
Chapter 1

Getting Started with Adobe AIR
In This Chapter
▶ Understanding exactly what Adobe AIR is

▶ Discovering the significance of a new acronym — RIA

▶ Exploring the AIR security and signing model

▶ Setting up your development environment for Adobe AIR

Web developers, unite! For all too long, Web developers have been

oppressed by the shackles of the browser window, their creativity

stifled by cross-browser compatibility issues, their self-image hurt by the

scoffs of desktop app programmers who trivialize browser-based solutions. . .

But that was then; this is now. Or, to mimic the voiceover from an overly dra-

matic movie trailer, Everything you know about Web development is about to
change. Introducing Adobe AIR. . .

Adobe AIR promises to liberate developers from the snares, toils, and

oppression of their browser-based prisons and enable them to create “rich

Internet applications” (RIAs) for the desktop. In true Braveheart fashion,

maybe you will find yourself shouting from your office or cubicle, “You can

take my life, but you can never take my Adobe AIR!”

Okay, perhaps I am guilty of being just a wee bit over-the-top as I introduce

Adobe AIR, but I hope the melodrama does serve a purpose. It helps show

you that AIR really is not just another flavor of the week. AIR really does pro-

vide a greater freedom to do things that HTML/Ajax, Flash, and Flex develop-

ers can’t do inside the browser.

In this chapter, I introduce you to this “breath of fresh AIR” and get you

started working with it. Viva la RIAs!

CO
PYRIG

HTED
 M

ATERIA
L

8 Par t I: Airing It Out with Adobe AIR

Discovering Adobe AIR
Adobe AIR enables Web developers to create cross-platform desktop applica-

tions using and combining familiar Web technologies that they are already

skilled in — such as HTML, JavaScript, Ajax, Flash, and Flex.

Even though the technologies used to create it are Web based, an AIR appli-

cation looks and feels like a normal Windows or Mac OS X program. It runs

in its own window, has its own icon, and integrates with the menu system

or taskbar. And it generally has the performance you would expect from a

native operating system application. In fact, users will interact with an AIR

app (see Figure 1-1) just the same as they do with any other application on

their desktop.

Creating Internet-savvy apps
An AIR application is technically not standalone. It is actually “powered by”

the Adobe AIR runtime that must be installed on any computer in order to

run the application. Therefore, when an AIR app is launched, the AIR runtime

is automatically loaded behind the scenes prior to the loading of the app.

Figure 1-1:
Analytics
Reporting

Suite
delivers a
traditional

Web appli-
cation to the

desktop.

9 Chapter 1: Get ting Star ted with Adobe AIR

When you create an AIR application, you build the app using Adobe Dreamweaver,

Adobe Flex, Adobe Flash, or any text editor. (In Chapter 2, I show you how to

create a basic HTML-based app in a text editor and Dreamweaver. Chapter 3

shows you how to create a basic app in Flex and Flash.)

As you can see, many parts of the application use Web techniques and tech-

nologies that you’re already used to working with. However, core to Adobe

AIR is an application programming interface (API) that you can tap into to do

real “desktop stuff,” such as get access to local files, open native UI windows,

create menus, and so on. I walk you through the API in Chapter 4.

As you begin to explore the AIR API, you will see that the key strength of

Adobe AIR is not in creating word processors or spreadsheets (although you

can), but rather in enabling Web developers to shed the browser and safely

deploy Internet-savvy apps onto the desktop.

An AIR application is easily delivered to users with a single downloadable

installer (which has an .air extension) regardless of the operating system.

(See Chapter 14 for more on deployment.)

Developers can create Internet-based desktop apps to some extent through

widgets and Java, but both of these technologies have restrictions or limita-

tions that have kept them as niche players. Widgets are intended for limited

single screen, display-oriented purposes (such as a stock ticker). Cross-

platform applications using Java runtime have traditionally suffered in com-

parison to native OS apps — in terms of both performance and “look and

feel” issues. Also, both widgets and Java apps are much weaker in working

with rich media than Flash has been.

In fact, you may want to jump over to Chapter 16 to take a quick look at ten

great AIR applications that help demonstrate the power of the platform.

Peeking inside Adobe AIR runtime
The Adobe AIR runtime may be a relatively new platform, but it actually

embeds three highly mature and stable cross-platform technologies to power

AIR applications. These are the following:

 ✓ WebKit: Used for rendering HTML content inside an AIR app. WebKit is

an open source, cross-platform browser and is the underlying rendering

engine on which Apple’s Safari browser is built.

 WebKit is known for its strong support of W3C standards, such as HTML,

XHTML, Document Object Model (DOM), Cascading Style Sheets (CSS),

and ECMAScript. However, it also provides support for enhanced func-

tionality — enabling the creation of cool stuff such as rounded corners

using CSS. Because you’re developing solely for WebKit and not for every

10 Par t I: Airing It Out with Adobe AIR

browser under the sun, you’re free to take advantage of these nonstan-

dard extensions.

