
IN THIS PART
Chapter 1
Introducing Windows Scripting

Chapter 2
VBScript Essentials

Chapter 3
JScript Essentials

Chapter 4
PowerShell Fundamentals

Getting Started with
Windows Scripting

Part I of the PowerShell, VBScript, and JScript Bible intro-
duces you to the powerful administrative tool that is
Windows scripting. You’ll get an overview of Windows

scripting and its potential, and an introduction to three tech-
nologies you can use for Windows scripting: VBScript, JScript,
and PowerShell.

86804c01.indd 186804c01.indd 1 1/21/09 1:16:17 PM1/21/09 1:16:17 PM

CO
PYRIG

HTED
 M

ATERIA
L

86804c01.indd 286804c01.indd 2 1/21/09 1:16:18 PM1/21/09 1:16:18 PM

3

W indows scripting gives everyday users and administrators the
ability to automate repetitive tasks, complete activities while
away from the computer, and perform many other time-saving

activities. Windows scripting accomplishes all of this by enabling you to
create tools to automate tasks that would otherwise be handled manually,
such as creating user accounts, generating log files, managing print queues,
or examining system information. By eliminating manual processes, you
can double, triple, or even quadruple your productivity and become more
effective and efficient at your job. Best of all, scripts are easy to create and
you can rapidly develop prototypes of applications, procedures, and utili-
ties; and then enhance these prototypes to get exactly what you need, or
just throw them away and begin again. This ease of use gives you the flex-
ibility to create the kinds of tools you need without a lot of fuss.

Introducing Windows Scripting
You’ve heard the claims about scripting and now you’re thinking, so what?
What’s in it for me? You may be an administrator rather than a developer.
Or maybe you’re a power user who helps other users from time to time.
Either way, scripting will prove useful to your situation and needs. So in
answer to the question, “What’s in it for me?” consider the following:

Introducing
Windows Scripting

IN THIS CHAPTER
Introducing Windows scripting

Why script Windows?

Getting to know
Windows Script Host

Understanding the Windows
scripting architecture

86804c01.indd 386804c01.indd 3 1/21/09 1:16:18 PM1/21/09 1:16:18 PM

4

 Part I Getting Started with Windows Scripting

Would you like to have more free time? ■ Windows scripting frees you from mundane and
repetitive tasks, enabling you to focus on more interesting and challenging tasks.

Would you like to be able to analyze trends and be proactive rather than reactive?■ You
can use Windows scripting to extract and manipulate huge quantities of information and
turn out easy-to-use reports.

Would you like to be able to seize opportunities before they disappear?■ Windows
scripting enables you to take advantage of opportunities and be more effective. You can
solve problems quickly and efficiently.

Would you like to be a top performer and receive the praise you deserve? ■ Windows
scripting enables you to accomplish in hours or days what would otherwise take weeks or
months with traditional techniques. You’ll be more successful and more productive at work.

Would you like to be able to integrate activities and applications? ■ Windows scripting
enables you to integrate information from existing systems and applications, allowing you
to kick off a series of tasks simply by starting a script.

Would you like to have fun at work?■ Windows scripting can be fun, challenging, and
rewarding. Give it a try and you’ll see!

If Windows scripting can do so much, it must be terribly complex, right? On the contrary—it is its
simplicity that enables you to do so much, not complexity. Many Windows scripts are only a few
lines long and you can create them in a few minutes!

Taking a look at Windows Scripting
Two different architectures are used for scripting in Windows. The older one uses the Windows
Script Host and the newer one uses PowerShell. A lot of the tasks that can be carried out using the
VBScript in the Windows Scripting Host can be transferred to PowerShell. However not all the tasks
that can be run in PowerShell can be transferred to Windows Script Host scripts so easily. For a lot
of organizations using various derivatives of Visual Basic—in Web pages, Office applications,
Windows forms applications—makes a de-facto standard.

Windows Script Host Architecture
Windows Script Host (WSH) has been part of Windows since Windows NT4. Windows Script Host
provides architecture for building dynamic scripts that consist of a core object model, scripting
hosts, and scripting engines—each of which is discussed in the sections that follow.

