CHAPTER 1

THE COMPLEX PLANE AND THE
SPACE L?(R)

We make extensive use of complex numbers throughout the book. Thus for the
purposes of making the book self-contained, this chapter begins with a review of
the complex plane and basic operations with comptex numbers. To build wavelet
functions, we need to define the preper space of functions in which to perform our
constructions, The space L2(R) lends itself well to this task, and we iniroduce this
space in Section 1.2.

We discuss the inner product in 7.%{I2) in Section 1.3, as well as vecter spaces
and subspaces. In Section 1.4 we talk about bases for 7.2(R). The construction of
wavelet functions requires the decomposition of L2(IR) into nested subspaces. We
frequently need to approximate a function f{t} € L2(IR} in these subspaces. The too!
we use to form the approximation is the projection operator. We discuss (orthogonal}
projections in Section 1.4,

1.1 COMPLEX NUMBERS AND BASIC OPERATIONS

Any discussion of the complex plane starts with the definition of the imaginarv unir:
i =v—1
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We immediately see that
=V =-1 P=Fi=—i #=(-D(-1)=1

In Problem 1.1 you will compute ¢ for any integer 1.

A complex number is any number of the form = - a § & where a, b C R, The
number o is called the reaf part of z and b is called the imaginary part of =. The se1
of complex numbers will be denoted by €. Tt s easy o see that R « € since real
numbers arc those complex numbers with the imaginary parl equal zero.

We can usc the camplex plane to envision complex numbers. The complex plane is
alwo-dimensional plane where the horizonial axis 1s used (o the real pari of complex
numbers and the vertical axis is used for the imaginary part of complex numbers. To
plot the number =z = « + bi, we simply plot the ordered pair (¢, b). In Figure 1.1 we
plot sonte complex numbers.

. 2k .
. Hhapginsy
2 S

Fual
_2 —

Figurc 1.1 Some complex numbers in the complex planc.

Complex Addition and Muitiplication

Addition and subtraction of complex numbers is a straightforward process. Addition
of two complex numbers «w = a + & and v = ¢+ i s definedas y = uw + v =
{4+ ¢) t (b+ d)i. Subtraction is similar: z = w— v = (a — ¢} + (b — d)i.

To multiply the complex numbers & = & + bi and v = ¢ -+ i, we proceed just as
we would if @ + b and ¢ + i were binomials:

- v = (a+ i) {e+ di) = ac+ adi + bei + bdi® = (ec — bd) + (ad = be)i

Fxampie 1.1 (Complex Arithmetie) Zerw - 2 ¢ 4, v - —1 4,y ~ 24, and
2 =342 Computen V- n, z -, 0 -y, andv- z
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Solution

w—r=2-11+{1-1)=1

= (B (I {2 (=1} 4 3

(2+r) 2 = Ai + 2% = —2 4 i

(=1 8) (3 -20) (B3(=1)—(=D2)-3(- 1342 Dy L-5

o

Complex Conjugation

One of the most important operations used to work with complex numbers is conju-
gaiion.

Definition 1.1 (Conjugate of a Complex Numbers) fLeof 2 o | boCC The
conjugate of =, denoted by T, iy defined by

z a M

Conjugation is used to divide two complex numbers and also has a natural relation
to the length of a complex number.

To plot z = « + bi, we plot the ordered pair {a, b} in the complex planc. For the
conjugate T = ¢ — bi, we plot the ordered pair (a. - #). So geometrically speaking,
the conjugate = of = is simply the reflection of z over the real axis. In Figure 1.2 we
have plotted several complex numbers and their conjugates.

. a2 .
A Hmaginary
— =+
Ty - .
2=2+1
el ww |
R .
1 1 2
To1—
—l®y = -
we—1 -0
. "3

Figure 1.2 Complex numbers and their conjugales in the complex plane.
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A couple of propertics ol the conjugation operator are immediate and we stale
them in the proposition below. The prool'is lefl as Problem 1.3,

Proposition 1.1 (Properties of the Conjugation Operator) Let 2 - a | dibe a
complex number. Then

2]

27
(h) » CRifandonly if 7 . 2
=

Proof: Problem 1.3, ]

Note that if we graph the points z - cos@ | ésinfl as ¢/ ranges from 0 to 27, we
trace a circle with center (0,0} with radius | in a counterclockwise manner. Note that
if we produce the graph of 7 = cos ) — isin§ g3 # ranges from 0 to 2, we get the
samc picture, but the points are drawn in a clockwise manner. Figure 1.3 illustrates
this geometric interpretation of the conjugation operator.

Le=cosfisind
|
1

.'
Jz=cos6-ising

¥

Figure 1.3 A circle is traced in two ways. Both start at # = (0. As # ranges from 0 to 24,
the points 2 trace Lhe cirele in a counterclockwise manner while the poinls Z trace the circle in
# clockwise manner.

Modulus of a Complex Number

We can usce the distance [ormula Lo determine how far the point z = a5 15 away from
0 = 0+ 0i in the complex planc. The distanceis /(o — 0)2 + (b — 0)2 = Va2 + 2,
This compulation gives rise to the lollowing delinition.

Definition 1.2 (Modulus of a Complex Number) The modulus of the complex mim-
ber z = a + bi is denoted by |z| and is defined as

Va2 52
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s

Other names for the value |z| are length, absofute vafue, and norsr of 2.
There is a natural relationship between |z| and z. 1f we compute the product = - 27
where z = @ + bi, we obtain

2T = (a4 bi)a-b) = BHZ aty WP

The right side of the equation above is simply |z1* so we have the [ollowing usclul
identity:

(1.1
In Problem 1.5 you are asked to compute the norms of seme complex numbers.
Division of Complex Numbers
We next consider division of complex numbers. That 1s, given = = o + & and

¢ = ¢+ di # 0, how do we express the quotient z/y as a complex number? We
proceed by multiplying both the numerator and denommator of the quotient by 4

z _atb  ad b e -di {ac A bd) - (be-ad)i ae+bd be—ud

¥ o oedidi o di o di R et e ’

PROBLEMS
1.1 Let » be any integer. Find & closed formula fori .

