
PArt

I
Oracle

Database 11g:
SQL

Fundamentals I

95127c01.indd 1 2/18/09 6:37:05 AM

CO
PYRIG

HTED
 M

ATERIA
L

95127c01.indd 2 2/18/09 6:37:05 AM

Chapter

1
Introducing SQL

Oracle Database 11g:
SQL Fundamentals I exam objectives
covered in this chapter:

Retrieving Data Using the SQL SELECT StatementÛÛ

List the capabilities of SQL SELECT statementsNN

Execute a basic SELECT statementNN

Restricting and Sorting DataÛÛ

Limit the rows that are retrieved by a queryNN

Sort the rows that are retrieved by a queryNN

Use ampersand substitution to restrict and sort output at NN

runtime

95127c01.indd 3 2/18/09 6:37:06 AM

Oracle 11g is a very powerful and feature-rich relational data-
base management system (RDBMS). SQL has been adopted
by most RDBMSs for the retrieval and management of data,

schema creation, and access control. The American National Standards Institute (ANSI)
has been refining standards for the SQL language for more than 20 years. Oracle, like
many other companies, has taken the ANSI standard of SQL and extended it to include
much additional functionality.

SQL is the basic language used to manipulate and retrieve data from the Oracle Database
11g. SQL is a nonprocedural language, meaning it does not have programmatic constructs
such as loop structures. PL/SQL is Oracle’s procedural extension of SQL, and SQLJ allows
embedded SQL operations in Java code. The scope of the Oracle Database 11g SQL Funda-
mentals I test includes only SQL.

In this chapter, I will discuss Oracle SQL fundamentals such as the various types of
SQL statements, introduce SQL*Plus and a few SQL*Plus commands, and discuss SELECT
statements.

You will learn how to write basic SQL statements to retrieve data from tables. This will
include coverage of SQL SELECT statements, which are used to query data from the database-
storage structures, such as tables and views. You will also learn how to limit the information
retrieved and to display the results in a specific order.

Exam objectives are subject to change at any time without prior notice and
at Oracle’s sole discretion. Please visit Oracle’s Training and Certification
website at http://education.oracle.com/pls/web_prod-plq-dad/
db_pages.getpage?p_exam_id=1Z0_051 for the most current exam
objectives.

SQL Fundamentals
SQL is the standard language to query and modify data as well as manage databases. SQL is
the common language used by programmers, database administrators, and users to access and
manipulate data as well as to administer databases. To get started with SQL in this chapter,
I will show how to use the sample HR schema supplied with the Oracle Database 11g.

95127c01.indd 4 2/18/09 6:37:06 AM

SQL Fundamentals  5

When you install Oracle software, you can choose the Basic Installation
option and select the Create Starter Database check box. This database
will have the sample schemas used in this book. The password you specify
will be applicable to the SYS and SYSTEM accounts. The account SYS is the
Oracle dictionary owner, and SYSTEM is a database administrator (DBA)
account. Initially, the sample schemas are locked. You need to log in to the
database using SQL*Plus as the SYSTEM user and then unlock the account
using the ALTER USER statement. To unlock the HR schema, use ALTER USER
hr IDENTIFIED BY hrpassword ACCOUNT UNLOCK;. Now you can log in to
the database using the hr user with the password hrpassword. Remember,
the password is case sensitive.

For detailed information on installing Oracle 11g software and creating
Oracle Database 11g, please refer to the Oracle Technology Network
at www.oracle.com/technology/obe/11gr1_db/install/dbinst/
windbinst2.htm.

To install the sample schemas in an existing Oracle Database 11g, please
follow the instructions in the Oracle document “Oracle Database Sample
Schemas 11g Release 1” at http://download.oracle.com/docs/cd/
B28359_01/server.111/b28328/toc.htm.

Chapter 2 of the “Oracle Database Sample Schemas 11g Release 1” man-
ual on the Oracle Technology Network will provide instructions on how
to install the sample schemas using Database Configuration Assistant
(DBCA) as well as running scripts. The same chapter also gives you steps
to reinitialize the sample schema data.

SQL statements are like plain English but with specific syntax. SQL is a simple yet pow-
erful language used to create, access, and manipulate data and structures in the database.
SQL statements can be categorized as listed in Table 1.1.

Ta b le 1.1  ​  ​ SQL Statement Categories

SQL Category Description

Data Manipulation
Language (DML)

Used to access, create, modify, or delete data in the existing
structures of the database. DML statements include those to
query information (SELECT), add new rows (INSERT), modify
existing rows (UPDATE), delete existing rows (DELETE), perform a
conditional update or insert operation (MERGE), see an execution
plan of SQL (EXPLAIN PLAN), and lock a table to restrict access
(LOCK TABLE). Including the SELECT statement in the DML group
is debatable within the SQL community, since SELECT does not
modify data.

95127c01.indd 5 2/18/09 6:37:06 AM

6  Chapter 1  n  Introducing SQL

SQL Category Description

Data Definition
Language (DDL)

Used to define, alter, or drop database objects and their privi-
leges. DDL statements include those to create, modify, drop, or
rename objects (CREATE, ALTER, DROP, RENAME), remove all rows
from a database object without dropping the structure (TRUNCATE),
manage access privileges (GRANT, REVOKE), audit database use
(AUDIT, NOAUDIT) and add a description about an object to the
dictionary (COMMENT).

Transaction Control Used to group a set of DML statements as a single transaction.
Using these statements, you can save the changes (COMMIT) or
discard the changes (ROLLBACK) made by DML statements. Also
included in the transaction-control statements are statements
to set a point or marker in the transaction for possible rollback
(SAVEPOINT) and to define the properties for the transaction
(SET TRANSACTION).

Session Control Used to control the properties of a user session. (A session is the
point from which you are connected to the database until you dis-
connect.) Session-control statements include those to control the
session properties (ALTER SESSION) and to enable/disable roles
(SET ROLE).

System Control Used to manage the properties of the database. There is only one
statement in this category (ALTER SYSTEM).

Table 1.1 provides an overview of all the statements that will be covered in this book.
Do not worry if you do not understand certain terms, such as role, session, privilege, and
so on. I will cover all the statements in the coming chapters with many examples. In this
chapter, I will begin with writing simple statements to query the database (SELECT state-
ments). But first I’ll go over some fundamentals.

SQL Tools: SQL*Plus
The Oracle Database 11g software comes with two primary tools to manage data and
administer databases using SQL. SQL*Plus is a character-based command-line utility. SQL
Developer is a graphical tool that has the capability to browse, edit, and manage database
objects as well as to execute the SQL statements. On Windows platforms, these tools are
located under the Application Development subfolder in the Oracle 11g program group.

On Linux and Unix platforms, you can find these tools in the bin directory under the
Oracle software installation ($ORACLE_HOME/bin).

Ta b le 1.1   � ​Table 1.1 ﻿ ​ SQL Statement Categories (continued)

95127c01.indd 6 2/18/09 6:37:06 AM

SQL Fundamentals  7

Since the test is on SQL and the tool used throughout the book for executing SQL is
SQL*Plus, I will discuss some fundamentals of SQL*Plus in this section.

SQL*Plus, widely used by DBAs and developers to interact with the database, is a pow-
erful tool from Oracle. Using SQL*Plus, you can execute all SQL statements and PL/SQL
programs, format results from queries, and administer the database.

SQL*Plus is packaged with the Oracle software and can be installed using the client soft-
ware installation routine on any machine. This tool is automatically installed when you install
the server software.

On Unix/Linux platforms, you can invoke SQL*Plus using the sqlplus executable found in
the $ORACLE_HOME/bin directory. On Windows and Unix/Linux platforms, when you start
SQL*Plus, you will be prompted for a username and password, as shown in Figure 1.1.

F i gu r e 1.1  ​  ​ SQL*Plus screen

Once you are in SQL*Plus, you can connect to another database or change your connec-
tion by using the CONNECT command, with this syntax:

CONNECT <username>/<password>@<connectstring>

The slash separates the username and password. The connect string following @ is the
database alias name. If you omit the password, you will be prompted to enter it. If you
omit the connect string, SQL*Plus tries to connect you to the local database defined in the
ORACLE_SID variable.

You can invoke and connect to SQL*Plus using the sqlplus command, with this syntax:

sqlplus <username>/<password>@<connectstring>

If you invoke the tool with just sqlplus, you will be prompted for a username and pass-
word. If you invoke SQL*Plus with a username, you will be prompted for a password.

Once you are connected to SQL*Plus, you get the SQL> prompt. This is the default prompt,
which can be changed using the SET SQLPROMPT command. Type the command you want to

95127c01.indd 7 2/18/09 6:37:06 AM

8  Chapter 1  n  Introducing SQL

execute at this prompt. With SQL*Plus, you can enter, edit, and execute SQL statements;
perform database administration; and execute statements interactively by accepting user
input. You can also format query results and perform calculations.

sqlplus -help displays a help screen to show the various options avail-
able with starting SQL*Plus.

To exit from SQL*Plus, use the EXIT command. On platforms where a return code is
used, you can provide a return code while exiting. You can also use the QUIT command to
complete the session. EXIT and QUIT are synonymous.

Entering SQL Statements
A SQL statement can spread across multiple lines, and the commands are case insensitive.
The previously executed SQL statement will always be available in the SQL buffer. The
buffer can be edited or saved to a file. You can terminate a SQL statement in any of the fol-
lowing ways:

End with a semicolon (NN ;): The statement is completed and executed.

Enter a slash (NN /) on a new line by itself: The statement in the buffer is executed.

Enter a blank line: The statement is saved in the buffer.NN

You can use the RUN command instead of a slash to execute a statement in the buffer.
The SQL prompt returns when the statement has completed execution. You can enter your
next command at the prompt.

Only SQL statements and PL/SQL blocks are stored in the SQL buffer;
SQL*Plus commands are not stored in the buffer.

Entering SQL*Plus Commands
SQL*Plus has its own commands to perform-specific tasks on the database, as well as to
format the query results. Unlike SQL statements, which are terminated with a semicolon or
a blank line, SQL*Plus commands are entered on a single line. Pressing Enter executes the
SQL*Plus command.

If you want to continue a SQL*Plus command onto the next line, you must end the cur-
rent line with a hyphen (-), which indicates command continuation. This is in contrast to
SQL statements, which can be continued to the next line without a continuation opera-
tor. For example, the following SQL statement gives an error, because SQL*Plus treats the
hyphen operator (-) as a continuation character:

SQL> SELECT 800 -

> 400 FROM dual;

95127c01.indd 8 2/18/09 6:37:06 AM

SQL Fundamentals  9

SELECT 800 400 FROM dual

 *

ERROR at line 1:

ORA-00923: FROM keyword not found where expected

SQL>

You need to put the hyphen in the next line for the query to succeed:

SQL> SELECT 800

 2 - 400 FROM dual;

 800-400

 400

SQL>

Getting Information with the DESCRIBE Command
You can use the DESCRIBE command to get information about the database objects. Using
DESCRIBE on a table or view shows the columns, its datatypes, and whether each column
can be NULL. Using DESCRIBE on a stored program such as procedure or function shows
the parameters that need to be passed in/out, their datatype, and whether there is a default
value. You can abbreviate this command to the first four characters or more—DESC, DESCR,
and DESCRIB are all valid.

If you’re connected to the HR schema and need to see the tables and views in this schema,
use the following query:

SQL> SELECT * FROM tab;

TNAME TABTYPE CLUSTERID

------------------------------ ------- ----------

COUNTRIES TABLE

DEPARTMENTS TABLE

EMPLOYEES TABLE

EMP_DETAILS_VIEW VIEW

JOBS TABLE

JOB_HISTORY TABLE

LOCATIONS TABLE

REGIONS TABLE

8 rows selected.

