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An Introduction to General Linear

Models: Regression, Analysis of

Variance, and Analysis of Covariance

1.1 REGRESSION, ANALYSIS OF VARIANCE, AND

ANALYSIS OF COVARIANCE

Regression and analysis of variance (ANOVA) are probably the most frequently

applied of all statistical analyses. Regression and analysis of variance are used

extensively in many areas of research, such as psychology, biology, medicine,

education, sociology, anthropology, economics, political science, as well as in

industry and commerce.

There are several reasons why regression and analysis of variance are applied so

frequently. One of the main reasons is they provide answers to the questions

researchers ask of their data. Regression allows researchers to determine if and how

variables are related. ANOVA allows researchers to determine if the mean scores

of different groups or conditions differ. Analysis of covariance (ANCOVA), a

combination of regression and ANOVA, allows researchers to determine if the

group or condition mean scores differ after the influence of another variable

(or variables) on these scores has been equated across groups. This text focuses

on the analysis of data generated by psychology experiments, but a second reason

for the frequent use of regression and ANOVA is they are applicable to experi-

mental, quasi-experimental, and non-experimental data, and can be applied to most

of the designs employed in these studies. A third reason, which should not be

underestimated, is that appropriate regression and ANOVA statistical software is

available to analyze most study designs.
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1.2 A POCKET HISTORY OF REGRESSION, ANOVA, AND ANCOVA

Historically, regression and ANOVA developed in different research areas to address

different research questions. Regression emerged in biology and psychology toward

the end of the nineteenth century, as scientists studied the relations between people’s

attributes and characteristics. Galton (1886, 1888) studied the height of parents and

their adult children, and noticed that while short parents’ children usually were shorter

than average, nevertheless, they tended to be taller than their parents. Galton described

this phenomenon as “regression to the mean.” As well as identifying a basis for

predicting the values on one variable from values recorded on another, Galton

appreciated that the degree of relationship between some variables would be greater

than others. However, it was three other scientists, Edgeworth (1886), Pearson (1896),

and Yule (1907), applying work carried out about a century earlier by Gauss (or

Legendre, see Plackett, 1972), who provided the account of regression in precise

mathematical terms. (See Stigler, 1986, for a detailed account.)

The t-test was devised byW.S. Gosset, amathematician and chemist working in the

Dublin brewery of Arthur Guinness Son & Company, as a way to compare the means

of two small samples for quality control in the brewing of stout. (Gosset published the

test in Biometrika in 1908 under the pseudonym “Student,” as his employer regarded

their use of statistics to be a trade secret.) However, as soon asmore than two groups or

conditions have to be comparedmore than one t-test is needed. Unfortunately, as soon

as more than one statistical test is applied, the Type 1 error rate inflates (i.e., the

likelihood of rejecting a true null hypothesis increases—this topic is returned to in

Sections 2.1 and 3.6.1). In contrast, ANOVA, conceived and described by Ronald A.

Fisher (1924, 1932, 1935b) to assist in the analysis of data obtained from agricultural

experiments, was designed to compare the means of any number of experimental

groups or conditions without increasing the Type 1 error rate. Fisher (1932) also

described ANCOVAwith an approximate adjusted treatment sum of squares, before

describing the exact adjusted treatment sum of squares a few years later (Fisher,

1935b, and see Cox andMcCullagh, 1982, for a brief history). In early recognition of

his work, the F-distribution was named after him by G.W. Snedecor (1934).

ANOVA procedures culminate in an assessment of the ratio of two variances based

on a pertinent F-distribution and this quickly became known as an F-test. As all the

procedures leading to the F-test also may be considered as part of the F-test,

the terms “ANOVA” and “F-test” have come to be used interchangeably. However,

while ANOVA uses variances to compare means, F-tests per se simply allow

two (independent) variances to be compared without concern for the variance

estimate sources.

In subsequent years, regression and ANOVA techniques were developed and

applied in parallel by different groups of researchers investigating different research

topics, using different research methodologies. Regression was applied most often to

data obtained from correlational or non-experimental research and came to be

regarded only as a technique for describing, predicting, and assessing the relations

between predictor(s) and dependent variable scores. In contrast, ANOVA was

applied to experimental data beyond that obtained from agricultural experiments
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(Lovie, 1991a), but still it was considered only as a technique for determiningwhether

the mean scores of groups differed significantly. For many areas of psychology,

particularly experimental psychology, where the interest was to assess the average

effect of different experimental manipulations on groups of subjects in terms of a

particular dependent variable, ANOVA was the ideal statistical technique. Conse-

quently, separate analysis traditions evolved and have encouraged themistaken belief

that regression and ANOVA are fundamentally different types of statistical analysis.

