
3

Before you start working with Java, you need to set up a Java develop-
ment environment. This includes installing the Java Standard Edition
(SE) Development Kit and the JBoss application server and then con-

figuring the server to use the Java Development Kit (JDK) you just installed.
After that, you must install Apache Ant and the Eclipse integrated develop-
ment environment (IDE), which you also configure to use the same JDK and
to control your JBoss server.

Because Java is multiplatform, and JBoss, Ant, and Eclipse are themselves
written in Java, it’s possible to use this Java development environment setup
wherever Java runs. This chapter, though, covers only setup in Windows.

The Java Programming Language
The Java programming language is one of the most popular choices for Web
application development for a number of reasons. First, Web applications
written in Java are portable. That means that the same Java application you
write for a Windows machine can also be run on Mac OS, Linux, or Solaris
without the need for changes to your code.

In addition to portability, Java is well-supported by a number of development
tools that make developing and deploying Java Web applications much easier.
The Eclipse IDE, when configured to work together with other development
tools, can help you write code, compile it, package and deploy the application
to a server, and even run and debug the application — all from within the
IDE. In fact, Eclipse, Ant, and JBoss are all written in Java themselves — a
testament to the versatility of the language.

IN THIS CHAPTER
The Java programming
language

The Java SE Development Kit

The JBoss application server

Apache Ant

The Eclipse integrated
development environment

Setting Up the Java
Development Environment

CO
PYRIG

HTED
 M

ATERIA
L

4

Installation and Getting StartedPart I

Object-oriented programming
Java is said to be an object-oriented programming language. In the world of object-oriented pro-
gramming, programs are simply collections of interacting objects. Objects are programmatic repre-
sentations of things in the real world. They are collections of properties (things the object has) and
behaviors (things the object does).

The basic building block in object-oriented programming is called a class. A class describes the
properties and behaviors of an object. For example, a Car class might contain properties such as
color, bodyStyle, currentSpeed, and mileage. It might also have behaviors such as
accelerate, stop, and start.

An object is a specific instance of a class. Whereas a class merely describes the properties and
behaviors of an object, an instance contains specific values and implementations of those proper-
ties and behaviors. For example, an instance of the Car class might have a color of “blue”, a
bodyStyle of “sedan”, and a currentSpeed of “55”. The accelerate behavior might
increase the value of currentSpeed by one each time it’s invoked. Each instance of a class shares
the properties and behaviors of the class with all other instances of that class, but the values and
implementations of those properties and behaviors can differ.

Classes may also inherit properties and behaviors from other classes. A Convertible class might
inherit all the properties and behaviors of the Car class while adding a topColor property and
raiseTop and lowerTop behaviors. The properties of the Car class, known as the superclass of
Convertible, are also accessible by Convertible, which is considered a subclass of Car. Any
code that requires a Car object may also use a Convertible (or any other subclass of Car) and
then use it just like any other Car. This is known as polymorphism — the ability of an object to act
or be treated like another object.

These concepts are the basic building blocks of all object-oriented programming languages, including
Java. Understanding these concepts helps you comprehend the way object-oriented programming in
Java works.

Key Java concepts
As an object-oriented language, Java makes use of all the concepts just discussed. Java also has a
few key concepts that separate it from other programming languages. Among these concepts are
the following:

n Write once, run anywhere. Applications written in Java don’t run natively in the operating
system. Instead, Java provides a virtual machine that runs natively in the operating system.
In turn, Java programs run inside this virtual machine, which acts as a translator between
the compiled Java application and the operating system, converting the Java program
instructions into operating system instructions. Virtual machines are available for most
major operating systems, including multiple versions of Windows, Mac OS X, and Linux.

n Built-in libraries. Java comes with a number of useful libraries right out of the box.
These include libraries for networking, working with databases, and creating graphical
user interfaces.

5

Setting Up the Java Development Environment 1

n Automatic memory management. In many other programming languages, the program-
mer is responsible for making sure that any memory used up by objects created by the
program is freed when it’s no longer needed. This is problematic for a couple of reasons.
The first reason is that it requires that memory management code be mixed in with appli-
cation logic, which makes the application logic harder to maintain. The second is that if
the programmer forgets to add memory management code everywhere it’s needed, the
application could end up with what’s known as a memory leak. An application with a
memory leak continues to use more and more memory until it runs out altogether, caus-
ing the application to crash.

Java has an automatic memory manager, known as the garbage collector, that monitors all the objects
created in the virtual machine and disposes of the ones that are no longer in use by any part of the
application, thus freeing up the memory used by those objects. In this way, the Java virtual machine
removes the burden of memory management from the program, leaving the programmer to concen-
trate on the logic of the application, not memory management.

Java syntax
This code listing shows how the previously discussed Car class might be written in Java:

package com.wiley.jfib.ch01;

public class Car
{
 public String color;
 public String bodyType;
 public boolean isStarted;
 public int currentSpeed;

 public Car()
 {
 currentSpeed = 0;
 }

 public void accelerate()
 {
 currentSpeed += 1;
 }

 public void start()
 {
 isStarted = true;
 }

 public void stop()
 {
 isStarted = false;
 }
}

6

Installation and Getting StartedPart I

The first line of this class is known as the package declaration. A package in Java is a means of
grouping related classes together.