SQL>

95127c01.indd 9 2/18/09 6:37:07 AM

10  Chapter 1  n  Introducing SQL

Editing the SQL Buffer
The most recent SQL statement executed or entered is stored in the SQL buffer of SQL*Plus.
You can run the command in this buffer again by simply typing a slash or using the RUN
command.

SQL*Plus provides a set of commands to edit the buffer. Suppose you want to add another
column or add an ORDER BY condition to the statement in the buffer. You do not need to
type the entire SQL statement again. Instead, just edit the existing statement in the buffer.

One way to edit the SQL*Plus buffer is to use the EDIT command to write the buffer
to an operating-system file named afiedt.buf (this is the default filename, which can be
changed) and then use a system editor to make changes.

You can use your favorite text editor by defining it in SQL*Plus. For
example, to make Notepad your favorite editor, just issue the command
DEFINE _EDITOR = NOTEPAD. You need to provide the entire path if the
program is not available in the search path.

Another way to edit the buffer is to use the SQL*Plus editing commands. You can make
changes, delete lines, add text, and list the buffer contents using the commands described in
the following sections. Most editing commands operate on the current line. You can change
the current line simply by typing the line number. All commands can be abbreviated except
DEL (which is already abbreviated).

LIST

The LIST command lists the contents of the buffer. The asterisk indicates the current line.
The abbreviated command for LIST is L.

SQL> L

 1 SELECT empno, ename

 2* FROM emp

SQL> LIST LAST

 2* FROM emp

SQL>

The command LIST m n displays lines from m through n. If you substitute * for m or n, it
implies the current line. The command LIST LAST displays the last line.

APPEND

The APPEND text command adds text to the end of line. The abbreviated command is A.

SQL> A WHERE empno <> 7926

 2* FROM emp WHERE empno <> 7926

SQL>

95127c01.indd 10 2/18/09 6:37:07 AM

SQL Fundamentals  11

CHANGE

The CHANGE /old/new command changes an old entry to a new entry. The abbreviated com-
mand is C. If you omit new, old will be deleted.

SQL> C /<>/=

 2* FROM emp WHERE empno = 7926

SQL> C /7926

 2* FROM emp WHERE empno =

SQL>

INPUT

The INPUT text command adds a line of text. Its abbreviation is I. If text is omitted, you
can add as many lines you want.

SQL> I

 3 7777 AND

 4 empno = 4354

 5

SQL> I ORDER BY 1

SQL> L

 1 SELECT empno, ename

 2 FROM emp WHERE empno =

 3 7777 AND

 4 empno = 4354

 5* ORDER BY 1

SQL>

DEL

The DEL command used alone or with * deletes the current line. The DEL m n command
deletes lines from m through n. If you substitute * for m or n, it implies the current line. The
command DEL LAST deletes the last line.

SQL> 3

 3* 7777 AND

SQL> DEL

SQL> L

 1 SELECT empno, ename

 2 FROM emp WHERE empno =

 3 empno = 4354

 4* ORDER BY 1

SQL> DEL 3 *

95127c01.indd 11 2/18/09 6:37:07 AM

12  Chapter 1  n  Introducing SQL

SQL> L

 1 SELECT empno, ename

 2* FROM emp WHERE empno =

SQL>

CLEAR BUFFER

The CLEAR BUFFER command (abbreviated CL BUFF) clears the buffer. This deletes all lines
from the buffer.

SQL> L

 1 SELECT empno, ename

 2* FROM emp WHERE empno =

SQL> CL BUFF

buffer cleared

SQL> L

No lines in SQL buffer.

SQL>

Using Script Files
SQL*Plus provides commands to save the SQL buffer to a file, as well as to run SQL state-
ments from a file. SQL statements saved in a file are called a script file.

You can work with script files as follows:

To save the SQL buffer to an operating-system file, use the command NN SAVE filename. If
you do not provide an extension, the saved file will have an extension of .sql.

By default, the NN SAVE command will not overwrite an existing file. If you want to over-
write an existing file, you need to use the keyword REPLACE.

To add the buffer to the end of an existing file, use the NN SAVE filename APPEND
command.

You can edit the saved file using the NN EDIT filename command.

You can bring the contents of a NN script file to the SQL buffer using the GET filename
command.

If you want to run a script file, use the command NN START filename. You can also run a
script file using @filename.

An NN @@filename used inside a script file looks for the filename in the directory where the
parent script file is saved and executes it.

Exercise 1.1 will familiarize you with the script file commands, as well as the other topics
I have covered so far.

95127c01.indd 12 2/18/09 6:37:07 AM

SQL Fundamentals  13

E x e r c is e 1 .1

Practicing SQL*Plus File Commands

In this exercise, you will learn how to edit the SQL*Plus buffer using various buffer edit
commands.

1.	 Enter the following SQL; the third line is a blank line so that the SQL is saved in the
buffer:

SQL> SELECT employee_id, first_name, last_name

 2 FROM employees

 3

SQL>

2.	 List the SQL buffer:

SQL> L

 1 SELECT employee_id, first_name, last_name

 2* FROM employees

SQL>

3.	 Save the buffer to a file named myfile; the default extension will be .sql:

SQL> SAVE myfile

Created file MYFILE.sql

SQL>

4.	 Choose to edit the file:

SQL> EDIT myfile

SQL>

5.	 Add WHERE EMPLOYEE_ID = 106 as the third line to the SQL statement.

6.	 List the buffer:

SQL> LIST

 1 SELECT employee_id, first_name, last_name

 2* FROM employees

SQL>

The buffer listed is still the old buffer. The edited changes are not reflected because
you edited the file MYFILE, which is not yet loaded to the buffer.

7.	 Bring the file contents to the buffer:

SQL> GET myfile

 1 SELECT employee_id, first_name, last_name

95127c01.indd 13 2/18/09 6:37:07 AM

14  Chapter 1  n  Introducing SQL

 2 FROM employees

 3* WHERE employee_id = 106

SQL>

8.	 List the buffer to verify its contents:

SQL> LI

 1 SELECT employee_id, first_name, last_name

 2 FROM employees

 3* WHERE employee_id = 106

SQL>

9.	 Change the employee number from 106 to 110:

SQL> C/106/110

 3* WHERE employee_id = 110

SQL>

10.	 Save the buffer again to the same file:

SQL> SAVE myfile

SP2-0540: File “MYFILE.sql” already exists.

Use “SAVE filename[.ext] REPLACE”.

SQL>

An error is returned, because SAVE will not overwrite the file by default.

11.	 Save the file using the REPLACE keyword:

SQL> SAVE myfile REPLACE

Wrote file MYFILE.sql

SQL>

12.	 Execute the file:

SQL> START myfile

EMPLOYEE_ID FIRST_NAME LAST_NAME

----------- -------------------- ---------

 110 John Chen

SQL>

13.	 Change the employee number from 110 to 106, and append this SQL to the file; then
execute it using @:

SQL> C/110/106

 3* WHERE employee_id = 106

E x e r c is e 1 .1    (c ont inue d)

95127c01.indd 14 2/18/09 6:37:07 AM

SQL Fundamentals  15

SQL> SAVE myfile APPEND

Appended file to MYFILE.sql

SQL> @MYFILE

EMPLOYEE_ID FIRST_NAME LAST_NAME

----------- -------------------- ---------

 110 John Chen

EMPLOYEE_ID FIRST_NAME LAST_NAME

----------- -------------------- ---------

 106 Valli Pataballa

SQL>

Saving Query Results to a File

You can use the SPOOL filename command to save the query results to a file. By default, the
SPOOL command creates an .lst file extension. SPOOL overwrites an existing file by default.
If you include the APPEND option as in SPOOL filename APPEND, the results are added to an
existing file. A new file will be created if the file does not exist already.

SPOOL OFF stops writing the output to the file. SPOOL OUT stops the writing of output and
sends the output file to the printer.

Adding Comments to a Script File

Having comments in the script file improves the readability and understandability of the
code. You can enter comments in SQL*Plus using the REMARKS (abbreviated REM) command.
Lines in the script file beginning with the keyword REM are comments and are not executed.
You can also enter a comment between /* and */. Comments can also be entered following
-- (double hyphen), all characters following -- in the line are treated as comment by Oracle.

While executing a script file with comments, the remarks entered using the REMARKS com-
mand are not displayed on the screen, but the comments within /* and */ are displayed on
the screen with the prefix DOC> when there is more than one line between /* and */. You
can turn this off by using SET DOCUMENT OFF.

This section provided an overview of SQL*Plus, the tool you will be using to enter and
execute SQL statements in Oracle Database 11g. In the next sections, I will discuss some of
the Oracle 11g SQL fundamentals before showing you how to write your first SQL query (a
SELECT statement).

Oracle Datatypes
The basic structure of data storage in the Oracle Database 11g is a table. A table can be
considered as a spreadsheet with columns and rows. Data is stored in the table as rows.
Each column in the table has storage characteristics such as the type of data contained in

E x e r c is e 1 .1    (c ont inue d)

95127c01.indd 15 2/18/09 6:37:07 AM

16  Chapter 1  n  Introducing SQL

the column. Oracle has several built-in datatypes to store different kinds of data. In this
section, I will go over the built-in datatypes available in Oracle 11g. Detailed discussion on
datatypes as well as creating and maintaining tables are discussed in Chapter 6, “Creating
Tables and Constraints.”

When you create a table to store data in the database, you need to specify a datatype
for all the columns you define in the table. Oracle has many datatypes to suit application
requirements. Oracle 11g also supports ANSI and DB2 datatypes. The Oracle built-in
datatypes can be broadly classified as shown in Table 1.2.

Ta b le 1. 2  ​  ​ Oracle Built-in Datatypes

Category Datatypes

Character CHAR, NCHAR, VARCHAR2, NVARCHAR2

Number NUMBER, FLOAT, BINARY_FLOAT, BINARY_DOUBLE

Long and raw LONG, LONG RAW, RAW

Date and time DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH
LOCAL TIME ZONE, INTERVAL YEAR TO MONTH, INTERVAL DAY TO
SECOND

Large object CLOB, NCLOB, BCLOB, BFILE

Row ID ROWID, UROWID

In the following sections, I will discuss only a few of the built-in datatypes to get you
started with SQL. I discuss all the datatypes and their usage in detail in Chapter 6.

CHAR(<size>)
The CHAR datatype is a fixed-length alphanumeric string, which has a maximum length
in bytes (to specify length in characters, use the CHAR keyword inside parentheses along with
a size; see Chapter 6). Data stored in CHAR columns is space-padded to fill the maximum
length. Its size can range from a minimum of 1 byte to a maximum of 2,000 bytes. The
default size is 1.

When you create a column using the CHAR datatype, the database will ensure that all
data placed in this column has the defined length. If the data is shorter than the defined
length, it is space-padded on the right to the specified length. If the data is longer, an error
is raised.

95127c01.indd 16 2/18/09 6:37:08 AM

SQL Fundamentals  17

VARCHAR2(<size>)
The VARCHAR2 datatype is a variable-length alphanumeric string, which has a maximum
length in bytes (to specify the length in characters, use the CHAR keyword inside parentheses
along with a size; see Chapter 6). VARCHAR2 columns require only the amount of space
needed to store the data and can store up to 4,000 bytes. There is no default size for the
VARCHAR2 datatype. An empty VARCHAR2(2000) column takes up as much room in
the database as an empty VARCHAR2(1) column.

The default size of a CHAR datatype is 1. For a VARCHAR2 datatype, you
must always specify the size.

The VARCHAR2 and CHAR datatypes have different comparison rules for trailing spaces.
With the CHAR datatype, trailing spaces are ignored. With the VARCHAR2 datatype, trail-
ing spaces are not ignored, and they sort higher than no trailing spaces. Here’s an example:

CHAR datatype: ‘Yo’ = ‘Yo ‘

VARCHAR2 datatype: ‘Yo’ < ‘Yo ‘

NUMBER (<p>, <s>)
The NUMBER datatype stores numbers with a precision of <p> digits and a scale of <s>
digits. The precision and scale values are optional. Numeric datatypes are used to store nega-
tive and positive integers, fixed-point numbers, and floating-point numbers. The precision can
be between 1 and 38, and the scale has a range between –84 and 127. If the precision and
scale are omitted, Oracle assumes the maximum of the range for both values.

