
Stephens c01.tex V3 - 10/04/2008 12:15pm Page 3

1
Goals of Effective
Database Design

Using modern database tools, just about anyone can build a database. The question is, will the
resulting database be useful?

A database won’t do you much good if you can’t get data out of it quickly, reliably, and consistently.
It won’t be useful if it’s full of incorrect or contradictory data. It also won’t be useful if it is stolen,
lost, or corrupted by data that was only half written when the system crashed.

You can address all of these potential problems by using modern database tools, a good database
design, and a pinch of common sense, but only if you understand what those problems are so you
can avoid them.

Step one in the quest for a useful database is understanding database goals. What should a database
do? What makes a database useful and what problems can it solve? Working with a powerful
database tool without goals is like flying a plane through clouds without a compass: you have
the tools you need but no sense of direction.

This chapter describes the goals of database design. By studying information containers such as files
that can play the role of a database, it defines properties that good databases have and problems that
they should avoid.

In this chapter, you learn:

❑ Why a good database design is important.

❑ Strengths and weaknesses of different kinds of information containers that can act as
databases.

❑ How computerized databases can benefit from those strengths and avoid those
weaknesses.

❑ How good database design helps achieve database goals.

❑ What CRUD and ACID are, and why they are relevant to database design.

CO
PYRIG

HTED
 M

ATERIA
L

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 4

Part I: Introduction to Databases and Database Design

Understanding the Importance of Design
Forget for a moment that this book is about designing databases and consider software design in general.
Software design plays a critical role in software development. The design lays out the general structure
and direction that future development will take. It determines which parts of the system will interact
with other parts. It decides which subsystems will provide support for other pieces of the application.

If an application’s underlying design is flawed, the system as a whole is at risk. Bad assumptions in the
design creep into the code at the application’s lowest levels, resulting in flawed subsystems. Higher-level
systems built on those subsystems inherit the design flaws and soon their code is corrupted, too.

Sometimes a sort of decay pervades the entire system and nobody notices until relatively late in the
project. The longer the project continues, the more entrenched the incorrect assumptions become and
the more reluctant developers are to suggest scrapping the whole design and starting over. The longer
problems remain in the system, the harder they are to remove. At some point, it may be easier to throw
everything away and start over from scratch, a decision that few managers will want to present to upper
management.

Project Management
A friend of mine who is an engineer was working on a really huge satellite project.
After a while, the engineers all realized that the project just wasn’t feasible given the
current state of technology and the design. Eventually the project manager was forced
to admit this to upper management and he was fired. The new project manager stuck
it out for a while and then he, too, was forced to confess to upper management that the
project was unfeasible. He, too, was fired.

This process continued for a while with a new manager taking over, realizing the hope-
lessness of the design, and being fired until eventually even upper management had to
admit the project wasn’t going to work out and the whole thing collapsed.

They could have saved time, money, and several careers if they had spent more upfront
time on the design and either fixed the problems or realized right away that the project
wasn’t going to work and scrapped it at the start.

Building an application is often compared to building a house or skyscraper. You probably wouldn’t
start building a multibillion dollar skyscraper without a comprehensive design that is based on
well-established architectural principles. Unfortunately software developers often rush off to start
coding as soon as they possibly can. Coding is more fun and interesting than design is. Coding also
lets developers tell management and customers how many lines of code they have written so it seems
like they are making progress even if the lines of code are corrupted by false assumptions. Only later do
they realize that the underlying design is flawed, the code they wrote is worthless, and the project is in
serious trouble.

Now back to database design. Few parts of an application’s design are as critical as the database’s design.
The database is the repository of the information that the rest of the application manages and displays to
the users. If the database doesn’t store the right data, doesn’t keep the data safe, or doesn’t let the appli-
cation find the data it needs, then the application has little chance for success. Here the GIGO (Garbage
In, Garbage Out) principle is in full effect. If the underlying data is unsound, it doesn’t matter what the
application that uses it does; the results will be suspect at best.

4

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 5

Chapter 1: Goals of Effective Database Design

For example, imagine that you’ve built an order tracking system that can quickly fetch information about
a customer’s past orders. Unfortunately every time you ask the program to fetch a certain customer’s
records it returns a slightly different result. Though the program can find data quickly, the results are not
trustworthy enough to be usable.

Or imagine that you have built an amazing program that can track the thousands of tasks that make
up a single complex job such as building a cruise liner or passenger jet. It can track each task’s state
of completion, determine when you need to order new parts for them to be ready for future phases of
construction, and can even determine the present value of future purchases so you can decide whether
it is better to buy parts now or wait until they are needed. Unfortunately the program takes hours to
recalculate the complex task schedule and pricing details. Though the calculations are correct, they are so
slow that users cannot reasonably make any changes. Changing the color of the fabric of a plane’s seats
or the tile used in a cruise liner’s hallways could delay the whole project.

Or suppose you have built an efficient subscription application that lets customers subscribe to your
company’s quarterly newsletters and data services. It lets you quickly find and update any customer’s
subscriptions and it always shows the same values for a particular customer consistently. Unfortu-
nately, when you change the price of one of your publications you find that not all of the customers’
records show the updated price. Some customers’ subscriptions are at the new rate, some are at the old
rate, and some seem to be at a rate you’ve never seen before. (This example isn’t as far-fetched as it
may seem. Some systems allow you to offer sale prices or special incentives to groups of customers, or
they allow sales reps to offer special prices to particular customers. That kind of system requires careful
design if you want to be able to do things like change standard prices without messing up customized
pricing.)