The next line of this class is known as the class declaration. The keyword public indicates that the
class is able to be instantiated — that is, new instances of this class can be created by other code.

The next four lines of this class define the properties of the class and their data types. Color and
bodyType are both strings, which contain character data. The isStarted property is a boolean,
which is a value that can be set to true or false. The currentSpeed property is an int, which
contains integer values.

The block of code starting with public Car() and including the code within the curly braces is
known as the constructor. The constructor is used by other code to instantiate (construct an instance
of) a class by using the new operator. For example, if some code requires an instance of the Car
class, it can include this line to create one:

Car carInstance = new Car();

The next three blocks of code, which define the accelerate, start, and stop behaviors, are
known as methods. A method in a Java class provides an interface for invoking a behavior. The
public keyword indicates that each of these methods is available for any other code to invoke.
Other method access keywords are private, which means that only the class itself can invoke the
method, and protected, which means that subclasses and any classes in the same package as the
class can invoke the method. The void keyword indicates that these methods return no value
when they’ve finished executing. Methods can return no value; simple types of values, such as int
or boolean; or any object.

Here’s the code listing for the Convertible class:

package com.wiley.jfib.ch01;

public class Convertible extends Car
{
 public String topColor;
 public boolean isTopUp;

 public Convertible()
 {
 super();
 isTopUp = true;
 }

 public void raiseTop()
 {
 isTopUp = true;
 }

7

Setting Up the Java Development Environment 1

 public void lowerTop()
 {
 isTopUp = false;
 }
}

The syntax for the Convertible class is the same as for the Car class, with a few differences.
First, in the class declaration, notice that Convertible extends Car. This indicates that the
Convertible class inherits the properties and behaviors of the Car class. Second, in the con-
structor, there’s a call to super(). This call tells the constructor of the Convertible class to
invoke the constructor of the Car class, the superclass of Convertible.

This final code listing shows an example of a method in another class that uses the Car class:

public void driveToWork()
{
 Car companyCar = new Car();
 companyCar.color = “black”;
 companyCar.bodyType = “sedan”;
 companyCar.start();
 while(companyCar.currentSpeed < 55)
 {
 companyCar.accelerate();
 }

 // some logic to determine when the
 // car arrives at work would go here

 companyCar.stop();
}

This method instantiates a new Car object by using the Car class’s constructor, sets its color and
bodyType properties, invokes its start() method, and invokes accelerate() until the value
of the currentSpeed property reaches 55. Finally, the Car object’s stop() method is invoked.

The Java SE Development Kit
The first thing you need to get started with Java development is Java itself. The Java SE
Development Kit, or JDK, contains both the Java runtime needed to run Java applications and the
Java compiler needed to compile Java source code into Java applications. Much like Flex, where
your MXML and ActionScript files are compiled into one or more SWF files, Java source code files
are compiled into binary Java class files that can be run inside the Java virtual machine.

8

Installation and Getting StartedPart I

Installing the JDK
The most recent version of the JDK for all platforms is always available from Sun at
http://java.sun.com/javase/downloads/index.jsp. As of this writing, JDK 6
Update 10 is the current version.

NOTENOTE Updates to the JDK are likely, so use the current version available.

The JDK for Windows is packaged as a standard Windows installer. Once the installer has finished
installing the JDK, some additional configuration steps are required.

To download the installer from the Java Web site, follow these steps:

 1. Click the Download button for the current version of the JDK on the download
page, as shown in Figure 1.1. You’re automatically redirected to the next page.

 2. On the next page, as shown in Figure 1.2, choose the Windows operating system and
Multi-language options from the dropdown lists, click the check box to indicate your
acceptance of the license agreement, and then click Continue to go to the next page.

 FIGURE 1.1

On the Java 6 download page, click the Download button for the current version of
the JDK.

9

Setting Up the Java Development Environment 1

 3. On the final page, as shown in Figure 1.3, click the jdk-6u10-windows-i586-p.
exe link for the Windows Offline Installation. The offline installation option is a
larger download but doesn’t require a network connection to install once downloaded.

 4. Choose Save rather than Run to save the file to your computer. Pick a location that
you can remember.

 FIGURE 1.2

On the next page of the Java download Web site, select the Windows operating system
and Multi-language options from the dropdown lists and click the check box to accept
the license agreement.

 FIGURE 1.3

On the final page of the Java download Web site, click the Windows Offline Installation
to download the installer.

10

Installation and Getting StartedPart I

To run the installer from the saved location, follow these steps:

 1. Double-click the installer executable.

 2. Read the Sun Binary Code License Agreement for the JDK and then click the Accept
button to continue.

 3. On the second screen, as shown in Figure 1.4, choose the location where you want
to install the JDK and which features to include and then click Next to continue.
The default values are suitable for most users. If you need to change the install location,
click Change and then choose a new location. In either case, be sure to note the location.
The JDK installer displays a progress bar that shows the progress of the JDK installation
before going to the next step.