You can have precision and scale digits in the integer part. The scale rounds the value after
the decimal point to <s> digits. For example, if you define a column as NUMBER(5,2), the range
of values you can store in this column is from –999.99 to 999.99; that is, 5 – 2 = 3 for the integer
part, and the decimal part is rounded to two digits. Even if you do not include the decimal part
for the value inserted, the maximum number you can store in a NUMBER(5,2) definition is 999.

Oracle will round numbers inserted into numeric columns with a scale smaller than the
inserted number. For example, if a column were defined as NUMBER(4,2) and you speci-
fied a value of 12.125 to go into that column, the resulting number would be rounded to
12.13 before it was inserted into the column. If the value exceeds the precision, however, an
Oracle error is returned. You cannot insert 123.1 into a column defined as NUMBER(4,2).
Specifying the scale and precision does not force all inserted values to be a fixed length.

If the scale is negative, the number is rounded to the left of the decimal. Basically, a
negative scale forces <s> number of zeros just to the left of the decimal.

If you specify a scale that is greater than the precision value, the precision defines the
maximum number of digits to the right of the decimal point after the zeros. For example, if
a column is defined as NUMBER(3,5), the range of values you can store is from –0.00999
to 0.00999; that is, it requires two zeros (<s>-<p>) after the decimal point and rounds the
decimal part to three digits (<p>) after zeros. Table 1.3 shows several examples of how
numeric data is stored with various definitions.

95127c01.indd 17 2/18/09 6:37:08 AM

18  Chapter 1  n  Introducing SQL

Ta b le 1. 3  ​  ​ Precision and Scale Examples

Value Datatype Stored Value Explanation

123.2564 NUMBER 123.2564 The range and precision are set to the
maximum, so the datatype can store any
value.

1234.9876 NUMBER(6,2) 1234.99 Since the scale is only 2, the decimal part
of the value is rounded to two digits.

12345.12345 NUMBER(6,2) Error The range of the integer part is only from
–9999 to 9999.

123456 NUMBER(6,2) Error The precision is larger than specified; the
range is only from –9999 to 9999.

1234.9876 NUMBER(6) 1235 The decimal part is rounded to the next
integer.

123456.1 NUMBER(6) 123456 The decimal part is rounded.

12345.345 NUMBER(5,-2) 12300 The negative scale rounds the number
<s> digits left to the decimal point.
–2 rounds to hundreds.

1234567 NUMBER(5,-2) 1234600 Rounded to the nearest hundred.

12345678 NUMBER(5,-2) Error Outside the range; can have only five dig-
its, excluding the two zeros representing
hundreds, for a total of seven digits:
(s – (–p) = s + p = 5 + 2 = 7).

123456789 NUMBER(5,-4) 123460000 Rounded to the nearest 10,000.

1234567890 NUMBER(5,-4) Error Outside the range; can have only five
digits, excluding the four trailing zeros.

12345.58 NUMBER(*, 1) 12345.6 The use of * in the precision specifies the
default limit (38).

0.1 NUMBER(4,5) Error Requires a zero after the decimal point
(5 – 4 = 1).

0.01234567 NUMBER(4,5) 0.01235 Rounded to four digits after the decimal
point and zero.

95127c01.indd 18 2/18/09 6:37:08 AM

SQL Fundamentals  19

Value Datatype Stored Value Explanation

0.09999 NUMBER(4,5) 0.09999 Stored as it is; only four digits after the
decimal point and zero.

0.099996 NUMBER(4,5) Error Rounding this value to four digits after
the decimal and zero results in 0.1, which
is outside the range.

DATE
The DATE datatype is used to store date and time information. This datatype can be con-
verted to other forms for viewing, but it has a number of special functions and properties
that make date manipulation and calculations simple. The time component of the DATE
datatype has a resolution of one second—no less. The DATE datatype occupies a storage
space of 7 bytes. The following information is contained within each DATE datatype:

CenturyNN

YearNN

MonthNN

DayNN

HourNN

MinuteNN

SecondNN

Date values are inserted or updated in the database by converting either a numeric value
or a character value into a DATE datatype using the function TO_DATE. Oracle defaults the
format to display the date as DD-MON-YY. This format shows that the default date must begin
with a two-digit day, followed by a three-character abbreviation for the month, followed
by a two-digit year. If you specify the date without including a time component, the time is
defaulted to midnight, or 00:00:00 in military time. The SYSDATE function returns the cur-
rent system date and time from the database server to which you’re currently connected.

TIMESTAMP [<precision>]
The TIMESTAMP datatype stores date and time information with fractional precision for
seconds. The only difference between the DATE and TIMESTAMP datatypes is the ability
to store fractional seconds up to a precision of nine digits. The default precision is 6 and
can range from 0 to 9. Similar to the SYSDATE function, the SYSTIMESTAMP function returns
the current system date and time, with fractional precision for seconds.

Ta b le 1. 3      Precision and Scale Examples  (continued)

95127c01.indd 19 2/18/09 6:37:08 AM

20  Chapter 1  n  Introducing SQL

Operators and Literals
An operator is a manipulator that is applied to a data item in order to return a result. Spe-
cial characters represent different operations in Oracle (+ represents addition, for example).
Operators are commonly used in all programming environments, and you should already
be familiar with the following operators, which may be classified into two types:

Unary operator ​  ​ A unary operator has only one operand. Examples are +2 and –5. They
have the format <operator><operand>.

Binary operator ​  ​ A binary operator has two operands. Examples are 5+4 and 7*5. They
have the format <operand1><operator><operand2>. You can insert spaces between the
operand and operator to improve readability.

I’ll now discuss the various types of operators available in Oracle.

Arithmetic Operators
Arithmetic operators operate on numeric values. Table 1.4 shows the various arithmetic
operators in Oracle and how to use them.

Ta b le 1. 4  ​  ​ Arithmetic Operators

Operator Purpose Example

+ - Unary operators: Use to represent positive or negative data item.
For positive items, the + is optional.

-234.44

+ Addition: Use to add two data items or expressions. 2+4

- Subtraction: Use to find the difference between two data items or
expressions.

20.4-2

* Multiplication: Use to multiply two data items or expressions. 5*10

/ Division: Use to divide a data item or expression with another. 8.4/2

Do not use two hyphens (--) to represent double negation; use a space or
parentheses in between, as in -(-20). Two hyphens represent the begin-
ning of a comment in SQL.

Concatenation Operator
The concatenation operator is used to concatenate or join two character (text) strings. The
result of concatenation is another character string. Concatenating a zero-length string (‘’)

95127c01.indd 20 2/18/09 6:37:08 AM

SQL Fundamentals  21

or a NULL with another string results in a string, not a NULL (NULL in Oracle 11g represents
unknown or missing data). Two vertical bars (||) are used as the concatenation operator.

Here are two examples:

‘Oracle11g’ || ‘Database’ results in ‘Oracle11gDatabase’.

‘Oracle11g ‘ || ‘Database’ results in ‘Oracle11g Database’.

Operator Precedence
If multiple operators are used in the same expression, Oracle evaluates them in the order of
precedence set in the database engine. Operators with higher precedence are evaluated before
operators with lower precedence. Operators with the same precedence are evaluated from left
to right. Table 1.5 lists the precedence.

Ta b le 1.5  ​  ​ SQL Operator Precedence

Precedence Operator Purpose

1 - + Unary operators, negation

2 * / Multiplication, division

3 + - || Addition, subtraction, concatenation

Using parentheses changes the order of precedence. The innermost parenthesis is evaluated
first. In the expression 1+2*3, the result is 7, because 2*3 is evaluated first and the result is
added to 1. In the expression (1+2)*3, 1+2 is evaluated first, and the result is multiplied
by 3, giving 9.

Literals
Literals are values that represent a fixed value (constant). There are four types of literals:

Text (or character)NN

Numeric (integer and number)NN

DatetimeNN

IntervalNN

You can use literals within many of the SQL functions, expressions, and conditions.

Text Literals

A text literal must be enclosed in single quotation marks. Any character between the quo-
tation marks is considered part of the text value. Oracle treats all text literals as though
they were CHAR datatypes for comparison (blank padded). The maximum length of a text

95127c01.indd 21 2/18/09 6:37:09 AM

22  Chapter 1  n  Introducing SQL

literal is 4,000 bytes. Single quotation marks can be included in the literal text value by
preceding it with another single quotation mark. Here are some examples of text literals:

‘The Quick Brown Fox’

‘That man’’s suit is black’

‘And I quote: “This will never do.” ‘

‘12-SEP-2001’

Alternatively, you can use Q or q quoting, which provides a range of delimiters. The
syntax for using the Q/q quoting with a quote-delimiter text literal is as follows:

[Q|q]’ <quote_delimiter> <text literal> <quote_delimiter>’

<quote_delimiter> is any character except a space, tab, or carriage return. The quote
delimiter can be a single quotation mark, but make sure inside the text literal a single quo-
tation mark is not immediately followed by another single quotation mark. If the opening
quote delimiter is [or { or < or (, then the closing quote must be the corresponding] or }
or > or). For all other quote delimiters, the opening quote delimiter must be the same as
the closing quote delimiter. Here are some examples of text literals using the alternative
quoting mechanism:

q’<The Quick Brown Fox>’

Q’#The Quick Brown Fox#’

q’{That man’s suit is black}’

Q’(And I quote: “This will never do.”)’

Q’”And I quote: “This will never do.” “‘

q’[12-SEP-2001]’

Numeric Literals

Integer literals can be any number of numerals, excluding a decimal separator and up to 38
digits long. Here are two examples:

24NN

–456NN

Number and floating-point literals can include scientific notation, as well as digits and
the decimal separator. E or e represents a number in scientific notation; the exponent can be
in the range of –130 to 125. If the literal is followed by an f or F, it is treated as a BINARY_
FLOAT datatype. If the literal is followed by a d or D, it is treated as a BINARY_DOUBLE datatype.
Here are some examples:

24.0NN

–345.65NN

23E-10NN

95127c01.indd 22 2/18/09 6:37:09 AM

Writing Simple Queries  23

1.5fNN

–34.567DNN

–4dNN

–4.0E+0NN

Datetime Literals

You can specify a date value as a string literal using the datetime literals. The most common
methods to represent the datetime values are to use the conversion function TO_DATE or
TO_TIMESTAMP with the appropriate format mask. For completeness of literals, I will discuss
the datetime literals briefly.

The DATE literal uses the keyword DATE followed by the date value in single quotes, and
the value must be specified in YYYY-MM-DD format with no time component. The time com-
ponent will be defaulted to midnight (00:00:00). The following are examples of the DATE
literal:

DATE ‘2008-03-24’

DATE ‘1999-12-31’

Similar to the TIMESTAMP datatype, the TIMESTAMP literal can be used to specify
the year, month, date, hour, minute, second, and fractional second. You can also include time-
zone data along with the TIMESTAMP literal. The time zone information can be specified
using the UTC offset or using the time zone region name. The literal must be in the format
YYYY-MM-DD HH24:MI:SS TZ. Here are some examples of the TIMESTAMP literal:

TIMESTAMP ‘2008-03-24 03:25:34.123’

TIMESTAMP ‘2008-03-24 03:25:34.123 -7:00’

TIMESTAMP ‘2008-03-24 03:25:34.123 US/Central’

TIMESTAMP ‘2008-03-24 03:25:34.123 US/Central CDT’

Interval Literals

Interval literals specify a period of time in terms of years and months or in terms of days
and seconds. These literals correspond to the Oracle datatypes INTERVAL YEAR TO
MONTH and INTERVAL DAY TO SECOND. I’ll discuss these datatypes in more detail
in Chapter 6.