1.2 Plot the numbers 3 — ¢, 5¢, —1, and cos @ + ¢ sinf ford = 0, /4. 7 /2,67 /6. 7
in the complex plane.

1.3 Prove Proposition 1.1,

1.4 Compute the following values.

ay (3—4)+(2+14)
(®) (1+8) - B+
€y —#%- (-2 + 34)
@ (2450 (4 i)
(e) (2+5¢)-(4-1)
(h (2 )¢

(g) {1+ = (1)

.

1.5 For cach complex number z, compute

() 2=2+3i
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{b}) z =5

(c) z=—1i

(d) 2 =tlanf +iwheref e (-5, I)

[ME]

(c) 2 satisfies z-Z =0

1.6 Letz=a+biandy - o | di. For parts (a} — (d) show that:

(b) 2] = IZ]

{¢) Find the real and imaginary parts of 2z 71 =

P —-

*1.7  Suppose z = ¢+ bi with || = 1. Show that 7 =

*1.8  We can generalize Problem 1.6¢d). Supposc that zy, = ay o+ byi, for b =
i,...,v. Show that

L3 T .

[ W
T < i
I e P § i — 3 E b.k‘.
1

I k1 kil b=

*19 Svppose that > ag and 3 &y, are convergent serics where ag, b, © B For
ECE kCE
o o ik, B C 7, show that

2= ) = Z ap — i Z by

[E £ f—1 fe=|

*1.10  The identity in this problem is key (o the development of the material in
Section 6.1, Suppose that z,w € Cwilh |z] 1. Show that

|2
N

(2w (> 1w = | ™"

The following steps will help you organize your work:

(a) Using the fact that 13|~ Lexpand |z w|? (= w){(z ) to obtain

| —w|” =1 + |l — wi — @z
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(b) Factor —iz " from the right side of the identify in part (a} and use Problem 1.7
to show that
y 5 1+ |wl? "
|z —wi® =~z ! (zz - &z + :)
iy i

{c) Show that the quadratic on the right-hand side of part (b) can be {actored as
(z—w)(z—1/m).

{d) Take norms of both sides of the identity obtained in part (¢) and simplify the
result to complete the proof.

1.2 THE SPACE L2(R)

In order 1o create a mathematical model with which to build wavelet transforms, 1t
15 important thal we work in a vector space that lends itself Lo applications in digital
imaging and signal processing. Uniike ™Y where elements of the space are N-tuples
v = (m,....,05)", elements of our space will be functions. We can view a digital
image as a function of two variables where the function value is the gray-level intensily,
and we can view audio signals as functions of time where the function values are the
frequencics ol the signal. Since audio signals and digital mages can have abrupt
changes, we will not require functions in our space to necessarily be continuous.
Since audio signals are conslrucled of sines and cosines and these functions are
defined vver all real numbers, we want 1o allow our space 10 hold functions thal arc
supported (the notion of support is formally provided in Definition 1.5) on E. Since
rows or columns of digital images usually are of finile dimension and audio signals
taper ofl, we want Lo make sure that the functions f{#) in out space decay sulliciently
fast as + — L. The rate of decay must be [ast enough to ensure thal the encrgy
of the signal is finite. {We will soon make precise what we mean by the energy ol a
function.) Finally, it is desirable from a mathematical standpoint to usc a space where
the inner product of a function with itsel! is related 1o the gize (norm} ol the [unction.
For this reason, we will work in the space L2{IR}). We define it now.

L2(R) Defined

Definition 1.3 (The Space L2(R)) We define the space L*{R) to be the set

LR~ F R . C

/|f{t)|2rlt <o (1.2)
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Note: A reader with some background in analysis will understand that a rigorous
definition of L#{R) requires knowledge of the Lebesgue integral and scts o measure
zero. Tf the reader is willing to accept some basic propertics obeyed by Lebesgue
integrals, then Definition 1.3 will suflice.

We detine the norm of a lunction in L2(R} as [ollows:

Definition 1.4 (The LZ{R) Norm)} Let f{i} & L*(R). Then the norm of f(t) is

1O = ( [ IJ‘(t)Izdr.) (13)

ral—

The norm of the function is also referred to as the energy of the function, There
arc scveral properties that the norm should satisfy. Since it 15 a measure of energy or
size, it should be nonnegative. Moreover, it is natural to cxpect that the only function
for which || F{£)§f - 0 is f{t) = 0. Some clanfication of this propetly 15 in order
hefore we proceed.

Il f(t) - Oforall £ ¢ R, then certainly |£(£)]% - 0,50 that || f(#)]} = 0. But what
about the function that is 0 everywhere except, say, lor a [inite number of values? 1t
is certainly possible that a signal might have such abrupt changes at a finite set of
points. We learned in calculus that such a finite set of points has no bearing on the
integral. Thatis, for o < ¢ < b, f{e) might not even be delined, but

b s b

j FfB)di = lim / S dt + lim SO dt
@ Li—em Jao L—e™ fy,

could very well exist. This is certainly the case when f{t) = 0 except al a finite

numbcer of valucs.

This idea is generalized using the notion of measurable sets. Intervals {0, b} ure
measured by their length & — «, and in general, scls are measured by writing them as
a limit of the union of noninlersecting intervals. The measure of a single point « is
(}, since {or an arbitrarily small positive measure ¢ 2= 0, we can find an mterval that
conlains « and has measure less than ¢ {the inlerval (n — /1, « + ¢/1) with measure
/2 works). We can generalize this argument to claim that a finite set of points has
measure 0 as well, The general definition ol sets of measure () is typically covered in
an analysis text {see Rudin [48], for example).