Poor database design can lead to these and other annoying and potentially expensive scenarios. A good
design creates a solid foundation on which you can build the rest of the application.

Experienced developers know that the longer a bug remains in a system the harder it is to find and
fix. From that it logically follows that it is extremely important to get the design right before you start
building on top of it.

Database design is no exception. A flawed database design can doom a project to failure before it has
begun as surely as ill-conceived software architecture, poor implementation, or incompetent program-
ming can.

Information Containers
What is a database? This may seem like a trivial question, but if you take it seriously the result can be
pretty enlightening. By studying the strengths and weaknesses of some physical objects that meet the
definition of a database, you can learn about the features you might like a computerized database to
have.

A database is a tool that stores data, and lets you create, read, update, and delete the
data in some manner.

This is a pretty broad definition and it includes a lot of physical objects that most people don’t think of
as modern databases. For example, an envelope full of business cards, a notebook, a filing cabinet full of

5

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 6

Part I: Introduction to Databases and Database Design

customer records, and your brain all fit this definition. Each of these physical databases has advantages
and disadvantages that can give insight into the features you might like in a computer database.

An envelope of business cards is useful as long as it doesn’t contain too many cards. You can find a
particular piece of data (for example, a person’s phone number) by looking through all of the cards. The
database is easy to expand by shoving more cards into the envelope, at least up to a point. If you have
more than a dozen or so business cards, finding a particular card can be time consuming. You can even
rearrange the cards a bit to improve performance for cards you use often. Each time you use a card, move
it to the front of the pile. Over time, those that are used most will be in front.

A notebook is small, easy to use, easy to carry, doesn’t require electricity, and doesn’t need to boot before
you can use it. A notebook database is also easily extensible because you can buy another notebook to
add to your collection when the first one is full. However, a notebook’s contents are arranged sequen-
tially. If you want to find information about a particular topic, you’ll have to look through the pages
one at a time until you find what you want. The more data you have, the harder this kind of search
becomes.

A filing cabinet can store a lot more information than a notebook and you can easily expand the database
by adding more files or cabinets. Finding a particular piece of information in the filing cabinet can be
easier than finding it in a notebook as long as you are searching for the type of data used to arrange the
records. If the filing cabinet is full of customer information sorted by customer name, and you want to
find a particular customer’s data, you’re in luck. If you want to find all of the customers that live in a
certain city, you’ll have to dig through the files one at a time.

Your brain is the most sophisticated database ever created. It can store an incredible amount of data
and it allows you to retrieve a particular piece of data in several different ways. For example, right
now you could probably easily answer the following questions about the restaurants that you visit
frequently:

❑ Which is closest to your current location?

❑ Which has the best desserts?

❑ Which has the best service?

❑ Which is least expensive?

❑ Which is the best for a business lunch?

❑ Which is your overall favorite?

Your brain provides many different ways you can access the same information about restaurants. You
can search the same base of information based on a variety of keys (location, quality of dessert, expense,
and so forth). To answer these questions with an envelope of business cards (or restaurant matchbooks),
a notebook, or a filing cabinet would require a long and grueling search.

Still your brain has some drawbacks, at least as a database. Most notably it forgets. You may be able
to remember an incredible number of things but some of them become less reliable or disappear com-
pletely over time. Do you remember the names of all of your elementary school teachers? I don’t. (I don’t
remember my own teachers’ names, much less yours!)

Your brain also gets tired and when it is tired it is less accurate.

6

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 7

Chapter 1: Goals of Effective Database Design

Although your brain is good at certain tasks such as recognizing faces or picking restaurants, it is not
so good at other tasks such as providing an accurate list of every item a particular customer purchased
in the last year. Those items have less emotional significance than, for example, your spouse’s name, so
they’re harder to remember.

All of these information containers (business cards, notebooks, filing cabinets, and your brain) can
become contaminated with misleading, incorrect, and contradictory information. If you write differ-
ent versions of the same information in a notebook, the data won’t be consistent. Later when you try to
look up the data, you may find either version first and you may not even realize there is another version.
(Your brain can become especially cluttered with inconsistent and contradictory information, particularly
if you listen to politicians during an election year.)

The following section summarizes some of the strengths and weaknesses of these information containers.

Strengths and Weaknesses
of Information Containers

By understanding the strengths and weaknesses of information containers such as those described in the
previous section, you can learn about features that would be useful in a computerized database. So what
are some of those strengths and weaknesses?

The following list summarizes the advantages of some information containers:

❑ None of these databases require electricity so they are safe from power failures. (Although your
brain requires food. As the dormouse said, feed your head.)

❑ These databases keep their data fairly safe and permanent (barring fires). The data doesn’t just
disappear.

❑ These databases (excluding your brain) are inexpensive and easy to buy.

❑ These databases have simple user interfaces so almost anyone can use them.

❑ Using these databases, it’s fairly easy to add, edit, and remove data.

❑ The filing cabinet lets you quickly locate data if you search for it in the same way it is arranged
(for example, by customer name).

❑ Your brain lets you find data by using different keys (for example, by location, cost, or quality of
service).

❑ All of these allow you to find every piece of information that they contain, although it may take
a while to dig through it all.

❑ All of these (except possibly your brain) provide consistent results as long as the facts they store
are consistent. For example, two people using the same notebook will find the same data. Simi-
larly if you look at the same notebook at a later time, it will show the same data you saw before
(if it hasn’t been modified).

❑ All of these except the filing cabinet are portable.

