
Part I: Getting Started

Chapter 1: Introduction to Silverlight

Chapter 2: XAML Basics

Chapter 3: Silverlight Architectural Tour

Chapter 4: Silverlight Developer Toolbox

CO
PYRIG

HTED
 M

ATERIA
L

Introduction to Silverlight

Silverlight 3, the third iteration of the Silverlight platform, continues to deliver on the promise of
Adobe Flash–like and Flex-like rich Internet applications (RIAs) built using a standards-based, open
approach with HTML and XAML using tools like Visual Studio 2008 and Microsoft Expression
Blend. Silverlight 3 adds more excitement to RIA development with the inclusion of a subset of the
Base Class Libraries (BCLs) from the .NET Framework, new user interface controls, and new librar-
ies for building line-of-business applications. The result is that not only do you have the rich, XAML
markup to describe expressive user interfaces, but you also have the power of the .NET Framework
and your language of choice (C#, VB, etc.) to build Silverlight applications. Even with the .NET
Framework libraries, Silverlight still retains the cross-browser and cross-platform compatibility
that it has had since the beginning. This includes Windows 2000, Windows XP, Windows Vista,
Windows 7, Macintosh, and, through the Mono Project, various Linux distributions. You can build
a Silverlight application and run it in a Safari Web browser on an Apple Macintosh, while being
served up from an Apache Web Server running on Linux. There is a lot to learn about Silverlight,
and you’ll gain more and more insight with each chapter in this book.

This chapter does two basic things:

It gives you an introduction to Silverlight.❑❑

It sets the groundwork, with the essentials on creating Silverlight applications, that will ❑❑

help you move on to the next chapter and the rest of the book.

What Is Silverlight?
Silverlight is a Web-based platform for building and running RIAs. The Web-based platform part
of that equation is essentially the plug-in that runs inside the Web browser. Silverlight applications
execute within an ActiveX browser plug-in that installs onto the local machine via the Web browser
in the exact same manner that you install Adobe Flash to run Flash-based animations on Web pages.
The Silverlight plug-in supports the entire wow factor that you’d expect from an RIA, such as vector-
based graphics and animations and full video integration, including Digital Rights Management

1

4

Part I: Getting Started

(DRM) secured audio/video and hi-definition video, as well as the tools for building rich line-of-
business applications. You can boil down the coolness of Silverlight to the following points:

Silverlight is a cross-platform, cross-browser platform for delivering rich interactive ❑❑

applications.

Silverlight 3 applications can be built using Expression Blend, Visual Studio, or Eclipse on ❑❑

Windows, and with Eclipse on Apple Macintosh computers.

Silverlight supports playback of native Windows Media VC-1/WMA (with Digital Rights ❑❑

Management) as well as MPEG-4-based H-264 and AAC audio on PCs and Macs with no
dependency on Windows Media Player.

Silverlight supports playback of 720p+ full-screen HD Video.❑❑

Using XAML, HTML, JavaScript, C#, VB (or your managed language of choice, including ❑❑

dynamic languages like Ruby and Python), Silverlight delivers rich multimedia, vector graph-
ics, animations, and interactivity beyond what AJAX can deliver.

With the Base Class Libraries (BCLs), you have access to common classes for generics, collec-❑❑

tions, and threading that you are accustomed to using in Windows client development.

There are more than 60 controls in the toolbox, with many more from third-party vendors.❑❑

You can deliver out-of-browser experiences that can run any Silverlight 3 application as a desk-❑❑

top application with complete network detection for graceful exception handling.

The installation package is less than 6 MB on Windows and less than 12 MB on Macintosh.❑❑

Almost all of the same XAML created for Silverlight can be used in WPF applications with no ❑❑

changes.

The Silverlight player (or plug-in, or control — ​those terms are used interchangeably in the book and you
will see those variances when others talk about Silverlight as well) itself is a completely stand-alone
environment; there is no dependency version of the .NET Framework on the client or the server to run
Silverlight 3 applications. When developing applications for Silverlight 3, you are using tools (like
Visual Studio 2008 or Expression Blend) that require or are based on a version of the Common
Language Runtime (CLR), but the compiled Intermediate Language (IL) of your Silverlight applications
that is parsed by the Silverlight 3 player is not using a specific client version of the .NET Framework.
The BCL for Silverlight is entirely self-contained within the player itself. The XAML and BCL used by
the Silverlight 3 player are both subsets of their counterparts that are used when building full desktop-
based WPF applications.

You might ask why Microsoft is pushing out another Web-based, client-side technology when there is
already ASP.NET, ASP.NET AJAX Extensions, and, with CLR 3.5 and Visual Studio 2008, specific project
types that target the ASP.NET AJAX Framework. The simple answer is that users are demanding an
even richer experience on the Web. Even though AJAX does a lot for improved user experience — ​the
postback nightmare of Web 1.0 is finally going away — ​it does not do enough. There is demand for a
richer, more immersive experience on the Web. This has been accomplished with Windows Presentation
Foundation (WPF) on the Windows client side. WPF provides a unified approach to media, documents,
and graphics in a single run time. The problem with WPF is that it is a 30-MB run time that runs only

5

Chapter 1: Introduction to Silverlight

on the Windows OS. Microsoft needed to give the same type of experience that WPF offers, only in a
cross-platform, cross-browser delivery mechanism. So what Microsoft did was take the concept of a plug-in
model like Adobe Flash, mix it with the .NET Framework and the WPF declarative language in XAML,
and they came up with a way to develop highly rich, immersive, Web 2.0 applications.