NOTENOTE By default, the installer installs all features, including demos and sample code.
The sample code is worth a look if you’re new to Java development.

 4. Once the JDK has finished installing, choose the installation location for the stand-
alone Java Runtime Environment (JRE) and Java browser plug-in, as shown in
Figure 1.5. These components allow Java applications installed on your computer as well
as Java applets hosted on Web sites to run. The default values are suitable for most users.
If you need to change the install location, click the Change button and then choose a new
location. The JDK installer displays a progress bar that shows the progress of the JRE
installation before going to the next step.

 5. Click Finish to exit the installer. Installation of the JDK and JRE is now complete.

 FIGURE 1.4

The default installation location and settings. These are acceptable for most installations.

11

Setting Up the Java Development Environment 1

 FIGURE 1.5

The Java Runtime Environment and Java browser plug-in are installed separately from
the JDK. Again, the default values are acceptable for most installations.

Configuring the JDK
Although it’s possible to run the tools in the JDK without any configuration, taking the time now
to perform a few simple configuration steps makes it easier to configure other Java development
tools later. Most Java development tools and servers expect (or at least prefer) that a couple of sys-
tem environment variables have been set. These environment variables make it easier for other
applications to locate your installed JDK and to execute the Java compiler and runtime without
needing to configure the full path to the Java installation in each development tool you install.

To modify the environment variables, follow these steps:

 1. Open the System Properties dialog box, as shown in Figure 1.6:

n In Windows Vista: Choose Start ➪ Control Panel ➪ System and
Maintenance ➪ System ➪ Advanced System Settings.

n In Windows XP using the Control Panel’s Classic View: Choose Start ➪ Control
Panel ➪ System and then click the Advanced tab.

n In Windows XP using the Control Panel’s Category View: Choose Start ➪ Control
Panel ➪ Performance and Maintenance ➪ System and then click the Advanced tab.

12

Installation and Getting StartedPart I

 2. Click the Environment Variables button. The Environment Variables dialog box opens.
As shown in Figure 1.7, the dialog box is divided into two sections:

n User variables. These are specific to the environment of the user currently logged
into the Windows system.

n System variables. These are globally available to any application run by any user on
the system.

 FIGURE 1.6

The Advanced tab in the System Properties dialog box is where you set necessary
environment variables.

NOTENOTE Typically, you only add or modify environment variables in the User variables
section. However, if your Java development machine is shared among multiple

developers with different logins, it may make sense to set environment variables in the System
variables section. Setting System variables may require a Windows user account with
Administrator privileges.

 3. Click the New button in the User variables section. The New User Variable dialog box
opens.

 4. Type JAVA_HOME in the Variable name text field, type the full path to your JDK
installation in the Variable value text field, as shown in Figure 1.8, and then click
OK. The JAVA_HOME variable lets other applications know where your JDK is installed.
Both the JBoss application server and the Eclipse IDE use this environment variable.

13

Setting Up the Java Development Environment 1

 FIGURE 1.7

The Environment Variables dialog box. User variables are available only to the
logged-in user, while System variables are globally available.

 5. Click the New button in the User variables section. The New User Variable dialog box
opens.

 6. Type PATH in the Variable name text field, type %JAVA_HOME%\bin in the Variable
value text field, and then click OK. The PATH environment variable tells the system the
specific locations to look for executable programs. By adding the JAVA_HOME\bin entry
to the PATH environment variable, the system can find the Java compiler and runtime
executables when they’re called.

 7. Click OK to exit the Environment Variables dialog box and then click OK to save
your settings. Now that you’ve installed and configured the JDK, you can install other
development tools that use it.

 FIGURE 1.8

In the New User Variable dialog box, type JAVA_HOME in the Variable name text field
and the full path to your JDK (C:\Program Files\Java\jdk1.6.0_10, for example)
in the Variable value text field.

14

Installation and Getting StartedPart I

NOTENOTE If you’re adding environment variables to the System variables section, the PATH
variable likely already exists. If so, select the PATH variable from the variables list

and then click the Edit button rather than the New button. Type the full path to the bin directory
inside the JDK installation folder (for example, C:\Program Files\Java\jdk1.6.0_10\bin)
at the end of the path, preceded by a semicolon to separate it from the rest of the values.

The JBoss Application Server
Java Web applications consist of a combination of compiled Java code; standard Web assets, such
as HTML files and images; and Java Server Pages (JSPs), which allow dynamic content to be
retrieved from the server and displayed in a browser. Java Web applications are typically packaged
in a Web Application Archive (WAR) file and then deployed to an application server, which is
responsible for providing the runtime resource management that the Web application needs.