The previous discussion leads us to the notion ol equivalent functions, Two func-
tions f{¢} and g{t) are said to be equivalent if {{¢} = g({) except on a set of measurc
0.

We state the following proposition without proof.

Proposition 1.2 (Functions for Which ||f{t)|| = 0) Suppose that f{t}) ¢ L*(R),
Then || J(1)|| = 0 i and onlyv if (L) = 0 except on o sef of measure (. n
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Examples of Functions in L%(IR)

Our first example of clements of £2{R) imtroduces lunctions that arc uscd throughout
the book.

Example 1.2 (The Box M(1), Triangle A{(}, and Sinc Functions) Hedefine thebox
function

o<t | ,
ML) _{ (0, otherwise } (i.4)

the triangle tunction

f, Nl

Aft) 2—F, l=f<?2
{, otherwise l

(1.5)

aned the sinc function

otherwise

1, [=0
sinc{t) = ¢ sinft) {(1.6)
?‘_' H

These functions are plotied in Figure 1.4,

—

(1) 1(#) (b} Al

{©) sine(t)

Figure 1.4 The functions | {3, A{L), and sinc(4).

The box function is an element of L2(R). Since T2 (1) = (1), we have
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1
/'72(1);11: /r‘;(a)dz. = / 1-di =1
44 S8 S

To show that A(#) € L*(R), we first note that

£, 0=d |
AP =0 (2 fF 1<t
0, atherwise

5o that

/\{1}2-13—/|a3-13+[22 t,)?u—-l'-'—Q
,r_n-f .'L'_‘n & ‘|( ('_3_'—3_3

To see that sinc(l) € LY (R), we consider the integral

g gl 22 T
. S { 5 t
/ sinc“)(ﬂ dt - -/—:x_: 511;2[ ) df + ]U %11;2(_) dt (1.7
We split the second integral in (1.7) as folfows:
ST SR R T 2 27y e s Dy
5 f H ¢ 4 f
/ S o / sl 4 / L (18)
S0 £ J 0 1 41 £

Note that the second integral in ({.8) iy certainfy nomegative and we ean bound the
integral above by 1.

[ fo.a
sin(i sin® (1
0= / H i) dt = lim / . (t) di
d EZ Loem A

{2
< lim / —dt
fo—oo f) 2
I |4
= lim ——‘
= i L 1=1 (1.9
= '

Now we analvze the first integrol on the vight side of (1.8). By L' Hopital's ride, we
know that lim 5“,—3'” = lso Sincz[i) is a continuons function on [0,1]. From calculus.
Lol

we recall that a continuons function on a closed interval achieves o muximum value,
. . - L - . R .
and it can be shown that the maximpm value of sine™ (F on [0, is | (see Problem 1.12}.

Thus ;L .
0«_:/ -“"i;(‘---)--dtg..] 1-dt 1 (1.10)
40 £ i}

Combining (1.9) and (1. 10) gives

b T a 2 :
9 b t _
f sinc=(#)dt . / = 2{ ) ar <2
0 Jo t
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In g similar manner we can bound the first integreal in (1.7) by 2 as well so that
sinc(f) € L2(R). n
Let’s look at some other functions in Z2([R).

Example 1.3 (Functions in L2(R)) Determine whether or not the following func-
tions are in L*(R). For those functions in L2(R), compuie their norm.

(a) fr(#) = where n - 01,2, ..
(b} folt) - #2171(#/4), where T(t) is the box function defined in Exampie 1.2
i

(e) fat) N

0, otherwise

t=1

1
=tz

(d) falt) {

I
(),  otherwise

Solution

For f1(1} we have | fL (0 = (27, s0 that

0 A
/!.2'”’ dl = I / (4 dt + lin / 2t
F i—m L Fo—re 0

Both of these integrals diverge  in particular

LEH Il

=G

I3
Tim P08 = Nim -
f—x0 ‘/U fi— o0 2 -+ 1

Thus we see that no monomials are elements of T2 (R). We could generalize part (a)
to easily show that polynomials are not clements of T.°(R).
Since M{t/4) is 0 whenever t & |0,4), we can write [.(t} as

2 .
.f‘z(z‘.-}:{ 2, 0<t <A

0, othernvise

so that

b

- L "'l 10924
|f2{i}|°d£:/ (H)chz/ pa =0
Ji 0 A0

Thus fo(t) € LAHR) and , f2(8)]| = u_}? Computing the modulus of f3(£) gives

12 E t =1
| f4(2)] {

g
0, otherwise

o e} 1 i .
[|f3(£}|2|df: [ ~di = lim [ e = Tim In(F) — o
i A { L e Lo
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Thus f1 ¢ L2(R). Finally, |J4(0)°  t 2 so integruting aver £ > 1 gives

~x i
/ Falt)F e [ t 2t j]im / [ !Hm 1 -1/ 1
g i o~ f —

So we see that f4(1) € LY (RY and || f20)]] = 1. [

The Suppert of a Function
As we will learn in subsequent chapters, the suppaort of a function plays an important
rolc in the theory we develop., We define it now:
Definition 1.5 (Support of a Function) Suppose that f{t) € L*(R). We define the
support of f, denoted supp( f), to be ihe set

supp(f)  {£CR|J() £ 0} (a1

m
Here are some examples to better illustrate Definition 1.5,

Example 1.4 (Examples of Function Support) Find the support of each of the fol-
lowing funclions:
1

fhy (L)
fe) Al

o R
(di o{t) = S e A —2) where e 0, € Zoand 5 ¢ <
b} i)
Solution
We vbserve thut f(1) > 0. so supp(f) = B In Problem 113 you will show that
S0y € L2(R). The box functionN(t) is supported on the interval [0,1). The triangle
Sunction A(L) is supported on the interval ((,2).
The final function is a linear combination of even-imeger translales of triangle

Sunctions. It is zero on the interval (—o0, 0l and g(2k) = 0, k= 1.2,.. S0
o
supplg) = (0.2) L (2 ) U6y U -~ = | J(2h2k +2)
k=1l
In Problem 1 17 you will show that g(t) € L3(R). =

The support ol the functions in Example . 4(b)and (¢) were tintte-length intervals.
We are often interested in [unctions whose supports are contained in a linite- length
interval and we deline this type of support below.
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Definition 1.6 (Functions of Compact Support) Let f(t) C L2(R). We say that f
is compactly supported i supp( f) is contained in a closed interval of finite length.
In this case we sav that the compact support of f is the smallest closed interval |, )
such that suppl f} C [a, b]. This interval is denoted by supp( f). n

We know from Example 1.4 that supp{~} == (0.2). The compact support of A({)
is supp(A) ¢ 10.2], In a similar manner, supp(M} - [0.1].