The big picture of Silverlight from an architecture perspective is shown in Figure 1-1. Each area is covered
in more detail as you read along in the book.

Figure 1-1

As mentioned earlier, Silverlight can conceivably be fully supported across multiple browsers and oper-
ating systems. The current status for browser and OS support is identified in the following table:

Browser Internet Explorer 6, 7, and 8 on Windows

Safari, Firefox on Windows and Mac

Firefox 2 and Firefox 3 on Linux

Operating Systems Windows 2000, Windows 2003, Windows XP, Windows Vista, Windows 7

Mac OS 10.4/10.5 Intel

SUSE Linux Enterprise Desktop, openSUSE 11.0, openSUSE 11.1, Ubuntu
8.04, Fedora Core 9 via the Mono Project’s Moonlight implementation of
the Silverlight 2 player (a Silverlight 3 implementation of the Moonlight
player is not available as of this writing).

6

Part I: Getting Started

Silverlight Versions Explained
If you have been following Silverlight, you might be a little confused over the versions that are available:

Silverlight 1.0❑❑  — ​This is the first version of Silverlight and supports the JavaScript program-
ming model. This means that your language choice is simple — ​JavaScript. You use JavaScript
to interact with Silverlight objects that are executing within the Silverlight player in the
browser. There is no managed language support in Silverlight 1.0, which means no BCL for
Silverlight 1.0.

Silverlight 2❑❑  — ​Released in late 2008, Silverlight 2 brought the ability to create RIA applications
with the familiar code-behind programming model used in Windows Forms, ASP.NET, and
WPF development. Starting with Silverlight 2, you can use any CLR language to code Silverlight
applications, and you have the power of the .NET Framework to interact with Silverlight objects.
The ability to use the base class libraries and your .NET language of choice to build Silverlight
applications truly revolutionized the way developers and designers looked at this new RIA
platform.

Silverlight 3❑❑  — ​This is the third version of Silverlight and the topic of this book, following
the release of Silverlight 2 in late 2008. Silverlight 3 supports the familiar code-behind pro-
gramming model used in Windows Forms, ASP.NET, and WPF development. You can use
any CLR language to code Silverlight applications, and you have the power of the .NET
Framework to interact with Silverlight objects. Silverlight 3 includes extensive enhancements
to Silverlight 2 for building line-of-business applications as well as richer support for graphics
and media.

Silverlight uses an auto-update model for the player. When a new version of Silverlight is released, the
player running in the browser is updated to the latest version automatically. There is also the commit-
ment of backward compatibility, so your applications will not break when the player moves from ver-
sion 1.0 to 2, or 2 to 3, and so on.

Application Development Scenarios
When building Silverlight applications, there are two basic scenarios that occur:

Your entire application is written in Silverlight, the player takes up 100 percent of the height ❑❑

and width of the browser, and all UI interaction is done through Silverlight.

You implement an “Islands of Richness” scenario, in which your application is an ASP.NET ❑❑

application (or any other type of HTML-rendered application), and you build islands of your UI
with Silverlight. Thus, you are adding richness to your web applications but not building the
entire interaction using Silverlight.

I see the “Islands of Richness” scenario as being a very common way for Silverlight to find its way into
most applications. Silverlight is a simple way to add audio, video, or interactive data visualization to a
Web page without having to rebuild or re-design existing applications on a new platform. The area sur-
rounded with the red box in Figure 1-2 is an example of an “Islands of Richness” scenario in which
Silverlight has been added to an existing web application. In this case, the image strip is a Silverlight
control that will play a video in-page when an item is clicked on. Silverlight 3 enhances the “Islands of

7

Chapter 1: Introduction to Silverlight

Richness” scenarios by allowing multiple Silverlight plug-ins and an easy way to communicate with
each other in the browser. This also works across browsers; for example, a Silverlight 3 application run-
ning in a Firefox browser can talk to a Silverlight 3 application running in Internet Explorer 8 on the
same machine.

Figure 1-2

Getting the Silverlight Plug- In
The first time you navigate to a Web page that contains a Silverlight application, the Silverlight player is not
installed automatically; the installation is similar to the Adobe Flash experience. There is a nonintrusive
image on the page where the Silverlight content is placed to run that gives a link to download the player.
Silverlight has two different prompts for installation — ​the standard install and the in-place install.

In a standard install, the Get Microsoft Silverlight image tells you that you need to install Silverlight to
complete the experience on the Web page you have arrived at. Figure 1-3 illustrates a page with the
standard install images.

Once you click on the Get Microsoft Silverlight Installation image, one of two scenarios takes place. You
are taken to the Silverlight Installation page on the Microsoft site, as Figure 1-4 demonstrates.

8

Part I: Getting Started

Figure 1-3

Figure 1-4

Or you are prompted to install Silverlight in place with a download prompt, as shown in Figure 1-5.