Writing Simple Queries
A query is a request for information from the database tables. Queries do not modify data;
they read data from database tables and views. Simple queries are those that retrieve data
from a single table or view. A table is used to store data and is stored in rows and columns.
The basis of a query is the SELECT statement. The SELECT statement can be used to get data

95127c01.indd 23 2/18/09 6:37:09 AM

24  Chapter 1  n  Introducing SQL

from a single table or from multiple tables. Queries using multiple tables are discussed in
later chapters.

Using the SELECT Statement
The SELECT statement is the most commonly used statement in SQL. It allows you to retrieve
information already stored in the database. The statement begins with the keyword SELECT,
followed by the column names whose data you want to query. You can select information
either from all the columns (denoted by *) or from name-specific columns in the SELECT clause
to retrieve data. The FROM clause provides the name of the table, view, or materialized view
to use in the query. These objects are discussed in detail in later chapters. For simplicity, I
will use tables for the rest of this chapter.

Let’s use the JOBS table defined in the HR schema of the Oracle 11g sample database. You
can use SQL*Plus tool to connect to the database as discussed earlier in the chapter. The
JOBS table definition is provided in Table 1.6.

Ta b le 1.6  ​  ​ JOBS Table Definition

Column Name Datatype Length

JOB_ID VARCHAR2 10

JOB_TITLE VARCHAR2 35

MIN_SALARY NUMBER 6,0

MAX_SALARY NUMBER 6,0

The simple form of a SELECT statement to retrieve all the columns and rows from the
JOBS table is as follows (only part of output result set is shown here):
SQL> SELECT * FROM jobs;

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY

---------- ------------------------------- ---------- ----------

AD_PRES President 20000 40000

AD_VP Administration Vice President 15000 30000

AD_ASST Administration Assistant 3000 6000

FI_MGR Finance Manager 8200 16000

FI_ACCOUNT Accountant 4200 9000

… … … … …

IT_PROG Programmer 4000 10000

95127c01.indd 24 2/18/09 6:37:09 AM

Writing Simple Queries  25

MK_MAN Marketing Manager 9000 15000

MK_REP Marketing Representative 4000 9000

HR_REP Human Resources Representative 4000 9000

PR_REP Public Relations Representative 4500 10500

19 rows selected.

The keywords, column names, and table names are case insensitive. Only
literals enclosed in single quotation marks are case sensitive in Oracle.

How do you list only the job title and minimum salary from this table? If you know the
column names and the table name, writing the query is simple. Here, the column names are
JOB_TITLE and MIN_SALARY, and the table name is JOBS. Execute the query by ending the
query with a semicolon. In SQL*Plus, you can execute the query by entering a slash on a
line by itself or by using the RUN command.

SQL> SELECT job_title, min_salary FROM jobs;

JOB_TITLE MIN_SALARY

----------------------------------- ----------

President 20000

Administration Vice President 15000

Administration Assistant 3000

Finance Manager 8200

Accountant 4200

Accounting Manager 8200

Public Accountant 4200

… … … … …

Programmer 4000

Marketing Manager 9000

Marketing Representative 4000

Human Resources Representative 4000

Public Relations Representative 4500

19 rows selected.

Notice that the numeric column (MIN_SALARY) is aligned to the right and the character
column (JOB_TITLE) is aligned to the left. Does it seem that the column heading MIN_SALARY
should be more meaningful? Well, you can provide a column alias to appear in the query
results.

95127c01.indd 25 2/18/09 6:37:09 AM

26  Chapter 1  n  Introducing SQL

Column Alias Names
The column alias name is defined next to the column name with a space or by using the key-
word AS. If you want a space in the column alias name, you must enclose it in double quota-
tion marks. The case is preserved only when the alias name is enclosed in double quotation
marks; otherwise, the display will be uppercase. The following example demonstrates using
an alias name for the column heading in the previous query:

SELECT job_title AS Title, min_salary AS “Minimum Salary”

FROM jobs;

TITLE Minimum Salary

----------------------------------- --------------

President 20000

Administration Vice President 15000

Administration Assistant 3000

Finance Manager 8200

Accountant 4200

Accounting Manager 8200

… … … … …

Programmer 4000

Marketing Manager 9000

Marketing Representative 4000

Human Resources Representative 4000

Public Relations Representative 4500

19 rows selected.

In this listing, the column alias name Title appears in all capital letters because I did
not enclose it in double quotation marks.

The asterisk (*) is used to select all columns in the table. This is useful
when you do not know the column names or when you are too lazy to type
all the column names.

Ensuring Uniqueness
The DISTINCT keyword (or UNIQUE keyword) following SELECT ensures that the resulting
rows are unique. Uniqueness is verified against the complete row, not the first column. If
you need to find the unique departments in the EMPLOYEES table, issue this query:

SELECT DISTINCT department_id

FROM employees;

95127c01.indd 26 2/18/09 6:37:09 AM

Writing Simple Queries  27

DEPARTMENT_ID

 100

 30

 20

 70

 90

 110

 50

 40

 80

 10

 60

12 rows selected.

To demonstrate that uniqueness is enforced across the row, let’s do one more query using
the SELECT DISTINCT clause. Notice DEPARTMENT_ID repeating for each JOB_ID value in the
following example:

SELECT DISTINCT department_id, job_id

FROM employees;

DEPARTMENT_ID JOB_ID

------------- ----------

 110 AC_ACCOUNT

 90 AD_VP

 50 ST_CLERK

 80 SA_REP

 110 AC_MGR

… … …

 10 AD_ASST

 20 MK_REP

 40 HR_REP

 30 PU_MAN

20 rows selected.

95127c01.indd 27 2/18/09 6:37:09 AM

28  Chapter 1  n  Introducing SQL

SELECT * FROM TAB; shows all the tables and views in your
schema. Don’t be alarmed if you see a table name similar to
BIN$PJV23QpwQfu0zPN9uaXw+w==$0. These are tables that belong
to the Recycle Bin (or dropped tables). The tasks of creating tables
and managing tables are discussed in Chapter 6.

The DUAL Table
The DUAL table is a dummy table available to all users in the database. It has one column
and one row. The DUAL table is used to select system variables or to evaluate an expression.
Here are few examples. The first query is to show the contents of the DUAL table.

SQL> SELECT * FROM dual;

DUMMY

X

SQL> SELECT SYSDATE, USER FROM dual;

SYSDATE USER

--------- ------------------------------

18-SEP-07 HR

SQL> SELECT ‘I’’m ‘ || user || ‘ Today is ‘ || SYSDATE

 2 FROM dual;

‘I’’M’||USER||’TODAYIS’||SYSDATE

I’m HR Today is 18-SEP-07

SYSDATE and USER are built-in functions that provide information about the
environment. These functions are discussed in Chapter 2, “Using Single-
Row Functions.”

Limiting Rows
You can use the WHERE clause in the SELECT statement to limit the number of rows pro-
cessed. Any logical conditions of the WHERE clause use the comparison operators. Rows

95127c01.indd 28 2/18/09 6:37:09 AM

Writing Simple Queries  29

are returned or operated upon where the data satisfies the logical condition(s) of the WHERE
clause. You can use column names or expressions in the WHERE clause, but not column alias
names. The WHERE clause follows the FROM clause in the SELECT statement.

How do you list the employees who work for department 90? The following example
shows how to limit the query to only the records belonging to department 90 by using a
WHERE clause:

SELECT first_name || ‘ ‘ || last_name “Name”, department_id

FROM employees

WHERE department_id = 90;

Name DEPARTMENT_ID

--- -------------

Steven King 90

Neena Kochhar 90

Lex De Haan 90

You need not include the column names in the SELECT clause to use them
in the WHERE clause.

You can use various operators in Oracle 11g in the WHERE clause to limit the number of rows.

Comparison Operators
Comparison operators compare two values or expressions and give a Boolean result
of TRUE, FALSE, or NULL. The comparison operators include those that test for equality,
inequality, less than, greater than, and value comparisons.

= (Equality)

The = operator tests for equality. The test evaluates to TRUE if the values or results of an
expression on both sides of the operator are equal.

SELECT first_name || ‘ ‘ || last_name “Name”, department_id

FROM employees

WHERE department_id = 90;

Name DEPARTMENT_ID

--- -------------

Steven King 90

Neena Kochhar 90

Lex De Haan 90

95127c01.indd 29 2/18/09 6:37:09 AM

30  Chapter 1  n  Introducing SQL

!=, <>, or ^= (Inequality)

You can use any one of these three operators to test for inequality. The test evaluates to
TRUE if the values on both sides of the operator do not match.

SELECT first_name || ‘ ‘ || last_name “Name”, commission_pct

FROM employees

WHERE commission_pct != .35;

Name COMMISSION_PCT

-- --------------

John Russell .4

Karen Partners .3

Alberto Errazuriz .3

Gerald Cambrault .3

… … … … … …

Jack Livingston .2

Kimberely Grant .15

Charles Johnson .1

32 rows selected.

< (Less Than)

The < operator evaluates to TRUE if the left side (expression or value) of the operator is less
than the right side of the operator.

SELECT first_name || ‘ ‘ || last_name “Name”, commission_pct

FROM employees

WHERE commission_pct < .15;

Name COMMISSION_PCT

-- --------------

Mattea Marvins .1

David Lee .1

Sundar Ande .1

Amit Banda .1

Sundita Kumar .1

Charles Johnson .1

6 rows selected.

95127c01.indd 30 2/18/09 6:37:09 AM

Writing Simple Queries  31

> (Greater Than)

The > operator evaluates to TRUE if the left side (expression or value) of the operator is
greater than the right side of the operator.

SELECT first_name || ‘ ‘ || last_name “Name”, commission_pct

FROM employees

WHERE commission_pct > .35;

Name COMMISSION_PCT

-- --------------

John Russell .4

<= (Less Than or Equal to)

The <= operator evaluates to TRUE if the left side (expression or value) of the operator is less
than or equal to the right side of the operator.

SELECT first_name || ‘ ‘ || last_name “Name”, commission_pct

FROM employees

WHERE commission_pct <= .15;

Name COMMISSION_PCT

-- --------------

Oliver Tuvault .15

Danielle Greene .15

Mattea Marvins .1

David Lee .1

Sundar Ande .1

Amit Banda .1

William Smith .15

Elizabeth Bates .15

Sundita Kumar .1

Kimberely Grant .15

Charles Johnson .1

11 rows selected.

>= (Greater Than or Equal to)

The >= operator evaluates to TRUE if the left side (expression or value) of the operator is
greater than or equal to the right side of the operator.

SELECT first_name || ‘ ‘ || last_name “Name”, commission_pct

FROM employees

WHERE commission_pct >= .35;

95127c01.indd 31 2/18/09 6:37:09 AM

32  Chapter 1  n  Introducing SQL

Name COMMISSION_PCT

-- --------------

John Russell .4

Janette King .35

Patrick Sully .35

Allan McEwen .35

ANY or SOME

You can use the ANY or SOME operator to compare a value to each value in a list or subquery.
The ANY and SOME operators always must be preceded by one of the following comparison
operators: =, !=, <, >, <=, or >=.

SELECT first_name || ‘ ‘ || last_name “Name”, department_id

FROM employees

WHERE department_id <= ANY (10, 15, 20, 25);

Name DEPARTMENT_ID

--- -------------

Jennifer Whalen 10

Michael Hartstein 20

Pat Fay 20

ALL

You can use the ALL operator to compare a value to every value in a list or subquery. The
ALL operator must always be preceded by one of the following comparison operators: =, !=,
<, >, <=, or >=.

SELECT first_name || ‘ ‘ || last_name “Name”, department_id

FROM employees

WHERE department_id >= ALL (80, 90, 100);

Name DEPARTMENT_ID

--- -------------

Nancy Greenberg 100

Daniel Faviet 100

John Chen 100

Ismael Sciarra 100

Jose Manuel Urman 100

Luis Popp 100

Shelley Higgins 110

William Gietz 110

8 rows selected.