ANCOVA illustrates the compatibility of regression andANOVAby combining these

two apparently discrete techniques. However, given their histories it is unsurprising

that ANCOVA is not only a much less popular analysis technique, but also one that

frequently is misunderstood (Huitema, 1980).

1.3 AN OUTLINE OF GENERAL LINEAR MODELS (GLMs)

The availability of computers for statistical analysis increased hugely from the 1970s.

Initially statistical software ran on mainframe computers in batch processing mode.

Later, the statistical software was developed to run in a more interactive fashion on

PCs and servers. Currently, most statistical software is run in this manner, but,

increasingly, statistical software can be accessed and run over the Web.

Using statistical software to analyze data has had considerable consequence not

only for analysis implementations, but also for the way in which these analyses are

conceived. Around the 1980s, these changes began to filter through to affect data

analysis in the behavioral sciences, as reflected in the increasing number of psychol-

ogy statistics texts that added the general linear model (GLM) approach to the

traditional accounts (e.g., Cardinal and Aitken, 2006; Hays, 1994; Kirk, 1982, 1995;

Myers, Well, and Lorch, 2010; Tabachnick and Fidell, 2007; Winer, Brown, and

Michels, 1991) and an increasing number of psychology statistics texts that presented

regression, ANOVA, and ANCOVA exclusively as instances of the GLM (e.g., Cohen

and Cohen, 1975, 1983; Cohen et al., 2003; Hays, 1994; Judd and McClelland, 1989;

Judd,McClelland, and Ryan, 2008; Keppel and Zedeck, 1989;Maxwell and Delaney,

1990, 2004; Pedhazur, 1997).

A major advantage afforded by computer-based analyses is the easy use of

matrix algebra. Matrix algebra offers an elegant and succinct statistical notation.

Unfortunately, however, human matrix algebra calculations, particularly those

involving larger matrices, are not only very hard work but also tend to be error

prone. In contrast, computer implementations of matrix algebra are not only very

efficient in computational terms, but also error free. Therefore, most computer-

based statistical analyses employ matrix algebra calculations, but the program

output usually is designed to concord with the expectations set by traditional (scalar

algebra) calculations.

When regression, ANOVA, and ANCOVA are expressed in matrix algebra terms, a

commonality is evident. Indeed, the same matrix algebra equation is able to

summarize all three of these analyses. As regression, ANOVA, and ANCOVA can

be described in an identical manner, clearly they share a common pattern. This
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common pattern is the GLM. Unfortunately, the ability of the same matrix algebra

equation to describe regression, ANOVA, andANCOVAhas resulted in the inaccurate

identification of thematrix algebra equation as theGLM.However, just as a particular

language provides ameans of expressing an idea, somatrix algebra provides only one

notation for expressing the GLM.

Tukey (1977) employed the GLM conception when he described data as

Data ¼ Fit þ Residual ð1:1Þ

The same GLM conception is employed here, but the fit and residual component

labels are replaced with the more frequently applied labels, model (i.e., the fit) and

error (i.e., the residual). Therefore, the usual expression of theGLMconception is that

data may be accommodated in terms of a model plus error

Data ¼ Model þ Error ð1:2Þ

In equation (1.2), the model is a representation of our understanding or hypotheses

about the data, while the error explicitly acknowledges that there are other

influences on the data. When a full model is specified, the error is assumed to

reflect all influences on the dependent variable scores not controlled in the

experiment. These influences are presumed to be unique for each subject in each

experimental condition. However, when less than a full model is represented, the

score component attributable to the omitted part(s) of the full model also is

accommodated by the error term. Although the omitted model component incre-

ments the error, as it is neither uncontrolled nor unique for each subject, the residual

label would appear to be a more appropriate descriptor. Nevertheless, many GLMs

use the error label to refer to the error parameters, while the residual label is used

most frequently in regression analysis to refer to the error parameter estimates. The

relative sizes of the full or reducedmodel components and the error components also

can be used to judge how well the particular model accommodates the data.

Nevertheless, the tradition in data analysis is to use regression, ANOVA, and

ANCOVA GLMs to express different types of ideas about how data arises.

