
Part I

Fundamentals of
Professional
Development

Chapter 1: Introduction to Object-Oriented Programming

Chapter 2: Unifi ed Modeling Language (UML)

Chapter 3: Putting Objects to Work

Chapter 4: Design Patterns

Chapter 5: Collections

Chapter 6: Database Abstraction with PDO

c01.indd 1c01.indd 1 3/5/09 12:42:49 PM3/5/09 12:42:49 PM

CO
PYRIG

HTED
 M

ATERIA
L

c01.indd 2c01.indd 2 3/5/09 12:42:50 PM3/5/09 12:42:50 PM

 Introduction to Object -
 Oriented Programming

 Object - oriented (OO) software development can be a confusing topic for developers who create
primarily procedural code, but it doesn ’ t need to be. In this chapter, you ’ ll explore some of the
basic theory behind OO, and learn its (sometimes daunting) multisyllabic terminology. You ’ ll also
learn why you should be interested in OO techniques, how they can greatly improve the speed
with which you develop complex applications, and see the ease with which you can modify those
applications.

 The next few chapters expand on the ideas presented here and familiarize you with some slightly
more advanced topics. If you have already had exposure to OO development outside of PHP 6,
you can probably skip this chapter and the next. However, this material serves as a good review, so
it is recommended that you read it through.

 What Is Object - Oriented Programming?
 Object - oriented programming (OOP) requires a different way of thinking about how you construct
your applications. Objects enable you to more closely model in code the real - world tasks,
processes, and ideas that your application is designed to handle. Instead of thinking about an
application as a thread of control that passes chunks of data from one function to the next, an OOP
approach enables you to model the application as a set of collaborating objects that independently
handle certain activities.

 As an analogy, when a house is being constructed, the plumbers deal with the pipes, and
the electricians deal with the wires. The plumbers don ’ t need to know whether the circuit in the
bedroom is 10 amps or 20 amps. They must concern themselves only with their own activities.
A general contractor ensures that each subcontractor is completing the work that needs to be
accomplished, but isn ’ t necessarily interested in the particulars of each task. An OOP approach is
similar in that each object hides from the others the details of its implementation. How it does its

c01.indd 3c01.indd 3 3/5/09 12:42:50 PM3/5/09 12:42:50 PM

Part I: Fundamentals of Professional Development

4

job is irrelevant to the other components of the system. All that matters is the service that the object is
able to provide.

 The concepts of classes and objects, and the ways in which you can leverage these ideas in the
development of software, are the fundamental ideas behind OOP. This is, in a sense, the opposite of
procedural programming, which is programming using functions and global data structures. As you ’ ll
see, an OO approach provides significant benefits over procedural programming and (with the new
implementation of OO support that first appeared in PHP5, and was further improved in PHP6) some
large performance boosts as well.

 OOP Advantages
 One of the main benefits of OOP is the ease with which you can translate individual business
requirements into individual modules of code. Because an OOP approach enables you to model your
application based on the idea of real - world objects, you can often identify a direct correlation between
people, things, and concepts, and equivalent classes. These classes have the same properties and
behaviors as the real - world concepts they represent, which helps you to quickly identify what code must
be written and how different parts of the application must interact.

 A second benefit of OOP is code reuse. You frequently need the same types of data in different places in
the same application. For example, an application that enables a hospital to manage its patient records
would definitely need a class called Person . A number of people are involved in patient care — the
patient, the doctors, the nurses, hospital administrators, insurance claims people, and so on. At each step
in the care of the patient, that patient ’ s record requires a note about which person was performing a
given action (such as prescribing medicine, cleaning wounds, or sending a bill to an insurance carrier)
and verifying that the person is allowed to perform that action. By defining a generic class called Person
that encompasses all the properties and methods common to all these people, you get an enormous
amount of code reuse that isn ’ t always possible in a procedural approach to programming.

 What about other applications? How many applications can you think of that, at some point, handle
information about individuals? Probably quite a few. A well - written Person class could easily be copied
from one project to another with little or no change, instantly giving you all the rich functionality
required for dealing with information about people that you developed previously. This is one of the
biggest benefits of an OO approach — the opportunities for code reuse within a given application, as
well as across different projects.

 Another OOP advantage comes from the modularity of classes. If you discover a bug in your Person
class, or you want to add to or change the way that class functions, you have only one place to go. All
the functionality of that class is contained in a single file. Any processes of the application that rely on
the Person class are immediately affected by changes to it. This can vastly simplify the search for bugs,
and makes the addition of features a relatively painless task.

 A Real - World Example
 They might seem trivial in a smaller application, but in a more complex software architecture, the
benefits of modularity can be enormous. One of the authors of this book worked on a project involving
more than 200,000 lines of procedural PHP code. Easily, 65 percent of the time spent fixing bugs was
devoted to uncovering where certain functions were located and determining which data interacted with

c01.indd 4c01.indd 4 3/5/09 12:42:50 PM3/5/09 12:42:50 PM

Chapter 1: Introduction to Object-Oriented Programming

5

which functions. A subsequent rewrite of that software in an OO architecture resulted in dramatically
less code. Had the application been implemented in such a manner in the first place, it would have
resulted in not only less development time from the outset, but also the discovery of fewer bugs (the
smaller the amount of code, the fewer the opportunities for problems) and a faster turnaround time on
bug fixes.

 Because an OO approach easily lends itself to a system of clearly documenting the structure of an
application (see Chapter 2), learning the structure of an existing application is much easier when you are
new to the development team. In addition, you have a framework to aid you in determining the
appropriate location for new functionality you might develop.

 Larger projects often have a multimember software development team, usually composed of
programmers with varying degrees of ability. Here, too, an OO approach has significant benefits over a
procedural approach. Objects hide the details of their implementation from the users of those objects.
Instead of needing to understand complex data structures and all the quirks of the business logic, junior
members of the team can (with just a little documentation) begin using objects created by more
experienced members. The objects themselves are responsible for triggering changes to data or the state
of the system.

 When the large application mentioned previously was still written using procedural code, new members
of the software development team often took up to two months to learn enough about the application to
be productive. After the software was rebuilt using objects, new members of the team usually took no
more than a couple of days to begin making substantial additions to the code base. They were able to use
even the most complex objects quickly because they did not need to fully understand the particulars of
how the functionality contained within those objects was implemented.

 Now that you have a good idea about why you should consider using an OO paradigm as your
programming method of choice, you should read the next few sections to gain a better understanding of
the fundamental concepts behind OO. If all goes well, through the course of the next two chapters you
will begin to see the benefits of this approach for yourself.