The application server used to run the applications in this book is JBoss. JBoss is an open-source
application server for Java Web applications. JBoss is popular for Java development because it’s free
to download and use, closely follows Java standards, and is easy to configure. As mentioned previ-
ously, JBoss is written in Java. You use the JDK you previously installed to run JBoss.

Installing JBoss
The JBoss application server can be downloaded from the JBoss Web site at www.jboss.org/
jbossas/downloads. As of this writing, the latest stable version of JBoss is 4.2.3GA.

NOTENOTE JBoss version 5.0.0 is in its release candidate phase and may be available by the time
you read this. Installation and configuration may be slightly different for this version.

Clicking the Download link for the latest stable version takes you to the file-listing page for that
release. For JDK 6 for Windows, click the download link labeled jboss-<version number>-
jdk6.zip (for example, jboss-4.2.3.GA-jdk6.zip). Save the archive to your machine and
then extract it to a directory of your choice. JBoss is packaged in and runs from a self-contained
folder. No installation is required.

Configuring JBoss
Initial configuration of JBoss involves setting an environment variable and optionally editing JBoss’s
run.bat startup batch file. Once you’re ready to deploy your Web application to JBoss, more
detailed configuration may be necessary. The configuration steps listed here allow you to run JBoss
with its default settings, which are appropriate for the Web applications in this book.

To run JBoss with its default settings, follow these steps:

 1. Open the System Properties dialog box:

n In Windows Vista: Choose Start ➪ Control Panel ➪ System and Maintenance ➪

System ➪ Advanced System Settings.

15

Setting Up the Java Development Environment 1

n In Windows XP using the Control Panel’s Classic View: Choose Start ➪ Control
Panel ➪ System and then click the Advanced tab.

n In Windows XP using the Control Panel’s Category View: Choose Start ➪ Control
Panel ➪ Performance and Maintenance ➪ System and then click the Advanced tab.

 2. Click the Environment Variables button. The Environment Variables dialog box opens.

 3. Click the New button in the User variables section. The New User Variable dialog box
opens.

 4. Type JBOSS_HOME in the Variable name text field, type the full path to your JBoss
installation in the Variable value text field, and then click OK. The JBOSS_HOME
variable lets other applications know where JBoss is installed on your system. This helps
you use automated tools to handle deploying your compiled Java applications to the
JBoss server without needing to remember or type the full installation path each time.

 5. Click OK to exit the Environment Variables dialog box and then click OK to save
your settings.

The batch file run.bat, as shown in Figure 1.9, is located in the bin subfolder of your JBoss install
directory. This file is used to start the JBoss server for Windows and contains a number of parame-
ters that are passed to the Java virtual machine (JVM) when starting up the JBoss server. Most of
the default parameters are fine for development purposes. However, one parameter almost cer-
tainly needs to be changed.

Using Notepad, open the run.bat file by choosing File ➪ Open from the menu and then navigating
to the bin subfolder of your JBoss install to select it. When you have opened the file, look for the
following line:

JAVA_OPTS=%JAVA_OPTS% -Xms128m -Xmx512m

This line configures two parameters: -Xms128m and -Xmx512m refer to the minimum and maxi-
mum Java heap size, respectively. The heap size is the amount of physical memory Java uses to
store its objects. These are the parameters you most likely need to adjust. When dealing with large
Java applications, these default values may not be enough to meet the server’s memory require-
ments. If you’re using a development machine with a healthy amount of RAM, consider increasing
the minimum and maximum heap sizes. By increasing the minimum heap size, you decrease the
likelihood that the JVM needs to take the time to allocate more memory to the heap. By increasing
the maximum heap size, you decrease the likelihood that the JVM runs out of memory, thus caus-
ing your application to stop responding altogether. In production environments, it’s typical to set
the minimum and maximum heap sizes to the same value. For development environments, the
minimum heap size is less important. If you eventually find that JBoss runs out of memory with
the specified maximum heap size, increase that value as needed by replacing the -Xmx512m value
with a higher number.

NOTENOTE Although it’s not strictly necessary to do so, using increments of 128MB is standard
practice for adjusting the heap size value.

16

Installation and Getting StartedPart I

CAUTION CAUTION Don’t set the maximum heap size higher than the amount of memory your system
has. The system may become unstable if the JVM tries to use all the memory your

system has.

To test your JBoss installation, double-click run.bat. You see a Windows command prompt win-
dow open and some startup information scroll by. When the scrolling has stopped, the bottom line
in the window indicates that the server has started. You can verify this by opening a browser and
then typing the following in the address bar:

http://localhost:8080

You should see the JBoss welcome page shown in Figure 1.10. The JBoss welcome page includes
links to the JBoss site, including documentation and discussion forums. These are great resources
for becoming familiar with JBoss.

 FIGURE 1.9

The run.bat file, which starts the JBoss server in Windows and contains arguments for the JVM that runs JBoss

17

Setting Up the Java Development Environment 1

 FIGURE 1.10

The JBoss welcome page provides verification of a correctly installed and configured JBoss server. It also
provides links to documentation on the JBoss Web site.