❑ Your brain can perform complex calculations, at least of a limited type and number.

❑ All of these provide atomic transactions.

7

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 8

Part I: Introduction to Databases and Database Design

The final advantage is a bit more abstract than the others so it deserves some additional explanation. An
atomic transaction is a possibly complex series of actions that is considered as a single operation by those
who are not involved directly in performing the transaction.

The classic example is transferring money from one bank account to another. Suppose Alice writes Bob a
check for $100 and you need to transfer the money between their accounts. You pick up the account book,
subtract $100 from Alice’s record, add $100 to Bob’s record, and then put the notebook down. Someone
else who uses the notebook might see it before the transaction (when Alice has the $100) or after the
transaction (when Bob has the $100) but they won’t see it during the transaction where the $100 has been
subtracted from Alice but not yet given to Bob. The office bully isn’t allowed to grab the notebook from
your hands when you’re halfway through. It’s an all-or-nothing transaction.

In addition to their advantages, information containers such as notebooks and filing cabinets have some
disadvantages. It’s worth studying these disadvantages so you can try to avoid them when you build
computerized databases.

The following list summarizes some of the disadvantages that these information containers have:

❑ All of these databases can hold incomplete, incorrect, or contradictory data.

❑ Some of them are easy to lose or steal. Someone could grab your notebook while you’re eating
lunch or read over your shoulder on the bus. You could even forget your notebook at the security
counter as you dash to catch your flight.

❑ In all of these databases, correcting large errors in the data can be difficult. For example, it’s easy
to use a pen to change one person’s address in an address notebook. It’s much harder to update
hundreds of addresses if a new city is created in your area. (This recently happened near where I
live.) Such a circumstance requires a tedious search through a set of business cards, a notebook,
or a filing cabinet. It may be years before your brain makes the switch completely.

❑ These databases are relatively slow at creating, retrieving, updating, and deleting data. Your
brain is much faster than the others at some tasks but is not good at manipulating a lot of infor-
mation all at once. For example, how quickly can you list your 20 closest friends in alphabetical
order? Even picking your closest friends can be difficult at times.

❑ Your brain can give different results at different times depending on uncontrollable factors such
as your mood, how tired you are, and even whether you’re hungry.

❑ Each of these databases is located in a single place so it cannot be easily shared. Each also cannot
be easily backed up so if the original is lost or destroyed, you lose your data.

The following section considers how you can translate these strengths and weaknesses into features to
prefer or avoid in a computerized database.

Desirable Database Features
By looking at the advantages and disadvantages of physical databases, you can create a list of fea-
tures that a computerized database should have. Some of these are fundamental characteristics that
any database must have. (‘‘You should be able to get data from it.’’ How obvious is that?)

Most of these features, however, depend at least in part on good database design. If you don’t craft a
good design, you’ll miss out on some or all of the benefit of these features. For example, any decent

8

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 9

Chapter 1: Goals of Effective Database Design

database provides backup features but a good design can make backup and recovery a lot quicker and
easier.

The following sections describe some of the features that a good database system should provide and
explain to what degree they depend on good database design.

CRUD
CRUD stands for the four fundamental database operations that any database should provide: Create,
Read, Update, and Delete. If you read database articles and discussions on the Web, you will often see
people tossing around the term CRUD. (They may be using the term just to sound edgy and cool. Now
that you know the term, you can sound cool, too!)

You can imagine some specialized data gathering devices that don’t support all of these methods. For
example, the black box flight data recorders on airplanes record flight information and later play it back
without allowing you to modify the data. In general, however, if it doesn’t have CRUD it’s not a database.

CRUD is more a feature of databases in general than it is a feature of good database design, but a
good database design provides CRUD efficiently. For example, suppose you design a database to
track times for your canuggling league (look it up online) and you require that the addresses for
participants include a State value that is present in the States table. When you create a new record (the
C in CRUD), the database must validate the new State entry. Similarly when you update a record (the U
in CRUD), the database must validate the modified State entry. When you delete an entry in the States
table (the D in CRUD), the database must verify that no Participant records use that state. Finally when
you read data (the R in CRUD), the database design determines whether you find the data you want in
seconds, hours, or not at all.

Many of the concepts described in the following sections relate to CRUD operations.

Retrieval
Retrieval is another word for ‘‘read,’’ the R in CRUD. The database should allow you to find every piece
of data. There’s no point putting something in the database if there’s no way to get it back later. (That
would be a ‘‘data black hole,’’ not a database.)

The database should allow you to structure the data so you can find particular pieces of data in one or
more specific ways. For example, you should be able to find a customer’s billing record by searching for
customer name or customer ID.

Ideally the database will also allow you to structure the data so it is relatively quick and easy to fetch
data in a particular manner.

For example, suppose you want to see where your customers live so you can decide whether you should
start a delivery service in a new city. To get this information, it would be helpful to be able to find cus-
tomers based on their addresses. Ideally you could optimize the database structure so you can quickly
search for customers by address.

In contrast, you probably don’t need to search for customers by middle name too frequently. (Imagine
a customer calling you and saying, ‘‘Can you look up my record? I don’t remember if I paid my bill last

9

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 10

Part I: Introduction to Databases and Database Design

month. I also don’t remember my account number or my last name but my middle name is ‘Konfused’.’’)
It would be nice if the common search by address was faster than the rare search by middle name.

Being able to find all of the data in the database quickly and reliably is an important part of database
design. Finding the data you need in a poorly designed database can take hours or days instead of mere
seconds.