For all the comparison operators discussed, if one side of the operator is NULL, the result is NULL.

95127c01.indd 32 2/18/09 6:37:10 AM

Writing Simple Queries  33

Logical Operators
Logical operators are used to combine the results of two comparison conditions (compound
conditions) to produce a single result or to reverse the result of a single comparison. NOT,
AND, and OR are the logical operators. When a logical operator is applied to NULL, the result
is UNKNOWN. UNKNOWN acts similarly to FALSE; the only difference is that NOT FALSE is TRUE,
whereas NOT UNKNOWN is also UNKNOWN.

NOT

You can use the NOT operator to reverse the result. It evaluates to TRUE if the operand is
FALSE, and it evaluates to FALSE if the operand is TRUE. NOT returns NULL if the operand
is NULL.

WHERE !(department_id >= 30)

 *

ERROR at line 3:

SELECT first_name, department_id

FROM employees

WHERE not (department_id >= 30);

FIRST_NAME DEPARTMENT_ID

-------------------- -------------

Jennifer 10

Michael 20

Pat 20

AND

The AND operator evaluates to TRUE if both operands are TRUE. It evaluates to FALSE if either
operand is FALSE. Otherwise, it returns NULL.

SELECT first_name, salary

FROM employees

WHERE last_name = ‘Smith’

AND salary > 7500;

FIRST_NAME SALARY

-------------------- ----------

Lindsey 8000

95127c01.indd 33 2/18/09 6:37:10 AM

34  Chapter 1  n  Introducing SQL

OR

The OR operator evaluates to TRUE if either operand is TRUE. It evaluates to FALSE if both
operands are FALSE. Otherwise, it returns NULL.

SELECT first_name, last_name

FROM employees

WHERE first_name = ‘Kelly’

OR last_name = ‘Smith’;

FIRST_NAME LAST_NAME

-------------------- -------------------------

Lindsey Smith

William Smith

Kelly Chung

Logical Operator Truth Tables

The following tables are the truth tables for the three logical operators.
Table 1.7 is a truth table for the AND operator.

Ta b le 1.7  ​  ​ AND Truth Table

AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

Table 1.8 is the truth table for the OR operator.

Ta b le 1. 8  ​  ​ OR Truth Table

OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

95127c01.indd 34 2/18/09 6:37:10 AM

Writing Simple Queries  35

Table 1.9 is the truth table for the NOT operator.

Ta b le 1. 9  ​  ​ NOT Truth Table

NOT

TRUE FALSE

FALSE TRUE

UNKNOWN UNKNOWN

Other Operators
In the following sections, I will discuss all the operators that can be used in the WHERE
clause of the SQL statement that were not discussed earlier.

IN and NOT IN

You can use the IN and NOT IN operators to test a membership condition. IN is equivalent
to the =ANY operator, which evaluates to TRUE if the value exists in the list or the result set
from a subquery. The NOT IN operator is equivalent to the !=ALL operator, which evaluates
to TRUE if the value does not exist in the list or the result set from a subquery. The following
examples demonstrate how to use these two operators:

SELECT first_name, last_name, department_id

FROM employees

WHERE department_id IN (10, 20, 90);

FIRST_NAME LAST_NAME DEPARTMENT_ID

-------------------- ------------------------- ----------

Steven King 90

Neena Kochhar 90

Lex De Haan 90

Jennifer Whalen 10

Michael Hartstein 20

Pat Fay 20

6 rows selected.

SELECT first_name, last_name, department_id

FROM employees

WHERE department_id NOT IN

 (10, 30, 40, 50, 60, 80, 90, 110, 100);

95127c01.indd 35 2/18/09 6:37:10 AM

36  Chapter 1  n  Introducing SQL

FIRST_NAME LAST_NAME DEPARTMENT_ID

-------------------- ---------------------- -------------

Michael Hartstein 20

Pat Fay 20

Hermann Baer 70

SQL>

When using the NOT IN operator, if any value in the list or the result
returned from the subquery is NULL, the NOT IN condition is evaluated to
FALSE. For example, last_name not in (‘Smith’, ‘Thomas’, NULL)
evaluates to last_name != ‘Smith’ AND last_name != ‘Thomas’ AND
last_name != NULL. Any comparison on a NULL value results in NULL. So,
the previous condition does not return any row even through there may
be some rows with LAST_NAME as Smith or Thomas.

BETWEEN

You can use the BETWEEN operator to test a range. BETWEEN A AND B evaluates to TRUE if the
value is greater than or equal to A and less than or equal to B. If NOT is used, the result is the
reverse. The following example lists all the employees whose salary is between $5,000 and
$6,000:

SELECT first_name, last_name, salary

FROM employees

WHERE salary BETWEEN 5000 AND 6000;

FIRST_NAME LAST_NAME SALARY

-------------------- ------------------------- ----------

Bruce Ernst 6000

Kevin Mourgos 5800

Pat Fay 6000

EXISTS

The EXISTS operator is always followed by a subquery in parentheses. EXISTS evaluates to
TRUE if the subquery returns at least one row. The following example lists the employees
who work for the administration department. Here is an example of using EXISTS. Don’t
worry if you do not understand the SQL for now; subqueries are discussed in detail in
Chapter 4, “Using Joins and Subqueries.”

SELECT last_name, first_name, department_id

FROM employees e

WHERE EXISTS (select 1 FROM departments d

95127c01.indd 36 2/18/09 6:37:10 AM

Writing Simple Queries  37

 WHERE d.department_id = e.department_id

 AND d.department_name = ‘Administration’);

LAST_NAME FIRST_NAME DEPARTMENT_ID

---------------------- -------------------- -------------

Whalen Jennifer 10

SQL>

IS NULL and IS NOT NULL

To find the NULL values or NOT NULL values, you need to use the IS NULL operator. The = or
!= operator will not work with NULL values. IS NULL evaluates to TRUE if the value is NULL.
IS NOT NULL evaluates to TRUE if the value is not NULL. To find the employees who do not
have a department assigned, use this query:

SELECT last_name, department_id

FROM employees

WHERE department_id IS NULL;

LAST_NAME DEPARTMENT_ID

------------------------- -------------

Grant

SQL>

SELECT last_name, department_id

FROM employees

WHERE department_id = NULL;

no rows selected

LIKE

Using the LIKE operator, you can perform pattern matching. The pattern-search character %
is used to match any character and any number of characters. The pattern-search character
_ is used to match any single character. If you are looking for the actual character % or _ in the
pattern search, you can include an escape character in the search string and notify Oracle
using the ESCAPE clause.

The following query searches for all employees whose first name begins with Su and last
name does not begin with S:

SELECT first_name, last_name

FROM employees

WHERE first_name LIKE ‘Su%’

AND last_name NOT LIKE ‘S%’;

95127c01.indd 37 2/18/09 6:37:10 AM

38  Chapter 1  n  Introducing SQL

FIRST_NAME LAST_NAME

-------------------- -------------------------

Sundar Ande

Sundita Kumar

Susan Mavris

The following example looks for all JOB_ID values that begin with AC_. Since _ is a
pattern-matching character, you must qualify it with an escape character. Oracle does not
have a default escape character.

SELECT job_id, job_title

FROM jobs

WHERE job_id like ‘AC_%’ ESCAPE ‘\’;

JOB_ID JOB_TITLE

---------- -----------------------------------

AC_MGR Accounting Manager

AC_ACCOUNT Public Accountant

Table 1.10 shows more examples of pattern matching.

Ta b le 1.10  ​  ​ Pattern-Matching Examples

Pattern Matches Does Not Match

%SONI_1 SONIC1, ULTRASONI21 SONICS1, SONI315

_IME TIME, LIME IME, CRIME

\%SONI_1 ESCAPE ‘\’ %SONIC1, %SONI91 SONIC1, ULTRASONIC1

%ME_ _ _LE ESCAPE ‘\’ CRIME_FILE, TIME_POLE CRIMESPILE, CRIME_ALE

Sorting Rows
The SELECT statement may include the ORDER BY clause to sort the resulting rows in a specific
order based on the data in the columns. Without the ORDER BY clause, there is no guarantee
that the rows will be returned in any specific order. If an ORDER BY clause is specified, by
default the rows are returned by ascending order of the columns specified. If you need to
sort the rows in descending order, use the keyword DESC next to the column name. You
can specify the keyword ASC to explicitly state to sort in ascending order, although it is the

95127c01.indd 38 2/18/09 6:37:10 AM

Writing Simple Queries  39

default. The ORDER BY clause follows the FROM clause and the WHERE clause in the SELECT
statement.

To retrieve all employee names of department 90 from the EMPLOYEES table ordered by
last name, use this query:

SELECT first_name || ‘ ‘ || last_name “Employee Name”

FROM employees

WHERE department_id = 90

ORDER BY last_name;

Employee Name

--

Lex De Haan

Steven King

Neena Kochhar

SQL>

You can specify more than one column in the ORDER BY clause. In this case, the result
set will be ordered by the first column in the ORDER BY clause, then the second, and so on.
Columns or expressions not used in the SELECT clause can also be used in the ORDER BY
clause. The following example shows how to use DESC and multiple columns in the ORDER
BY clause:

SELECT first_name, hire_date, salary, manager_id mid

FROM employees

WHERE department_id IN (110,100)

ORDER BY mid ASC, salary DESC, hire_date;

FIRST_NAME HIRE_DATE SALARY MID

-------------------- --------- ---------- ----------

Shelley 07-JUN-94 12000 101

Nancy 17-AUG-94 12000 101

Daniel 16-AUG-94 9000 108

John 28-SEP-97 8200 108

Jose Manuel 07-MAR-98 7800 108

Ismael 30-SEP-97 7700 108

Luis 07-DEC-99 6900 108

William 07-JUN-94 8300 205

8 rows selected.

SQL>

95127c01.indd 39 2/18/09 6:37:10 AM

40  Chapter 1  n  Introducing SQL

You can use column alias names in the ORDER BY clause.

If the DISTINCT keyword is used in the SELECT clause, you can use only those columns
listed in the SELECT clause in the ORDER BY clause. If you have used any operators on columns in
the SELECT clause, the ORDER BY clause also should use them. Here is an example:

SELECT DISTINCT ‘Region ‘ || region_id

FROM countries

ORDER BY region_id;

ORDER BY region_id

 *

ERROR at line 3:

ORA-01791: not a SELECTed expression

SELECT DISTINCT ‘Region ‘ || region_id

FROM countries

ORDER BY ‘Region ‘ || region_id;

‘REGION’||REGION_ID

Region 1

Region 2

Region 3

Region 4

Not only can you use the column name or column alias to sort the result set of a query,
but you can also sort the results by specifying the position of the column in the SELECT clause.
This is useful if you have a lengthy expression in the SELECT clause and you need the results
sorted on this value. The following example sorts the result set using positional values:

SELECT first_name, hire_date, salary, manager_id mid

FROM employees

WHERE department_id IN (110,100)

ORDER BY 4, 2, 3;

FIRST_NAME HIRE_DATE SALARY MID

-------------------- --------- ---------- ----------

Shelley 07-JUN-94 12000 101

95127c01.indd 40 2/18/09 6:37:10 AM

Writing Simple Queries  41

Nancy 17-AUG-94 12000 101

Daniel 16-AUG-94 9000 108

John 28-SEP-97 8200 108

Ismael 30-SEP-97 7700 108

Jose Manuel 07-MAR-98 7800 108

Luis 07-DEC-99 6900 108

William 07-JUN-94 8300 205

8 rows selected.

The ORDER BY clause cannot have more than 255 columns or expressions.