Apache Ant
It’s possible to do all the compilation of your Java applications simply by using the compiler
included with the JDK. In reality, that process doesn’t scale up well for larger projects. For exam-
ple, consider a large enterprise application consisting of multiple Web applications and libraries.
To build such an application by using only JDK tools would involve invoking the Java compiler
with a lengthy classpath argument to compile the code, invoking separate commands to package
up each Web application into its own Web application archive (WAR) file, invoking yet another
command to package the WAR files and any libraries needed by the applications into an enterprise
application archive (EAR) file, and finally manually copying the EAR file to the application server’s
deployment directory. With this many manual steps, the chance of problems arising increases.

Large software projects typically use automated build processes that not only handle the compila-
tion of source code but also take care of other tasks, such as the packaging and deployment of the
compiled application and even running unit tests to ensure that the compiled application works as
expected before it’s deployed to a production environment. In order to effectively automate the
build process, it’s necessary to use build tools that run easily and consistently every time.

The most widely used build tool in Java development is Apache Ant. Ant is a command-line tool
written in Java that uses XML build files to build your Java projects. Ant’s build files divide builds
into discrete sets of tasks called targets. Ant allows you to chain together targets in such a way that
a single command can compile your code, package up your application, and deploy it to the appli-
cation server.

CROSS-REFCROSS-REF For a detailed example of writing an Ant build file and using it to deploy your
application to the JBoss server, see Chapter 6.

18

Installation and Getting StartedPart I

Installing Apache Ant
Apache Ant can be downloaded from the Apache Ant project’s Web site at http://ant.apache.org/
bindownload.cgi. As of this writing, the latest stable version of Apache Ant is 1.7.1.

Apache Ant comes packaged as a ZIP archive file. Click the download link labeled apache-ant-
<version>-bin.zip (for example, apache-ant-1.7.1-bin.zip). Save the archive to your
machine and then extract it to the directory of your choice. Apache Ant is self-contained and
doesn’t require installation.

Configuring Apache Ant
As with the JDK, you need to set a few environment variables in order to make it easy for other
applications to find and work with Ant.

To modify the environment variables, follow these steps:

 1. Open the System Properties dialog box:

n In Windows Vista: Choose Start ➪ Control Panel ➪ System and Maintenance ➪

System ➪ Advanced System Settings.

n In Windows XP using the Control Panel’s Classic View: Choose Start ➪ Control
Panel ➪ System and then click the Advanced tab.

n In Windows XP using the Control Panel’s Category View: Choose Start ➪ Control
Panel ➪ Performance and Maintenance ➪ System and then click the Advanced tab.

 2. Click the Environment Variables button. The Environment Variables dialog box opens.

 3. Click the New button in the User variables section. The New User Variable dialog box
opens.

 4. Type ANT_HOME in the Variable name text field, type the full path to your Apache
Ant installation (c:\apache-ant-1.7.1, for example) in the Variable value text
field, and then click OK. The ANT_HOME variable lets other applications know where
Ant is installed on your system.

 5. Click the New button in the User variables section again. The New User Variable dia-
log box opens.

 6. Type ANT_OPTS in the Variable name text field, type the maximum heap size for
Ant to use in the Variable value text field, and then click OK. Because Ant is written
in Java, it uses a Java heap to manage the objects it uses, much like JBoss does. Some
tasks in Ant require more memory than others, and building projects with large amounts
of source code or many resources to package could cause Ant to run out of memory if the
heap size is too small. Setting the ANT_OPTS environment variable allows you to specify
enough of a maximum heap size to ensure that Ant has enough memory and to easily
adjust the amount of memory as your project grows. Set the value of the ANT_OPTS vari-
able to the same maximum heap size as your JBoss installation by using the same -Xmx
notation you saw in the JBoss run.bat configuration file, as shown in Figure 1.11.

19

Setting Up the Java Development Environment 1

 FIGURE 1.11

Set the value of the ANT_OPTS environment variable to the same maximum heap size
you set in JBoss’s run.bat file (-Xmx512m, for example).

 7. Click the PATH environment variable in the User variables section and then click
the Edit button. The Edit User Variable dialog box opens, and the Variable name and
Variable value text fields are populated with the current values for the PATH variable.

 8. Add %ANT_HOME%\bin to the Variable value by using a semicolon to separate it
from the %JAVA_HOME%\bin entry and then click OK. See Figure 1.12. Apache Ant’s
executables are now available to other applications.

 9. Click OK to exit the Environment Variables dialog box and then click OK to save
your settings.

 FIGURE 1.12

Add %ANT_HOME%\bin to the PATH environment variable. Separate it from the
existing values by using a semicolon.

NOTENOTE If you’re adding environment variables to the System variables section, the PATH
variable likely already exists. If so, select the PATH variable from the variable list and

then click the Edit button rather than the New button. Type the full path to the bin directory
inside the Ant installation (for example, C:\apache-ant-1.7.1\bin) at the end of the path,
preceded by a semicolon to separate it from the rest of the values.