After the Silverlight player is installed, you never have to install it again. Silverlight also has built into it
the knowledge of updates, so once a new version of Silverlight is available, you are asked if you would
like to install the update to get the latest version of the player. Once you refresh the browser, the
Silverlight content will be rendered correctly in the browser, as Figure 1-6 shows.

9

Chapter 1: Introduction to Silverlight

Figure 1-5

Figure 1-6

10

Part I: Getting Started

Getting the Silverlight SDK
To build Silverlight applications, you need more than the Silverlight player. If you have not arrived at a
page where you are prompted to install the Silverlight run time, you can easily get it on the Silverlight
SDK page. There are also supporting files, help files, samples, and quick starts in the Silverlight Software
Development Kit (SDK), which will give you the files you need to start building Silverlight applications.
To get the SDK, go to www.silverlight.net/getstarted/default.aspx, as shown in Figure 1-7.

Figure 1-7

On the Get Started page, you can download all of the tools that you need to create Silverlight 3
applications:

Silverlight run times for Mac and Windows operating systems❑❑

Silverlight tools for Visual Studio 2008❑❑

The latest version of Microsoft Expression Blend❑❑

A trial version of Visual Studio 2008❑❑

More importantly, this page has links to dozens of videos, tutorials, and samples that will help you
learn Silverlight.

11

Chapter 1: Introduction to Silverlight

Building Silverlight Applications
Now that you have the Silverlight player installed and you know how to get the tools for Visual Studio
that will give you the project templates, you can start building Silverlight applications. There are several
ways to create Silverlight applications:

Visual Studio 2008 Silverlight project templates, which include Silverlight Application, ❑❑

Silverlight Navigation Application, and Silverlight Class Library, as well as Silverlight Business
Application if you have .NET RIA Services installed

Expression Blend 3 ❑❑

Eclipse using the Eclipse plug-in. There is an Eclipse plug-in for both Windows- and Apple ❑❑

Macintosh–based operating systems.

In the next chapter, you will get a better understanding of the details for how to build applications
using Visual Studio 2008 and Expression Blend.

Silverlight 3 Tour
Silverlight 3 continues the improvements that Silverlight 2 delivered over Silverlight 1.0. In the next sec-
tion, we’ll look at some of the more important features of Silverlight 3, including:

XAML❑❑

.NET Framework support❑❑

Graphics and animations❑❑

Page layout and design❑❑

User interface controls❑❑

Audio and video ❑❑

Local data storage❑❑

Out-of-browser capability❑❑

Navigation Framework❑❑

Ink support❑❑

Network access❑❑

Data binding❑❑

Deep Zoom technology❑❑

Throughout the book, you will learn about each of the items listed in much more detail. The following
sections are designed to set the stage for what’s to come as you explore the full capability of Silverlight 3.

12

Part I: Getting Started

XAML
If you are not familiar with WPF, you are probably not familiar with XAML. Since the dawn of Visual
Studio, there has always been code and user interface design separation. This means that a developer
can write code, while a designer just works on the design and layout aspects of an application. This had
never been realized, mostly because developers and designers were always using different tools and
different languages. With the introduction of XAML, however, there was finally a unified markup that
could not only describe what a control is and how it fits into a page but also how layout and, more
importantly, the overall look and feel of the controls on a page are defined. A designer can use XAML to
create a mockup of a page or an application, and a developer can take that XAML markup and use it
directly in his project files. Because partial classes and code-behind files in Visual Studio 2008 allow
you to separate the code logic from the layout and control definitions, using XAML gives you the
opportunity to have this separation of the design from the code.

XAML elements are objects that map to classes in the Silverlight run time. So when you declare a XAML
TextBlock like this:

<TextBlock />

you are actually creating a new instance of the TextBlock class like this:

TextBlock t = new TextBlock();

The following code demonstrates a XAML snippet from a Silverlight application that shows Hello World
in a TextBlock:

<Canvas>
 <TextBlock>Hello World</TextBlock>
</Canvas>

The next code listing shows how the XAML can get more complex, demonstrating adding animations
to the TextBlock element. In this example, a RotateTransform is being applied to a TextBlock control
via a DoubleAnimation in a StoryBoard object. This action is triggered when the UserControl loads,
through the RoutedEvent Canvas.Loaded. If you run the XAML, you will see that the text Hello World
rotates in a 360-degree circle.

In Chapter 9, you will learn how animations work in Silverlight and how they are used to bring your
application to life in the Silverlight player.

<StackPanel Margin=”4”
 HorizontalAlignment=”Center”
 Orientation=”Horizontal”>
 <TextBlock Width=”200” Height=”150”
 FontSize=”24”>Hello World

 <TextBlock.Triggers>
 <EventTrigger RoutedEvent=”Canvas.Loaded”>
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard BeginTime=”0”
 RepeatBehavior=”Forever”>
 <DoubleAnimation

13

Chapter 1: Introduction to Silverlight

 Storyboard.TargetName=”rotate”
 Storyboard.TargetProperty=”Angle”
 To=”360”
 Duration=”0:0:10”/>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 </TextBlock.Triggers>

 <TextBlock.RenderTransform>
 <RotateTransform x:Name=”rotate”
 Angle=”0”
 CenterX=”300”
 CenterY=”200”/>
 </TextBlock.RenderTransform>
 </TextBlock>
</StackPanel>