 Understanding OOP Concepts
 This section introduces the primary concepts of object - oriented programming and explores how they
interact; Chapter 3 looks at the specifics of implementing them in PHP6. This chapters covers the
following topics:

 Classes — The “ blueprints ” for an object and the actual code that defines the properties and
methods

 Objects — Running instances of a class that contain all the internal data and state information
needed for your application to function

 Inheritance — The ability to define a class of one kind as being a subtype of a different kind of
class (much the same way a square is a kind of rectangle)

 Polymorphism — Allows a class to be defined as being a member of more than one category of
classes (just as a car is “ a thing with an engine ” and “ a thing with wheels ”)

❑

❑

❑

❑

c01.indd 5c01.indd 5 3/5/09 12:42:51 PM3/5/09 12:42:51 PM

Part I: Fundamentals of Professional Development

6

 Interfaces — A way of specifying that an object is capable of doing something without actually
defining how it is to be done (e.g., a dog and a human are “ things that walk, ” but they do it very
differently)

 Encapsulation — The ability of an object to protect access to its internal data

 If any of these terms seem difficult to understand, don ’ t worry. The material that follows will clarify
everything. Your newfound knowledge may even completely change the way you approach your
software development projects.

 Classes
 In the real world, objects have characteristics and behaviors. A car has a color, a weight, a manufacturer,
and a gas tank of a certain volume. Those are its characteristics. A car can accelerate, stop, signal for a
turn, and sound the horn. Those are its behaviors. Those characteristics and behaviors are common to all
cars. Although two particular cars in the same parking lot may have different colors, all cars have a color.
Using a construct known as a class, OOP enables you to establish the idea of a car as being something
with all those characteristics. A class is a unit of code (composed of variables and functions) that
describes the characteristics and behaviors of all the members of a set. A class called Car would describe
the properties and methods common to all cars.

 In OO terminology, the characteristics of a class are known as its properties . Properties have a name and a
value. Some allow their value to be changed; others do not. For example, in the Car class, you would
probably have such properties as color and weight . Although the color of the car can be changed by
giving it a new paint job, the tare weight of the car (without cargo or passengers) is a fixed value.

 Some properties represent the state of the object. State refers to those characteristics that change because
of certain events but are not necessarily directly modifiable on their own. In an application that simulates
vehicle performance, the Car class might have a property called velocity . The velocity of the car is not
a value that can be changed on its own, but rather is a by - product of the amount of fuel being sent to the
engine, the performance characteristics of that engine, and the terrain over which the car is traveling.

 The behaviors of a class are known as its methods . Methods of classes are syntactically equivalent to
functions found in traditional procedural code. Just like functions, methods can accept any number of
parameters, each of any valid data type. Some methods act on external data passed to them as
parameters, but they can also act on the properties of their object, either using those properties to inform
actions made by the method (such as when a method called accelerate examines the remaining
amount of fuel to determine whether the car is capable of accelerating) or to change the state of the object
by modifying values such as the velocity of the car.

 Objects
 To begin with, you can think of a class as a blueprint for constructing an object. In much the same way
that many houses can be built from the same blueprint, you can build multiple instances of an object
from its class; but the blueprint doesn ’ t specify details such as the color of the walls or the type of
flooring. It merely specifies that those things will exist. Classes work much the same way. The class
specifies the behaviors and characteristics the object will have, but not necessarily the values of those
characteristics. An object is a concrete entity constructed using the blueprint provided by a class. The

❑

❑

c01.indd 6c01.indd 6 3/5/09 12:42:52 PM3/5/09 12:42:52 PM

Chapter 1: Introduction to Object-Oriented Programming

7

idea of a house is analogous to a class. Your house (a specific instance of the idea of a house) is analogous
to an object.

 With a blueprint in hand and some building materials, you can construct a house. In OOP, when you use
the class to build an object, this process is known as instantiation . Instantiating an object requires two
things:

 A memory location into which to load the object. This is automatically handled for you by PHP.

 The data that will populate the values of the properties. This data can come from a database, a
flat text file, another object, or some other source.

 A class can never have property values or state. Only objects can. You must use the blueprint to build the
house before you can give it wallpaper or vinyl siding. Similarly, you must instantiate an object from
the class before you can interact with its properties or invoke its methods. Classes are manipulated at
design time when you make changes to the methods or properties. Objects are manipulated at run - time
when values are assigned to their properties, and their methods are invoked. The problem of when to
use the word class and when to use the word object is something that often confuses those new to OOP.

 After an object is instantiated, it can be put to work implementing the business requirements of the
application. Let ’ s look at exactly how to do that in PHP.

 Creating a Class
 Starting with a simple example, save the following in a file called class.Demo.php :

 < ?php

 class Demo {

 }

? >

 There you have it — the Demo class. Although not terribly exciting just yet, this is the basic syntax for
declaring a new class in PHP. Use the keyword class to let PHP know you ’ re about to define a new
class. Follow that with the name of the class and braces to indicate the start and end of the code for
that class.

 It ’ s important to have a clearly defined convention for organizing your source code files. A good rule to
follow is to put each class into its own file and to name that file class.[ClassName].php .

 You can instantiate an object of type Demo like this:

 < ?php

 require_once(‘class.Demo.php’);

 $objDemo = new Demo();

? >

❑

❑

c01.indd 7c01.indd 7 3/5/09 12:42:52 PM3/5/09 12:42:52 PM

Part I: Fundamentals of Professional Development

8

 To instantiate an object, first ensure that PHP knows where to find the class declaration by including the
file containing your class (class.Demo.php in this example); then invoke the new operator and supply
the name of the class, followed by opening and closing parentheses. The return value of this statement is
assigned to a new variable, objDemo in this example. Now you can invoke the $objDemo object ’ s
methods and examine or set the value of its properties — if it actually has any.

 Even though the class you ’ ve created doesn ’ t do much of anything just yet, it ’ s still a valid class
definition.

 Adding a Method
 The Demo class isn ’ t particularly useful if it isn ’ t able to do anything, so let ’ s look at how you can create a
method. Remember, a method of a class is basically just a function. By coding a function inside the
braces of your class, you ’ re adding a method to that class. Here ’ s an example:

 < ?php

 class Demo {

 function sayHello($name) {

 print “Hello $name!”;

 }

 }

? >

 An object derived from your class is now capable of printing a greeting to anyone who invokes the
 sayHello method. To invoke the method on your $objDemo object, you need to use the operator - > to
access the newly created function:

 < ?php

 require_once(‘class.Demo.php’);

 $objDemo = new Demo();

 $objDemo- > sayHello(‘Steve’);

? >

 The object is now capable of printing a friendly greeting. The - > operator is used to access all methods
and properties of your objects.

 For readers who have had exposure to OOP in other programming languages, note that the - > operator
is always used to access the methods and properties of an object. PHP does not use the dot operator (.)
in its OO syntax at all.

 Adding a Property
 Adding a property to your class is just as easy as adding a method. You simply declare a variable inside
the class to hold the value of the property. In procedural code, when you want to store some value, you
assign that value to a variable. In OOP, when you want to store the value of a property, you also use a
variable. This variable is declared at the top of the class declaration, inside the braces that bracket the

c01.indd 8c01.indd 8 3/5/09 12:42:52 PM3/5/09 12:42:52 PM

Chapter 1: Introduction to Object-Oriented Programming

9

class ’ s code. The name of the variable is the name of the property. If the variable is called $color , you
will have a property called color .

 Open the class.Demo.php file and add the following highlighted code:

 < ?php

 class Demo {

 public $name;

 function sayHello() {

 print “Hello $this- > name!”;

 }

 }

? >

 This new variable, called $name , is all you have to do to create a property of the Demo class called name .
To access this property, you use the same - > operator as that of the previous example, along with the
name of the property. The rewritten sayHello method shows how to access the value of this property.