To test your Apache Ant installation, follow these steps:

 1. Open a command prompt:

n In Windows Vista: Choose Start, type cmd in the Start Search box, and then choose
cmd.exe from the Programs list to open the command prompt.

20

Installation and Getting StartedPart I

n In Windows XP: Choose Start ➪ Run, type cmd in the Run dialog box that opens,
and then click OK to open the command prompt.

 2. Type ant -version in the command prompt window and then press Enter. You should
see a message, as shown in Figure 1.13, indicating the version of Apache Ant you
installed. If you see a message stating that ant isn’t recognized as a command, double-
check that your PATH environment variable entry is accurate.

 FIGURE 1.13

If Apache Ant is installed and configured correctly, running the ant command with the
-version option should print a message similar to this.

The Eclipse Integrated Development
Environment
Eclipse is an open-source integrated development environment (IDE) for Java and other languages.
Eclipse is the most popular IDE for Java development because it’s not only packed with features
such as code completion and templates, but it also integrates with other standard Java tools, such
as Ant and JBoss, and is extensible with a wide variety of plug-ins. Eclipse itself is written in Java,
and you use the JDK you installed previously to run Eclipse as well as compile the Java code you
write by using Eclipse.

21

Setting Up the Java Development Environment 1

Installing the Eclipse IDE
The Eclipse IDE can be downloaded from the Eclipse project’s Web site at www.eclipse.org/
downloads/packages. There are a number of packages available on this page. You should
download the Eclipse IDE for Java EE Developers package. This package contains a number of
tools, such as database views and XML editors, that are useful for your Java development work. As
of this writing, the latest stable version of Eclipse is code-named Ganymede.

To download the Eclipse archive file, follow these steps:

 1. Click the Eclipse IDE for Java EE Developers link on the download page. The next
page opens with a list of mirror sites from which Eclipse can be downloaded, as shown in
Figure 1.14. The mirror sites in this list are clones of the main Eclipse download site.
Their purpose is to take some of the load off the main Eclipse download site by offering
other locations from which you can download Eclipse.

 2. Click the link for the mirror site closest to you. Choosing a mirror site that’s geo-
graphically closer to you usually results in a faster download time.

 3. Click Save to download the archive to a location of your choice.

 FIGURE 1.14

The list of mirror sites where Eclipse can be downloaded. Choose the one closest to you
geographically.

22

Installation and Getting StartedPart I

 4. Extract the archive to a location of your choice. Eclipse is self-contained and doesn’t
require installation.

 5. Start Eclipse by double-clicking eclipse.exe in the Eclipse directory you just
extracted. The Workspace Launcher dialog box, as shown in Figure 1.15, opens.

 FIGURE 1.15

The Workspace Launcher dialog box allows you to choose a location for your Eclipse
workspace and set that workspace as the default. The workspace contains Eclipse
settings and properties. The default value is appropriate for most installations.

 6. Leave the default value for Workspace, click the Use this as the default and don’t
ask again check box, and then click OK. Eclipse launches.

The workspace in Eclipse is a folder in which project configuration, global preferences, and project
resources (such as source code) are stored. The default location is a folder named workspace
under your user files directory. It’s possible to have more than one workspace in Eclipse and
switch between them at will. This allows you to maintain logical groupings of related projects and
keep separate preferences and window layouts for each workspace. For the projects in this book,
you need only one workspace.

When Eclipse opens for the first time, the Welcome view is displayed. The Welcome view, as
shown in Figure 1.16, provides icons that link to an overview of the Eclipse IDE, descriptions of
new features in this version of Eclipse, samples, and tutorials. If you’re new to Eclipse or Java
development in general, it’s worth spending some time with these materials.

Configuring the Eclipse IDE
Eclipse is almost infinitely configurable, and the list of configuration options can be daunting. For
the Java and Flex development you do in this book, only a couple of configuration options are
necessary.

23

Setting Up the Java Development Environment 1

 FIGURE 1.16

The Welcome view in Eclipse contains links to documentation, tutorials, and other valuable information
for both new and experienced developers.

Follow these steps to configure Eclipse:

 1. Choose Window ➪ Preferences. The Preferences dialog box opens.

 2. In the left pane, click the arrow next to Java. The Java submenu is expanded.

 3. Choose Installed JREs from the Java submenu. The Installed JREs list appears in the
right pane, as shown in Figure 1.17. Because you set the JAVA_HOME environment vari-
able when you installed the JDK, you see it listed here and selected as the default option.
If the JDK you installed doesn’t appear here, follow these steps to add it by using the Add
JRE wizard:

24

Installation and Getting StartedPart I

 FIGURE 1.17

The expanded Java submenu with the Installed JREs item selected in the Preferences
dialog box

 1. Click the Add button next to the Installed JREs list. The Add JRE wizard opens.

 2. Choose Standard VM from the dropdown list and then click Next. See Figure 1.18.

 3. Click Directory, navigate to your JDK installation directory, and then click OK.
The wizard populates the JRE name and JRE system libraries text fields for you, as
shown in Figure 1.19.