Getting Started with Windows Script Host
Windows Script Host is a core component of the Windows operating system and, as such, is
installed by default when you install Windows. Like other components, Windows Script Host
can be uninstalled. It can also be upgraded through downloads or by installing service packs. To

86804c01.indd 486804c01.indd 4 1/21/09 1:16:18 PM1/21/09 1:16:18 PM

5

 Introducing Windows Scripting 1

ensure that Windows Script Host is installed on your system, type cscript at a command prompt.
You should see version information for Windows Script Host as well as usage details. If you don’t
see this information, Windows Script Host may not be installed and you’ll need to install it as you
would any other Windows component.

The key components of Windows Script Host are as follows:

WScript:■ A Windows executable for the scripting host that is used when you execute
scripts from the desktop. This executable has GUI controls for displaying output in pop-up
dialog boxes.

CScript: ■ A command-line executable for the scripting host that is used when you
execute scripts from the command line. This executable displays standard output at the
command line.

WSH ActiveX Control:■ An ActiveX control that provides the core object model for the
scripting host.

Scripting Engines:■ Scripting engines provide the core functions, objects, and methods
for a particular scripting language. VBScript and JScript scripting engines are installed by
default on Windows.

A Windows script is a text file containing a series of commands. Unlike shell scripts, Windows
script commands don’t resemble commands that you’d type in at the keyboard. Instead, they follow
the syntax for the scripting language you are using, such as VBScript or JScript.

Windows scripts can be created in Notepad. When you finish creating the script, save it with an
extension appropriate for the scripting language (.vbs for VBScript, .js for JScript, or .wsf for batch
scripts that combine scripts with markup). Once you create a Windows script, you run it with
WScript or CScript.

Using and running scripts
Windows scripts can be run with either WScript or CScript, and most of the time the applica-
tion you use depends on your personal preference. However, you’ll find that WScript works best
for scripts that interact with users, especially if the script displays results as standard text output.
For tasks that you want to automate or run behind the scenes, you’ll probably prefer CScript, with
which you can suppress output and prompts for batch processing.

You can use WScript and CScript with scripts in several different ways. The easiest way is to set
WScript as the default application for scripts and then run scripts by clicking their file name in
Windows Explorer. Don’t worry—you don’t have to do anything fancy to set WScript as the default.
The first time you click a Windows script, you’ll be asked if you’d like to associate the file extension
with WScript. Click Yes. Alternatively, you may see an Open With dialog box that asks which pro-
gram you would like to use to open the file. Choose WScript, and then check the “Always use this
program to open this file” checkbox.

86804c01.indd 586804c01.indd 5 1/21/09 1:16:18 PM1/21/09 1:16:18 PM

6

 Part I Getting Started with Windows Scripting

You can also set CScript as the default interface. When you do this, clicking a Windows script runs
CScript instead of WScript. Or, you could run scripts from the Run prompt just as you could when
WScript was the default. To run scripts with CScript from the command line, enter cscript followed
by the pathname of the script you want to execute. For now, don’t worry about the details; you’ll
find detailed instructions in Chapter 4.

Core object model
The core object model and scripting hosts are packaged with WSH for Windows. The core object
model is implemented in the WSH.ocx ActiveX control. WSH.ocx provides the key functionality
necessary for scripts to interact with the operating system. In WSH, objects are simply named con-
tainers that you’ll use to interact with operating system components. For example, you’ll use the
WshNetwork object to access and configure network resources, such as printers and drives.

Each object has properties and methods that are used to perform certain types of tasks. Properties
are attributes of an object that you can access. Methods are procedures that you’ll use to perform
operations. As with other object-based programming languages, you can work with objects in a vari-
ety of ways. You can use built-in objects, create new objects based on the built-in objects, or define
your own objects using unique methods and properties.

Table 1-1 provides a summary of the WSH object model. The WSH object hierarchy can be bro-
ken down into two broad categories: exposed objects and non-exposed objects. Exposed objects,
such as WScript, are the ones you’ll work with in your scripts. Non-exposed objects, such as
WshCollection, are accessed through the methods or properties of other objects. These objects
do the behind-the-scenes work.