 Create a new file called testdemo.php and add the following:

 < ?php

 require_once(‘class.Demo.php’);

 $objDemo = new Demo();

 $objDemo- > name = ‘Steve’;

 $objAnotherDemo = new Demo();

 $objAnotherDemo- > name = ‘Ed’;

 $objDemo- > sayHello();

 $objAnotherDemo- > sayHello();

? >

 Save the file and then open it in your Web browser. The strings “ Hello Steve! ” and “ Hello Ed! ” print to
the screen.

 The keyword public is used to let the class know that you want to have access to the following variable
from outside the class. Some member variables of the class exist only for use by the class itself and
should not be accessible to external code; these variables are declared as private or protected (more
on that later). In this example, you want to be able to set and retrieve the value of the property name .
Note that the way the sayHello method works has changed. Instead of taking a parameter, it now
fetches the name value from the property.

 You use the variable $this so that the object can get information about itself. You might have multiple
objects of a class, for example, and because you don ’ t know in advance what the name of an object
variable will be, the $this variable enables you to refer to the current instance.

c01.indd 9c01.indd 9 3/5/09 12:42:53 PM3/5/09 12:42:53 PM

Part I: Fundamentals of Professional Development

10

 In the previous example, the first call to sayHello prints “ Steve ” and the second call prints “ Ed ” . This
is because the $this variable allows each object to access its own properties and methods without
having to know the name of the variable that represents it in the exterior application. Previously, you
learned that some properties influence the action of certain methods, such as the example in which
the accelerate method of the Car class needs to examine the amount of fuel remaining. The code
inside accelerate would use code such as $this - > amountOfFuel to access this property.

 When accessing properties, you need only one $. The syntax is $obj - > property , not $obj -
 > $ property. This fact often causes confusion for those new to PHP. The property variable is declared as
public $property and accessed using $obj - > property .

 In addition to the variables that store the values for the properties of the class, other variables may be
declared for use by the internal operations of the class. Both kinds of data are collectively referred to as
the class ’ s internal member variables . Some of these are accessible to code outside the class in the form
of properties. Others are not accessible and are strictly for internal housekeeping. For example, if the
 Car class needed to get information from a database for whatever reason, it might keep a database
connection handle in an internal member variable. This database connection handle is obviously not a
property of the car, but rather something the class needs to carry out certain operations.

 Protecting Access to Member Variables
 As the previous example shows, you can set the value of the name property to just about anything you
want — including an object, an array of integers, a file handle, or any other nonsensical value.
However, you don ’ t get an opportunity to do any sort of data validation or update any other values
when the name property is set.

 To work around this problem, always implement your properties in the form of functions called
get[property name] and set[property name] . Such functions are known as accessor methods ,
and are demonstrated in the following example.

 Change class.Demo.php as shown here:

 < ?php

class Demo {

 private $_name;

 public function sayHello() {

 print “Hello “ . $this- > getName() . “!”

 }

 public function getName() {

 return $this- > _name;

 }

 public function setName($name) {

 if(!is_string($name) || strlen($name) == 0) {

 throw new Exception(“Invalid name value!”);

 }

 $this- > _name = $name;

 }

}

? >

c01.indd 10c01.indd 10 3/5/09 12:42:53 PM3/5/09 12:42:53 PM

Chapter 1: Introduction to Object-Oriented Programming

11

 Edit testdemo.php as shown here:

 < ?php

require_once(‘class.Demo.php’);

$objDemo = new Demo();

$objDemo- > setName(‘Steve’);

$objDemo- > sayHello();

$objDemo- > setName(37); //would trigger an error

? >

 As you can see, the member access level of name has changed from public to private and has been
prefixed with an underscore. The underscore is a recommended naming convention to indicate private
member variables and functions; however, it is merely a convention — PHP does not require it. The
keyword private protects code outside the object from modifying this value. Private internal member
variables are not accessible from outside the class. Because you can ’ t access these variables directly,
you ’ re forced to use the getName() and setName() accessor methods to obtain this information,
ensuring that your class can examine the value before allowing it to be set.

 In this example, an exception is thrown if an invalid value is supplied for the name property.
Additionally, the public access specifier for the functions has been added. Public is the default visibility
level for any member variables or functions that do not explicitly set one, but it is good practice to
always explicitly state the visibility of all the members of the class.

 A member variable or method can have three different levels of visibility: public, private, and protected.
 Public members are accessible to any and all code. Private members are accessible only to the class itself.
These are typically items used for internal housekeeping, and might include such things as a database
connection handle or configuration information. Protected members are available to the class itself and to
classes that inherit from it. (Inheritance is defined and discussed in detail later in this chapter.)

 By creating accessor methods for all your properties, you make it much easier to add data validation or
new business logic, or make other changes to your objects later. Even if the current business
requirements for your application involve no data validation of a given property, you should still
implement that property with get and set functions so that you can add validation or business logic
functionality in the future.

 Always use accessor methods for your properties. Changes to business logic and data validation
requirements in the future will be much easier to implement.

 Initializing Objects
 For many of the classes you will create, you will need to do some special setup when an object of that
class is first instantiated. You might need to fetch some information from a database or initialize some
property values, for example. By creating a special method called a constructor , implemented in PHP
using a function called _construct() , you can perform any activities required to instantiate the object.
PHP will automatically call this special function when instantiating the object.

c01.indd 11c01.indd 11 3/5/09 12:42:54 PM3/5/09 12:42:54 PM

Part I: Fundamentals of Professional Development

12

 For example, you could rewrite the Demo class in the following way:

 < ?php

class Demo {

 private $name;

 public function __construct($name) {

 $this- > name = $name;

 }

 function sayHello() {

 print “Hello $this- > name!”;

 }

}

? >

 The _construct function will be automatically invoked when you instantiate a new object of class
 Demo . Note that you will need to update testdemo.php to pass the name in the constructor, rather than
in the setter method.

 In PHP 4, object constructors were functions with the same name as the class. PHP version 5 changed
this to use a unified constructor scheme. For backward compatibility, PHP first looks for a function
called __ construct , but if none is found, it will still look for a function with the same name as
the class (public function Demo() in the preceding example). While this backward compatibility
has been maintained in PHP 6, there is no guarantee it will be preserved in future versions.

 If you have a class that does not require any special initialization code to be run, you don ’ t need to create
a constructor. As you saw in the first version of the Demo class, PHP automatically does what it needs to
do to create that object. Create a constructor function only when you need one.

 Destroying Objects
 The object variables that you create are removed from system memory when the requested page has
completed running, when the variable falls out of scope, or when it is explicitly set to null. In PHP 6, you
can trap the destruction of the object and take actions when that happens. To do so, create a function
called __destruct with no parameters. Before the object is destroyed, this function is called
automatically, if it exists.

 Calling this function gives you the opportunity to perform any last - minute clean - up (such as closing file
handles or database connections that might have been opened by the class), or any other last - minute
housekeeping that might be needed before the object is destroyed.