In Chapter 2, you will get a more in-depth explanation of XAML and how you can use it to define and
create your Silverlight applications. You will also be getting your fair share of XAML throughout the
book, because it is how you will create most of the examples and applications that we have created.
Tools like Microsoft Expression Blend and Visual Studio 2008 are all Rapid Application Development
(RAD) tools that you can use to create your Silverlight applications. As you will learn when you start
building Silverlight applications using Visual Studio 2008, Microsoft Expression Blend is the only tool
that gives you a nice design-time experience, where you can drag-and-drop controls onto the design
surface and switch between the designer view and the XAML view. Visual Studio 2010 will have rich
support for RAD development of Silverlight 3 applications. At the time of this writing, Visual Studio
2010 is still in beta. Besides using Expression Blend or Visual Studio 2008, you can look to other XAML
tools like XAMLPad or Kaxaml to help you learn XAML. In Chapter 4, you will learn more of the spe-
cifics on building Silverlight 3 applications using Visual Studio.

.NET Framework Support
Two key aspects of Silverlight 3, and probably the most exciting aspects of this technology, are its sup-
port for the CLR and BCL of the .NET Framework. Although they are not the exact set of class libraries
you are familiar with using on the desktop and the CLR might handle memory management and opti-
mizations slightly differently than on the desktop or server, the fundamental capabilities of the .NET
Framework do exist for you to use to build rich Silverlight applications.

Execution of content targeting the Silverlight player is handled by the CoreCLR. The CoreCLR is a
smaller, refactored version of the CLR used in full .NET desktop applications. Although the Microsoft
Intermediate Language (MSIL) is exactly the same between the CLRs, the CoreCLR is stripped of the
unnecessary scenarios that are not needed for Silverlight 3 development. The CLR is still responsible for
managing memory in Silverlight applications, as well as enforcing the common type system (CTS).
Some examples of the differences in the CoreCLR versus the full CRL are:

The JIT Compiler in the CoreCLR is enhanced for fast startup time, while the full CLR is ❑❑

enhanced for more complex optimizations.

In ASP.NET applications, the garbage collection mode is tuned for multiple worker threads, ❑❑

while the CoreCLR is tuned for interactive applications.

14

Part I: Getting Started

Both the CoreCLR and CLR can run in the same process; therefore, for example, you can have an
embedded Silverlight player running in an Office Business application that also includes a full .NET 3.5
plug-in. The isolation of the CoreCLR is why you can run Silverlight applications on machines that do
not have any versions of the .NET Framework installed; this is further highlighted by the fact that
Silverlight can run on Macintosh operating systems.

The namespaces that contain all of the classes that you interact with in your Code window are the Base
Class Libraries, as you have learned. The Silverlight BCL does not contain namespaces and classes that
do not make sense for client development, such as code-access security, ASP.NET Web Server–specific
classes, and many others.

Chapter 3 delves into the specifics of the CoreCLR.

Graphics and Animations
A big part of why Silverlight is an exciting technology is that it provides a rich, vector-based draw-
ing system as well as support for complex animations. Some of the new additions in Silverlight 3
include:

Perspective 3D graphics❑❑

Pixel-Shader effects, including ❑❑ Blur and DropShadow

Bitmap Caching to increase the rendering performance❑❑

Animation effects like ❑❑ Spring and Bounce

Local font usage for rendering text❑❑

For vector-based drawing, Silverlight supports Geometry and Shape objects that include support for ren-
dering shapes, such as ellipse, line, path, polygon, polyline, and rectangle. These classes give you the
ability to render any type of visual display. For example, the following XAML displays an image in its
normal, square shape:

<Canvas>
 <Image
 Source=”Images/elk.jpg”
 Width=”200” Height=”150”>
 </Image>
 </Canvas>

Using the EllipseGeomtry class, you can clip the image into whatever shape you desire. This XAML
clips the image into an oval:

<Canvas>
 <Image
 Source=”Images/elk.jpg”
 Width=”200” Height=”150”>
 <Image.Clip>
 <EllipseGeometry
 RadiusX=”100”
 RadiusY=”75”
 Center=”100,75”/>

15

Chapter 1: Introduction to Silverlight

 </Image.Clip>
 </Image>
</Canvas>

with the results displayed in Figure 1-8.

Figure 1-8

Once you render your geometries or shapes into something meaningful, you can use Brushes,
VideoBrushes, or Transforms to further give life to your UI rendering. The following XAML takes a
basic TextBlock and adds a LinearGradientBrush for some nice special effects:

<TextBlock
 Canvas.Top=“100“
 FontFamily=“Verdana“
 FontSize=“32“
 FontWeight=“Bold“>
 Linear Gradient Brush
 <TextBlock.RenderTransform>
 <ScaleTransform ScaleY=“4.0“ />
 </TextBlock.RenderTransform>
 <TextBlock.Foreground>
 <LinearGradientBrush StartPoint=“0,0“ EndPoint=“1,1“>
 <GradientStop Color=“Red“ Offset=“0.0“ />
 <GradientStop Color=“Blue“ Offset=“0.2“ />
 <GradientStop Color=“Green“ Offset=“0.4“ />
 <GradientStop Color=“Olive“ Offset=“0.6“ />
 <GradientStop Color=“DodgerBlue“ Offset=“0.8“ />
 <GradientStop Color=“OrangeRed“ Offset=“1.0“ />
 </LinearGradientBrush>
 </TextBlock.Foreground>
</TextBlock>