Consistency
Another aspect of the R in CRUD is consistency. The database should provide consistent results. If you
perform the same search twice in a row, you should get the same results. Another user who performs
the same search should also get the same results. (Of course this assumes that the underlying data hasn’t
changed in the meantime. You can’t expect your net worth query to return the same results every day
when stock prices fluctuate wildly.)

A well-built database product can ensure that the exact same query returns the same result but design
also plays an important role. If the database is poorly designed, you may be able to store conflicting data
in different parts of the database. For example, you might be able to store one set of contact information
in a customer’s order and a different set of information in the main customer record. Later, if you need to
contact the customer with a question about the order, which contact information should you use?

Validity
Validity is closely related to the idea of consistency. Consistency means different parts of the database
don’t hold contradictory views of the same information. Validity means data is validated where possible
against other pieces of data in the database. In CRUD terms, data can be validated when a record is
created, updated, or deleted.

Just like physical data containers, a computerized database can hold incomplete, incorrect, or contradic-
tory data. You can never protect a database from users who can’t spell or who just plain enter the wrong
information, but a good database design can help prevent some kinds of errors that a physical database
cannot prevent.

For example, the database can easily verify that data has the correct type. If the user sees a Date field and
enters ‘‘No thanks, I’m married,’’ the database can tell that this is not a valid date format and can refuse
to accept the value. Similarly it can tell that ‘‘Old’’ is not a valid Age, ‘‘Lots’’ is not a valid Quantity, and
‘‘Confusion’’ is too long to be a two-letter state abbreviation (although that value may correctly reflect
the user’s state of mind).

The database can also verify that a value entered by the user is present in another part of the database.
For example, a poor typist trying to enter CO in a State field might type CP instead. The database can
check a list of valid states and refuse to accept the data when it doesn’t find CP listed. (If the database
needs to work with only certain states, you can restrict the list to include only those states and make the
test even tighter.)

The database can also check some kinds of conditions on the data. Suppose the database contains a book
ordering system. When the customer orders 500 copies of this book (who wouldn’t want that many
copies?), the database can check another part of the database to see if that many copies are available
(most bookstores carry only a few copies of any given book) and refuse the order if there aren’t enough
copies.

10

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 11

Chapter 1: Goals of Effective Database Design

A good database design also helps protect the database against incorrect changes. Suppose a cappuccino
machine repair service is dropping coverage for a nearby city. When you try to remove that city from
your list of valid locations, the database can tell you if you have existing customers in that city. Depend-
ing on the database’s design, it could refuse to allow you to remove the city until you apologized to those
customers and removed them from the database.

All of these techniques rely on a good, solid database design. They still can’t protect you from a user who
types first names in the last name field or who keeps accidentally bumping the CAPS LOCK KEY, but it
can prevent many types of errors that a notebook can’t.

Easy Error Correction
Even a perfectly designed database cannot ensure perfect validity. How can the database know that a
customer’s name is supposed to be spelled Pheidaux not Fido as typed by the user?

Correcting a single error in a notebook is fairly easy. Just cross out the wrong value and write in the
new one.

Correcting systematic errors in a notebook is a lot harder. Suppose you hire a summer intern to go
door-to-door selling household products and he writes up a lot of orders for ‘‘Duck Tape’’ not realizing
that the actual product is ‘‘Duct Tape.’’ Fixing all of the mistakes could be tedious and time-consuming.
(Of course tedious and time-consuming jobs are what summer interns are for so you can make him fix
it himself.) You could just ignore the problem and leave the orders misspelled, but then how would you
tell when a customer really wants to tape a duck?

In a computerized database, this sort of correction is trivial. A simple database command can update
every occurrence of the product name ‘‘Duck Tape’’ throughout the whole system. (In fact, this kind of
fix is sometimes too easy to make. If you aren’t careful, you may accidentally change the names of every
product to Duct Tape, even those that were not incorrectly spelled Duck Tape. You can prevent this by
building a safe user interface for the database or by being really careful.)

Easy correction of errors is a built-in feature of computerized databases, but to get the best advantage
from this feature you need a good design. If order information is contained in a free-formatted text
section, the database will have trouble fixing typos. If you put the product name in a separate field, the
database can make this change easily.

Though easy corrections are almost free, you need to do a little design work to make them as efficiently
and effectively as possible.

Speed
An important aspect of all of the CRUD components is speed. A well-designed database can create, read,
update, and delete records quickly.

There’s no denying that a computerized database is a lot faster than a notebook or a filing cabinet. Instead
of processing dozens of records per hour, a computerized database can process dozens or hundreds per
second. (I once worked with a billing center that processed around 3 million accounts every three days.)

Good design plays a critical role in database efficiency. A poorly organized database may still be faster
than the paper equivalent but it will be a lot slower than a well-designed database.

11

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 12

Part I: Introduction to Databases and Database Design

Database Design
The billing center I mentioned in the previous paragraph had a simple problem: they
couldn’t find the customers who owed them the most money. Every three days the
database would print out a list of customers who owed money. The list made a stack
of paper almost three feet tall. Unfortunately the list was randomly ordered (prob-
ably ordered by customer ID or shoe size or something equally unhelpful) so they
couldn’t figure out who owed the most. The majority of the customers owed only a few
dollars — too little to pursue — but a few customers owed tens of thousands of dollars.

We captured this printout electronically and sorted the accounts by balance. It turned
out that the really problematic customers only filled a couple of pages and the first five
or so customers owed more than all of the others combined.