 The following example fetches the properties of an object from a database. If any properties of the object
are changed, they are automatically saved back to the database when the object is destroyed. This
eliminates the need to explicitly call a save method. The destructor also closes the open database
connection handle.

 As with most of the database examples in this book, this one uses PostgreSQL as its platform. The
authors firmly believe that the advanced features, transaction support, and robust stored procedure
mechanism of PostgreSQL make it a superior alternative to MySQL and other open - source relational
database management systems (RDBMSs) for large - scale enterprise software development. If you don ’ t

c01.indd 12c01.indd 12 3/5/09 12:42:54 PM3/5/09 12:42:54 PM

Chapter 1: Introduction to Object-Oriented Programming

13

have a PostgreSQL environment at your disposal, or if you prefer MySQL (as many do), feel free to make
the appropriate modifications for the database platform you use.

 Create a table called “ widget ” using the following SQL statement:

CREATE TABLE “widget” (

 “widgetid” SERIAL PRIMARY KEY NOT NULL,

 “name” varchar(255) NOT NULL,

 “description” text

);

 Insert some data:

INSERT INTO “widget” (“name”, “description”)

VALUES(‘Foo’, ‘This is a footacular widget!’);

 Create a file called class.Widget.php and enter the following code:

 < ?php

class Widget {

 private $id;

 private $name;

 private $description; private $hDB;

 private $needsUpdating = false;

 public function __construct($widgetID) {

 //The widgetID parameter is the primary key of a

 //record in the database containing the information

 //for this object

 //Create a connection handle and store it in a private member variable

 //This code assumes the DB is called “parts”

 $this- > hDB = pg_connect(‘dbname=parts user=postgres’);

 if(! is_resource($this- > hDB)) {

 throw new Exception(‘Unable to connect to the database.’);

 }

 $sql = “SELECT \”name”, \”description\” FROM widget WHERE widgetid =

 $widgetID”;

 $rs = pg_query($this- > hDB, $sql);

 if(! is_resource($rs)) {

 throw new Exception(“An error occurred selecting from the database.”);

 }

 if(! pg_num_rows($rs)) {

 throw new Exception(‘The specified widget does not exist!’);

 }

 $data = pg_fetch_array($rs);

 $this- > id = $widgetID;

c01.indd 13c01.indd 13 3/5/09 12:42:55 PM3/5/09 12:42:55 PM

Part I: Fundamentals of Professional Development

14

 $this- > name = $data[‘name’];

 $this- > description = $data[‘description’];

 }

 public function getName() {

 return $this- > name;

 }

 public function getDescription() {

 return $this- > description;

 }

 public function setName($name) {

 $this- > name = $name;

 $this- > needsUpdating = true;

}

 public function setDescription($description) {

 $this- > description = $description;

 $this- > needsUpdating = true;

 }

 public function __destruct() {

 if($this- > needsUpdating) {

 $sql = ‘UPDATE “widget” SET ‘;

 $sql .= “\”name\” = ‘” . pg_escape_string($this- > name) . “’, “;

 $sql .= “\”description\” = ‘” .

 pg_escape_string($this- > description) . “’”;

 $sql .= “WHERE widgetID = “ . $this- > id;

 $rs = pg_query($this- > hDB, $sql);

 }

 //We ’ re done with the database. Close the connection handle.

 pg_close($this- > hDB);

 }

}

? >

 The constructor to this object opens a connection to a database called parts using the default super - user
account postgres . This connection handle is preserved in a private member variable for use later.
The ID value passed as a parameter to the constructor is used to construct a SQL statement that
fetches the information for the widget with the specified primary key in the database. The data from
the database is then assigned to private member variables for use with the get and set functions. Note
that if anything should go wrong, the constructor throws exceptions, so be sure to wrap any attempts to
construct a Widget object in try... catch blocks.

 The two accessor methods, getName() and getDescription(), enable you to fetch the values of the
private member variables. Similarly, the setName() and setDescription() methods enable you to
assign a new value to those variables. Note that when a new value is assigned, the needsUpdating
value is set to true . If nothing changes, then nothing needs to be updated.

c01.indd 14c01.indd 14 3/5/09 12:42:55 PM3/5/09 12:42:55 PM

Chapter 1: Introduction to Object-Oriented Programming

15

 To test this, create a file called testWidget.php with the following content:

 < ?php

require_once(‘class.Widget.php’);

 try {

 $objWidget = new Widget(1);

 print “Widget Name: “ . $objWidget- > getName() . “ < br > \n”;

 print “Widget Description: “ . $objWidget- > getDescription() . “ < br > \n”;

 $objWidget- > setName(‘Bar’);

 $objWidget- > setDescription(‘This is a bartacular widget!’);

 } catch (Exception $e) {

 die(“There was a problem: “ . $e- > getMessage());

 }

? >

 Access this file in your Web browser. The first time it runs, the output should be something like the
following:

Widget Name: Foo

Widget Description: This is a footacular widget!

 Any subsequent call should display as follows:

Widget Name: Bar

Widget Description: This is a bartacular widget!

 Look at how powerful this technique can be. You can fetch an object from the database, change a
property of that object, and automagically write the changed information back to the database with just a
few lines of code in testWidget.php . If nothing changes, you don ’ t need to go back to the database, so
you save load on the database server and improve the application ’ s performance.

 Users of the object do not necessarily need to understand its internals. If a senior member of the software
development team wrote the Widget class, he or she could give this object to a junior member, who
perhaps doesn ’ t understand SQL as well, and the junior member of the team could put this object to use
without any knowledge whatsoever of where the data comes from or how to save changes to it. In fact,
you could change the data source from a PostgreSQL database to a MySQL database or even an XML file
without the junior team member ever knowing or having to touch any of the code that uses this class.

 Inheritance
 If you were creating an application to handle inventory at a car dealership, you would probably need
classes such as Sedan , PickupTruck , and MiniVan that would correspond to the same types of
automobiles in the dealer ’ s inventory. Your application would need not only to show how many of these
items you have in stock, but also to report on the characteristics of these vehicles so that the salespeople
could give the information to customers.

c01.indd 15c01.indd 15 3/5/09 12:42:56 PM3/5/09 12:42:56 PM

Part I: Fundamentals of Professional Development

16

 A sedan is a four - door car, and you would probably want to record the back - seat space and the trunk
capacity. A pickup truck doesn ’ t have a trunk, but does have a cargo bed with a certain capacity, and the
truck itself has a towing capacity (the maximum weight of any cargo that can be safely carried). For a
minivan, you would probably need to list the number of sliding doors (either one or two) and the
number of seats inside.

 However, each of these vehicles is really just a different type of automobile, and as such would share
a number of characteristics in your application (such as color, manufacturer, model, year, vehicle
identification number, and so on). To ensure that each of the classes has these same properties, you could
just copy the code that creates those properties into each of the files containing your class definitions.
As mentioned earlier in this chapter, one of the benefits of an OOP approach is code reuse. Therefore, of
course, you don ’ t need to copy code, but instead can reuse the properties and methods of these classes
through a process called inheritance . Inheritance is the ability for one class to assume the methods and
properties of a parent class.