 For more info on WebKit, go to www.webkit.org.

 ✓ Adobe Flash Player: Used for playing Flash media (SWF files). Flash

Player is a cross-platform virtual machine used to run media created in

the Adobe Flash authoring environment and full SWF-based applications

created using Adobe Flex. Flash Player has an embedded JavaScript-like

scripting language called ActionScript 3.

 Inside your app, you can access existing Flash Player API calls as well as

some enhanced functionality for vector-based drawing, multimedia sup-

port (see Chapter 13), and a full networking stack (see Chapter 12).

 ✓ SQLite: A database engine for enabling local database access. It’s an

extremely lightweight, open source, cross-platform SQL database engine

that is embedded in many desktop and mobile products. In contrast to

most SQL databases, it doesn’t require a separate server process, and it

uses a standard file to store an entire database (tables, indexes, and so

on). If you’d like to explore how to work with SQLite to create database

apps, see Chapter 11.

 For more info on SQLite, go to www.sqlite.org.

Figure 1-2 shows an overview of the AIR runtime architecture.

Figure 1-2:
Simplistic

view of
Adobe AIR

runtime.

11 Chapter 1: Get ting Star ted with Adobe AIR

Blurring the lines between
HTML and Flash
Having Flash Player and the WebKit rendering engine integrated inside AIR so

tightly opens many possibilities for AIR developers. An AIR app can consist of

several different possibilities:

 ✓ HTML/JavaScript only

 ✓ HTML and Ajax

 ✓ Flash only

 ✓ Flex only

 ✓ Flash/Flex and HTML

In fact, AIR blurs the lines between Flash media, a Flex app, and a traditional

HTML-based app. In many cases, an AIR application can be a combination of

all these. Consider how these technologies can speak to each other:

 ✓ You can access the Flash Player and ActionScript Library APIs from

within JavaScript. (See Chapter 5 for more details.)

 ✓ ActionScript inside Flash can call JavaScript and access and modify the

HTML DOM. (See Chapter 5.)

 ✓ You can register JavaScript and ActionScript events anywhere — in

Flash, Flex, or JavaScript. (You can thumb over to Chapter 6 to dive fully

into events.)

 Because an AIR app can use all these technologies interchangeably, you can

see that Adobe AIR breaks down the traditional walls that have existed in Web

development architecture.

Understanding the AIR Security Model
One of the concepts that is important for you to understand from the get-go

is application security. Desktop apps get permission in terms of what they

can do and cannot do from the OS and the available permissions of the cur-

rently logged-in user. They receive this level of access because the user

needs to explicitly install the app — effectively telling the computer that the

user trusts the app he or she is about to launch. As a result, native apps have

access to read and write to the local file system and perform other typical

desktop functions.

12 Par t I: Airing It Out with Adobe AIR

Web apps, however, are far more restrictive because of the potentially mali-

cious nature of scripting. Consequently, Web apps limit all local file access,

can perform web-based actions only inside the context of a browser, and

restrict data access to a single domain.

Playing in sandboxes
The hybrid nature of an AIR application puts it somewhere in between

both of these traditional security models. On the one hand, with AIR, you

create a desktop application that runs on top of the normal OS security

layer. Therefore, it can read and write from the local file system. However,

because AIR uses Web technologies that, if unchecked, could be hijacked by

a malicious third party and used in harmful ways when accessing the local

system, Adobe AIR has a security model to guard against such an occurrence.

Specifically, AIR runtime grants permissions to each source or data file in an

AIR application based on its origin and places it into one of two kinds of con-

tainers it calls sandboxes.

The application sandbox contains all content that is installed with the app

inside the home directory of an application. These are typically HTML, XML,

JS, and SWF files. You can think of files inside the application sandbox as

the equivalent of premium frequent flyer members that get full access to the

special airport restaurants. Only these files have access to the AIR API and its

runtime environment.

Adobe AIR does allow you to link in other local and remote content that is

not inside the root directory of the application, but places that content in a

nonapplication sandbox. Content inside the nonapplication sandbox is essen-

tially handled from a security standpoint just as a traditional Web app is, and

is not granted access to the AIR APIs (see Figure 1-3).

Check out Chapter 17 for more on application security and sandboxing.

Additional restrictions within
the application sandbox
AIR places strict restrictions over script importing of remote content and the

dynamic evaluation of JavaScript code — even inside the application sandbox.

Many JavaScript programmers use the eval() function as a way to gener-

ate executable code on the fly. However, if you’re loading data from a remote

source, a hacker could potentially inject malicious code into your app without

your knowledge. To prevent these security vulnerabilities, eval() and other

dynamic code methods are prohibited after the onload event occurs.

