/pHiies
Ig:..‘ Eé ilfm%f_ﬂ_m?mslﬂq 5h0n .'|.§rr-_r¢ 54t

€& Local intranet | Protected Mode: OFf H]100% v

Figure 1-155

We used a broad set of ASPNET MVC features to build NerdDinner. Hopefully the process of developing
it shed some light on how the core ASPNET MVC features work, and provided context on how these fea-

tures integrate together within an application.

The following chapters will go into more depth on ASPNET MVC and discuss its features in detail.

164

84619c01.indd List164

3/31/09 5:26:04 AM