 Inheritance enables you to define a base class, in this case Automobile . You can say that other classes are
also a type of Automobile , and as such have all the same properties and methods that all Automobile s
have. Because a Sedan is an Automobile , it therefore automatically inherits everything defined by the
 Automobile class without your having to copy any code. That way, you need to write only the
additional properties and methods of the Sedan class that are not shared by all automobiles. In other
words, the only work left for you to do is define the differences; the similarities between the classes are
inherited from the base class.

 The ability to reuse code is one benefit, but there ’ s a second major advantage to using inheritance.
Suppose that you have a class called Customer with a method buyAutomobile . This method would
take one parameter, an object of class Automobile , and its internal operations would print the
paperwork needed to document the sale, and decrement the car in question from the inventory system.
Because all Sedan s, PickupTruck s, and MiniVan s are Automobile s, you can pass objects of these
classes to a function expecting an Automobile . Because the three specific types inherit from the more
generic parent class, you know that they will all have the same base set of properties and methods. As
long as you need only the methods and properties common to all Automobile s, you can accept objects
of any class that inherits from Automobile .

 Consider the example of cats. All cats share some properties. They eat, sleep, purr, and hunt. They also
have shared properties — weight, fur color, whisker length, and running speed. However, lions have a
mane of a certain length (at least, the male lions do), and they growl. Cheetahs have spots. Domesticated
cats have neither of these things, yet all three animals are cats.

 In PHP you specify that a class is a subset of another by using the keyword extends , which tells PHP
that the class you are declaring should inherit all the properties and methods from its parent class, and
that you are adding functionality or providing some additional specialization to that class.

 If you had to design an application to handle zoo animals, you ’ d probably need to have classes Cat ,
 Lion , and Cheetah . Before writing any code, plan your class hierarchy in Unified Markup Language
(UML) diagrams so you have something to work from when you write the code and the documentation
of those classes. (UML is examined in more detail in Chapter 2, so don ’ t worry if you don ’ t completely
understand what ’ s shown here.) Your class diagram should indicate a parent class Cat , with subclasses
 Lion and Cheetah inheriting from it. Figure 1 - 1 shows that diagram.

c01.indd 16c01.indd 16 3/5/09 12:42:56 PM3/5/09 12:42:56 PM

Chapter 1: Introduction to Object-Oriented Programming

17

 Both the Lion and Cheetah classes inherit from Cat , but the Lion class also implements the property
 maneLength and the method roar() , whereas Cheetah adds the property numberOfSpots .

 The Cat class, class.Cat.php , should be implemented as follows:

 < ?php

 class Cat {

 public $weight; //in kg

 public $furColor;

 public $whiskerLength;

 public $maxSpeed; //in km/hr

 public function eat() {

 //code for eating...

 }

 public function sleep() {

 //code for sleeping...

 }

 public function hunt(Prey $objPrey) {

 //code for hunting objects of type Prey

 //which we will not define...

 }

 public function purr() {

 print “purrrrrrr...” . “\n”;

 }

 }

? >

 This simple class sets up all the properties and methods common to all cats. To create the Lion and
 Cheetah classes, you could copy all the code from the Cat class to classes called Lion and Cheetah .
However, this generates two problems.

Cat

Lion

+weight
+furColor
+whiskerLength
+runningSpeed

+eat()
+sleep()
+purr()
+hunt(objPrey:Prey)

+maneLength

Cheetah
+numberofSpots

+roar()

Figure 1-1: Class diagram for cats

c01.indd 17c01.indd 17 3/5/09 12:42:57 PM3/5/09 12:42:57 PM

Part I: Fundamentals of Professional Development

18

 First, if you find a bug in the Cat class, you must remember to fix it in the Lion and Cheetah classes as
well. This creates more work for you, not less (and creating less work is supposed to be one of the
primary advantages of an OO approach).

 Second, imagine that you had a method of some other class (maybe CatLover) that looked like this:

public function petTheKitty(Cat $objCat) {

 $objCat- > purr();

}

 Although petting a lion or cheetah may not be a terribly safe idea, they will purr if they let you get close
enough to do so. You should be able to pass an object of class Lion or Cheetah to the petTheKitty()
function.

 Therefore, you must take the other route to create the Lion and Cheetah classes, which is to use
inheritance. By using the keyword extends and specifying the name of the class that is extended, you
can easily create two new classes that have all the same properties as a regular cat but provide some
additional features. Consider this example, which you can type into class.Lion.php :

 < ?php

 require_once(‘class.Cat.php’);

 class Lion extends Cat {

 public $maneLength; //in cm

 public function roar() {

 print “Roarrrrrrrrr!”;

 }

 }

? >

 That ’ s it! With the Lion class extending Cat , you can now do something like the following:

 < ?php

 include(‘class.Lion.php’);

 $objLion = new Lion();

 $objLion- > weight = 200; //kg = \s450 lbs.

 $objLion- > furColor = ‘brown’;

 $objLion- > maneLength = 36; //cm = \s14 inches

 $objLion- > eat();

 $objLion- > roar();

 $objLion- > sleep();

? >

 As shown here, you can invoke the properties and methods of the parent class Cat without having to
rewrite all that code. Remember that the extends keyword tells PHP to automatically include all the
functionality of a Cat , along with any Lion - specific properties or methods. It also tells PHP that a Lion

c01.indd 18c01.indd 18 3/5/09 12:42:57 PM3/5/09 12:42:57 PM

Chapter 1: Introduction to Object-Oriented Programming

19

object is also a Cat object, and you can now call the petTheKitty() function with an object of class
 Lion even though the function declaration uses Cat as the parameter hint:

 < ?php

 include(‘class.Lion.php’);

 $objLion = new Lion();

 $objPetter = new CatLover();

 $objPetter- > petTheKitty($objLion);

? >

 In this way, any changes you make to the Cat class are automatically inherited by the Lion class. Bug
fixes, changes to function internals, or new methods and properties are all passed along to the subclasses
of a parent class. In a large, well - designed object hierarchy, this can make bug fixing and the addition of
enhancements very easy. A small change to one parent class can have a large effect on the entire
application.

 In this next example, you ’ ll see how a custom constructor can be used to extend and specialize a class.
Create a new file called class.Cheetah.php and enter the following:

 < ?php

 require_once(‘class.Cat.php’);

 class Cheetah extends Cat {

 public $numberOfSpots;

 public function __construct() {

 $this- > maxSpeed = 100;

 }

 }

? >

 Enter the following code into testcats.php :

 < ?php

require_once(‘class.Cheetah.php’);

 function petTheKitty(Cat $objCat) {

 if($objCat- > maxSpeed < 5) {

 $objCat- > purr();

 } else {

 print “Can’t pet the kitty - it’s moving at “ .

 $objCat- > maxSpeed . “ kilometers per hour!”;

 }

 }

 $objCheetah = new Cheetah();

 petTheKitty($objCheetah);

 $objCat = new Cat();

 petTheKitty($objCat);

? >

c01.indd 19c01.indd 19 3/5/09 12:42:58 PM3/5/09 12:42:58 PM

Part I: Fundamentals of Professional Development

20

 The Cheetah class adds a new public member variable called numberOfSpots and a constructor that
did not exist in the parent Cat class. Now, when you create a new Cheetah , the maxSpeed property
(inherited from Cat) is initialized to 100 kilometers per hour (roughly 60 miles per hour), which is the
approximate maximum speed of a cheetah over short distances. Note that because a default value for
the Cat class isn ’ t specified, the maxSpeed evaluates as 0 (actually, null) in the petTheKitty() function.
As those who have ever had a house cat know, the amount of time they spend sleeping means that their
maximum speed probably is approaching 0 !