I didn’t include this story just to impress you with my programming prowess (to be
completely honest, it was a pretty easy project) but to illustrate how database design
can make a big difference in performance. Here a very simple change (which any
database should be able to support) made the difference between finding the most
troublesome customers in a few seconds or not at all.

Not all changes to a database’s design can produce dramatic results, but design definitely plays an impor-
tant role in performance.

Atomic Transactions
Recall that an atomic transaction is a possibly complex series of actions that is considered as a single
operation by those not involved directly in performing the transaction. If you transfer $100 from Alice’s
account to Bob’s account, no one else can see the database while it is in an intermediate state where the
money has been removed from Alice’s account and not yet added to Bob’s.

The transaction either happens completely or none of its pieces happen — it cannot happen halfway.

Atomic transactions are important for maintaining consistency and validity, and are thus important for
the R and U parts of CRUD.

Physical data containers such as notebooks support atomic transactions because typically only one person
at a time can use them. Unless Derek the office bully grabs the notebook from your hands while you’re
writing in it, you can finish a series of operations before you let someone else have a turn.

Some of the most primitive kinds of databases, such as flat files and XML files (which are described later
in this book) don’t inherently support atomic transactions, but the more advanced relational database
products do. Those databases allow you to start a transaction and perform a series of operations. You
can then either commit the transaction to make the changes permanent or rollback the transaction to undo
them all and restore the database to the state it had before you started the transaction.

These databases also automatically rollback any transaction that is open if the database halts unex-
pectedly. For example, suppose you start a transaction, take $100 from Alice’s account, and then your
company’s mascot (a miniature horse) walks through the computer room, steps on a power strip, and
kills the power to your main computer. When you restart the database (after sending the horse to the HR

12

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 13

Chapter 1: Goals of Effective Database Design

department), it automatically rolls the transaction back so Alice gets her money back. You’ll need to try
the transaction again but at least no money has been lost by the system.

Atomic transactions are more a matter of properly using database features than database design. If you
pick a reasonably advanced database product and use transactions properly, you gain their benefits. If
you decide to use flat files to store your data, you’ll need to implement transactions yourself.

ACID
This section provides some more detail about the transactions described in the previous section rather
than discussing a new feature of physical data containers and computerized databases.

ACID is an acronym describing four features that an effective transaction system should provide. ACID
stands for Atomicity, Consistency, Isolation, and Durability.

Atomicity means transactions are atomic. The operations in a transaction either all happen or none of
them happen.

Consistency means the transaction ensures that the database is in a consistent state before and after the
transaction. In other words, if the operations within the transaction would violate the database’s rules,
the transaction is rolled back. For example, suppose the database’s rules say that an account cannot make
a payment that would result in a balance less than zero. Also suppose that Alice’s account holds only $75.
Now you start a transaction, add $100 to Bob’s account, and then try to remove $100 from Alice’s. That
would put Alice $25 in the red, violating the database’s rules, so the transaction is canceled and we all try
to forget that this ugly incident ever occurred. (Actually we probably bill Alice an outrageous surcharge
for writing a bad check.)

Isolation means the transaction isolates the details of the transaction from everyone except the person
making the transaction. Suppose you start a transaction, remove $100 from Alice’s account, and add $100
to Bob’s account. Another person cannot peek at the database while you’re in the middle of this process
and see a state where neither Alice nor Bob has the $100. Anyone who looks in the database sees the $100
somewhere, either in Alice’s account before the transaction or in Bob’s account afterwards.

In particular, two transactions operate in isolation and cannot interfere with each other. Suppose one
transaction transfers $100 from Alice to Bob and then a second transaction transfers $100 from Bob to
Cindy. Logically one of these transactions occurs first and finishes before the other starts. For example,
when the second transaction starts, it will not see the $100 missing from Alice’s account unless it is
already in Bob’s account.

Note that the order in which the transactions occur may make a big difference.
Suppose Alice starts with $150, Bob starts with $50, and Cindy starts with $50.

Now suppose the second Bob-to-Cindy transaction occurs first. If the transaction
starts by removing $100 from Bob’s account, Bob is overdrawn, this transaction is
rolled back, we assess Bob a surcharge for being overdrawn, and we try to sell Bob
overdraft protection for the low, low price of only $10 per month. After all of this,
the Alice-to-Bob transaction occurs and we successfully move $100 into Bob’s
account.

13

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 14

Part I: Introduction to Databases and Database Design

In contrast, suppose the Alice-to-Bob transaction occurs first. That transaction
succeeds with no problem so, when the Bob-to-Cindy transaction starts, Bob has
$150 and the second transaction can complete successfully.

The database won’t determine which transaction occurs first, just that each commits
or rolls back before the other starts.

Durability means that once a transaction is committed, it will not disappear later. If the power fails, when
the database restarts, the effects of this transaction will still be there.

The durability requirement relies on the consistency rule. Consistency ensures that the transaction will
not complete if it would leave the database in a state that violates the database’s rules. Durability means
that the database will not later decide that the transaction caused such a state and retroactively remove
the transaction.

Once the transaction is committed, it is final.

A high-end database might provide durability through continuous shadowing.
Every time a database operation occurs, it is shadowed to another system. If the
main system crashes, the shadow database can spring instantly into service.
Other databases provide durability through logs. Every time the database performs
an operation, it writes a record of the operation into the log. Now suppose the
system crashes. When the database restarts, it reloads its last saved data and then
reapplies all of the operations described by the log. This takes longer than
restarting from a shadow database but requires fewer resources so it’s generally less
expensive.