1.3.1 Regression

Simple linear regression examines the degree of the linear relationship (see Sec-

tion 1.5) between a single predictor or independent variable and a response or

dependent variable, and enables values on the dependent variable to be predicted from

the values recorded on the independent variable. Multiple linear regression does the

same, but accommodates an unlimited number of predictor variables.

In GLM terms, regression attempts to explain data (the dependent variable scores)

in terms of a set of independent variables or predictors (the model) and a residual

component (error). Typically, the researcher applying regression is interested in

predicting a quantitative dependent variable from one or more quantitative

independent variables and in determining the relative contribution of each
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independent variable to the prediction. There is also interest in what proportion of

the variation in the dependent variable can be attributed to variation in the

independent variable(s).

Regression also may employ categorical (also known as nominal or qualitative)

predictors-the use of independent variables such as gender, marital status, and type of

teaching method is common. As regression is an elementary form of GLM, it is

possible to construct regression GLMs equivalent to any ANOVA and ANCOVA

GLMs by selecting and organizing quantitative variables to act as categorical

variables (see Section 2.7.4). Nevertheless, throughout this chapter, the convention

of referring to these particular quantitative variables as categorical variables will be

maintained.

1.3.2 Analysis of Variance

Single factor or one-way ANOVA compares the means of the dependent variable

scores obtained from any number of groups (see Chapter 2). Factorial ANOVA

compares the mean dependent variable scores across groups with more complex

structures (see Chapter 5).

In GLM terms, ANOVA attempts to explain data (the dependent variable scores) in

terms of the experimental conditions (the model) and an error component. Typically,

the researcher applying ANOVA is interested in determining which experimental

condition dependent variable score means differ. There is also interest in what

proportion of variation in the dependent variable can be attributed to differences

between specific experimental groups or conditions, as defined by the independent

variable(s).

The dependent variable in ANOVA is most likely to be measured on a quantitative

scale. However, the ANOVA comparison is drawn between the groups of subjects

receiving different experimental conditions and is categorical in nature, even when

the experimental conditions differ along a quantitative scale. As regression also can

employ categorical predictors, ANOVA can be regarded as a particular type of

regression analysis that employs only categorical predictors.

1.3.3 Analysis of Covariance

The ANCOVA label has been applied to a number of different statistical operations

(Cox and McCullagh, 1982), but it is used most frequently to refer to the statistical

technique that combines regression and ANOVA. As ANCOVA is the combination

of these two techniques, its calculations are more involved and time consuming

than either technique alone. Therefore, it is unsurprising that an increase in

ANCOVA applications is linked to the availability of computers and statistical

software.

Fisher (1932, 1935b) originally developed ANCOVA to increase the precision of

experimental analysis, but it is applied most frequently in quasi-experimental

research. Unlike experimental research, the topics investigated with quasi-

experimental methods are most likely to involve variables that, for practical or
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ethical reasons, cannot be controlled directly. In these situations, the statistical control

provided by ANCOVA has particular value. Nevertheless, in line with Fisher’s

original conception, many experiments may benefit from the application of

ANCOVA.

As ANCOVA combines regression and ANOVA, it too can be described in terms of

a model plus error. As in regression and ANOVA, the dependent variable scores

constitute the data. However, as well as experimental conditions, the model includes

one or more quantitative predictor variables. These quantitative predictors, known as

covariates (also concomitant or control variables), represent sources of variance that

are thought to influence the dependent variable, but have not been controlled by the

experimental procedures. ANCOVAdetermines the covariation (correlation) between

the covariate(s) and the dependent variable and then removes that variance associated

with the covariate(s) from the dependent variable scores, prior to determiningwhether

the differences between the experimental condition (dependent variable score) means

are significant. As mentioned, this technique, in which the influence of the experi-

mental conditions remains the major concern, but one or more quantitative variables

that predict the dependent variable are also included in the GLM, is labeled ANCOVA

most frequently, and in psychology is labeled ANCOVA exclusively (e.g., Cohen

et al., 2003; Pedhazur, 1997, cf. Cox andMcCullagh, 1982). An important, but seldom

emphasized, aspect of the ANCOVA method is that the relationship between the

covariate(s) and the dependent variable, upon which the adjustments depend, is

determined empirically from the data.

1.4 THE ‘‘GENERAL’’ IN GLM

The term “general” in GLM simply refers to the ability to accommodate distinc-

tions on quantitative variables representing continuous measures (as in regression

analysis) and categorical distinctions representing groups or experimental condi-

tions (as in ANOVA). This feature is emphasized in ANCOVA, where variables

representing both quantitative and categorical distinctions are employed in the

same GLM.