Sorting NULLs
By default, in an ascending-order sort, the NULL values appear at the bottom of the result set;
that is, NULLs are sorted higher. For descending-order sorts, NULL values appear at the top
of the result set—again, NULL values are sorted higher. You can change the default behavior
by using the NULLS FIRST or NULLS LAST keyword, along with the column names (or alias
names or positions). The following examples demonstrate how to use NULLS FIRST in an
ascending sort:

SELECT last_name, commission_pct

FROM employees

WHERE last_name LIKE ‘R%’

ORDER BY commission_pct ASC, last_name DESC;

LAST_NAME COMMISSION_PCT

------------------------- --------------

Russell .4

Rogers

Raphaely

Rajs

SELECT last_name, commission_pct

FROM employees

WHERE last_name LIKE ‘R%’

ORDER BY commission_pct ASC NULLS FIRST, last_name DESC;

95127c01.indd 41 2/18/09 6:37:10 AM

42  Chapter 1  n  Introducing SQL

LAST_NAME COMMISSION_PCT

------------------------- --------------

Rogers

Raphaely

Rajs

Russell .4

SQL>

Why Do You Limit and Sort Rows?

The power of an RDBMS and SQL lies in getting exactly what you want from the data-
base. The sample tables you considered under the HR schema are small, so even if you
get all the information from the table, you can still find the specific data you’re seeking.
But what if you have a huge transaction table with millions of rows?

You know how easy it is to look through a catalog in the library to find a particular book or
to search through an alphabetical listing to find your name. When querying a large table,
make sure you know what you want.

The WHERE clause lets you query for exactly what you’re looking for. The ORDER BY clause
lets you sort rows. The following steps can be used as an approach to query data from
single table:

1.	 Know the columns of the table. You can issue the DESCRIBE command to get the
column names and datatype. Understand which column has what information.

2.	 Pick the column names you are interested in including in the query. Use these columns
in the SELECT clause.

3.	 Identify the column or columns where you can limit the rows, or the columns that
can show you only the rows of interest. Use these columns in the WHERE clause of the
query, and supply the values as well as the appropriate operator.

4.	 If the query returns more than a few rows, you may be interested in having them
sorted in a particular order. Specify the column names and the sorting order in the
ORDER BY clause of the query.

Let’s consider a table named PURCHASE_ORDERS. First, use the DESCRIBE command to list
the columns:

SQL> DESCRIBE purchase_orders

Name Null? Type

--------------------- -------- --------------

ORDER# NOT NULL NUMBER (16)

ORDER_DT NOT NULL DATE

95127c01.indd 42 2/18/09 6:37:10 AM

Writing Simple Queries  43

CUSTOMER# NOT NULL VARCHAR2 (12)

BACK_ORDER CHAR (1)

ORD_STATUS CHAR (1)

TOTAL_AMT NOT NULL NUMBER (18,4)

SALES_TAX NUMBER (12,2)

The objective of the query is to find the completed orders that do not have any sales tax.
You want to see the order number and total amount of the order. The corresponding col-
umns that appear in the SELECT clause are ORDER# and TOTAL_AMT. Since you’re interested
in only the rows with no sales tax in the completed orders, the columns to appear in the
WHERE clause are SALES_TAX (checking for zero sales tax) and ORD_STATUS (checking for
the completeness of the order, which is status code C). Since the query returns multiple
rows, you want to order them by the order number. Notice that the SALES_TAX column can
be NULL, so you want to make sure you get all rows that have a sales tax amount of zero
or NULL.

SELECT order#, total_amt

FROM purchase_orders

WHERE ord_status = ‘C’

AND (sales_tax IS NULL

OR sales_tax = 0)

ORDER BY order#;

An alternative is to use the NVL function to deal with the NULL values. This function is dis-
cussed in Chapter 2.

Using Expressions
An expression is a combination of one or more values, operators, and SQL functions that
result in a value. The result of an expression generally assumes the datatype of its compo-
nents. The simple expression 5+6 evaluates to 11 and assumes a datatype of NUMBER.
Expressions can appear in the following clauses:

The NN SELECT clause of queries

The NN WHERE clause, ORDER BY clause, and HAVING clause

The NN VALUES clause of the INSERT statement

The NN SET clause of the UPDATE statement

I will review the syntax of using these statements in later chapters.
You can include parentheses to group and evaluate expressions and then apply the result

to the rest of the expression. When parentheses are used, the expression in the innermost

95127c01.indd 43 2/18/09 6:37:10 AM

44  Chapter 1  n  Introducing SQL

parentheses is evaluated first. Here is an example of a compound expression: ((2*4)/
(3+1))*10. The result of 2*4 is divided by the result of 3+1. Then the result from the divi-
sion operation is multiplied by 10.

The CASE Expression
You can use the CASE expression to derive the IF…THEN…ELSE logic in SQL. Here is the syn-
tax of the simple CASE expression:

CASE <expression>

WHEN <compare value> THEN <return value> … … …

[ELSE <return value>]

END

The CASE expression begins with the keyword CASE and ends with the keyword END. The
ELSE clause is optional. The maximum number of arguments in a CASE expression is 255.
The following query displays a description for the REGION_ID column based on the value:

SELECT country_name, region_id,

 CASE region_id WHEN 1 THEN ‘Europe’

 WHEN 2 THEN ‘America’

 WHEN 3 THEN ‘Asia’

 ELSE ‘Other’ END Continent

FROM countries

WHERE country_name LIKE ‘I%’;

COUNTRY_NAME REGION_ID CONTINE

-------------------- ---------- -------

Israel 4 Other

India 3 Asia

Italy 1 Europe

SQL>

The other form of the CASE expression is the searched CASE, where the values are derived
based on a condition. Oracle evaluates the conditions top to bottom; when a condition
evaluates to true, the rest of the WHEN clauses are not evaluated. This version has the follow-
ing syntax:

CASE

WHEN <condition> THEN <return value> … … …

[ELSE <return value>]

END

95127c01.indd 44 2/18/09 6:37:11 AM

Writing Simple Queries  45

The following example categorizes the salary as Low, Medium, and High using a
searched CASE expression:
SELECT first_name, department_id, salary,

 CASE WHEN salary < 6000 THEN ‘Low’

 WHEN salary < 10000 THEN ‘Medium’

 WHEN salary >= 10000 THEN ‘High’ END Category

FROM employees

WHERE department_id <= 30

ORDER BY first_name;

FIRST_NAME DEPARTMENT_ID SALARY CATEGO

-------------------- ------------- ---------- ------

Alexander 30 3100 Low

Den 30 11000 High

Guy 30 2600 Low

Jennifer 10 4400 Low

Karen 30 2500 Low

Michael 20 13000 High

Pat 20 6000 Medium

Shelli 30 2900 Low

Sigal 30 2800 Low

9 rows selected.

Oracle uses the & (ampersand) character to substitute values at runtime. In the next sec-
tion, I will discuss how to create SQL statements that can be used to get a different set of
results based on values passed during execution time.

Finding the Current Sessions and Program Name

As a DBA you may have to query the V$SESSION dictionary view to find the current ses-
sions in the database. This view has several columns that show various information about
the session; often the DBA is interested in finding out the username and which program
is connecting to the database. If the DBA wants to find out what SQL is executed in the
session, the SID and SERIAL# columns can be queried to enable tracing using the DBMS_
TRACE package.

I’ll review in this example how to query the V$SESSION view using the simple SQL state-
ments you learned in this chapter.

95127c01.indd 45 2/18/09 6:37:11 AM

46  Chapter 1  n  Introducing SQL

The following query may return several rows depending on the activity and number of
users connected to the database:

SELECT username, sid, serial#, program

FROM v$session;

If you’re using SQL*Plus, you may have to adjust the column width to fit the output in
one line:

COLUMN program FORMAT a20

COLUMN username FORMAT a20

SELECT username, sid, serial#, program

FROM v$session;

USERNAME SID SERIAL# PROGRAM

-------------------- ---------- ---------- -----------------

 118 6246 ORACLE.EXE (W000)

BTHOMAS 121 963 sqlplus.exe

DBSNMP 124 23310 emagent.exe

DBSNMP 148 608 emagent.exe

 150 1 ORACLE.EXE (FBDA)

 152 7 ORACLE.EXE (SMCO)

 155 1 ORACLE.EXE (MMNL)

 156 1 ORACLE.EXE (DIA0)

 158 1 ORACLE.EXE (MMON)

 159 1 ORACLE.EXE (RECO)

 164 1 ORACLE.EXE (MMAN)

… … … (Output truncated)

As you can see, the background processes do not have usernames. To find out only the
user sessions in the database, you can filter out the rows that do no have valid user-
names:

SELECT username, sid, serial#, program

FROM v$session

WHERE username is NOT NULL;

If you’re looking for specific information, you may want to add more filter conditions such
as looking for a specific user or a specific program. The following SQL returns the rows in
order of their session login time, with the most recent session on the top:

SELECT username, sid, serial#, program

FROM v$session

95127c01.indd 46 2/18/09 6:37:11 AM

Accepting Values at Runtime  47

WHERE username is NOT NULL

ORDER BY logon_time;

USERNAME SID SERIAL# PROGRAM

-------------------- ---------- ---------- ---------------

DBSNMP 148 608 emagent.exe

DBSNMP 124 23310 emagent.exe

BTHOMAS 121 963 sqlplus.exe

SCOTT 132 23 TOAD.EXE

SJACOB 231 32 discoverer.exe

Accepting Values at Runtime
To create an interactive SQL statement, you can define variables in the SQL statement. This
allows the user to supply values at runtime, further enhancing the ability to reuse the SQL
scripts. An ampersand (&) followed by a variable name prompts for and accepts values at
runtime. For example, the following SELECT statement queries the DEPARTMENTS table based
on the department number supplied at runtime.

SELECT department_name

FROM departments

WHERE department_id = &dept;

Enter value for dept: 10

old 3: WHERE DEPARTMENT_ID = &dept

new 3: WHERE DEPARTMENT_ID = 10

DEPARTMENT_NAME

Administration

1 row selected.

Using Substitution Variables
Suppose that you have defined DEPT as a variable in your script, but you want to avoid the
prompt for the value at runtime. SQL*Plus prompts you for a value only when the variable
is undefined. You can define a substitution variable in SQL*Plus using the DEFINE command

95127c01.indd 47 2/18/09 6:37:11 AM

48  Chapter 1  n  Introducing SQL

to provide a value. The variable will always have the CHAR datatype associated with it.
Here is an example of defining a substitution variable:

SQL> DEFINE DEPT = 20

SQL> DEFINE DEPT

DEFINE DEPT = “20” (CHAR)

SQL> LIST

 1 SELECT department_name

 2 FROM departments

 3* WHERE department_id = &DEPT

SQL> /

old 3: WHERE DEPARTMENT_ID = &DEPT

new 3: WHERE DEPARTMENT_ID = 20

DEPARTMENT_NAME

Marketing

1 row selected.

SQL>

Using the DEFINE command without any arguments shows all the defined
variables.

A . (dot) is used to append characters immediately after the substitution variable. The
dot separates the variable name and the literal that follows immediately. If you need a dot
to be part of the literal, provide two dots continuously. For example, the following query
appends _REP to the user input when seeking a value from the JOBS table:

SQL> SELECT job_id, job_title FROM jobs

 2* WHERE job_id = ‘&JOB._REP’

SQL> /

Enter value for job: MK

old 2: WHERE JOB_ID = ‘&JOB._REP’

new 2: WHERE JOB_ID = ‘MK_REP’

JOB_ID JOB_TITLE

---------- ------------------------

MK_REP Marketing Representative

1 row selected.

SQL>

95127c01.indd 48 2/18/09 6:37:11 AM

Accepting Values at Runtime  49

The old line with the variable and the new line with the substitution are displayed. You
can turn off this display by using the command SET VERIFY OFF.