 By adding new functions, properties, or even constructors and destructors, the subclasses of a parent
class can easily extend their functionality and, with a minimum amount of code, add new features and
capabilities to your application.

 When you can say that one class is a special type of some other class, use inheritance to maximize the
potential for code reuse and increase the flexibility of your application.

 Overriding Methods
 Just because a child class inherits from a parent class doesn ’ t mean that the child class necessarily needs
to use the parent class ’ s implementation of a function. For example, if you were designing an application
that needed to calculate the area of different geometric shapes, you might have classes called Rectangle
and Triangle . Both of these shapes are polygons, and as such these classes will inherit from a parent
class called Polygon .

 The Polygon class will have a property called numberOfSides and a method called getArea . All
polygons have a calculable area; however, the methods for calculating that area can be different for
different types of polygons. (A generic equation exists for the area of any polygon, but it is often less
efficient than the shape - specific equations for the simple polygons being used here.) The formula for the
area of a rectangle is w * h , where w is the width of the rectangle and h is the height. The area of a
triangle is calculated as 0.5 * h * b , where h is the height of a triangle with base b . Figure 1 - 2 shows
the area of two types of polygon.

Area of a Triangle � (1/2 h) � b

Area of a Rectangle � w � h

h

b w

h

Figure 1-2: Area of two polygons

 For each subclass of Polygon that you create, you will probably want to substitute an equation for the
default implementation of the area method with one specific to the type of polygon class. By redefining
that method for the class, you can provide your own implementation.

c01.indd 20c01.indd 20 3/5/09 12:42:58 PM3/5/09 12:42:58 PM

Chapter 1: Introduction to Object-Oriented Programming

21

 In the case of the Rectangle class, you would create two new properties, height and width , and override
the Polygon class ’ s implementation of the getArea() method. For the Triangle class, you would
probably add properties to store information about the three angles, the height, and the length of the base
segment, and override the getArea() method. By using inheritance and overriding methods of the parent
class, you can allow the subclasses to specialize their implementations of those methods.

 A function that takes a Polygon as a parameter and needs to print the area of that polygon will then
automatically call the getArea() method of the subclass of Polygon that was passed to it (that is,
 Rectangle or Triangle). This capability for an OOP language to automatically determine at run - time
which getArea() method to call is known as polymorphism . Polymorphism is the ability of an
application to do different things based on the particular object it is acting on. In this case, that means
invoking a different getArea() method.

 Override a method in a subclass when the parent class ’ s implementation is different from that required
by the subclass. This allows you to specialize the activities of that subclass.

 Sometimes you want to retain the implementation provided by the parent class, but also perform some
additional activities in the method of the subclass. For example, if you have an application that manages
a nonprofit organization, you would probably have a class called Volunteer that would have a method
called signUp() ; this method would enable the volunteer to sign up for a community service project
and add the user to the list of volunteers for that activity.

 You might, however, have some users with restrictions (such as a criminal background) that should
prevent them from signing up for certain projects. In this case, polymorphism enables you to create a
class called RestrictedUser with an overridden signUp() method that first checks the restrictions
on the user account against the properties of the project, preventing users from signing up if their
restrictions do not allow them to volunteer for a particular activity. If their restrictions do not prohibit
them from participating, then you should invoke the actions of the parent class to complete their
registration.

 When you override methods of the parent class, you do not necessarily need to completely rewrite the
method. You can continue to use the implementation provided by the parent, but add additional
specialization for your subclass. In this way, you can reuse code and also provide customizations as
required by the business rules.

 The capability of one class to inherit the methods and properties of another class is one of the most
compelling features of an OO system, and one that enables you to gain an incredible level of efficiency
and flexibility in your applications.

 In the following example, you ’ ll create two classes — Rectangle and Square . A square is a special
kind of rectangle. Anything you can do with a rectangle you can do with a square; however, because a
rectangle has two different side lengths and a square has only one, you need to do some things
differently.

c01.indd 21c01.indd 21 3/5/09 12:42:59 PM3/5/09 12:42:59 PM

Part I: Fundamentals of Professional Development

22

 Create a file called class.Rectangle.php and add the following code:

 < ?php

 class Rectangle {

 public $height;

 public $width;

 public function __construct($width, $height) {

 $this- > width = $width;

 $this- > height = $height;

 }

 public function getArea() {

 return $this- > height * $this- > width;

 }

 }

? >

 This is a fairly straightforward implementation of a class to model a rectangle. The constructor takes
parameters for the width and height, and the area function calculates the area of the rectangle by
multiplying them together.

 Now, take a look at class.Square.php , shown here:

 < ?php

 require_once(‘class.Rectangle.php’);

 class Square extends Rectangle {

 public function __construct($size) {

 $this- > height = $size;

 $this- > width = $size;

 }

 public function getArea() {

 return pow($this- > height, 2);

 }

 }

? >

 This code overrides both the constructor and the getArea() method. For a rectangle to be a square, all
four sides must be of the same length. As a result, you need only one parameter for the constructor. If
more than one parameter is passed to the function, any values after the first parameter are ignored.

 PHP does not raise an error if the number of parameters passed to a user - defined function is greater
than the number of parameters established in the function declaration. In a few cases, this is actually
desired behavior. If you ’ d like to learn more, see the PHP documentation of the built - in
 func_get_args() function.

 The getArea() function also was overridden. The implementation in the Rectangle class would
have returned a perfectly correct result for the Square objects. The method was overridden to
improve application performance (although, in this case, the performance benefit is minuscule).

c01.indd 22c01.indd 22 3/5/09 12:42:59 PM3/5/09 12:42:59 PM

Chapter 1: Introduction to Object-Oriented Programming

23

It is faster for PHP to fetch one property and compute its square than to fetch two properties and
multiply them together.

 By overriding constructors, destructors, and methods, you can alter aspects of how subclasses operate.

 Preserving the Parent ’ s Functionality
 Sometimes you want to preserve the functionality provided by the parent. You don ’ t need to completely
override the function; you just need to add something to it. You could copy all the code from the parent
method into the subclass ’ s method, but as you ’ ve already seen, OOP offers you better ways of doing this
than just copying lines of code.

 To call the functionality provided by the parent, use the syntax parent::[function name] . When you just
want to add additional behavior to a method, first you call parent::[function name] and then add your
additional code. When extending a function in this way, always call the method on the parent before doing
anything else. Doing so ensures that any changes to the operation of the parent won ’ t break your code.

 Because the parent class may be expecting the object to be in a certain state, or may alter the state of the
object, overwrite property values, or manipulate the object ’ s internal data, always invoke the parent
method before adding your own code when extending an inherited method.