You can also use an ImageBrush to paint an image on your TextBlock, as the following code
demonstrates:

<StackPanel>
 <!--​TextBlock without an ImageBrush --​>

16

Part I: Getting Started

 <TextBlock
 FontSize=”72”
 FontFamily=”Verdana”
 FontStyle=”Italic”
 FontWeight=”Bold”>
 Rhino Image
 </TextBlock>

 <!--​TextBlock with an ImageBrush --​>
 <TextBlock
 FontSize=”72”
 FontFamily=”Verdana”
 FontStyle=”Italic”
 FontWeight=”Bold”>
 Rhino Image
 <!--​ Add an Image as the foreground --​>
 <TextBlock.Foreground>
 <ImageBrush ImageSource=”Images/rhino.jpg”
 Stretch=”Fill”/>
 </TextBlock.Foreground>
 </TextBlock>
</StackPanel>

The resulting content looks like Figure 1-9.

Figure 1-9

Later in this section, you will see a VideoBrush applied to text. In Chapter 9, we’ll cover graphics and
animations in full detail.

17

Chapter 1: Introduction to Silverlight

Page Layout and Design
Silverlight 3 includes several options for doing rich, resolution independent layout using a Canvas,
DockPanel, Grid, StackPanel, and WrapPanel element. These five major layout panels can be
described as:

Canvas❑❑  — ​An absolute positioning panel that gives you an area within which you can position
child elements by coordinates relative to the Canvas area. A Canvas can parent any number of
child Canvas objects.

DockPanel❑❑  — ​Is used to arrange a set of objects around the edges of a panel. You specify where
a child element is located in the DockPanel with the Dock property.

Grid❑❑  — ​Similar to an HTML table, a Grid is a set of columns and rows that can contain child
elements.

StackPanel❑❑  — ​A panel that automatically arranges its child elements into horizontal or
vertical rows

WrapPanel❑❑  — ​Allows the arrangement of elements in a vertical or horizontal list and have ele-
ments automatically wrap to the next row or column when the height or width limit of the
panel is reached.

One you decide how you are going to lay out your page using one of the layout types, you can use other
means of positioning individual elements as well. For example, you can change margins, set the ZOrder
or Border of an object, or perform RotateTranforms to change the position of an object. Chapter 7 cov-
ers all layout options in greater detail. Here we’ll look at the Canvas object and how it behaves.

The Canvas essentially becomes the container for other child elements, and all objects are positioned
using their X- and Y-coordinates relative to their location in the parent canvas. This is done with the
Canvas.Top and Canvas.Left attached properties, which provide the resolution-independent pixel
value of a control’s X- and Y-coordinates. The following code shows a Canvas object with several child
elements absolutely positioned within the Canvas.

<Canvas>
 <Rectangle
 Canvas.Top =”30”
 Canvas.Left=”30”
 Fill=”Blue”
 Height=”100” Width=”100”/>

 <Rectangle
 Canvas.Top =”75”
 Canvas.Left=”130”
 Fill=”Red”
 Height=”100” Width=”100”/>

 <Ellipse
 Canvas.Top =”100”
 Canvas.Left=”30”
 Fill=”Green”
 Height=”100” Width=”100”/>
</Canvas>

18

Part I: Getting Started

This XAML is explained in more detail in Figure 1-10, which shows the location of the objects in the
canvas.

Figure 1-10

In the following example from the SDK, you can see how a DockPanel can be configured to return the
results shown in Figure 1-11.

<StackPanel x:Name=”LayoutRoot” Background=”White”>
 <TextBlock Margin=”5” Text=”Dock Panel” />
 <Border BorderBrush=”Red” BorderThickness=”2” >
 <controls:DockPanel LastChildFill=”true”
 Height=”265”>
 <Button Content=”Dock: Left”
 controls:DockPanel.Dock =”Left” />
 <Button Content=”Dock: Right”
 controls:DockPanel.Dock =”Right” />
 <Button Content=”Dock: Top”
 controls:DockPanel.Dock =”Top” />
 <Button Content=”Dock: Bottom”
 controls:DockPanel.Dock =”Bottom” />
 <Button Content=”Last Child” />
 </controls:DockPanel>
 </Border>
</StackPanel>

In Figure 1-11, notice the position of the elements based on the TextBlock and Border controls that wrap
the DockPanel in the XAML.

19

Chapter 1: Introduction to Silverlight

Figure 1-11

User Interface Controls
Silverlight 3 adds an even greater number of controls to the Toolbox for creating user interfaces. The
Toolbox in Visual Studio 2008 is now filled with controls that can be dragged onto forms to build the
user interface. The following controls are included for use by the core Silverlight 3 player:

AutoCompleteBox

Border

Button

Calendar

Canvas

CheckBox

ContentControl

DataForm

DataGrid

DataPager

DatePicker

DockPanel

Expander

Grid

GridSplitter

HeaderedContentControl

HeaderedItemsControl

HyperlinkButton

Image

InkPresenter

Label

ListBox

MediaElement

MultiScaleImage

Popup

RadioButton

RepeatButton

ScrollBar

ScrollViewer

Slider

StackPanel

TabControl

TextBlock

TextBox

TreeView

ViewBox

WrapPanel

In addition to the aforementioned controls, the Silverlight Toolkit, which is a separate download from
CodePlex, contains several very useful additions to the core list.