Saving a Variable for a Session
Consider the following SQL, saved to a file named ex01.sql. When you execute this script
file, you will be prompted for the COL1 and COL2 values multiple times:

SQL> SELECT &COL1, &COL2

 2 FROM &TABLE

 3 WHERE &COL1 = ‘&VAL’

 4 ORDER BY &COL2

 5

SQL> SAVE ex01

Created file ex01.sql

SQL> @ex01

Enter value for col1: FIRST_NAME

Enter value for col2: LAST_NAME

old 1: SELECT &COL1, &COL2

new 1: SELECT FIRST_NAME, LAST_NAME

Enter value for table: EMPLOYEES

old 2: FROM &TABLE

new 2: FROM EMPLOYEES

Enter value for col1: FIRST_NAME

Enter value for val: John

old 3: WHERE &COL1 = ‘&VAL’

new 3: WHERE FIRST_NAME = ‘John’

Enter value for col2: LAST_NAME

old 4: ORDER BY &COL2

new 4: ORDER BY LAST_NAME

FIRST_NAME LAST_NAME

-------------------- ---------

John Chen

John Russell

John Seo

3 rows selected.

SQL>

The user can enter different or wrong values for each prompt. To avoid multiple prompts,
use && (double ampersand), where the variable is saved for the session.

95127c01.indd 49 2/18/09 6:37:11 AM

50  Chapter 1  n  Introducing SQL

To clear a defined variable, you can use the UNDEFINE command. Let’s edit the ex01.sql
file to make it look like this:

SELECT &&COL1, &&COL2

FROM &TABLE

WHERE &COL1 = ‘&VAL’

ORDER BY &COL2

/

Enter value for col1: first_name

Enter value for col2: last_name

old 1: SELECT &&COL1, &&COL2

new 1: SELECT first_name, last_name

Enter value for table: employees

old 2: FROM &TABLE

new 2: FROM employees

Enter value for val: John

old 3: WHERE &COL1 = ‘&VAL’

new 3: WHERE first_name = ‘John’

old 4: ORDER BY &COL1

new 4: ORDER BY first_name

FIRST_NAME LAST_NAME

-------------------- -------------------------

John Chen

John Russell

John Seo

UNDEFINE COL1 COL2

Using Positional Notation for Variables
Instead of variable names, you can use positional notation, where each variable is identified
by &1, &2, and so on. The values are assigned to the variables by position. Do this by put-
ting an ampersand (&), followed by a numeral, in place of a variable name. Consider the
following query:

SQL> SELECT department_name, department_id

 2 FROM departments

 3 WHERE &1 = &2;

Enter value for 1: DEPARTMENT_ID

Enter value for 2: 10

old 3: WHERE &1 = &2

new 3: WHERE DEPARTMENT_ID = 10

95127c01.indd 50 2/18/09 6:37:11 AM

Summary  51

DEPARTMENT_NAME DEPARTMENT_ID

------------------------------ -------------

Administration 10

1 row selected.

SQL>

If you save the SQL as a script file, you can submit the substitution-variable values while
invoking the script (as command-line arguments). Each time you run this command file, START
replaces each &1 in the file with the first value (called an argument) after START filename,
then replaces each &2 with the second value, and so forth. Here is an example of saving
and running the previous query:

SQL> SAVE ex02

Created file ex02.sql

SQL> SET VERIFY OFF

SQL> @ex02 department_id 20

DEPARTMENT_NAME DEPARTMENT_ID

------------------------------ -------------

Marketing 20

1 row selected.

SQL>

Although I did not specify two ampersands for positional substitution variables, SQL*Plus
keeps the values of these variables for the session (since we passed the values as parameters
to a script file). Next time you run any script with positional substitution variables, Oracle
uses these values to execute the script.

Summary
This chapter started off with reviewing the fundamentals of SQL. You also saw an overview
of SQL*Plus in this chapter. SQL*Plus is Oracle’s native tool to interact with the database.
You got a quick introduction to the Oracle datatypes, operators, and literals. You learned
to write simple queries using the SELECT statement. You also learned to use the WHERE clause
and the ORDER BY clause in this chapter.

The CHAR and VARCHAR2 datatypes are used to store alphanumeric information.
The NUMBER datatype is used to store any numeric value. Date values can be stored using
the DATE or TIMESTAMP datatypes. Oracle has a wide range of operators: arithmetic,
concatenation, comparison, membership, logical, pattern matching, range, existence, and
NULL checking. The CASE expression is used to bring conditional logic to SQL.

95127c01.indd 51 2/18/09 6:37:11 AM

52  Chapter 1  n  Introducing SQL

SQL*Plus supports all SQL statements and has its own formatting and enhancement
commands. Using this tool, you can produce interactive SQL statements and formatted
reports. SQL*Plus is the command-line interface to the database widely used by DBAs.
SQL*Plus has its own buffer where SQL statements are buffered. You can edit the buffer
using SQL*Plus editing commands. The DESCRIBE command is used to get information on
a table, view, function, or procedure. Multiple SQL and SQL*Plus commands can be stored
in a file and can be executed as a unit. Such files are called script files.

Data in the Oracle database is managed and accessed using SQL. A SELECT statement
is the basic form of querying or reading records from the database table. You can limit or
filter the rows using the WHERE clause. You can use the AND and OR logical operators to join
multiple filter conditions. The ORDER BY clause is used to sort the result set in a particular
order. You can use an ampersand (&) character to substitute a value at runtime.

Exam Essentials

Understand the operators. ​  ​ Know the various operators that can be used in queries. The
parentheses around an expression change the precedence of the operators.

Understand the WHERE clause. ​  ​ The WHERE clause specifies a condition to limit the number
or rows returned. You cannot use column alias names in this clause.

Understand the ORDER BY clause. ​  ​ The ORDER BY clause is used to sort the result set from a
query. You can specify ascending order or descending order for the sort. Ascending order
is the default. Also know that column alias names can be used in the ORDER BY clause. You
can also specify columns by their position.

Know how to specify string literals using the Q/q operator. ​  ​ You can use the Q or q opera-
tor to specify the quote delimiters in string literals. Understand the difference between
using the (, <, {, and [characters and other delimiters.

Know the order of clauses in the SELECT statement. ​  ​ The SELECT statement must have a
FROM clause. The WHERE clause, if it exists, should follow the FROM clause and precede the
ORDER BY clause.

Know the use of the DUAL table. ​  ​ The DUAL table is a dummy table in Oracle with one
column and one row. This table is commonly used to get the values of system variables such
as SYSDATE or USER.

Know the characters used for pattern matching. ​  ​ The % character is used to match zero or
more characters. The _ character is used to match one, and only one, character. The SQL
operator used with a pattern-matching character is LIKE.

Know the sort order of NULL values in queries with ORDER BY clause. ​  ​ By default, in an
ascending-order sort, the NULL values appear at the bottom of the result set; that is, NULLs
are sorted higher. For descending-order sorts, NULL values appear at the top of the result
set—again, NULL values are sorted higher.

95127c01.indd 52 2/18/09 6:37:11 AM

Review Questions  53

Review Questions
1.	 You issue the following query:

SELECT salary “Employee Salary”

FROM employees;

	 How will the column heading appear in the result?

A.	 EMPLOYEE SALARY

B.	 EMPLOYEE_SALARY

C.	 Employee Salary

D.	 employee_salary

2.	 The EMP table is defined as follows:

Column Datatype Length

EMPNO NUMBER 4

ENAME VARCHAR2 30

SALARY NUMBER 14,2

COMM NUMBER 10,2

DEPTNO NUMBER 2

	 You perform the following two queries:
1. SELECT empno enumber, ename
 FROM emp ORDER BY 1;

2. SELECT empno, ename
 FROM emp ORDER BY empno ASC;

	 Which of the following is true?

A.	 Statements 1 and 2 will produce the same result in data.

B.	 Statement 1 will execute; statement 2 will return an error.

C.	 Statement 2 will execute; statement 1 will return an error.

D.	 Statements 1 and 2 will execute but produce different results.

95127c01.indd 53 2/18/09 6:37:11 AM

54  Chapter 1  n  Introducing SQL

3.	 You issue the following SELECT statement on the EMP table shown in question 2.

SELECT (200+((salary*0.1)/2)) FROM emp;

What will happen to the result if all the parentheses are removed?

A.	 No difference, because the answer will always be NULL.

B.	 No difference, because the result will be the same.

C.	 The result will be higher.

D.	 The result will be lower.

4.	 In the following SELECT statement, which component is a literal? (Choose all that apply.)

SELECT ‘Employee Name: ‘ || ename
FROM emp where deptno = 10;

A.	 10

B.	 ename

C.	 Employee Name:

D.	 ||

5.	 When you try to save 34567.2255 into a column defined as NUMBER(7,2), what value is
actually saved?

A.	 34567.00

B.	 34567.23

C.	 34567.22

D.	 3456.22

6.	 What is the default display length of the DATE datatype column?

A.	 18

B.	 9

C.	 19

D.	 6

7.	 What will happen if you query the EMP table shown in question 2 with the following?

SELECT empno, DISTINCT ename, salary FROM emp;

A.	 EMPNO, unique values of ENAME, and then SALARY are displayed.

B.	 EMPNO and unique values of the two columns, ENAME and SALARY, are displayed.

C.	 DISTINCT is not a valid keyword in SQL.

D.	 No values will be displayed because the statement will return an error.

8.	 Which clause in a query limits the rows selected?

A.	 ORDER BY

B.	 WHERE

C.	 SELECT

D.	 FROM

95127c01.indd 54 2/18/09 6:37:11 AM

Review Questions  55

9.	 The following listing shows the records of the EMP table:

 EMPNO ENAME SALARY COMM DEPTNO

--------- ---------- --------- --------- ---------

 7369 SMITH 800 20

 7499 ALLEN 1600 300 30

 7521 WARD 1250 500 30

 7566 JONES 2975 20

 7654 MARTIN 1250 1400 30

 7698 BLAKE 2850 30

 7782 CLARK 2450 24500 10

 7788 SCOTT 3000 20

 7839 KING 5000 50000 10

 7844 TURNER 1500 0 30

 7876 ADAMS 1100 20

 7900 JAMES 950 30

 7902 FORD 3000 20

 7934 MILLER 1300 13000 10

When you issue the following query, which value will be displayed in the first row?

SELECT empno
FROM emp
WHERE deptno = 10
ORDER BY ename DESC;

A.	 MILLER

B.	 7934

C.	 7876

D.	 No rows will be returned because ename cannot be used in the ORDER BY clause.

10.	 Refer to the listing of records in the EMP table in question 9. How many rows will the fol-
lowing query return?

SELECT * FROM emp WHERE ename BETWEEN ‘A’ AND ‘C’

A.	 4

B.	 2

C.	 A character column cannot be used in the BETWEEN operator.

D.	 3

95127c01.indd 55 2/18/09 6:37:11 AM

56  Chapter 1  n  Introducing SQL

11.	 Refer to the EMP table in question 2. When you issue the following query, which line has
an error?

1. SELECT empno “Enumber”, ename “EmpName”
2. FROM emp
3. WHERE deptno = 10
4. AND “Enumber” = 7782
5. ORDER BY “Enumber”;

A.	 1

B.	 5

C.	 4

D.	 No error; the statement will finish successfully.

12.	 You issue the following query:

SELECT empno, ename
FROM emp
WHERE empno = 7782 OR empno = 7876;

Which other operator can replace the OR condition in the WHERE clause?

A.	 IN

B.	 BETWEEN .. AND ..

C.	 LIKE

D.	 <=

E.	 >=

13.	 The following are clauses of the SELECT statement:

1. WHERE
2. FROM
3. ORDER BY

In which order should they appear in a query?