13 Chapter 1: Get ting Star ted with Adobe AIR

Figure 1-3:
Sandboxing
is an impor-
tant part of
Adobe AIR

architec-
ture.

Local OS
File I/O, Network,

UI, etc.

Application Sandbox Non-application Sandbox

Root
Directory

Files

Bridge

AIR API

Remote
Files

Local
Files

As it is in Web applications, code being executed inside the application sand-

box is free to load data using Ajax (the XMLHttpRequest object). However,

any content received using XMLHttpRequest is treated purely as data and

cannot be dynamically changed into executable JavaScript code (such as by

using eval()).

Table 1-1 lists the specific restrictions of what can be done inside an applica-

tion sandbox.

Table 1-1 Allowed and Nonallowed JavaScript Activities
Language component Before onload After onload

eval() Permitted. Not permitted after an
application loads, except
when you use with a JSON
type parameter to convert
JSON strings into objects.

document.write() Permitted. Not permitted.

Function constructor Permitted. Not permitted.

(continued)

14 Par t I: Airing It Out with Adobe AIR

Table 1-1 (continued)
Language component Before onload After onload

setTimeout() and
setInterval() timing
functions

Permitted. Not permitted when using
string parameters.

JavaScript protocol URLs
(javascript:)

Not permitted. Not permitted.

innerHTML,
outerHTML properties

Permitted. Attributes of inserted ele-
ments cannot be trans-
formed into executable
code.

XMLHttpRequest Synchronous calls
outside the appli-
cation sandbox
prohibited.

Asynchronous calls trig-
gered in onload always
finish after onload.

Remote URL for a
<script> src
attribute

Not permitted. Not permitted.

Digitally Signing an Application
Because users open their computer to an AIR app, their trust in the software

publisher is crucial. They need to know that you won’t do bad things to their

private data or trash their hard drive. That’s why digital signing is a required

final step of the AIR application development process before you can deploy it.

To provide a degree of confidence and trust, an AIR application must be

signed by a code-signing certificate. There are two types of certificates:

 ✓ Self-signed certificates: “Do-it-yourself” certificates that you can gener-

ate with the AIR SDK and then sign your app with. Self-signed certificates

provide a minimal degree of trust, but because you have no outside

confirmation that you are who you say you are, you are, in effect, tell-

ing users, “Hey, you can trust me. Really. Really!” When users install an

app with a self-signed certificate, they are warned that the publisher is

UNVERIFIED (see Figure 1-4).

 Self-signed certificates are intended mainly for internal use when

debugging and testing your app.

15 Chapter 1: Get ting Star ted with Adobe AIR

Figure 1-4:
Self-signed
certificates

give no
assurance

to users.

 ✓ Commercial code-sign certificates: These certificates are purchased

from a certification authority (CA), such as Verisign and Thawte, who

authenticate your identity. A commercial certificate enables you to

be considered a “trusted” publisher and gives users a much higher

degree of confidence in working with your app. A commercial certificate

enables users to verify the corporate or organizational affiliation of the

application and ensures that users can say, “They are who we thought

they were!” (see Figure 1-5).

 Commercial certificates, however, are not cheap. Fees are generally around

$300 for one year and $549 for two years for a code-sign certificate.

Figure 1-5:
Commercial
certificates

add trust.

16 Par t I: Airing It Out with Adobe AIR

Setting Up Your AIR Development
Environment

As you begin to work with Adobe AIR, you should begin by configuring your

development environment. First, you should install the runtime and SDK.

The SDK comes with two command-line tools that you can use to debug and

deploy Adobe AIR apps:

 ✓ ADL is used for testing purposes only, enabling you to run an app

without installing it.

 ✓ ADT is used for deploying your app. It packages the app into an

installation package.

Adobe also integrates the ability to package AIR apps inside Adobe Flash,

Flex, and Dreamweaver (CS3 and later). However, if you use Dreamweaver,

you should install the AIR extension to enable you to create AIR apps directly

inside the Dreamweaver environment.

The instructions to set up your environment are explained in the sections

that follow.

Installing the Adobe AIR runtime
Adobe AIR runtime is the underlying engine that drives any AIR application.

As a developer, you need the runtime installed on your machine in order to

test and debug your apps. Users also need to download and install it on their

computers in order to run an AIR application.

Fortunately, installing the runtime is a quick, “no brainer” process. To install

it, follow these four steps:

 1. Go to get.adobe.com/air in your browser.

 The Adobe AIR Web page opens.

 2. On the page, click the Download Now button.

 The installer file is downloaded onto your computer.

 3. Double-click the downloaded Adobe AIR Installer to launch the setup

process.