L%(%) Functions at +oo

When motivating the definition of L?(R}, we stated that we want functions that tend
to Dast > -+oc in such a way that || f||? < ~c. The following proposal shows a
conncetion between the rate of decay and the finite energy of a function in 7. 2{R).

Proposition 1.3 (Integrating the “Tails” of an L%{R) Function) Suppose that {{f) &
L&Y and let ¢ = 0. Then there exists a real number 1 > 0 such that

=L A
. . , 20— 2 .
f_m | £ ()% dt ]; FIGIRE: /“ . FE2dt < e

Before we prove Proposition 1.3, let’s understand what it is saying. Consider the
LA(R) function f4{{) from hxample 1. Q(d) Let s pick ¢ = 107!%. Then Proposi-

tion 1.3 says that for some L > 1), the “1ail” ] | £4(£)]? dt of the integral [ . f4 (£} d¢
|-f

will satisfy
B! T . .
Z (f = 10 = .0000n00ON0R0NN01
r. t

Proof: This proofrequires some ideas from infinite serics in caleulus. Supposc that
¢ = {1 and let’s first consider the integral fooc 2dt. Since f(#) € T2(R), we
know that this integral converges 10 some value 5. Now write the integral as a limit.
For N & M we wrile

o) "
[ isEan= pm f OIS
40 N— O

-1 2 N
- Jim [y j FOFa [
N 1 SN

LH.

hm L/ (£)]? dt

= liti E_ak
N —m
k=0
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k+1
where «y = [ |f()]*dt = 0. Thus we can view the integral as the sum of the
&
(383
series 3 ay and we know that the serics converges 10 5.
k=0
Receall from caleulus that a scrics converges to s iF its sequence of partial sums
N
Sn = > ag converges to s. The formal definition of a convergent sequence says
FA)
that for all ¢ == (J, there exists an Ny & [ such that whenever N = Ny, we have

|sa — sl << €. We use this formal deﬁnition with ¢/2. Thatis, for § = 0, there exists

an Ny & N such that vV == Sy — H| E
In particular, for vV = J\*o we have
€
S, — 8| < 2 (1.12)
But
Nip
SN - 8 z.‘” / t)|2 df ‘
k-1 v
'\'[] o o)
_ Z/ OO dt — / FP |
0
_ [ f)a— / )P dt |
0 1t
o2
Now [ |f(t)dt = J | F{#)i2 d¢, so that we can drop the absolute-valuc symbols
i

and rewrite the last ldumly as

Ny "
I— [ P df - [ oy
B o ] ) - Ny !Z
- /0 FO dt [0 PO de

= /!x:|f(r.J|2da (1.13)
< Ny

Combining (1.12) and (1.13) gives

f IF)2dt < &
No 2

In & simmlar manner (see Problem 1,193, we can find &y > 0 such that

-N
2
./— o | ( | i< 5
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Now choose I to be the bigger of N and N . Then L = Ny, —L <0 — Ny, and from
this we can write

[" O / 0P (1.14)
A 4y =
and )
. L ) - ) p
j |f (R dt < f RO e < (1.15)

Combining {1.14) and (1.13) gives

0 f. i
/{ | ()% dt - / F(DPF At < o | )

— K

and the proofis complete. [

Convergence in L%(R)

In an clementary caleulus class, you undoubtedly talked about sequences and. limits.
We are alse interested in looking at scquences in L2 (IR). We need (o be alittle careful
when describing convergence. It does nol make sense Lo measure convergence at a
point since equivalent fonctions might disagree on some st ol measure ). Since we
arc measuring everylhing using the norm, 1t 18 natural 10 view convergence in this
light as well.

Definition 1.7 (Convergence in L2 (X)) Suppose that f1(#), fa(t). ... is asequence
of functions in T2{R). We say thai { f,{t}}, .« converges to f(1) & L2{R) if for all
¢ = 0, there exists L > O such that whenever n > 1, we have || [ wlt) = f = e

Ifa sequence of functions f, (¢} » 1.2,.. . converges in LA to FiL), we also
say that the sequence of functions converges in norm Lo f{t}.

Other than the use ol the nomm., the definition should ook similar to that of the
(ormal definttion of the linut of a sequence, which is covered in many caleulus books
(sce Stewarl [55], for example). The idea is that no maltter how small a distance © we
pick, we are guaraniced that we can (ind an N = 0 so thal = > & cnsures that the
distance between f,, (¢} and f(#) 1s smaller thun ¢,

Example 1.5 (Convergence in L2(R)) Let [,.(0) == £ T1(1). Show that f,(1) con-
verges (in an L2(R) sense) to (.
Solution

Let ¢ > 0. We note that | 1(#Y* - N(t) and compute

. 172
PELE) - Of (/_ #2001 (1) d;;)

1

-] i
= (/ e clf)
S0

VT
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Now, i we can say how to choose L so that 1/2n+ 1 < c whenrever n > L, we are
done. The neatural thing to do is to sofve the inequality 1/ 20+ 1 < ¢ for n. Ve

obtuin
P /] :
n>—|—=—
24 e

Now the right-hand side is negative when ¢ == 1, and in this case we can chuose any