20

Part I: Getting Started

When working with any of the controls, remember they are just like any other control model: The
XAML controls in Silverlight can be instantiated in code, and properties can be retrieved or set on
them. Over the next several chapters, you will learn about the controls in more detail, as well as how
they can be used with Visual Studio 2008 or Expression Blend.

Using Media in Silverlight
One could argue that the entire reason for Silverlight was to provide rich, multimedia experiences on
Web pages, which essentially means audio and video on Web pages. If you take a look at the top 100
trafficked web sites on the Internet, almost all of them have video playing on the home page or use
video prevalently throughout. Silverlight 3 continues to add first-class media capability to the player.

Adding Video to Web Pages
To add video or audio to a Web page, you set the Source property on the MediaElement object. The fol-
lowing code demonstrates playing the video file car.wmv automatically when the canvas is loaded:

<UserControl x:Class=”SilverlightApplication3.Page”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”600” Height=”300”>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <MediaElement Source=”Images/video1.wmv” />
 </Grid>
</UserControl>

The Source property is the URI of a valid video or audio file. In the preceding code example, the source
file is located in the deployment directory of your Silverlight application. Your media files can be
located in various locations, including the web-site folder structure you are running the page from, or
from a remote site. In either case, in order to maintain cross-platform support, you must use “/” in place
of “\” in your URIs. For example:

 <MediaElement Source=”..\..\car.wmv”></MediaElement>

should read:

 <MediaElement Source=”../../car.wmv”></MediaElement>

If the Source property is pointing to a file on a Windows Media Server using the MMS protocol, the
player will automatically attempt to stream the video down to the client. The default behavior is a pro-
gressive download, which means that the audio or video will begin playing immediately and back-
ground-load as you are playing the media. The drawback to progressive downloads is that even if you
pause the video, it still downloads the media file, even if you never intended to continue playing it.
With streaming media, the only data that is downloaded is the data that you actually play, which is a
more efficient use of network resources.

Microsoft Live Services offers a free media streaming service for Silverlight applications, named
Silverlight Streaming Services. Using Silverlight Streaming Services, anyone can upload up to 4 GB
of Silverlight content to stream to their pages. To get a free account for this service, visit https://
silverlight.live.com.

21

Chapter 1: Introduction to Silverlight

Supported Audio and Video Formats
The MediaElement supports the Advanced Stream Redirector (ASX) playlist file format, as well as the
audio and video formats listed in the following table:

Video Formats Audio formats

WMV1: Windows Media Video 7

WMV2: Windows Media Video 8

WMV3: Windows Media Video 9

WMVA: Windows Media Video Advanced
Profile, non-VC-1

WMVC1: Windows Media Video Advanced
Profile, VC-1

H.264 — ​Can only be used for progressive
download, smooth streaming, and adaptive
streaming. Supports Base, Main, and High
Profiles.

WMA 7: Windows Media Audio 7

WMA 8: Windows Media Audio 8

WMA 9: Windows Media Audio 9

WMA 10: Windows Media Audio 10

AAC: Advanced Audio Coding — ​Can only be
used for progressive download, smooth stream-
ing, and adaptive streaming. AAC is the LC
variety and supports sampling frequencies up
to 48 kHz.

MP3: ISO/MPEG Layer-3 with the following
features:

Input — ​ISO/MPEG Layer-3 data stream❑❑

Channel configurations — ​Mono, stereo❑❑

Sampling frequencies — ​8, 11.025, 12, 16, ❑❑

22.05, 24, 32, 44.1, and 48 kHz

Bitrates — ​8–320 Kbps, variable bitrate❑❑

Limitations — ​”Free format mode” (ISO/❑❑

IEC 11172-3, subclause 2.4.2.3) is not
supported.

Local Data Storage
Using the isolated storage concept in the full .NET Framework, you can use a client-side cache location to
store data. This means that you can take commonly needed data, and, instead of always having to go
back to the server to retrieve it, you can store it locally and access it locally. Examples might be a list of
states or countries, or buddy lists for instant messenger clients. This data is commonly needed for fast
access but does not change often enough to warrant constant round-trips back to the server to retrieve it.

By default, Silverlight gives you 1 MB of local storage. This can be increased by prompting the user to
allow for more local storage or can be accessed via the Silverlight Configuration screen. As its name
implies, this is isolated storage, so you cannot access the end-user’s filesystem or do anything that
would break the partial trust sandbox that Silverlight runs in. Storage is granted per application, so, for
example, you might have www.someapp.com, which is using 10 MB of storage, and another application
running on the same client computer from a different domain that has its own 20 MB of isolated stor-
age. The storage areas are independent of each other; there is no limit to the number of applications that
can have isolated storage on a client machine.