To provide durability, the database cannot consider the transaction as committed
until its changes are shadowed or recorded in the log so the database will not lose
the changes if it crashes.

Persistence and Backups
The data must be persistent. It shouldn’t change or disappear by itself. If you can’t trust the database to
keep the data safe, the database is pretty much worthless.

Database products do their best to keep the data safe, and in normal operation you don’t need to do
much to get the benefit of data persistence. When something unusual happens, however, you may need
to take special action and that requires prior planning. For example, suppose the disk drives holding
the database simply break. Or a fire reduces the computer to a smoldering puddle of slag. Or a user
accidentally or intentionally deletes the database. (A user tried that once on a project I was working on.
We were not amused!)

In these extreme cases, the database alone cannot help you. To protect against this sort of trouble, you
need to perform regular backups.

14

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 15

Chapter 1: Goals of Effective Database Design

Physical data containers such as notebooks are generally hard to back up, so they are hard to protect
against damage. If a fire burns up your accounts receivable notebook, you’ll have to rely on your cus-
tomers’ honesty in paying what they owe you. Though we like customers, I’m not sure most businesses
trust them to that extent.

In theory you could make copies of a notebook and store them in separate locations to protect against
these sorts of accidents, but in practice few businesses (except perhaps money laundering, smuggling,
and other endeavors where it’s handy to show law enforcement officials one set of books and the ‘‘share-
holders’’ another) do.

Computerized databases, however, are relatively easy to back up. If the loss of a little data won’t hurt you
too badly, you can back up the database daily. If fire, a computer virus, or some other accident destroys
the main database, you can reload the backup and be ready to resume operation in an hour or two.

If the database is very volatile or if losing even a little data could cause big problems (how much money
do you think gets traded through the New York Stock Exchange in a busy hour?), then you need a differ-
ent backup strategy. Many higher-end database products allow you to shadow every database operation
as it occurs so you always have a complete copy of everything that happens. If the main database is
destroyed, you can be back in business within minutes. Some database architectures can switch to a
backup database so quickly the users don’t even know it’s happened.

Backup Plans
It’s always best to store backups away from the computer that you’re backing up. Then
if a really big accident like a fire occurs and destroys the whole building holding the
database, the backup is still safe.

I’ve known of several development groups that stored their backups right next to
the computer they were backing up. That guards against some kinds of stupidity (in
the teams I’ve worked on, about once every 10 person-years or so someone accidentally
deleted a file that we needed to recover from backups) but doesn’t protect against big
accidents.

I’ve also known of companies that had an official backup plan, but once you submitted
a backup for proper storage it was shipped off site and it took a long time to get it back
if you needed it. A backup doesn’t do much good if you can’t use it!

In a very extreme example, I had a customer who was concerned that backups were
stored only 30 miles from the database. Their thought was that the backups might not
be safe in the event of a volcanic eruption or nuclear explosion.

Exactly how you implement database backups depends on several factors such as how likely you think a
problem will be, how quickly you need to recover from it, and how disastrous it would be to lose some
data and spend time to restore from a backup, but a computerized database gives you a lot more options
than a notebook does.

Good database design can help make backups a bit easier. If you arrange the data so changes occur in
a fairly localized area, you can back up that area fairly often and not waste time backing up data that
changes only rarely.

15

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 16

Part I: Introduction to Databases and Database Design

Low Cost and Extensibility
Ideally the database should be easy to obtain and install, inexpensive, and easily extensible. If you dis-
cover that you need to process a lot more data per day than you had expected, you should be able to
somehow increase the database’s capacity.

Although some database products are quite expensive, most of them have reasonable upgrade paths
so you can buy the least expensive license that will handle your needs, at least in the beginning. For
example, SQL Server, Oracle, and MySQL provide free editions that you can use to get started building
small single-user applications. They also provide more expensive editions that are suitable for very large
applications that have hundreds of users.

Installing a database will never be as easy and inexpensive as buying a new notebook, but it also doesn’t
need to be a time-consuming financial nightmare.

Though expense and capacity are more features of the particular database product than database design,
good design can help with a different kind of extensibility. Suppose you have been using a notebook
database for a while and discover that you need to capture a new kind of information. Perhaps you
decide that you need to track customers’ dining habits so you know what restaurant gift certificate to
give them on special occasions. In this case, it would be nice if you could extend the database design to
hold this extra information.

Good database design can make this kind of extension possible.

Ease of Use
Notebooks and filing cabinets have simple user interfaces so almost anyone can use them effectively.
(Although sometimes even they get messed up pretty badly. Should you file ‘‘United States Postal Ser-
vice’’ under ‘‘United States?’’ ‘‘Postal Service?’’ ‘‘Snail Mail?’’)

A computer application’s user interface determines how usable it is by average users. User interface
design is not part of database design, so you may wonder why ease of use is mentioned here.

The first-level users of a database are often programmers and relatively sophisticated database
users who understand how to navigate through a database. A good database design makes the
database much more accessible to those users. Just by looking at the names of the tables, fields, and
other database entities that organize the data, this type of user should be able to figure out how
different pieces of data go together and how to use them to retrieve the data they need. If those
sophisticated users can easily understand the database, they can build better user interfaces for the less
advanced users.

Portability
A computerized database allows for a portability that is even more powerful than the portability of a
notebook. It allows you to access the data from anywhere you have access to the Web without actually
moving the physical database. You can access the database from just about anywhere while the data itself
remains safely at home, far from the dangers of pickpockets, being dropped in a puddle, and getting
forgotten on the bus.