TABLE 1-1

Core WSH Objects
Object Type Object Description

Exposed Object Script.Signer An object that allows you to sign scripts with a
digital signature and to verify signed scripts

WScript Top-level object that provides access to core
objects and other functionality such as object
creation

WScript.WshNetwork Automation object used to access and configure
network resources, such as printers and drives, also
provides user, domain, and computer information

WScript.WshShell Automation object that provides access to the
environment and file folders

86804c01.indd 686804c01.indd 6 1/21/09 1:16:18 PM1/21/09 1:16:18 PM

7

 Introducing Windows Scripting 1

Object Type Object Description

WshController Automation object that provides the control
functions necessary for creating a remote script
process

Non-exposed Object WshArguments Accessed through the WScript.Arguments
property, obtains command-line arguments

WshCollection Accessed through WshNetwork.Enum Network
Drives or WshNetwork.EnumPrinter
Collection, used for iteration through a group
of items, such as printers or drives

WshEnvironment Accessed through the WshShell.Environment
property, allows you to work with environment
variables

WshNamed Accessed through the WScript.Arguments
.Named property, allows you to work with named
arguments passed to a script

WshRemote Accessed through the WshController
.WshRemote method, allows you to start, stop,
and track the status of remote scripts

WshRemote.Error Accessed through the WshRemote.Error
property, used to track runtime errors related to
remote scripts

WshScriptExec Accessed through the WshShell.Exec method,
allows you to track the status of program or scripts
started with the WshShell.Exec method, also
provides access to the related input, output, and
error streams

WshShortcut Accessed through the WshShell.CreateShortcut
method, used to create and manage file shortcuts

WshSpecialFolders Accessed through the WshShell.SpecialFolders
property, used to work with file folders

WshUnnamed Accessed through the WScript.Arguments
.Unnamed property, allows you to work with
unnamed arguments passed to a script

WshUrlShortcut Accessed through the WshShell.CreateShortcut
method, used to create and manage URL shortcuts

86804c01.indd 786804c01.indd 7 1/21/09 1:16:18 PM1/21/09 1:16:18 PM

8

 Part I Getting Started with Windows Scripting

With the JScript scripting engine, the letter case for object, method, and property names
is important. The JScript engine doesn’t recognize an object unless you reference it prop-

erly. For example, with WScript, the JScript engine does not recognize Wscript. Because VBScript
really doesn’t care about letter case, either Wscript or WScript works just fi ne.

More on scripting hosts
To execute Windows scripts, you’ll use one of the two scripting hosts available, either WScript or
CScript. WScript has GUI controls for displaying output in pop-up dialog boxes and is used pri-
marily when you execute scripts from the desktop. CScript is the command-line executable for the
scripting host that is used when you execute scripts from the command line. Although you can work
with both of these hosts in much the same way, there are some features specific to each, which we
discuss later in Chapter 4. For now, let’s focus on how the scripting hosts work.

Several file extensions are mapped for use with the scripting hosts. These file extensions are:

.js: Designates scripts written in JScript■

.vbs: Designates scripts written in VBScript■

.wsf: Designates a Windows script file■

.wsh: Designates a WSH properties file■

A limitation of .js and .vbs files is that they can contain only JScript or VBScript statements, respec-
tively, and you cannot mix and match. This is where .wsf files come into the picture. You can use
.wsf files to create WSH jobs, or what I call batch scripts. These batch scripts can combine multiple
types of scripts and can also include type libraries containing constants.

Batch scripts contain markup tags that identify elements within the batch, such as individual jobs
and the scripting language being used. These markup tags are defined as XML (Extensible Markup
Language) elements. XML is structured much like HTML and uses plain-text characters. You can
use any text editor to create batch scripts and, because batch scripts contain XML, you can also use
an XML editor.

Windows scripts can also use .wsh files. These files contain default settings for scripts, such as
timeout values and script paths. Because of the introduction of .wsf files and direct in-script sup-
port for most script properties, .wsh files are rarely needed.