. . R T
L =0 Thenn > L gives i tn e 1=,
When ¢ =21, we take L % {7'f 1) to complete the proof. ™

In areal analysis class, we study poinfivise convergence of sequences of functions.
Convergenee in norm is quite different, and in Problem .20 vou will investigate the
poinlwise convergence properlics of the sequence of functions from Lxample 1.5,

PROBLEMS

1.f1  Supposc that | f{f}d# < oc. Show that:
i

W [flit a)dt=[fitrdtforanyn e R
i

. .,
by [ font+8)di=— [ fit)dt form, b e B, withm / 0
i 7

& -

1.12  Use the definition (1.6) of sinc{#) in Example 1.2 and LT 6pital’s rule (o show
that /(t}) = sinc”(#) is continuous lor ¢ « # and then show that the maximum value
of fityis 1.

1.13  Delermine whether or not the following functions are clements of L 2(RY. For
thosc Munctions that arc in L2{R), compute Ltheir norms.

@) J(0) ="
I, t>1
®) #(0) _{ 0, 1<1
(c) gt) (L y#2) 472
() A(t) =112} (cos(2rt) + i sin(2mt))
114 Give examples of L*(IR) functons f such that || f{#}|| == 0 and f{#) 5 0 at
() a single point
(b) five points

{c} an infinitec number of points

*1.15  Show that the function f(t) = € LR,
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*1.16 Consider the function

Lot 1y s D f o
5{.‘ — EJ’ - 3; =2 fa

flty=4q 2i—4, 1< 2
0. otherwisc

Show that f{t) € L*(IR).
1.17  Show that the function g(#) from Example 1 4(d) is in L24{R).

1.18 Find the support ol cach of the following lunctions. For those functions f that
are compactly supported, identify supp( f).

@ fit)=e"t
by fo)=T{2 k) A e X
(€) falt) =12 = k). j.k € 7

(e) f(t) =i (L) sinc(st), where » is a positive integer

L

(D folf) = 5 eprlt - 28, where e / 0Lk C Z,
E=D

u(t) = { |f’|’ —l<t<l

0, otherwisc
and 12 is a positive integer

1.19  Conmplete the proof of Proposition 1.3. That is, show that if f(¢} € T.2(R}
and ¢ > 0, there exists an ¥, > 0 such that

N
/ VR dt < /2
't}

1.20  Inlixample 1.5 weshowedthat f,,(t) — #M(¢) convergesinnormto f{#) (.
Noes [, {t) converge pointwise to () forall £ & &7

1.21  Consider the sequence of lunctions

N RS e
=900, otherwise

(a) Show that ¢, (¢) converges in norm to 0.

(b) Show that lim g,(a) = Ofora # £1.

{(¢) Compute lin ¢,(1)and lim g,(—1).

TE—+(2 Th—xC
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1.3 INNER PRODUCTS

Recall that for vectors u, v & IR, withu . IR un ) andv = (e, 0. en )

we deline the inner product as

A

n-v E RITReIS

B—t

Inner Products Defined

We can also define an inner product for functions in £2(R). In some sense it can
be viewed as an extension of the definition above (see Van Fleet |60]). We state the
formal definition of the inner product of two functions f(£). ¢(t) € L={K) at this
time:

Definition 1.8 (The Inner Productin L2 (R)) Ler f(#).g(t) ¢ LAR). Then we
define the ner product of fiL} and ¢(t) as

() gt - /f(f £ et (1.16)

|
Here are some examples ol the inner producis:

Example 1.6 (Computing L?(£) Inner Products) Compute the following inner prod-
Hets:

{a) The triangle function f11) = ~{L) and the box function g(t) = 1) (see
Fxample 1.2)

F—]
) f(1) ={ o

fed J{i)y = Alt+ 1) and git) = {

it 2t
and g(1) = { 0, t<l

s 2mt}, 1< ¢
i otherwise

\I\’

= 1
|

Solution
It is easy to verlfy thai both functions in part (a) are in L2(R) and we also know
that (1) = g(L) since g(1) is real-vatued. Thus we con compule

. 1 -1
LR, T /A(t)l'l[f)dt / ALt} dE / t it 1
S Ay T =

For part (b), g(1) - gl#). We have

frpg | T 1,—u T _u - 17 i
D gy = —i T = = £ dF = —i lim ——‘ i -
A Ju

T—os 221
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For the final inner product, both functions are real-valued and compactly supported
on[—1.1. Note that At + 1) is even and g{1) is odd, so that the product AT+ 1a{0)
is odd. Recall from calculus (see Stewart [53]) that the integral of an odd function
over any finite interval symmetric about zero is zero, Thus (AL 1L gLy =0, =

Properties of Inner Products

Example 1.6(b} illustrales an impertant point aboul the inner product that we have
defined. You should verify that il we had reversed the order of f{#) and g(#), the
resulting inner product would be . On the other hand, in Example 1.6(a) it is easy
to verily that {A(t),11{(#)) = {(#), A()) = 5. Thus we see that the inner product is
not necessarily a commulative operation. The following proposilion describes exaclly

what happens if we commute functions and then compute their inner product.

Proposition 1.4 (The L2(R) Inner Preduct Is Not Commutative) I/ f((}, g{t)are
Junctions in L2(R), then their inner product (1.16) satisfics

L), 1)) 0 )

n
Proaf:  The proof of this proposition is left as Problem 1.24. L]

Since many of the inner products we will compute involve only real-valued func-
tions. 'We have the following simple corollary:

Corollary 1.1 (Inncr Products of Real-Valued L2 (I&) Functions Commute) Supposc
S8, gty € L2(R) and further assume F(1) and g(t) are real-vatued functions. Then

(A0 9(0)) = (o). J (13}

]
Proof:  This simple proofis lcft as Problem | .25, =

One of the nice properties of LZ({IR) is the relationship between the inner product
and the norm. We have the following propesition.