 The following example has two classes: Customer and SweepstakesCustomer . A supermarket has an
application that, from time to time, switches which class is being used in the cash register application
when certain promotions are run. Each customer who comes in has his or her own ID value (which
comes from a database), as well as a customer number (which indicates how many customers have come
to the supermarket before him or her). For these sweepstakes, the millionth customer wins a prize.

 Create a file called class.Customer.php and add the following code:

 < ?php

 class Customer {

 public $id;

 public $customerNumber;

 public $name;

 public function __construct($customerID) {

 //fetch customer infomation from the database

 //

 //We’re hard coding these values here, but in a real application

 //these values would come from a database

 $data = array();

 $data[‘customerNumber’] = 1000000;

 $data[‘name’] = ‘Jane Johnson’;

 //Assign the values from the database to this object

 $this- > id = $customerID;

 $this- > name = $data[‘name’];

 $this- > customerNumber = $data[‘customerNumber’];

 }

 }

? >

c01.indd 23c01.indd 23 3/5/09 12:42:59 PM3/5/09 12:42:59 PM

Part I: Fundamentals of Professional Development

24

 Now create a file called class.SweepstakesCustomer.php and enter this code:

 < ?php

 require_once(‘class.Customer.php’);

 class SweepstakesCustomer extends Customer {

 public function __construct($customerID) {

 parent::__construct($customerID);

 if($this- > customerNumber == 1000000) {

 print “Congratulations $this- > name! You ’ re our “ .

 “millionth customer!” .

 “You win a year’s supply of frozen fish sticks! “;

 }

 }

 }

? >

 How Inheritance Works
 The Customer class initializes values from the database based on the customer ID. You would most
likely retrieve the customer ID from a loyalty program swipe card such as the type available at most
larger grocery store chains. With the customer ID, you can fetch the customer ’ s personal data from the
database (just hard - coded in this example), along with an integer value representing how many
customers have entered the store before that customer. Store all this information in public member
variables.

 The SweepstakesCustomer class adds a bit of extra functionality to the constructor. You first invoke the
parent class ’ s constructor functionality by calling parent::_construct and passing to it the
parameters it expects. You then look at the customerNumber property. If this number is the millionth,
you inform this customer that he or she has won a prize.

 To see how to use this class, create a file called testCustomer.php and enter the following code:

 < ?php

 require_once(‘class.SweepstakesCustomer.php’);

 //since this file already includes class.Customer.php, there’s

 //no need to pull that file in, as well.

 function greetCustomer(Customer $objCust) {

 print “Welcome back to the store $objCust- > name!”;

 }

 //Change this value to change the class used to create this customer object

 $promotionCurrentlyRunning = true;

 if ($promotionCurrentlyRunning) {

c01.indd 24c01.indd 24 3/5/09 12:43:00 PM3/5/09 12:43:00 PM

Chapter 1: Introduction to Object-Oriented Programming

25

 $objCust = new SweepstakesCustomer(1000000);

 } else {

 $objCust = new Customer(1000000);

 }

 greetCustomer($objCust);

? >

 Run testCustomer.php in your browser with the $promotionCurrentlyRunning variable set first to
 false and then to true . When the value is true , the prize message is displayed.

 Interfaces
 Sometimes you have a group of classes that are not necessarily related through an inheritance - type
relationship. You may have totally different classes that just happen to share some behaviors in common.
For example, both a jar and a door can be opened and closed, but they are in no other way related. No
matter the kind of jar or the kind of door, they both can carry out these activities, but there is no other
common thread between them.

 What Interfaces Do
 You see this same concept in OOP as well. An interface enables you to specify that an object is capable of
performing a certain function, but it does not necessarily tell you how the object does so. An interface
is a contract between unrelated objects to perform a common function. An object that implements
this interface is guaranteeing to its users that it is capable of performing all the functions defined by the
interface specification. Bicycles and footballs are totally different things, but objects representing those
items in a sporting goods store inventory system must be capable of interacting with that system.

 By declaring an interface and then implementing it in your objects, you can hand completely different
classes to common functions. The following example demonstrates the rather prosaic door - and - jar
analogy.

 Create a file called interface.Openable.php :

 < ?php

 interface Openable {

 public function open();

 public function close();

 }

? >

 Just as you name your class files class.[class name].php , you should use the same convention with
interfaces and call them interface.[interface name].php .

 You declare the interface Openable using a syntax similar to that of a class, except that you substitute
the word interface for the word class . An interface does not have member variables, and it does not
specify an implementation of any of its member functions.

c01.indd 25c01.indd 25 3/5/09 12:43:00 PM3/5/09 12:43:00 PM

Part I: Fundamentals of Professional Development

26

 Because no implementation is specified, you declare these functions to be abstract . Doing so tells PHP
that any class implementing this interface is responsible for providing an implementation of the
functions. If you fail to provide an implementation of all the abstract methods of an interface, PHP will
raise a run - time error. You may not selectively choose some of the abstract methods to implement; you
must provide implementations of them all.

 How Interfaces Work
 The Openable interface is a contract with other parts of the application that says any class implementing
this interface will provide two methods, called open() and close() , that take no parameters. With this
agreed - upon set of methods, you can allow very different objects to pass into the same function without
the need for an inherited relationship to exist between them.

 Create the following file, called class.Door.php :

 < ?php

require_once(‘interface.Openable.php’);

class Door implements Openable {

 private $_locked = false;

 public function open() {

 if($this- > _locked) {

 print “Can’t open the door. It’s locked.”;

 } else {

 print “creak... < br > ”;

 }

 }

 public function close() {

 print “Slam!! < br > ”;

 }

 public function lockDoor() {

 $this- > _locked = true;

 }

 public function unlockDoor() {

 $this- > _locked = false;

 }

 }

? >

 Now create a file called class.Jar.php :

 < ?

require_once(‘interface.Openable.php’);

class Jar implements Openable {

 private $contents;

 public function __construct($contents) {

c01.indd 26c01.indd 26 3/5/09 12:43:01 PM3/5/09 12:43:01 PM

Chapter 1: Introduction to Object-Oriented Programming

27

 $this- > contents = $contents;

 }

 public function open() {

 print “the jar is now open < br > ”;

 }

 public function close() {

 print “the jar is now closed < br > ”;

 }

}

? >

 To use these files, create a new file called testOpenable.php in the same directory:

 < ?php

 require_once(‘class.Door.php’);

 require_once(‘class.Jar.php’);

 function openSomething(Openable $obj) {

 $obj- > open();

 }

 $objDoor = new Door();

 $objJar = new Jar(“jelly”);

 openSomething($objDoor);

 openSomething($objJar);

? >

 Because both the Door class and the Jar class implement the Openable interface, you can pass both to
the openSomething() function. Because that function accepts only something that implements the
 Openable interface, you know that you can call the functions open() and close() within it. However,
you should not attempt to access the contents property of the Jar class or utilize the lock() or
 unlock() functions of the Door class within the openSomething() function, because that property and
those methods are not part of the interface. The interface contract guarantees that you have open() and
 close() and nothing else.

 By using interfaces in your application, you can allow completely different and unrelated objects to talk
to each other with a guarantee that they will be able to interact on the terms specified in the interface.
The interface is a contract to provide certain methods.