More on scripting engines
Scripting engines provide the core language functionality for Windows scripts and are packaged
separately from the Windows Script Host itself. You can obtain scripting engines for JScript, VBScript,
Perl, TCL, Python, and more. The official Microsoft scripting engines for VBScript and JScript are
standard components on Windows and are the focus of this book.

With Windows scripting, many of the features available for scripting with Internet Explorer and
the Web aren’t available. Functions needed for Web scripting simply aren’t needed for Windows

NOTENOTE

86804c01.indd 886804c01.indd 8 1/21/09 1:16:18 PM1/21/09 1:16:18 PM

9

 Introducing Windows Scripting 1

scripting and vice versa. For example, in JScript, none of the window-related objects are available in
WSH because, in Windows, you normally don’t need to access documents, forms, frames, applets,
plug-ins, or any of those other browser-related features. The exception to this is if you create a script
that starts a browser session; within the browser session, you can use the browser-related objects as
much as you want.

Right now, you may be wondering what exactly is and isn’t supported by Windows scripts. In a
nutshell, the scripting engines support core language and language runtime environments. The core
language includes operators, statements, built-in objects, and built-in functions. Operators are used
to perform arithmetic, comparisons, and more. Statements are used to make assignments, to condi-
tionally execute code, and to control the flow within a script. For example, you can use for looping
to execute a section of code for a specific count. These types of statements are all defined in the core
language. Beyond this, the core language also defines the core functions and objects that perform
common operations such as evaluating expressions, manipulating strings, and managing data.

The runtime environment adds objects to the core object model. These objects are used to work with
the operating system and are available only with Windows Scripting. Table 1-2 provides a complete
list of the available VBScript objects. The list is organized according to where the objects originate,
either in the runtime environment or the core object model.

TABLE 1-2

VBScript Objects for Windows Scripting
Runtime Objects Core Objects

Dictionary object Class object

Drive object Debug object

Drives collection Dictionary object

File object Err object

Files collection FileSystemObject object

FileSystemObject object Match object

Folder object Matches collection

Folders collection RegExp object

TextStream object SubMatches collection

Table 1-3 provides a complete list of available JScript objects. Again, the list is organized according
to where the objects originate.

86804c01.indd 986804c01.indd 9 1/21/09 1:16:18 PM1/21/09 1:16:18 PM

10

 Part I Getting Started with Windows Scripting

TABLE 1-3

JScript Objects for Windows Scripting
Runtime Objects Core Objects

Arguments Object ActiveXObject Object

Dictionary object Array object

Drive object Boolean object

Drives collection Date object

File object Debug object

Files collection Dictionary object

FileSystemObject object Enumerator object

Folder object Error object

Folders collection FileSystemObject object

TextStream object Function object

Global object

Math object

Number object

Object object

RegExp object

Regular Expression object

String object

VBArray object

Windows PowerShell Architecture
The name “PowerShell” explains the key architectural difference from the Windows Scripting Host.
PowerShell began life as a command-line shell—like Windows CMD.EXE, and you can interact with
it—so where VBScript or JScript programs are written in Notepad and run using the appropriate
language inside the scripting host, the lines of a PowerShell script might be tested at a command
prompt one by one and then gathered into a script.

86804c01.indd 1086804c01.indd 10 1/21/09 1:16:18 PM1/21/09 1:16:18 PM

11

 Introducing Windows Scripting 1

As a shell, PowerShell can chain commands together using piping—that is, sending the output of
one command into another using the | symbol. Often, development consists of running a command,
checking its output, piping that output into something, checking that, and building up a long and
complex line.

One of the important things that sets PowerShell apart from CMD.EXE is that where a command
returns text to CMD, PowerShell’s commands return objects. The properties and methods of those
objects can be used by commands further along a pipeline.