Proposition 1.5 (Relationship Between the L2(I2) Norm and Inner Product) for
Sty € LA(R). we have

1712 = (7). 78] (L17)

Proof: Let f(£) € TA(R). We use (1.1) to write f(£)f() == | f(£){2. Intcgrating
both sides over B gives

/b f(fjmdf / |f”.)|2 Jdt
S S
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The lefi-hand side of this identity is {#(#), f(£)} and the right-hand side is || f (£)] 2.

The next resuit deseribes how the innerproduct is affected by scalar muitiplication,

Proposition 1.6 {Scalar Multiplication and the Inner Product) Supposc that (1)
and (t) ave functions in L2(R), and assume that ¢ € C. Then

{ef(8). g8ty = (10 9lth (1.18)

und
(O eu®) =2 (1), 9(t)) (1.19)
|

Proaf: For (1.18), we have

<d@mmy~ﬁqﬁﬁﬁm:cﬁmeEM=dﬂ&mm

and for (1.19), we have

F(t), eglt ] f(?‘)r g{t)dt - j f(?‘)r;(f) dt = T (f(£), g(th

Tn the sequel we frequently compute inner products of the form { /' (£ — k), g(t — £}
or (f(2t k), g2t £, where k. f € Z and f(t),g(t) € L2(R). The following

propuosition gives reformulations of thu_.c mner produc,t%.

Proposition 1.7 (Translates and Dilates in Inner Products) Supposethat f(#) and
g(t) are functions in L*(R) and k. £,m € 7. Then

(Fie Ryt )= {f{t),g(t - (- k) (1.20)

and
(27— kY, g(27 — )y = 277 {000, gt — (6 — K))) (1.21)
| |

Proof.  Theproololthis proposition is straight{orward and is left as Problem 1.29. =

The Cauchy-Schwarz Inequality

Recall for vectors u, v € RY, (he Cauchy—Sehwarz inequality (sce Strang [56]) states
that
u-v < fjul v

Functions in L#(IR) also satis{y the Cauchy-Schwarz inequality. Before slaling and
proving the Cauchy-Schwarz inequality, we need to relum onee again to the concept
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of equivalent functions and their role in computing inner products. 1f f(1]. y{{) €
L"(IL\J are quli\dl(.,lll we would expect their mmer producis with any other function
h{t) & L*{R) to be the same. The following proposition, siated without proof,
connrms this [act.'

Proposition 1.8 (Integrals of Equivalent Functions) Suppese that f(8), ¢ (4], and
gz (i )are functions in L2{R] with gy (1) = g= (1} except on a sef of measure Zero. Then
HIGRIINERSINTA) -

We are now ready o state the Cauchy -Schwarz incquality for functions m £ ().

Proposition 1.9 (Cauchy-Schwarz Inequality) Suppase that [(0), g(1) < L3R}
Then

[, 90 < 1F- o] (1.22

Proof: First, suppose that

lgtt)l® = / L9t} i = (it} g()h =0

Then by Proposition 1.2 {with g, (1) = g{t}and g2 (8] O}, g(t) = 0 except on a sei
of measure 0. We next employ Pr opomtmn 1.8 to see that {f(t), g(#)y 0 and the
result holds,

Now assume that jg{t)]|? > 0 and for any = € C. consider

O < G f(0) Fzg(t)i® = (JI 4 =), f1D 1 290}
We can cxpand the right-hand side of this identity to write
0= (fQEh FED 0 GF(8),2g0)5 1 {zg(2). (1)) = {20(t} 29{t);

Using Proposition 1.1, Proposition 1.5, and {1.19}, we can rewrite the preeeding
cquation as

O | FOIP 1 EF ) ) 4 20 o) 1 2 el 2 (123)
We now make a judicious choice for z. Since ||y(1)|| # 0, we take
AN

[PAeal i

The second term in (1.23) becomes

HGE NN

(.40 |8 g (0]
G

g2

ERSNt) {1.24)

'The reader interested i the prool ol Propesinon 1.8 should consull an analysis wexl such as Rudin [45].
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and the third (erm in (1.23) 15

— At 1L P — LFEE), g()y)?
T - - g MO o
The tast term in (1,23) can be written ag
oz — S g 2 _ 10, g

Inserting {1.24), (1.25), and (1.26) into {1.23) gives

2 O ). ot

0= flt _
) = ||f (1)” .:g({_)”z ”q(ﬂ |2
O = awre

Adding the sccond term on the night side (o both sides ol the identity above gives

lo(t)?

Finally, we multiply both sides of this tnequality by ||¢(£}]]” o obtain
[F@ g7 < AR - oI

Taking squarc roots of this last inequality gives the desired result. [

< £

We have referred to the space R several times in this chapter. The space R
is a standard example of a vecior space. Basically, a vector space 1s a space where
addition and scalar multiplication obey fundamental propertics. We require the sum
of any (wo vectors, or the product ol a scalar and a vector, to remain in the space.
We also wanl addition o be commulalive, associative, and distnibulive over scalar
multiplication. We wanlt the space to conlain a zere clement and additive inverses
for all clemenis in the space. Scalar multiplication should be associative as well as
distributive over vectors, and we also require a multiplicative identity. Certainly, &
15 an example of a veclor space (sce Stranyg [56] for more details on veclor spaces)
with standard vector addition and real numbers as scalars,

Vector Spaces

We summarize these propertics in the [ollowing formal definiuion ol a vecior space.