16

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 17

Chapter 1: Goals of Effective Database Design

In fact, the new kind of portability may be a little too easy. Though someone in the seat behind you on
the airplane can’t peek over your shoulder to read a computerized data the way he can a notebook (well,
he can if you’re using your laptop), a hacker located on the other side of the planet may try to sneak into
your database and rifle through your customer data while you’re asleep.

This leads to the next topic, security.

Security
A notebook is relatively easy to lose or steal but a highly portable database can be even easier to com-
promise. If you can access your database from all over the world, then so can cyber-banditos and other
ne’er-do-wells.

Locking down your database is mostly a security issue that you should address by using your network’s
and database’s security tools. However, there are some design techniques that you can use to make
securing the database easier.

Information Theft
There have been a number of spectacular stories of lost or stolen laptops, hard drives,
disks, and other media potentially exposing confidential information to bad guys.

❑ On January 22, 2005, a University of Northern Colorado hard drive con-
taining personal information about 30,000 current and former University
employees was apparently stolen.

❑ On December 22, 2005, a Ford Motor Company computer was stolen con-
taining the names and Social Security Numbers of 70,000 current and former
employees. Just three days later, on December 25, 2005, an Ameriprise Finan-
cial Inc. laptop containing sensitive information about 260,000 customers was
stolen (the laptop was later recovered).

❑ On June 1, 2006, a laptop containing information about 243,000 Hotel.com
customers was stolen.

❑ On January 13, 2007, a North Carolina Department of Revenue computer
containing tax information from 30,000 taxpayers was stolen.

❑ On January 24, 2008, a Fallon Community Health Plan computer containing
confidential information about 30,000 patients was stolen.

❑ Finally, in possibly the biggest data loss to date, on May 3, 2006, a U.S.
Department of Veterans Affairs laptop containing information about 28.6
million veterans and active duty personnel was stolen.

I don’t mean to single these victims out. This is a big issue and hundreds if not
thousands of companies around the world have suffered similar data exposure.
The Privacy Rights Clearinghouse Web page, ‘‘A Chronology of Data Breaches’’ at
www.privacyrights.org/ar/ChronDataBreaches.htm, lists incidents totaling more
than 230 million exposed records in the United States alone since the site began
tracking incidents in 2005.

17

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 18

Part I: Introduction to Databases and Database Design

If you separate the data into categories that different types of users need to manipulate, you can grant
different levels of permission to the different kinds of users. Giving users access to only the data they
absolutely need not only reduces the chance of a legitimate user doing something stupid or improper,
but it also decreases the chance that an attacker can pose as that user and do something malicious. Even
if Clueless Carl won’t mistreat your data intentionally, an online mugger might be able to guess Carl’s
password (which naturally is ‘‘Carl’’) and try to wreak havoc. If Carl doesn’t have permission to trash
the accounting data, neither does the mugger.

Yet another novel aspect to database security is the fact that users can access the database remotely
without actually holding a copy of the database locally. You can use your palmtop computer to access a
database without storing the data on your computer. That means if you do somehow lose your computer,
the data may still be safe on the database’s computer.

This is more an application architecture issue than a database design issue (don’t store the data locally
on laptops) but using a database design that restricts users’ access to what they really need to know
can help.

Sharing
It’s not easy to share a notebook or envelope full of business cards among a lot of people. No two
people can really use a notebook at the same time and there’s some overhead in shipping the notebook
back and forth among users. Taking time to walk across the room a dozen times a day would be
annoying; express mailing a notebook across the country every day would be just plain
silly.

Modern networks can let hundreds or even thousands of users access the same database at the same time
from locations scattered across the globe. Though this is largely an exercise in networking and the tools
provided by a particular database product, some design issues come into play.

If you compartmentalize the data into categories that different types of users need to use as described in
the previous section, this not only helps with security but it also helps reduce the amount of data that
needs to be shipped across the network.

Breaking the data into reasonable pieces can also help coordinate among multiple users. When
your coworker in London starts editing a customer’s record, that record must be locked so other
users can’t sneak in and mess things up before the edit is finished. Grouping the data appropriately lets
you lock the smallest amount of data possible so more data is available for other users
to edit.

Careful design can allow the database to perform some calculations and ship only the results to your
boss who’s working hard on the beaches of Hawaii instead of shipping the whole database out there and
making the user’s computer do all of the work.

Good application design is also important. Even after you prepare the database for efficient use, the
application still needs to use it properly. But without a good database design, these techniques aren’t
possible.

18

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 19

Chapter 1: Goals of Effective Database Design

Ability to Perform Complex Calculations
Compared to the human brain, computers are idiots. It takes seriously powerful hardware and
frighteningly sophisticated algorithms to perform tasks that you take for granted such as recognizing
faces, speaker-independent speech recognition, and handwriting recognition (although neither the
human brain nor computers have yet deciphered doctors’ prescriptions). The human brain is also
self-programming, so it can learn new tasks flexibly and relatively quickly.

Though a computer lacks the adaptability of the human brain, it is great at performing a series of
well-defined tasks quickly, repeatedly, and reliably. A computer doesn’t get bored, let its attention wan-
der, and make simple arithmetic mistakes (unless it suffers from the infamous Pentium FDIV bug, the
f00f bug, the Cyrix coma bug, or a few others). The point is, if the underlying hardware and software
works correctly, the computer can perform the same tasks again and again millions of times per second
without making mistakes.