22

Part I: Getting Started

Out-of-Browser Experiences
With the new Out-of-Browser capability of any Silverlight application, an end-user can save your appli-
cation to the desktop on their Windows or Apple Macintosh computer. There is no need to install any
special assemblies or controls to make this work — ​it is part of the native Silverlight 3 experience. With
the new network detection APIs in Silverlight 3, an out-of-browser application can intelligently deter-
mine if it is connected to the network and react accordingly. In Chapter 11, you’ll learn how easy it is to
actually create this out-of-browser experience.

Navigation Framework
Silverlight 3 adds two new controls that enable complete browser-journal back/forward integration
with your application. Using the new Frame and Page controls, you can partition your views into sepa-
rate XAML files (instead of separate UserControl objects as you did in Silverlight 2) and navigate to
each view as simply as you would previously a Web page. The Navigation Framework also allows you
to implement deep linking support in your Silverlight application, which builds on the SEO (Search
Engine Optimization) enhancements added in Silverlight 3.

The following XAML shows the navigation control added to a UserControl:

<navigation:Frame x:Name=”Frame”
 Source=”/Views/HomePage.xaml”
 HorizontalContentAlignment=”Stretch”
 VerticalContentAlignment=”Stretch”
 Padding=”15,10,15,10”
 Background=”White”/>

And the following code demonstrates the Navigate method of the Frame class, which is how you move
from Page to Page.

private void NavButton_Click(object sender, RoutedEventArgs e)
{
 Button navigationButton = sender as Button;
 String goToPage = navigationButton.Tag.ToString();
 this.Frame.Navigate(new Uri(goToPage, UriKind.Relative));
}

As well as Navigate, the Frame class includes other useful methods such as Navigated,
NavigationFailed, and NavigationStopped that give you complete control over the navigation life
cycle of your Page object. Chapter 11 talks more about the Navigation and Frame classes.

Annotation and Ink
Like WPF, Silverlight has full support for ink input in the player. Using the InkPresenter object, you
can give users an input area where they can use the mouse or an input device to handwrite. Using the
application interface for the InkPresenter object, the application developer collects the Stroke objects
that are written and persists them to a location on the server for later use. An example of where ink
might be cool on a Web page is a simple blog, where text and ink can combine to create a great visual

23

Chapter 1: Introduction to Silverlight

output for whatever the blog is about. The XAML in the following code shows how to create an
InkPresenter object:

<InkPresenter x:Name=”inkInput” Cursor=”Stylus”
 MouseLeftButtonDown=”inkInput_MouseLeftButtonDown”
 MouseMove=”inkInput_MouseMove”
 MouseLeftButtonUp=”inkInput_MouseLeftButtonUp”/>

Notice that events are wired up for the various mouse behaviors. Each action of the mouse — ​the Move,
LeftButtonUp, and LeftButtonDown — ​has a method in the code-behind that acts on the strokes of the
input device. The following code gives an example of how you would collect the strokes from the
InkPresenter:

private Stroke MyStroke = null;

private void inkInput_MouseLeftButtonDown
 (object sender, MouseButtonEventArgs e)
{
 inkInput.CaptureMouse();
 StylusPointCollection
 MyStylusPointCollection = new StylusPointCollection();
 MyStylusPointCollection.Add
 (e.StylusDevice.GetStylusPoints(inkInput));
 MyStroke = new Stroke(MyStylusPointCollection);
 inkInput.Strokes.Add(MyStroke);
}

private void inkInput_MouseMove
 (object sender, MouseEventArgs e)
{
 if (MyStroke != null)
 {
 MyStroke.StylusPoints.Add
 (e.StylusDevice.GetStylusPoints(inkInput));
 txtBlock.Text =
 “” + e.StylusDevice.GetStylusPoints(inkInput)[0].X;
 txtBlock.Text =
 “” + e.StylusDevice.GetStylusPoints(inkInput)[0].Y;
 }

}

private void inkInput_MouseLeftButtonUp
 (object sender, MouseButtonEventArgs e)
{
 MyStroke = null;
}

Once you have the ink data collected, you can store it locally on the client machine, put it into a data-
base, or even save the ink as an image.

24

Part I: Getting Started

Accessing the Network
To access network resources in Silverlight, you have the classes in the System.Net namespaces and the
System.Net.Sockets namespace. The namespace you choose would depend on the type of network
access you are trying to achieve. For basic HTTP or HTTPS access to URI-based resources, you can use
the WebClient class in the System.Net namespace. Some examples of this type of network access are:

Retrieving XML, JSON, RSS, or Atom data formats from a URI then parsing it on the client❑❑

Downloading resources such as media or data to the browser cache❑❑

Using WebClient, you can perform the types of asynchronous operations that are common in browser-
based applications. The following code demonstrates a simple method that grabs an image file from a
network resource and downloads it to the browser cache:

void DownloadFile(string imgPart)
{
 WebClient wc = new WebClient();
 wc.OpenReadCompleted +=
 new OpenReadCompletedEventHandler
 (wc_OpenReadCompleted);
 wc.OpenReadAsync(new Uri(“imgs.zip”,
 UriKind.Relative), imgPart);
}

If you need more flexibility in how you access HTTP or HTTPS resources, you can use the HttpWebRequest
and HttpWebResponse classes.