Traditionally, the label linear modeling was applied exclusively to regression

analyses. However, as regression, ANOVA, andANCOVAare but particular instances

of the GLM, it should not be surprising that consideration of the processes involved in

applying these techniques reveals any differences to be more apparent than real.

Following Box and Jenkins (1976), McCullagh and Nelder (1989) distinguish four

processes in linearmodeling: (1)model selection, (2) parameter estimation, (3)model

checking, and (4) the prediction of future values. (Box and Jenkins refer to model

identification rather than model selection, but McCullagh and Nelder resist this

terminology, believing it to imply that a correct model can be known with certainty.)

While such a framework is useful heuristically, McCullagh and Nelder acknowledge

that in reality these four linear modeling processes are not so distinct and that the

whole, or parts, of the sequence may be iterated before a model finally is selected and

summarized.
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Usually, prediction is understood as the forecast of new, or independent values

with respect to a new data sample using the GLM already selected. However,

McCullagh and Nelder include Lane and Nelder’s (1982) account of prediction,

which unifies conceptions of ANCOVA and different types of standardization. Lane

and Nelder consider prediction in more general terms and regard the values fitted by

the GLM (graphically, the values intersected by the GLM line or hyper plane) to be

instances of prediction and part of the GLM summary. As these fitted values are often

called predicted values, the distinction between the types of predicted value is not

always obvious, although a greater standard error is associated with the values

forecast on the basis of a new data sample (e.g., Cohen et al., 2003; Kutner et al.,

2005; Pedhazur, 1997).

With the linear modeling process of prediction so defined, the four linear modeling

processes become even more recursive. For example, when selecting a GLM, usually

the aim is to provide a best fit to the data with the least number of predictor variables

(e.g., Draper and Smith, 1998; McCullagh and Nelder, 1989). However, the model

checking process that assesses best fit employs estimates of parameters (and estimates

of error), so the processes of parameter estimation and prediction must be executed

within the process of model checking.

The misconception that this description of general linear modeling refers only to

regression analysis is fostered by the effort invested in the model selection process

with correlational data obtained from non-experimental studies. Usually in non-

experimental studies, many variables are recorded and the aim is to identify the

GLM that best predicts the dependent variable. In principle, the only way to select

the best GLM is to examine every possible combination of predictors. As it takes

relatively few potential predictors to create an extremely large number of possible

GLM selections, a number of predictor variable selection procedures, such as all-

possible regressions, forward stepping, backward stepping, and ridge regression

(e.g., Draper and Smith, 1998; Kutner et al., 2005) have been developed to reduce

the number of GLMs that need to be considered.

Correlations between predictors, termedmulticollinearity (but see Pedhazur, 1997;

Kutner et al., 2005; and Section 11.7.1) create three problems that affect the processes

of GLM selection and parameter estimation. These are (i) the substantive interpreta-

tion of partial coefficients (if calculated simultaneously, correlated predictors’ partial

coefficients are reduced), (ii) the sampling stability of partial coefficients (different

data samples do not provide similar estimates), and (iii) the accuracy of the calculation

of partial coefficients and their errors (Cohen et al., 2003). The reduction of partial

coefficient estimates is due to correlated predictor variables accommodating similar

parts of the dependent variable variance. Because correlated predictors share associ-

ation with the same part of the dependent variable, as soon as a correlated predictor is

included in the GLM, all of the dependent variable variance common to the correlated

predictors is accommodated by this first correlated predictor, so making it appear that

the remaining correlated predictors are of little importance.

Whenmulticollinearity exists and there is interest in the contribution to theGLMof

sets of predictors or individual predictors, an incremental regression analysis can be

adopted (see Section 5.4). Essentially, thismeans that predictors (or sets of predictors)
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are entered into theGLMcumulatively in a principled order (Cohen et al., 2003).After

each predictor has entered the GLM, the new GLM may be compared with the

previous GLM, with any changes attributable to the predictor just included. Although

there is similarity between incremental regression and forward stepping procedures,

they are distinguished by the, often theoretical, principles employed by incremental

regression to determine the entry order of predictors into the GLM. Incremental

regression analyses also concord with Nelder’s (McCullagh and Nelder, 1989;

Nelder, 1977) approach to ANOVA and ANCOVA, which attributes variance to

factors in an ordered manner, accommodating the marginality of factors and their

interactions (also see Bingham and Fienberg, 1982).