 4. Follow the on-screen instructions to complete the setup.

17 Chapter 1: Get ting Star ted with Adobe AIR

Installing the Adobe AIR SDK
Although the Adobe AIR runtime has a standard installer that you can use for

installing on your computer, installing the SDK involves a few more manual

steps. Follow these instructions to get it working on your computer:

 1. Go to www.adobe.com/products/air/tools/sdk in your browser.

 2. After reading the Adobe AIR SDK license, indicate that you agree with

its terms by selecting the check box.

 3. Click the download link appropriate for your computer (Windows or Mac).

 The compressed SDK file — AdobeAIRSDK.zip (Windows) or

AdobeAIRSDK.dmg (Mac) is downloaded to your machine.

 4. Create a folder on your machine for the SDK.

 I recommend something easy such as c:\airsdk for Windows or /
Users/[username]/airsdk for Mac.

 5. Uncompress the SDK file and copy the folders and files into the SDK

folder you created in Step 4.

 The directory structure under your SDK folder (for example, c:\
airsdk) will look like this:

\bin

\frameworks

\lib

\runtime

\samples

\src

\templates

 You now need to add the bin subdirectory to your system path before

being able to execute the SDK utilities. Follow the appropriate steps

below, depending on your operating system.

Setting the environment path in Windows Vista
 1. Press the Windows key and the Pause/Break key at the same time.

 The System section of the Control Panel is displayed.

18 Par t I: Airing It Out with Adobe AIR

 2. Click the Advanced System Settings link.

 A User Account Control dialog box is displayed.

 3. If required, enter the password for an Administrator account.

 4. Click the Continue button.

 5. Click the Advanced tab in the System Properties dialog box.

 6. Click the Environment Variables button.

 7. Edit the system variable named Path.

 8. At the far right end of the existing path value, type a semicolon and

then the path for the bin subdirectory of the Adobe AIR SDK.

 9. Test the new path by opening a new Console window and typing adt

at the command prompt.

 If you see a listing of the various usage options available when calling

the utility, then you know you have successfully installed the SDK. If not,

go back and check to ensure that you correctly added the SDK bin path.

Setting the environment path in Windows XP
 1. Press the Windows key and the Pause/Break key at the same time.

 The System Properties dialog box is displayed.

 2. Click the Advanced tab in the System Properties dialog box.

 3. Click the Environment Variables button.

 4. Edit the system variable named Path.

 5. At the far right end of the existing path value, type a semicolon and

then the path for the bin subdirectory of the Adobe AIR SDK.

 6. Test the new path by opening a new Console window and typing adt

at the command prompt.

 If you see a listing of the various usage options available when calling

the utility, you know you have successfully installed the SDK. If not, go

back and check to ensure that you correctly added the SDK bin path.

Setting the system path in Mac OS X
Follow these steps to add the path of the AIR SDK to your system path:

 1. Open the Terminal application in your /Applications/Utilities

folder.

 By default, you will be in your home directory.

19 Chapter 1: Get ting Star ted with Adobe AIR

 2. Enter ls –la at the command prompt.

 Terminal will display a list of all files in your home directory.

 3. Check to see whether a file called .profile exists.

 If so, go on to Step 5. Otherwise, go to Step 4.

 4. If needed, create the .profile file by typing touch .profile at the com-

mand prompt.

 5. Type open -a TextEdit .profile at the command prompt.

 6. Add your AIR SDK bin subdirectory to the export PATH=$PATH:

line.

 Here’s how mine looks:

export PATH=$PATH:/Users/rich/airsdk/bin

 If you already have an export PATH line, add the SDK bin folder to the

far right, separating it with a semicolon. For example:

export PATH=$PATH:/usr/local/bin;/Users/rich/airsdk/
bin

 7. Save the file.

 8. Quit Terminal.

 9. Restart your computer.

 10. Open Terminal.

 11. Type the following in a Terminal window to load the new settings:

. .profile

 12. Confirm the path by typing echo $PATH at the command prompt.

 You should see the SDK bin path in the output line.

 13. Test the SDK installation by typing adt at the command prompt.

 If you see a listing of the various usage options available when calling

the utility, you know you have successfully installed the SDK. If not, go

back and check to ensure that you correctly added the SDK bin path.

Prepping Dreamweaver and Flash for AIR
If you use Dreamweaver or Flash CS3 or higher, you can package and preview

applications directly inside the authoring environment, eliminating the need

to use the command-line SDK tools.

20 Par t I: Airing It Out with Adobe AIR

To do so, begin by going to www.adobe.com/products/air/tools and

downloading the appropriate software. For Dreamweaver, Adobe provides an

MXP extension that you can install using the Adobe Extension Manager. For

Flash CS3, you need to install a software update to enable this functionality.