Definition 1.9 (Vector Space) Ler V e any space such that addition of elements of
V' and mudtiplication of elements by scalars from a set F are well defined.? Then V
is called a veelor space o lincar space over F if

*The set of scalars F for V is called a fiefd. L'or our purposes, our set of scalars will be either the real or
the complex numbers.
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fa) V iy closed under addition. That is, foralf u,v € V, we henveu+v €V,
b} Addition is commutative and associative. That is, for afl u, v € V, we have
n+v=v+nu
and for allu, v, w € ¥, we have
ut+{v+w)l={u+vj+w
(¢} There exists an additive identity 0 C V so that for afl v C V, we have

v+0=v

(e} Foreachv €V, there exists an additive inverse —v €V so that for alf v € V),
we have
v v (0

e} V is closed under scalar multiplication. That is, for ¢ Z F andv C VY, we have
ev CV.

() Scalar multiplication is associative. That is, for e.d € F and v € 'V, we have

(ed)v = eldv)

) Forallv €V, we havel - v = v,
(h) Addition distributes over scalar multiptication und scalar multiplication dis-
tributes over addition. That is, for w,v € Vand ¢, d € F, we have

e vy e ev

(c4 dyv-.ev | dv

If we review the properties listed in Definition 1.9, it is easy to verify that £ 2(IR)
satisfies properties {b)—(h). You are asked to do so in Problem 1.30. The most
difficult property to verify is the fact that L?(R) is closed under addition. The triangle
incqualily, stated and proved below, ensures that L2 {1%) 18 closed under addition and
is thus a vector space.

Propaosition 1.19 (The Triangle Inequality) Supposethat f{t}, () « L*(IR). Then

17+ 9O < 1701+ gD (127)

Proof:
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Let £(£), g(¢) C L2(TR). We begin by computing

[ F(0) + glt)l|? = (O + gle). S + ()}
NFENP 1 alE) 1 Ll F 1 (gt
S AN I alel ] 1 e, FERL T (e

Now we use the Cauchy—Schwarz incquality on the two inner products in the previous
linc. We have

L7+ (8312 < LI+ BN Nate)s = lall - 1AON+ lg (1
LFCON + 2 F (B gl Jatt)]®
= (IF)I + g1

Taking square roots ol both sides of the previous inequality gives the desired result.

Subspaces

in many applications we are intcrested in special subsets of a vector space V. We will
insist that these subscts carry all the propertics of g veetor space. Such subscls are
known as subspaces.

Definition 110 (Subspace) Suppose that W is any nonempty suhset of a vector space
V. W is catled a subspace of V if whenever w,v C W and o, d are any scalars, we
have enr | dv ¢ W ]

In Problem 1.31 you will show that if W is a subspace of vector space V, then W
is a vector space. Below we give an example ol a subspace.

"

Example 1.7 (An Example of a Subspace) Consider the vector spuce L2(R) and
let W be the set of all piecewise constant functions with possible breakpoints af the
integers with the added condition that each function in W is Zevo vwiside the inferval
| =N, N) for N some positive integer. Show that W is a subspace of V.
Solution

Suppose that [{L), ) € W. Then [ and g must be linear combinations of some
integer transtates of the box function (LY. That is. there exist scalars fcomplex
numbers) ay by, ko= - N, N | such that
Nl A

fity = Z api I (F—- &) and g{i) = Z b C1{L— &)

k= N k= N
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Now for ¢, d € T, we form the function

fmyuﬂm+®w

N- Mol

= erkljﬂ—k}-i-dex f—!\)

fe= | k= N

= Z (cay + dby ) Tt — &)
= N

ard nofe that hil) is a piecewise constant function with possible breakpoints at the
integers and W) = O for L ¢ [N, NY. Since h(1) € W we hove W # U and by
Definition 1.10, we see that W is a subspace of L2(R). n

PROBLEMS
1.22  Compute the following inner products {f{t}. g{t)}:

) J{t) = Aty and g{t) = (1 4+ #7) 12
(b f{t) = g{1) = ¢ I¥ (Compare your answer with Problem 1.13(2))

(©) floy=n{t —kyand g{{) = A{t) where k € Z

1.23  In this problem we illustrate the result of Proposition 1.8. Let A(t) .. ™ (§).

Define the functions ;
. et =0
ﬂ”_{n, £

s ={ {0 117

and
kC -fz.l

(a) Verify that f{#), g{¢), and A(#) arcin L(R) and that f{#) and g{#} arc cquivalent
lunclions.

(b} Show that { f(£), h{t}) = {g(t). h{t)}.

1.24  Prove Proposition 1.4
1.25  Prove Corollary 1.1.

126 Lel f.g € L2(IR). Show that | £{#) +g()||* = | FI)]]* + ||g(#)]|* iland only
(e, gty = 0.

1.27  Verify the Cauchy—Schwarz incquality for f(#) and A{#) in Problem 1.23.

1.28 Find two functions f(7) and ¢{¢) that satis(y the eqmlit} part of the Cauchy—
Schwarz inequality. Thatis, find f (£} and g{¢) so that [{ f{t), g(£)3] == || SO0 le(t)l.
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Can you stale conditions in gencral that guarantee equality in the Cauchy—Schwarz
inequality?

1.29 Prove Proposition 1.7. (Hinf: Substitute for + — % in the first identily and
2™¢ — k in the second identily.)

1.30  Show that L2(IR) satisfics propertics (b)—(h) of Definition 1.9. Since LR
also satisfies the triangle inequality (1.27), we sce that £2(R) is a vector space.

1.31  Supposc that W is a subspace of a vector space V over a set of sealars F =R
or F = . Show that W is a vector space over F.

1.4 BASES AND PROJECTIONS

Our derivation of wavelets depends heavily on the construction of erthonormal bases

for subspaces of L#(R). Recall (see Strang [56]) that a basis for the vector space R &
is a sct of N lincarly independent vectors {ut, ..., u® } that span B This basis is

called orthonormal if ud - u* = O whenever j # k,andu/ - w/ — 1.

Bases

We can casily exlend the ideas of basis and orthornormal basis (o L2({R).