Compared with the WSH languages, PowerShell’s use of objects is both broader and deeper. Its use
is deeper because .NET defines types such as text strings, and provides methods for working with
them. PowerShell does not need to write a function for getting a substring from a bigger string—that’s
inherited from .NET, as is PowerShell’s file handling, arithmetic, and so on (so PowerShell doesn’t
need to implement the core functions found in the WSH languages). PowerShell’s use of objects is
broader, because PowerShell has access to .NET objects, as well as COM ones and ready-made com-
mands for getting to WMI and Active Directory objects.

WMI objects provide management, configuration, and performance information for many server
applications and Windows components—indeed you could do a lot with just piping the output of
PowerShell’s Get-WMIObject command into its Format-Table command.

PowerShell was designed to be highly extensible. Not only can your own scripts become part of the
working environment, but also developers can write snap-ins that extend the environment with
compiled code. These add to the set of commands available inside PowerShell—the term “com-
mand” in PowerShell covers all the different things that can be invoked from the prompt: external
programs, scripts, functions loaded from scripts, and what PowerShell terms “CMDlets” from the
snap-ins. PowerShell provides five snap-ins by default.

TABLE 1-4

PowerShell Snap-ins
Snap-in Functions

Core Loads other snap-ins, provides access to command history, implements for loop, and
where functionality

Host Handles the console, manages transcripts

Management Provides the commands to manage Windows components

Security Handles credentials and secure strings

Utility Provides the commands to format and output data

Other products that run on Windows can provide their own snap-ins—for example, Exchange2007,
SQL Server 2008, and various members of the system center family provide their own snap-ins to

86804c01.indd 1186804c01.indd 11 1/21/09 1:16:18 PM1/21/09 1:16:18 PM

12

 Part I Getting Started with Windows Scripting

allow PowerShell to be used as the scripting environment to manage them. At the time of this writ-
ing, Windows Server 2008 R2 has only just been announced: It will include an updated version of
PowerShell, and more Windows components will have snap-ins to manage them.

The CMDLets snap-ins can also implement providers. The Security snap-in loads a provider for the
Certificate store, so you can browse through it as if it were a file system. The Core snap-in has one
for the registry, so you can treat branches of the registry like folders on your hard disk. Again, addi-
tional snap-ins can add to the list of providers.

Although PowerShell is a shell, it is possible to use the engine from another program without loading
the “host”—the command Window that is wrapped around the engine. Increasingly it is expected
that management tools for Microsoft products will be written as PowerShell snap-ins and then the
GUI management tools will invoke CMDlets in these. This allows you to carry out a task in the GUI,
discover the script that would carry it out, and use that as the basis for your own scripts.

PowerShell scripts have a .ps1 file extension, but to avoid the dangers of PowerShell automatically
running a malicious script, the file type is not tied to the PowerShell executable. You can run
PowerShell.exe with a command line that is the name of a script. Or you can invoke the script
inside the shell. There is no equivalent to the choice between CScript and WScript.

Is there any need to learn anything other than PowerShell? That’s less of a point of argument
between the contributors of this book than you might imagine. It’s going to become harder to be a
properly rounded IT professional in a Microsoft environment without PowerShell, but the other
languages will be with us for many years. Few organizations will see sense in re-writing a perfectly
good VB or JScript script as a PowerShell one, and there are libraries and code samples that exist only
in those languages. Sometimes it will make sense to translate them into PowerShell (which requires
the ability to understand the script) and sometimes it will make sense to adapt an existing script in
its existing language.

Summary
Now that you have a taste of what Windows scripting is all about, it’s time to go to the next level.
Chapters 2, 3, and 4 provide essential scripting techniques for VBScript, JScript, and PowerShell,
respectively. Carefully study these chapters before proceeding as they describe the core mechanics
of scripting, covering variables, arrays, operators, conditional statements, control loops, procedures,
and more. Once we have covered these core mechanics, we won’t waste your time rehashing how
these features work with every future scripting example. Instead, we will trust that you’ve reviewed
and understand the core mechanics and want to focus on the new materials we are discussing in a
particular chapter. Even if you know some scripting basics, we recommend that you use these chap-
ters to brush up on your VBScript, JScript, and PowerShell knowledge.

86804c01.indd 1286804c01.indd 12 1/21/09 1:16:18 PM1/21/09 1:16:18 PM