When it comes to balancing checkbooks, searching for accounts with balances less than zero, and per-
forming a host of other number-crunching tasks, the computer is much faster and less error-prone than a
human brain.

The computer is naturally faster at these sorts of calculations, but even its blazing speed won’t help you
if your database is poorly designed. A good design can make the difference between finding the data you
need in seconds rather than hours, days, or not at all.

Consequences of Good and Bad Design
The following table summarizes how good and bad design can affect the features described in the previ-
ous sections.

Feature Good Design Bad Design

CRUD You can find the data
you need quickly and
easily. The database
prevents inconsistent
changes.

You find the data you need either very slowly
or not at all. You can enter inconsistent data or
modify and delete data to make the result
inconsistent. (Your products ship to the wrong
address or the wrong person.)

Retrieval You can find the correct
data quickly and easily.

You cannot find the data you need quickly.
(Your customer waits on hold for 45 minutes to
get a simple account balance.)

Consistency All parts of the
database agree on
common facts.

Different pieces of information hold
contradictory data. (A customer’s bills are sent
to one address but late payment notices are sent
to another.)

Validity Fields contain valid
data.

Fields contain gibberish. (Your company’s
address has the State value ‘‘Confusion.’’
Although if the database does hold that value,
it’s probably correct on some level.)

19

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 20

Part I: Introduction to Databases and Database Design

Feature Good Design Bad Design

Error Correction It’s easy to update
incorrect data.

Simple and large-scale changes never happen.
(Thousands of your customers’ bills are
returned to you because their ZIP Code
changed and the database didn’t get updated.)

Speed You can quickly find
customers by name,
account number, or
phone number.

You can only find a customer’s record if he
knows his 37-digit account number. Searching
by name takes half an hour.

Atomic
Transactions

Related transactions
either all happen or all
don’t happen.

Related transactions may occur partially. (Alice
loses $100 but Bob doesn’t receive it. Prepare
for customer complaints.)

Persistence and
Backups

You can recover from
computer failure. The
data is safe.

Recovering lost data is slow and painful or
even impossible. (You lose all of the orders
placed in the last week!)

Low Cost and
Extensibility

You can move to a
bigger database when
your need grows.

You’re stuck on a small-scale database. (When
your Web site starts getting hundreds of orders
per second, the database cannot keep up and
you lose thousands per day. Don’t we all wish
we had this problem!)

Ease of Use The database design is
clear so developers
understand it and build
a great user interface.

The database design is confusing so the
developers produce an ‘‘anthill’’
program — confusing and buggy. (I’ve worked
on projects like that and it’s no picnic!)

Portability The design allows
different users to
download relevant data
quickly and easily.

Users must download much more data than
they need, slowing performance and giving
them access to sensitive data (such as the
Corporate Mission Statement, which proves
management has no clue.)

Security Users have access to the
data they need and
nothing else.

Hackers and disgruntled employees have
access to everything.

Sharing Users can manipulate
the data they need.

Users lock data they don’t really need and get
in each others’ way, slowing them down.

Complex
Calculations

Users can easily
perform complex
analysis to support
their jobs.

Poor design makes calculations take far longer
than necessary. (I worked on a project where a
simple change to a data model could force a
20-minute recalculation.)

20

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 21

Chapter 1: Goals of Effective Database Design

Summary
This chapter explained the important position that database design plays in application development.
If the database design doesn’t provide a solid foundation for the rest of the project to build upon, the
application as a whole will fail.

This chapter then described physical data containers that can behave as databases. It discussed the
strengths and weaknesses of those objects and explained how a computerized database can provide
the strengths while avoiding the weaknesses.

In this chapter you learned that a good database provides:

❑ CRUD

❑ Retrieval

❑ Consistency

❑ Validity

❑ Easy error correction

❑ Speed

❑ Atomic transactions

❑ ACID

❑ Persistence and backups

❑ Low cost and extensibility

❑ Ease of use

❑ Portability

❑ Security

❑ Sharing

❑ Ability to perform complex calculations

This chapter used physical objects such as notebooks and filing cabinets to study database goals and
potential problems. These physical systems meet some but not all of the database goals fairly effectively.

The next chapter describes several different kinds of computerized databases. It explains which goals
each type of database meets and which it does not.

Though this book focuses mostly on relational databases, some of these other kinds of databases are
simpler and useful enough for some applications.

Before you move on, however, take a look at the following exercises and test your knowledge of database
design goals described in this chapter. You can find the solutions to these exercises in Appendix A.

21

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 22

Part I: Introduction to Databases and Database Design

Exercises
1. Compare this book to a database (assuming you don’t just use it as a notebook, scribbling in

the margins). What features does it provide? What features are missing?

2. Describe two features that this book provides to help you look for particular pieces of data
in different ways.

3. What does CRUD stand for? What do the terms mean?

4. How does a chalkboard implement the CRUD methods? How does a chalkboard’s database
features compare to those of this book?

5. Consider a recipe file that uses a single index card for each recipe with the cards stored
alphabetically. How does that database’s features compare to those of a book?

6. What does ACID stand for? What do the terms mean?

7. Suppose Alice, Bob, and Cindy all have account balances of $100 and the database does
not allow an account’s balance to ever drop below zero. Now consider three transactions:
1) Alice transfers $125 to Bob, 2) Bob transfers $150 to Cindy, and 3) Cindy transfers $25 to
Alice and $50 to Bob. In what order(s) can the transactions be executed successfully?

8. Explain how a central database can protect your confidential data.

22