If you need more direct and constant access to network resources or if you are working in a situation in
which multiple clients are “listening” for the same server data, you would choose to use the classes in
the System.Net.Sockets namespace. Although both Sockets and WebClient allow asynchronous com-
munication using the TCP protocol, Sockets gives you the ability to write “push-style” applications,
where the server can communicate with the client in a more client-server manner. Imagine the unneces-
sary overhead when using basic AJAX timers (polling) to look for updated data on the server. If you
were using sockets instead of this type of timer-based polling, you would reduce the amount of wasted
bandwidth and would achieve tighter control of the data passing between the client and the server.

No matter how you choose to work with the network, both the System.Net and System.Net.Sockets
namespaces support the ability to access network resources from other URIs than the originating
domain. By default, a Silverlight 3 application can always access resources from its originating domain.
Using a policy file, an application can access resources from different domains from the one containing
its original URL. This cross-domain access is controlled by policy files that dictate the type of network
domain access an application has. For WebClient requests, the same format used by Adobe Flash is sup-
ported. The next code is an example of a crossdomain.xml file:

<?xml version=”1.0”?>
<! DOCTYPE cross-domain-policy
 SYSTEM “http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd”>
<cross-domain-policy>
 <allow-access-from domain=”*” />
</cross-domain-policy>

25

Chapter 1: Introduction to Silverlight

In Chapters 11 and 13, you will be fully exposed to various ways of accessing network resources.

Data Binding
Similarly to the data-binding features in WPF, Silverlight supports data-bound controls, XAML markup
extensions, and support for data context binding. Most of the time, your bindings will be set up in
XAML, which is where the markup extensions come into play. In the following XAML, the Text prop-
erty of the TextBlock element is using the Binding markup extension to bind the Title field from the
data source:

<TextBlock x:Name=”Title”
 Text=”{Binding Title, Mode=OneWay}” />

The field Title from the original data source is retrieved from the data content of the control’s parent
element; in this case, the TextBlock could be contained in a Canvas or Grid object. Once you set the
DataContext property for the parent element, the data contained in that object is available for binding
to anything it contains. A more complete example of this data binding looks like this:

<Canvas x:Name=”rootCanvas” Background=”White” >
 <TextBlock x:Name=”Title”
 Text=”{Binding Title, Mode=OneWay }” />

 <TextBlock x:Name=”Name”
 Text=”{Binding Title, Mode=OneWay }” />
</Canvas>

You would then set the context in the code like this:

LayoutRoot.DataContext = dataList;

where the dataList object is an object that contains the data you are binding to the controls. In the case
of simple TextBlock objects, you would have to handle the navigation between elements yourself. If you
want a richer, tabular data display, you could use the Grid that is included with Silverlight. The XAML
for the DataGrid control looks like this:

<data:DataGrid x:Name=”dataGrid1”
 Height=”120” Width=”450”
 AutoGenerateColumns=”True” />

The same dataList object can be bound to the grid in code like this:

dataGrid1.ItemsSource = dataList;

All of the binding could be accomplished in code, but using the combination of XAML and code gives you
greater flexibility when building Silverlight applications. An interesting area of data binding in Silverlight
is where the data actually comes from. Since the Silverlight player is a complete client-side solution, you
are not creating connections to SQL Server or other data sources, then dumping that data into a data set in
your code-behind. You are going to be using technologies like WCF to access services on the Internet and
then putting the data you retrieve into objects that are bound to controls in Silverlight. In Chapter 14, you

26

Part I: Getting Started

will learn about the various types of data access, how to interact with different data formats, and how the
data-binding mechanism works in Silverlight.

Deep Zoom Graphics
Deep Zoom is a multi-scale image-rendering technology that partitions a very large image, or set of
images, into smaller tiles that are rendered on demand to the Silverlight player. When an image is first
loaded, it is in the lowest-resolution tiles. As the user zooms into the image using the mouse wheel or
keyboard, higher-resolution images are loaded based on the area that is being zoomed into. The wow
factor of Deep Zoom was shown off at Mix ’08 in April 2008. The Hard Rock Cafe created a Deep Zoom
collection of their memorabilia. You can explore the site yourself at http://memorabilia.hardrock.com.
In Figure 1-12, you can see the initial page loaded into the browser.

Once you start zooming in with the mouse wheel, you can get from the lower-resolution images to
jthe higher-resolution images. Figure 1-13 shows the detail of a portion of the larger image seen in
Figure 1-12.

To build a Deep Zoom application, you don’t even need Visual Studio or Expression Blend. You can
do it all with the Deep Zoom Composer tool. To get a complete tutorial on how to use the Deep
Zoom Composer and integrate your own images into Deep Zoom, visit this URL: http://community
.infragistics.com/redirects/silverlight/deepzoom.aspx.

Figure 1-12

27

Chapter 1: Introduction to Silverlight

Figure 1-13

Summary
Silverlight brings a lot to the table for rich Internet application development. It has progressed from its
original release into much more than a simple media player. Silverlight is a platform for developing rich
line-of-business applications that have the data and input capability of ASP.NET with the media and
interactive capabilities usually reserved for Adobe Flex applications.