After selection, parameters must be estimated for each GLM and then model

checking engaged.Again, due to the nature of non-experimental data,model checking

may detect problems requiring remedial measures. Finally, the nature of the issues

addressed by non-experimental research make it much more likely that the GLMs

selected will be used to forecast new values.

A little consideration reveals identical GLM processes underlying a typical

analysis of experimental data. For experimental data, the GLM selected is an

expression of the experimental design. Moreover, most experiments are designed

so that the independent variables translate into independent (i.e., uncorrelated)

predictors, so avoiding multicollinearity problems. The model checking process

continues by assessing the predictive utility of the GLM components representing the

experimental effects. Each significance test of an experimental effect requires an

estimate of that experimental effect and an estimate of a pertinent error term.

Therefore, the GLM process of parameter estimation is engaged to determine

experimental effects, and as errors represent the mismatch between the predicted

and the actual data values, the calculation of error terms also engages the linear

modeling process of prediction. Consequently, all fourGLMprocesses are involved in

the typical analysis of experimental data. The impression of concise experimental

analyses is a consequence of the experimental design acting to simplify the processes

of GLM selection, parameter estimation, model checking, and prediction.

1.5 THE ‘‘LINEAR’’ IN GLM

To explain the distinctions required to appreciate model linearity, it is necessary to

describe a GLM in more detail. This will be done by outlining the application of

a simple regression GLM to data from an experimental study. This example of a

regression GLM also will be useful when least square estimates and regression in the

context of ANCOVA are discussed.

Consider a situation where the relationship between study time and memory was

examined. Twenty-four subjects were divided equally between three study time

groups and were asked to memorize a list of 45 words. Immediately after studying

the words for 30 seconds (s), 60 s, or 180 s, subjects were given 4minutes to

free recall and write down as many of the words they could remember. The results

of this study are presented in Figure 1.1, which follows the convention of plotting
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independent or predictor variables on the X-axis and dependent variables on the

Y-axis.

Usually, regression is applied to non-experimental situations where the predictor

variable can take any value and not just the three time periods defined by the

experimental conditions. Indeed, regression usually does not accommodate categori-

cal information about the experimental conditions. Instead, it assesses the linearity of

the relationship between the predictor variable (study time) and the dependent

variable (free recall score) across all of the data. The relationship between study

time and free recall score can be described by the straight line in Figure 1.1 and in turn,

this line can be described by equation (1.3)

bYi ¼ b0 þ b1Xi ð1:3Þ

where the subscript i denotes values for the ith subject (ranging from i¼ 1, 2, . . ., N),bYi is the predicted dependent variable (free recall) score for the ith subject, the

parameterb0 is a constant (the intercept on theY-axis), the parameterb1 is a regression
coefficient (equal to the slope of the regression line), andXi is thevalue of the predictor

variable (study time) recorded for the same ith subject.

As the line describes the relationship between study time and free recall, and

equation (1.3) is an algebraic version of the line, it follows that equation (1.3) also

describes the relationship between study time and free recall. Indeed, the terms

(b0 þ b1X1) constitute themodel component of the regressionGLMapplicable to this

data. However, the full GLM equation also includes an error component. The error

represents the discrepancy between the scores predicted by the model, through which

30 60 180

Study time

0

5
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15

R
e

c
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Figure 1.1 The number of words recalled as a function of word list study time. (NB. Some

plotted data points depict more than one score.)
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the regression line passes, and the actual data values. Therefore, the full regression

GLM equation that describes the data is

Yi ¼ b0 þ b1Xi þ ei ð1:4Þ

where Yi is the observed score for the ith subject and ei is the random variable

parameter denoting the error term for the same subject. Note that it is a trivialmatter of

moving the error term to right-hand side of equation (1.4) to obtain the formula that

describes the predicted scores

bYi ¼ ðYi � eiÞ ¼ b0 þ b1Xi ð1:5Þ
Now that some GLM parameters and variables have been specified, it makes sense

to say thatGLMs can be described as being linearwith respect to both their parameters

and predictor variables. Linear in the parameters means no parameter is multiplied or

divided by another, nor is any parameter above the first power. Linear in the predictor

variables also means no variable is multiplied or divided by another, nor is any above

the first power. However, as shown below, there are ways around the variable

requirement.