 Encapsulation
 As mentioned earlier in this chapter, objects enable you to hide the details of their implementation from
users of the object. You do not need to know whether the Volunteer class mentioned earlier stores
information in a database, a flat text file, an XML document, or another data - storage mechanism in order
to be able to invoke the signUp() method. Similarly, you do not need to know whether the information
about the volunteer contained within the object is implemented as single variables, an array, or even
other objects.

c01.indd 27c01.indd 27 3/5/09 12:43:01 PM3/5/09 12:43:01 PM

Part I: Fundamentals of Professional Development

28

 This ability to hide the details of implementation is known as encapsulation . Generally speaking,
encapsulation refers to two concepts: protecting a class ’ s internal data from code outside that class, and
hiding the details of implementation.

 The word encapsulate literally means to place in a capsule, or outer container. A well - designed class
provides a complete outer shell around its internals, and presents an interface to code outside the class
that is wholly separated from the particulars of those internals. By doing so, you gain two advantages:

 You can change the implementation details at any time without affecting code that uses your
class.

 Because you know that nothing outside your class can inadvertently modify the state or
property values of an object built from your class without your knowledge, you can trust the
state of the object and the value of its properties to be valid and to make sense.

 The member variables of a class and its functions have a visibility. Visibility refers to what can be seen by
code outside the class. As mentioned earlier in this chapter, private member variables and functions are
not accessible to code outside the class and are used for the class ’ s internal implementation. Protected
member variables and functions are visible only to the subclasses of the class. Public member variables
and functions are usable by any code, inside or outside the class.

 Generally speaking, all internal member variables of a class should be declared private. Any access
needed to those variables by code outside the class should be done through an accessor method. You
don ’ t let someone who wants you to try a new food blindfold and force - feed you; you need to be able to
examine the item and determine whether you want to allow it into your body. Similarly, when an object
wants to allow code outside it to change properties or in some other way affect its internal data, by
encapsulating access to that data in a public function (and by keeping the internal data private), you
have the opportunity to validate the changes and accept or reject them.

 For example, if you are building an application for a bank that handles details of customer accounts,
you might have an Account object with a property called totalBalance and methods called
 makeDeposit() and makeWithdrawal() . The total balance property should be read - only. The only
way to affect the balance is to make a withdrawal or a deposit. If the totalBalance property were to
be implemented as a public member variable, you could write code that would increase the value of
that variable without having to actually make a deposit. This approach, obviously, would be bad for
the bank.

 Instead, you should implement this property as a private member variable and provide a public method
called getTotalBalance() , which returns the value of that private member variable. Because the
variable storing the value of the account balance is private, you can ’ t manipulate it directly; and because
the only public methods that affect the account balance are makeWithdrawal() and makeDeposit() ,
you have to actually make a deposit if you want to increase the value of your account.

 By allowing you to hide the details of implementation and protect access to internal member variables,
an object - oriented software development approach gives you a flexible, stable application.

 Encapsulation of internal data and method implementations enables an object - oriented software system
to protect and control access to data and hide the details of implementation.

❑

❑

c01.indd 28c01.indd 28 3/5/09 12:43:02 PM3/5/09 12:43:02 PM

Chapter 1: Introduction to Object-Oriented Programming

29

 Changes to OO in PHP 6
 Support for objects in PHP goes all the way back to PHP 3. There was never any intention of supporting
the idea of classes or objects, but some limited support was added, almost as an afterthought, to provide
 “ syntactic sugar ” (to use Zeev Suraski ’ s phrase) for associative arrays. Object support in PHP was
originally designed as a convenient way of grouping data and functions, but only a small subset of the
features traditionally associated with a full - blown object - oriented programming language was included.
As PHP grew in popularity, the use of an OO approach became increasingly common in large
applications. However, the poor internal implementation became limiting.

 Most notably, there was no support for real encapsulation. You could not specify member variables or
methods to be private or protected. Everything was public — which, as you ’ ve seen, can be
problematic.

 Additionally, there was no support for abstract interfaces or methods. Methods and member variables
could not be declared static. There were no destructors. All these concepts are familiar to anyone with a
background in another OOP language, and the lack of these features in PHP ’ s object model could make
the transition from a language such as Java (which does support all these ideas) to PHP difficult. For
those who have previous experience with PHP 4, Table 1 - 1 lists some of the new features in the PHP

Table 1-1: Object Model Evolution from PHP 4 to PHP 5 and 6

New Feature Benefit

Private, protected member
variables and methods

Real encapsulation and data protection are now possible in
PHP.

Improved dereferencing support Statements such as $obj->getSomething()->doSomething()
are now possible.

Static member variables and
methods

Methods that can be called statically are now clearly
identifiable. Class-level constants help control pollution of the
global namespace.

Unified constructors All class constructors are now called __construct(). This
helps with encapsulation of overridden subclass constructors,
and makes it easier to alter inheritance when multiple classes
are involved in a tree of inheritance.

Destructor support Through the __destruct()method, classes in PHP can now
have destructors. This feature allows actions to be carried out
when the object is destroyed.

Support for abstract classes and
interfaces

You can define required methods in a parent class while
deferring implementation to a subclass. Abstract classes can’t
be instantiated; only their non-abstract subclasses can.

Parameter type hints You can specify the class for function parameters that are
expecting an object. function foo(Bar $objBar) {...
allows you to be sure that the data type of the parameter is
what you expect.

c01.indd 29c01.indd 29 3/5/09 12:43:02 PM3/5/09 12:43:02 PM

Part I: Fundamentals of Professional Development

30

object model that appeared starting in PHP 5. For those already familiar with OOP in PHP 5, little has
changed in version 6.

 Summary
 In this chapter, you explored the concept of object - oriented programming (OOP). A class was shown as a
blueprint for creating objects. Objects are run - time bundles of data and functions created from a class
definition. They have characteristics, called properties , and behaviors, called methods . Properties can be
thought of as variables, and methods as functions.

 Some classes share a common parent type. For example, squares (children) are a type of rectangle
(parent). When you declare a class to be a subtype of a parent class, it inherits the methods and
properties of the parent. You have the option to override inherited methods. You can completely
re - implement the method, if you so choose, or continue to use the parent ’ s implementation but also
add specializations particular to the subclass (or not override the method at all).

 Encapsulation is an important concept to OOP. It refers to the capability of a class to protect access to its
internal member variables and shield users of that class from the particulars of its implementation.
Member methods and properties have three levels of visibility: private, protected, and public. Private
members can be used only by the class ’ s internal operations. Protected members are visible to subclasses.
Public members can be used by code outside the class.

 Object - oriented (OO) support in PHP received a major overhaul with the introduction of PHP 5 and the
Zend Engine 2. New features and significant performance improvements since PHP version 5, and
further enhanced in PHP 6, make PHP a real OOP language.

 Chapter 2 discusses the Unified Modeling Language (UML), a system for diagramming OO software
architecture that will provide you with the tools for describing and planning the architecture of even the
most complex applications.

c01.indd 30c01.indd 30 3/5/09 12:43:03 PM3/5/09 12:43:03 PM