 4. Click Finish. The Add JRE wizard closes. Your JDK now appears in the Installed
JREs list.

 4. In the left pane of the Preferences dialog box, click the arrow next to Ant. The Ant
submenu is expanded. Eclipse has its own built-in version of Apache Ant, but it’s best for
the sake of consistency to use the same Ant installation both inside and outside the
Eclipse environment.

 5. Choose Runtime from the Ant submenu. The Runtime properties appear in the right
pane, with the Classpath tab selected, as shown in Figure 1.20.

 6. Click the Ant Home button on the Classpath tab. The Browse for Folder dialog box
opens.

 7. Choose your Apache Ant install directory and then click OK. The Ant Home Entries
item now shows the path to your Apache Ant installation. Expand that item to see the set
of Java archive (JAR) files corresponding to your Apache Ant installation, as shown in
Figure 1.21.

 8. In the left pane, click the arrow next to Server. The Server submenu is expanded.

25

Setting Up the Java Development Environment 1

 FIGURE 1.18

The first screen of the Add JRE wizard. Choose Standard VM from the dropdown list.

 FIGURE 1.19

After you select your JDK installation directory in the second screen of the Add JRE wizard,
the wizard automatically fills in the JRE name and JRE system libraries text fields for you.

26

Installation and Getting StartedPart I

 FIGURE 1.20

The expanded Ant submenu with the Runtime item selected in the Preferences dialog
box. The Classpath tab is selected by default.

 9. Choose Runtime Environments from the Server submenu. The Server Runtime
Environments list appears in the right pane, as shown in Figure 1.22. Here, you add your
JBoss installation to your Eclipse configuration. This allows you to take advantage of
Eclipse’s debugging features. You’re able to step through your code running on your
JBoss server, start and stop the server, and more — all from within Eclipse.

 10. Click the Add button next to the Server runtime environments list. The New Server
Runtime Environment wizard opens.

 11. Click the arrow next to JBoss, choose JBoss v4.2 from the expanded list, click the
Create a new local server check box, and then click Next. See Figure 1.23.

27

Setting Up the Java Development Environment 1

 FIGURE 1.21

Once you’ve chosen your Ant installation directory in the Browse for Folder dialog box,
Eclipse fills in the Ant Home Entries with the Ant installation’s runtime JAR files.

 12. Click the Browse button next to the Application Server Directory text box. The
Browse for Folder dialog box opens.

 13. Choose your JBoss installation folder, click OK, and then click Next. See Figure 1.24.

 14. Click Finish. The default values for Address, Port, JNDI Port, and Server Configuration,
as shown in Figure 1.25, are acceptable. Your JBoss configuration now appears in the
Server runtime environments list.

 15. Click OK. The Preferences dialog box closes.

28

Installation and Getting StartedPart I

 FIGURE 1.22

The expanded Server submenu in the Preferences dialog box, with the Runtime
Environments item selected

 FIGURE 1.23

The New Server Runtime Environment wizard, with the JBoss v4.2 item selected

29

Setting Up the Java Development Environment 1

 FIGURE 1.24

Choose your JBoss installation folder from the Browse for Folder dialog box.

 FIGURE 1.25

The default values for Address, Port, JNDI Port, and Server Configuration in the last
screen of the New Server Runtime Environment wizard are fine as they are.

30

Installation and Getting StartedPart I

To test your JBoss configuration, close the Welcome tab by clicking the X on the top-right corner
of the tab and then follow these steps:

 1. Choose Window ➪ Show View ➪ Servers. The Servers view, as shown in Figure 1.26,
opens. You should see your JBoss configuration listed in the Servers view with the value
Stopped in the State column.

 FIGURE 1.26

The Servers view showing the stopped JBoss server

 2. Choose your JBoss server and then either click the Start the Server button (the
round green button with the white arrow to the right of the Servers view tab) or
press Ctrl+Alt+R. As JBoss starts up, the Console view opens and displays JBoss startup
messages. Once JBoss has started successfully, Eclipse switches back to the Servers view,
and the value Started appears in the State column, as shown in Figure 1.27.

 3. Choose your JBoss server and then either click the Stop the Server button (the
square red button to the right of the Servers view tab) or press Ctrl+Alt+S. As JBoss
shuts down, the Console view opens and displays JBoss shutdown messages. Once JBoss
has stopped successfully, Eclipse switches back to the Servers view, and the value
Stopped appears in the State column.

 FIGURE 1.27

The Servers view showing the started JBoss server

As mentioned previously, one of the things that makes Eclipse a popular choice among Java devel-
opers is the ability to extend its functionality through a plug-in system. The last part of configuring
Eclipse for the Web applications in this book is installing one such plug-in: the Spring IDE plug-in.
The Spring IDE plug-in provides a number of useful tools for developing applications by using the
popular Spring Framework.

31

Setting Up the Java Development Environment 1

CROSS-REFCROSS-REF For more on the Spring Framework, see Chapter 6.