For example, equation (1.4) above is linear with respect to both parameters and

variables. However, the equation

Yi ¼ b0 þ b21Xi þ ei ð1:6Þ
is linearwith respect to the variables, but not to the parameters, asb1 has been raised to
the second power. Linearity with respect to the parameters also would be violated if

any parameters were multiplied or divided by other parameters or appeared as

exponents. In contrast, the equation

Yi ¼ b0 þ b1X
2
i þ ei ð1:7Þ

is linear with respect to the parameters, but not with respect to the variables, as X2
i

is Xi raised to the second power. However, it is very simple to define Zi ¼ X2
i and

to substitute Zi in place of X2
i . Therefore, models such as described by equa-

tion (1.7) continue to be termed linear, whereas such as those described by

equation (1.6) do not. In short, linearity is presumed to apply only to the

parameters. Models that are not linear with respect to their parameters are

described specifically as nonlinear. As a result, models can be assumed to be

linear with respect to their parameters, unless specified otherwise, and frequently

the term linear is omitted.

Nevertheless, the term “linear” in GLM often is misunderstood to mean that the

relation between any data and any predictor variable must be described by a straight

line. Although GLMs can describe straight-line relationships, they are capable of

muchmore. Through the use of transformations and polynomials, GLMs can describe

many complex curvilinear relations between the data and the predictor variables

(e.g., Draper and Smith, 1998; Kutner et al., 2005).
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1.6 LEAST SQUARES ESTIMATES

Parameters describe or apply to populations. However, it is rare for data from whole

populations to be available. Much more available are samples of these populations.

Consequently, parameters usually are estimated from sample data. A standard form of

distinction is to use Greek letters, such as a and b, to denote parameters and to place a

hat on them (e.g., ba, bb), when they denote parameter estimates. Alternatively, the

ordinary letter equivalents, such as a and b, may be used to represent the parameter

estimates.

The parameter estimation method underlying all of the analyses presented in

Chapters 2–11 is that of least squares. Some alternative parameter estimation

methods are discussed briefly in Chapter 12. Although these alternatives are much

more computationally demanding than least squares, their use has increased with

greater availability and access to computers and relevant software. Nevertheless, least

squares remains by far the most frequently applied parameter estimation method.

The least squares method identifies parameter estimates that minimize the sum of

the squared discrepancies between the predicted and the observed values. From the

GLM equation

Yi ¼ b0 þ b1Xi þ ei ð1:4; rptdÞ

the sum of the squared deviations may be described as

XN
i¼1

e2i ¼
XN
i¼1

ðYi � b0 � b1X1Þ2 ð1:8Þ

The estimates of b0 and b1 are chosen to provide the smallest value of
PN

i¼1 e
2
i .

By differentiating equation (1.8) with respect to each of these parameters, two

(simultaneous) normal equations are obtained. (More GLM parameters require more

differentiations and produce more normal equations.) Solving the normal equations

for each parameter provides the formulas for calculating their least squares estimates

and in turn, all other GLM (least squares) estimates.

Least squares estimates have a number of useful properties. Employing an estimate

of the parameter b0 ensures that the residuals sum to zero. Given that the error terms

also are uncorrelated with constant variance, the least squares estimators will be

unbiased and will have the minimum variance of all unbiased linear estimators. As a

result they are termed the best linear unbiased estimators (BLUE). However, for

conventional significance testing, it is also necessary to assume that the errors are

distributed normally. (Checks of these and other assumptions are considered in

Chapter 10. For further details of least squares estimates, see Kutner et al., 2005;

Searle, 1987.) However, when random variables are employed inGLMs, least squares

estimation requires the application of restrictive constraints (or assumptions) to allow

the normal equations to be solved. One way to escape from these constraints is to

employ a different method of parameter estimation. Chapter 12 describes the use
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of some different parameter estimation methods, especially restricted maximum

likelihood (REML), to estimate parameters in repeated measures designs where

subjects are accommodated as levels of a random factor. Current reliance on

computer-based maximum likelihood parameter estimation suggests this is a recent

idea but, in fact, it is yet another concept advanced by Fisher (1925, 1934), although it

had been used before by others, such as Gauss, Laplace, Thiele, and Edgeworth (see

Stigler, 2002).

1.7 FIXED, RANDOM, AND MIXED EFFECTS ANALYSES

Fixed, random, and mixed effects analyses refer to different sampling situations.

Fixed effects analyses employ only fixed variables in the GLM model component,

random effects analyses employ only random variables in the GLM model compo-

nent, while mixed effects analyses employ both fixed and random variables in the

GLM model component.