A.	 1, 3, 2

B.	 2, 1, 3

C.	 2, 3, 1

D.	 The order of these clauses does not matter.

14.	 Which statement searches for PRODUCT_ID values that begin with DI_ from the ORDERS table?

A.	 SELECT * FROM ORDERS
WHERE PRODUCT_ID = ‘DI%’;

B.	 SELECT * FROM ORDERS
WHERE PRODUCT_ID LIKE ‘DI_’ ESCAPE ‘\’;

C.	 SELECT * FROM ORDERS
WHERE PRODUCT_ID LIKE ‘DI_%’ ESCAPE ‘\’;

95127c01.indd 56 2/18/09 6:37:12 AM

Review Questions  57

D.	 SELECT * FROM ORDERS
WHERE PRODUCT_ID LIKE ‘DI_’ ESCAPE ‘\’;

E.	 SELECT * FROM ORDERS
WHERE PRODUCT_ID LIKE ‘DI_%’ ESCAPE ‘\’;

15.	 COUNTRY_NAME and REGION_ID are valid column names in the COUNTRIES table. Which one
of the following statements will execute without an error?

A.	 SELECT country_name, region_id,
CASE region_id = 1 THEN ‘Europe’,
 region_id = 2 THEN ‘America’,
 region_id = 3 THEN ‘Asia’,
 ELSE ‘Other’ END Continent
FROM countries;

B.	 SELECT country_name, region_id,
CASE (region_id WHEN 1 THEN ‘Europe’,
 WHEN 2 THEN ‘America’,
 WHEN 3 THEN ‘Asia’,
 ELSE ‘Other’) Continent
FROM countries;

C.	 SELECT country_name, region_id,
CASE region_id WHEN 1 THEN ‘Europe’
 WHEN 2 THEN ‘America’
 WHEN 3 THEN ‘Asia’
 ELSE ‘Other’ END Continent
FROM countries;

D.	 SELECT country_name, region_id,
CASE region_id WHEN 1 THEN ‘Europe’
 WHEN 2 THEN ‘America’
 WHEN 3 THEN ‘Asia’
 ELSE ‘Other’ Continent
FROM countries;

16.	 Which special character is used to query all the columns from the table without listing each
column by name?

A.	 %

B.	 &

C.	 @

D.	 *

17.	 The EMPLOYEE table has the following data:
EMP_NAME HIRE_DATE SALARY
---------- --------- ----------
SMITH 17-DEC-90 800
ALLEN 20-FEB-91 1600
WARD 22-FEB-91 1250
JONES 02-APR-91 5975
WARDEN 28-SEP-91 1250
BLAKE 01-MAY-91 2850

95127c01.indd 57 2/18/09 6:37:12 AM

58  Chapter 1  n  Introducing SQL

	 What will be the value in the first row of the result set when the following query is executed?

SELECT hire_date FROM employee
ORDER BY salary, emp_name;

A.	 02-APR-91

B.	 17-DEC-90

C.	 28-SEP-91

D.	 The query is invalid, because you cannot have a column in the ORDER BY clause that is
not part of the SELECT clause.

18.	 Which SQL statement will query the EMPLOYEES table for FIRST_NAME, LAST_NAME, and
SALARY of all employees in DEPARTMENT_ID 40 in the alphabetical order of last name?

A.	 SELECT first_name last_name salary
FROM employees
ORDER BY last_name
WHERE department_id = 40;

B.	 SELECT first_name, last_name, salary
FROM employees
ORDER BY last_name ASC
WHERE department_id = 40;

C.	 SELECT first_name last_name salary
FROM employees
WHERE department_id = 40
ORDER BY last_name ASC;

D.	 SELECT first_name, last_name, salary
FROM employees
WHERE department_id = 40
ORDER BY last_name;

E.	 SELECT first_name, last_name, salary
FROM TABLE employees
WHERE department_id IS 40
ORDER BY last_name ASC;

19.	 When doing pattern matching using the LIKE operator, which character is used as the
default escape character by Oracle?

A.	 |

B.	 /

C.	 \

D.	 There is no default escape character in Oracle.

95127c01.indd 58 2/18/09 6:37:12 AM

Review Questions  59

20.	 Column alias names cannot be used in which clause?

A.	 SELECT clause

B.	 WHERE clause

C.	 ORDER BY clause

D.	 None of the above

21.	 What is wrong with the following statements submitted in SQL*Plus?

DEFINE V_DEPTNO = 20

SELECT LAST_NAME, SALARY

FROM EMPLOYEES

WHERE DEPARTMENT_ID = V_DeptNo;

A.	 Nothing is wrong. The query lists the employee name and salary of the employees who
belong to department 20.

B.	 The DEFINE statement declaration is wrong.

C.	 The substitution variable is not preceded with the & character.

D.	 The substitution variable in the WHERE clause should be V_DEPTNO instead of V_DeptNo.

22.	 Which two statements regarding substitution variables are true?

A.	 &variable is defined by SQL*Plus, and its value will be available for the duration of the
session.

B.	 &&variable is defined by SQL*Plus, and its value will be available for the duration of
the session.

C.	 &n (where n is a any integer) variables are defined by SQL*Plus when values are passed
in as arguments to the script, and their values will be available for the duration of the
session.

D.	 &&variable is defined by SQL*Plus, and its value will be available only for every refer-
ence to that variable in the current SQL.

23.	 Look at the data in table PRODUCTS. Which SQL will list the items on the BL shelves? (Show
the result with the most available quantity at the top row.)

PRODUCT_ID PRODUCT_NAME SHELF AVAILABLE_QTY
---------- -------------------- ------ -------------
 1001 CREST BL36 354
 1002 COLGATE BL36 54
 1003 AQUAFRESH BL37 43
 2002 SUNNY-D LA21 53
 2003 CAPRISUN LA22 45

95127c01.indd 59 2/18/09 6:37:12 AM

60  Chapter 1  n  Introducing SQL

A.	 SELECT * FROM products
WHERE shelf like ‘%BL’
ORDER BY available_qty SORT DESC;

B.	 SELECT * FROM products
WHERE shelf like ‘BL%’;

C.	 SELECT * FROM products
WHERE shelf = ‘BL%’
ORDER BY available_qty DESC;

D.	 SELECT * FROM products
WHERE shelf like ‘BL%’
ORDER BY available_qty DESC;

E.	 SELECT * FROM products
WHERE shelf like ‘BL%’
ORDER BY available_qty SORT;

24.	 The EMP table has the following data:

 EMPNO ENAME SAL COMM
---------- ---------- ---------- ----------
 7369 SMITH 800
 7499 ALLEN 1600 300
 7521 WARD 1250 500
 7566 JONES 2975
 7654 MARTIN 1250 1400
 7698 BLAKE 2850
 7782 CLARK 2450
 7788 SCOTT 3000
 7839 KING 5000
 7844 TURNER 1500 0
 7876 ADAMS 1100
 7900 JAMES 950
 7902 FORD 3000
 7934 MILLER 1300

Consider the following two SQL statements:

1. �SELECT empno, ename, sal, comm
FROM emp WHERE comm IN (0, NULL);

2. �SELECT empno, ename, sal, comm
FROM emp WHERE comm = 0 OR comm IS NULL;

A.	 1 and 2 will produce the same result.

B.	 1 will error; 2 will work fine.

C.	 1 and 2 will produce different results.

D.	 1 and 2 will work but will not return any rows.

95127c01.indd 60 2/18/09 6:37:12 AM

Answers to Review Questions  61

Answers to Review Questions
1.	 C.  Column alias names enclosed in quotation marks will appear as typed. Spaces and

mixed case appear in the column alias name only when the alias is enclosed in double quo-
tation marks.

2.	 A.  Statements 1 and 2 will produce the same result. You can use the column name, column
alias, or column position in the ORDER BY clause. The default sort order is ascending. For a
descending sort, you must explicitly specify that order with the DESC keyword.

3.	 B. In the arithmetic evaluation, multiplication and division have precedence over addition
and subtraction. Even if you do not include the parentheses, salary*0.1 will be evaluated
first. The result is then divided by 2, and its result is added to 200.

4.	 A, C.  Character literals in the SQL statement are enclosed in single quotation marks. Liter-
als are concatenated using ||. Employee Name: is a character literal, and 10 is a numeric
literal.

5.	 B.  Since the numeric column is defined with precision 7 and scale 2, you can have five dig-
its in the integer part and two digits after the decimal point. The digits after the decimal are
rounded.

6.	 B.  The default display format of DATE column is DD-MON-YY, whose length is 9.

7.	 D.  DISTINCT is used to display a unique result row, and it should follow immediately after
the keyword SELECT. Uniqueness is identified across the row, not a single column.

8.	 B.  The WHERE clause is used to limit the rows returned from a query. The WHERE clause con-
dition is evaluated, and rows are returned only if the result is TRUE. The ORDER BY clause is
used to display the result in certain order.

9.	 B.  There are three records belonging to DEPTNO 10: EMPNO 7934 (MILLER), 7839 (KING),
and 7782 (CLARK). When you sort their names by descending order, MILLER is the first row
to display. You can use alias names and columns that are not in the SELECT clause in the
ORDER BY clause.

10.	 D. Here, a character column is compared against a string using the BETWEEN operator,
which is equivalent to ename >= ‘A’ AND ename <= ‘C’. The name CLARK will not be
included in this query, because ‘CLARK’ is > ‘C’.

11.	 C.  Column alias names cannot be used in the WHERE clause. They can be used in the ORDER
BY clause.

12.	 A.  The IN operator can be used. You can write the WHERE clause as WHERE empno IN
(7782, 7876);.

13.	 B.  The FROM clause appears after the SELECT statement, followed by WHERE and ORDER BY
clauses. The FROM clause specifies the table names, the WHERE clause limits the result set,
and the ORDER BY clause sorts the result.

95127c01.indd 61 2/18/09 6:37:12 AM

62  Chapter 1  n  Introducing SQL

14.	 C.  Since _ is a special pattern-matching character, you need to include the ESCAPE clause
in LIKE. The % character matches any number of characters including 0, and _ matches a
single character.

15.	 C.  A CASE expression begins with the keyword CASE and ends with the keyword END.

16.	 D.  An asterisk (*) is used to denote all columns in a table.

17.	 B.  The default sorting order for a numeric column is ascending. The columns are sorted
first by salary and then by name, so the row with the lowest salary is displayed first. It is
perfectly valid to use a column in the ORDER BY clause that is not part of the SELECT clause.

18.	 D.  In the SELECT clause, the column names should be separated by commas. An alias name
may be provided for each column with a space or using the keyword AS. The FROM clause
should appear after the SELECT clause. The WHERE clause appears after the FROM clause. The
ORDER BY clause comes after the WHERE clause.

19.	 D.  There is no default escape character in Oracle for pattern matching. If your search
includes pattern-matching characters such as _ or %, define an escape character using the
ESCAPE keyword in the LIKE operator.

20.	 B.  Column alias names cannot be used in the WHERE clause of the SQL statement. In the
ORDER BY clause, you can use the column name or alias name, or you can indicate the col-
umn by its position in the SELECT clause.

21.	 C.  The query will return an error, because the substitution variable is used without an
ampersand (&) character. In this query, Oracle treats V_DEPTNO as another column name
from the table and returns an error. Substitution variables are not case sensitive.

22.	 B, C.  When a variable is preceded by double ampersands, SQL*Plus defines that vari-
able. Similarly, when you pass values to a script using START script_name arguments,
SQL*Plus defines those variables. Once a variable is defined, its value will be available for
the duration of the session or until you use UNDEFINE variable.

23.	 D.  % is the wild character to pattern-match for any number of characters. Option A is
almost correct, except for the SORT keyword in the ORDER BY clause, which will produce an
error since it is not a valid syntax. Option B will produce results but will sort them in the
order you want. Option C will not return any rows because LIKE is the operator for pattern
matching, not =. Option E has an error similar to Option A.

24.	 C.  In the first SQL, the comm IN (0, NULL) will be treated as comm = 0 OR comm = NULL.
For all NULL comparisons, you should use IS NULL instead of = NULL. The first SQL will
return only one row where comm = 0, whereas the second SQL will return all the rows that
have comm = NULL as well as comm = 0.

95127c01.indd 62 2/18/09 6:37:12 AM