Eclipse plug-ins are typically installed by providing Eclipse’s software update manager with a URL
where the plug-in can be downloaded and then choosing the features you want to install. This pro-
cess is used to install the Spring IDE plug-in.

To install the Spring IDE plug-in for Eclipse, follow these steps:

 1. Choose Help ➪ Software Updates. The Software Updates and Add-ons dialog box opens
with the Installed Software tab selected, as shown in Figure 1.28.

 FIGURE 1.28

The Software Updates and Add-ons dialog box consists of two tabs. The Installed
Software tab, selected by default, shows a list of currently installed features.

 2. Click the Available Software tab. The list of currently configured software update sites
is displayed, as shown in Figure 1.29. The update sites listed here are those for the fea-
tures Eclipse provides upon installation. These sites can be used to add features or update
existing features.

32

Installation and Getting StartedPart I

 FIGURE 1.29

The Available Software tab of the Software Updates and Add-ons dialog box lists
currently configured software update sites. Software update sites in Eclipse are sites
where Eclipse features and plug-ins can be downloaded and installed from within Eclipse.

 3. Click the Add Site button. The Add Site dialog box opens.

 4. Type http://dist.springframework.org/release/IDE in the Location text field, as shown
in Figure 1.30, and then click OK. The Add Site dialog box closes, and the Spring IDE
Update Site is added to the list of update sites and is expanded to display the features
available for installation, as shown in Figure 1.31. There are a number of features avail-
able with Spring IDE. Aside from the Core, which provides the basic Spring IDE installa-
tion and is required, only a few of the other options are necessary here:

n The Spring IDE AOP Extension and Spring IDE AOP Developer Resources pro-
vide tools that help with aspect-oriented programming. Among other things,
aspect-oriented programming helps developers deal with modularizing cross-cutting
concerns — functionality such as logging and error handling that affects multiple mod-
ules in an application.

n The Spring IDE Security Extension and Spring IDE Security Developer
Resources provide tools that help with implementing Spring Security in Web
applications. Spring Security provides functionality for handling authentication,
resource protection, and other features to make sure only users with proper creden-
tials have access to application resources.

33

Setting Up the Java Development Environment 1

 FIGURE 1.30

Type the URL for the Spring IDE update site in the Location text field of the Add Site
dialog box.

 FIGURE 1.31

Once you provide Eclipse with the URL for the Spring IDE update site, it appears in the
list of configured software update sites and expands to display the features available for
installation.

 5. Click the check boxes next to Spring IDE Core, Spring IDE AOP Extension, Spring
IDE Security Extension, Spring IDE AOP Developer Resources, and Spring IDE
Security Extension Developer Resources and then click the Install button. Eclipse
resolves any dependencies to make sure any selected features don’t require other features
that aren’t present. Upon successful dependency resolution, the Install wizard, as shown
in Figure 1.32, opens.

34

Installation and Getting StartedPart I

 6. Click the Next button. The Review Licenses screen, as shown in Figure 1.33, opens.
Review the license for each feature you’re installing.

 7. Click the radio button to accept the license agreement for each feature and then
click the Finish button. The Install dialog box opens, showing the progress of the fea-
ture download and installation, as shown in Figure 1.34. Once all features have been
installed, the Install dialog box closes, and the Software Updates dialog box opens, rec-
ommending that Eclipse be restarted.

 8. Click the Yes button to restart Eclipse. Eclipse closes and then reopens.

 9. Once Eclipse has reopened, choose Window ➪ Show View ➪ Other. You should see a
Spring folder in the list of views.

Once you install an Eclipse plug-in and restart Eclipse, the new plug-in is available in Eclipse. Each
Eclipse plug-in adds different features, views, and menu items to Eclipse. Eclipse may or may not
notify you about new features available when a plug-in is installed, so it’s best to read the docu-
mentation for any Eclipse plug-ins you install to understand what features the plug-ins add. The
Spring IDE plug-in adds some Spring views and project types to Eclipse.

 FIGURE 1.32

Once Eclipse has made sure that all required dependencies for the features you’re installing are present,
the Install wizard opens, displaying a list of the chosen features.

35

Setting Up the Java Development Environment 1

 FIGURE 1.33

The Review Licenses screen displays the license agreements for the features you’re installing. You can
click each feature on the left side of the screen to display the license that applies to that feature.

 FIGURE 1.34

After you accept the license agreements, Eclipse displays the progress of the feature installation. After all
features have been installed, you need to restart Eclipse to ensure that all features are available.

36

Installation and Getting StartedPart I

Summary
In this chapter, I discussed the installation and configuration of the tools you use to develop, com-
pile, and run your Java applications. These include the Java SE Development Kit, which contains
the compiler and runtime code for Java applications; the JBoss application server, the server envi-
ronment in which Java Web applications are run; the Apache Ant build tools, which make the pro-
cess of building, packaging, and deploying applications easier to manage and automate; and the
Eclipse IDE, the development environment in which you write, compile, and debug the code for
your Java Web applications.