When a fixed effects analysis is applied to experimental data, it is assumed that all

the experimental conditions of interest are included in the experiment. This

assumption is made because the inferences made on the basis of a fixed effects

analysis apply fully only to the conditions included in the experiment. Therefore,

the experimental conditions used in the original study are fixed in the sense that

exactly the same conditions must be employed in any replication of the study. For

most genuine experiments, this presents little problem. As experimental conditions

usually are chosen deliberately and with some care, so fixed effects analyses

are appropriate for most experimental data (see Keppel and Wickens, 2004, for

a brief discussion). However, when ANOVA is applied to data obtained from non-

experimental studies, care should be exercised in applying the appropriate form of

analysis. Nevertheless, excluding estimates of the magnitude of experimental

effects, it is not until factorial designs are analyzed that differences between the

estimates of fixed and random effects are apparent.

Random effects analyses consider those experimental conditions employed in

the study to be only a random sample of a population of experimental conditions and

so, inferences drawn from the study may be applied to the wider population of

conditions. Consequently, study replications need not be restricted to exactly the

same experimental conditions. As inferences from random effects analyses can

be generalized more widely than fixed effects inferences, all else being equal, more

conservative assessments are provided by random effects analyses.

In psychology,mixed effects analyses are encounteredmost frequentlywith respect

to related measures designs. The measures are related by virtue of arising from the

same subject (repeated measures designs) or from related subjects (matched samples

designs, etc.) and accommodating the relationship between these related scores

makes it possible to identify effects uniquely attributable to the repeatedly measured

subjects or the related subjects. This subject effect is represented by a random variable

in the GLM model component, while the experimental conditions continue as fixed

effects. It is also possible to define a set of experimental conditions as levels of a
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random factor and mix these with other sets of experimental conditions defined as

fixed factors in factorial designs, with or without a random variable representing

subjects. However, such designs are rare in psychology.

Statisticians have distinguished between regression analyses, which assume fixed

effects, and correlation analyses, which do not. Correlation analyses do not distin-

guish between predictor and dependent variables. Instead, they study the degree of

relation between random variables and are based on bivariate-normal models.

However, it is rare for this distinction to be maintained in practice. Regression is

applied frequently to situations where the sampling of predictor variables is random

and where replications employ predictors with values different to those used in the

original study. Indeed, the term regression now tends to be interpreted simply as an

analysis that predicts one variable on the basis of one or more other variables,

irrespective of their fixed or randomnatures (Howell, 2010). Supporting this approach

is the demonstration that provided the other analysis assumptions are tenable, the least

square parameter estimates and F-tests of significance continue to apply even with

random predictor and dependent variables (Kmenta, 1971; Snedecor and Cochran,

1980; Wonnacott and Wonnacott, 1970).

All of the analyses described in this book consider experimental conditions to be

fixed. However, random effects are considered with respect to related measures

designs and some consideration is given to the issue of fixed and random predictor

variables in the context of ANCOVA assumptions. Chapter 12 also presents recent

mixed model approaches to repeated measures designs where maximum likelihood

is used to estimate a fixed experimental effect parameter and a random subject

parameter.

1.8 THE BENEFITS OF A GLM APPROACH TO ANOVA AND ANCOVA

The pocket history of regression and ANOVA described their separate development

and the subsequent appreciation and utilization of their communality, partly as a

consequence of computer-based data analysis that promoted the use of their common

matrix algebra notation. However, the single fact that the GLM subsumes regression,

ANOVA, and ANCOVA seems an insufficient reason to abandon the traditional

manner of carrying out these analyses and adopt a GLM approach. So what is the

motivation for advocating the GLM approach?

The main reason for adopting a GLM approach to ANOVA and ANCOVA is that it

provides conceptual and practical advantages over the traditional approach. Concep-

tually, a major advantage is the continuity the GLM reveals between regression,

ANOVA, and ANCOVA. Rather than having to learn about three apparently discrete

techniques, it is possible to develop an understanding of a consistent modeling

approach that can be applied to different circumstances. A number of practical

advantages also stem from the utility of the simply conceived and easily calculated

error terms. TheGLMconception divides data intomodel and error, and it follows that

the better themodel explains the data, the less the error. Therefore, the set of predictors

constituting a GLM can be selected by their ability to reduce the error term.
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Comparing a GLM of the data that contains the predictor(s) under consideration with

a GLM that does not, in terms of error reduction, provides a way of estimating effects

that is both intuitively appreciable and consistent across regression, ANOVA, and