Definition 1.11 {Basis and Orthonormal Basis in L2(R)) Suppose that Wis asub-
space of L*(R) and suppose that {e;(t) o z is a sef of functions in W. We sav that
{ex{f)}uc 2 is o basis for W if the functions span W and are linearly independent.

We say that { e, (1) i 2 iy an orthonormal basis for W if

1, i &

(e5(t), ex(D)) = { P (1.28)

Suppose that W is a subspace of £.2(R) and {e{{}}rc 2 is an orthonormal basis
for W. Since {ep(t) bre = is a basis for W, we can write any f(¢) € W as

ity = Z g (t) (1.29
ke &

where o, € C. It would be quite useful to know more about the coefficients a .
& € Z. We compute the inner product of both sides of (1.29) with ¢ ;{1} 1o obtain

(e, ey (8 :< Z (}.-A;(f;‘:(f):('!J(ﬁ;l>

e T
L

b
= Z axpfex(t). e;{t))
B
= L e [F ep(fle; (D de

ke F
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Since {ep {3} pe = is an orthonormal basis, the integral in cach term of the last identity
s Uunless j k,_ In the case where 7 &, the integral is | and the right-hand side
of the last idenuty reduces to the single term:

tu,j = (f{#), ¢[00 = / Flthey [t)clt] (1.30)

Projections

An orthonormal basis gives us a nice representation of the coeffictents ¢ .. & = Z.
Now suppose that g(#) is an arbitrary function in 7.2(R}. The representation (1.30)
suggests a way Lhat we can approximate g() in the subspace YW, We begin by defining
a profection.

Definition 1.12 (I’rojetti(m) Let W be asubspace of L2 (R}, Then P2 I2(R) = W
is a projection from L2(RY into W if Jor all f{£) € W, we have P{f{1)} = [({). =

Thus a projection is any linear transformation from L * (R} to subspace WV that is an
identity operator for f(#) < W. 1f you have taken a multivariable calculus class, vou
probably learned how to project vectors frem R ? into the subspace W = {¢a | ¢ € R}
where a is some nonzero veclor in R? (sce Stewart [55]). “This is an exampic of a

projection (using the vector space R? instead of L2{IR)) with P{v) = (Irll_flx) a.
A useful way to project (1) & Lz[l\] nto a subspace W is o lake an orthonormal
basis {ep(t}hie = and write

Pla(t)) - > (o) cult)ienlt) (1.31)
ko

We need to show that (1.31) 15 a projection from T.2(TX) into W. To do so, we need
the following auxiliary results. The proofs of both results arc ontlined as exercises.

Praoposition 1.11 ('I'hc Norm of P{g(t}}) Let W he o subspace of L2{R) with or
thonormal basis {ep (O} ke s For glt) € TA{R), the function P(g{(t)) defined in
({.31) satisfies

2L > g, entt)d (1.32)
ke 7
[
Proof: Problem 1.34. [

Proposition 1.12 {(An Upper Bound for ||P(g(t)) )} Let W beasubspaceof L2 (R
with arthonormal basis {ep(t) hee z Then || P{g()}|], where Plg(t)) is dcﬁnvd in
(1.31}, sartisfies

IP(g(eN < Nlgttil (1.33)
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]
Proof:  Problem 1.35. u

Proposition 1.12 tells us that if g(+}) C L2(R), then so is P{g{#)). This fact is
required to cstablish the following result,

Proposition 1.13 (A Projection from L2(R) into W) Let W be asubspace of L*(R)
with erthonormal busis {eg ()Y pe w. Then the function P(g{0}) defined by (1.31) is
a projection from T2(R) into W "

Proof:  Trom Proposition 1.12, we know (hat P(g(#)) © L2(R} whenever g{t) e
T2(T). We need to show that for any f(#} < W, we have P(f(t))  F(t).
Since f(#) & W, we can wrile it as a linear combination of basis tunctions:

HOES PEATA)

R

Then

PR D0 ealt)) ealt)
ke &
= Z (Z ajei{t) enlt) yeg(t)
ke o
: Z Z ay Loy (1), e (1)) endlt)
ke T

Since {e4(f)}eox is an orthonormal basis for YV, the inner product {e;{£), ex(£)) is

i

nonzero only when 7 = L. In this case the inner product is 1. Thus the double sum
in the last identity reduccs to a single sum with § replaced by k. We have

PUW) - 3 arenlt) — £(0)
ko
and the proofis complete. ]

PROBLEMS
1.32  Suppose that {e{t}} is an orthonormal basis tor Z2(R). For L. € 7, . == 0,

L
tet 100y = > aperlt). Show that
h—-T.

I

[Ez3C1

k= .

1.33  Suppose that I is a projection from vector space V' into subspace Y. Show
that P2 = P_ That is, show that forall v € V', we have P¥v = Pv.
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1.34  [xpand the right-hund side of

IP{gNI® (Plat)). Plolt)))

STt en) entt), S talth eatt)) ext)

e & ke &
to pravide a proof of Proposition 1.1 1.

1.35 In this problem you will prove Proposition 1.12. The [ollowing steps will
help you organize the proot. Let g{t} & L2(I2} and suppose that {eg{t)}} ez 15 an
orthonormal basis for subspace W.

IR
(@) letg, ()= 57 {g(t). ex(t}) ex(t). Show that
f——

I
ot)gn ) lar(thg®) - > Kalt).en(t)?
k-5
(b) Usc part {a) to show that

i

g5 = g @I = Nlg@lI* 2 > Kg)end* + llgr )1

k- —L

A
{c) Show that ||gr(1)||* = 5 |{g{t),er(#)3|?. This is a special case of Prob-

lem 1.32.
{d} Usc parts (b) and {¢) to write

L

lg(e) — g * + > Ha®), cultn” = g
b= £
and thus infer that
i
37 o), en (Bl < lg(nl?

k——L

(c) Usc Proposition 1.11 and let I » oo in part (d) to complete the proof.