ANCOVA applications. Moreover, as most GLM assumptions concern the error

terms, residuals-the error term estimates, provide a common means by which the

assumptions underlying regression, ANOVA, and ANCOVA can be assessed. This

also opens the door to sophisticated statistical techniques, developed primarily to

assist linear modeling/regression error analysis, to be applied to both ANOVA and

ANCOVA. Recognizing ANOVA and ANCOVA as instances of the GLM also

provides connection to an extensive and useful literature on methods, analysis

strategy, and related techniques, such as structural equation modeling, multilevel

analysis (see Chapter 12) and generalized linear modeling, which are pertinent to

experimental and non-experimental analyses alike (e.g., Cohen et al., 2003;

Darlington, 1968; Draper and Smith, 1998; Gordon, 1968; Keppel and Zedeck,

1989;McCullagh andNelder, 1989;Mosteller and Tukey, 1977; Nelder, 1977; Kutner

et al., 2005; Pedhazur, 1997; Rao, 1965; Searle,1979, 1987, 1997; Seber, 1977).

1.9 THE GLM PRESENTATION

Several statistical texts have addressed the GLM and presented its application to

ANOVA and ANCOVA. However, these texts differ in the kinds of GLM they employ

to describe ANOVA andANCOVA and how they present GLM calculations. ANOVA

and ANCOVA have been expressed as cell mean GLMs (Searle, 1987) and regression

GLMs (e.g., Cohen et al., 2003; Judd, McClelland, and Ryan, 2008; Keppel and

Zedeck, 1989; Pedhazur, 1997). Each of these expressions has some merit. (See

Chapter 2 for further description and consideration of experimental design, regression

and cell mean GLMs.) However, the main focus in this text is experimental design

GLMs, which also may be known as structural models or effect models.

Irrespective of the form of expression, GLMs may be described and calculated

using scalar or matrix algebra. However, scalar algebra equations become increas-

ingly unwieldy and opaque as the number of variables in an analysis increases. In

contrast, matrix algebra equations remain relatively succinct and clear. Consequently,

matrix algebra has been described as concise, powerful, even elegant, and as

providing better appreciation of the detail of GLM operations than scalar algebra.

These may seem peculiar assertions given the difficulties people experience doing

matrix algebra calculations, but they make sense when a distinction between theory

and practice is considered. You may be able to provide a clear theoretical description

of how to add numbers together, but this will not eliminate errors if you have very

many numbers to add. Similarly,matrix algebra can summarize succinctly and clearly

matrix relations and manipulations, but the actual laborious matrix calculations are

best left to a computer. Nevertheless, while there is much to recommend matrix

algebra for expressing GLMs, unless you have some serious mathematical expertise,

it is likely to be an unfamiliar notation. As it is expected that many readers of this text
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will not be well versed in matrix algebra, primarily scalar algebra and verbal

descriptions will be employed to facilitate comprehension.

1.10 STATISTICAL PACKAGES FOR COMPUTERS

Most commercially available statistical packages have the capability to implement

regression, ANOVA, and ANCOVA. The interfaces to regression and ANOVA

programs reflect their separate historical developments. Regression programs require

the specification of predictor variables, and so on, while ANOVA requires the

specification of experimental independent variables or factors, and so on. ANCOVA

interfaces tend to replicate the ANOVA approach, but with the additional requirement

that one or more covariates are specified. Statistical software packages offering GLM

programs are common (e.g., GENSTAT, MINITAB, STATISTICA, SYSTAT) and

indeed, to carry out factorial ANOVAs with SPSS requires the use of its GLM

program.

All of the analyses and graphs presented in this text were obtained using the

statistical package, SYSTAT. (For further information on SYSTAT, see Appendix A.)

Nevertheless, the text does not describe how to conduct analyses usingSYSTATor any

other statistical package. One reason for taking this approach is that frequent upgrades

to statistical packages soon makes any reference to statistical software obsolete.

Another reason for avoiding implementation instructions is that in addition to

the extensive manuals and help systems accompanying statistical software, there

are already many excellent books written specifically to assist users in carrying out

analyses with the major statistical packages and it is unlikely any instructions

provided here would be as good as those already available. Nevertheless, despite

the absence of implementation instructions, it is hoped that the type of account

presented in this text will provide not only an appreciation of ANOVA and ANCOVA

in GLM terms but also an understanding of ANOVA and ANCOVA implementation

by specific GLM or conventional regression programs.
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