
1

CHAPTER 1
Introduction

I t is no surprise that the natural sciences (chemistry, physics, life sciences/
biology, astronomy, earth science, and environmental science) and engi-

neering are fields that rely on advanced quantitative methods. One of the 
toolsets used by professionals in these fields is from the branch of math-
ematics known as probability and statistics. The social sciences, such as 
psychology, sociology, political science, and economics, use probability and 
statistics to varying degrees. 

There are branches within each field of the natural sciences and social 
sciences that utilize probability and statistics more than others. Specialists 
in these areas not only apply the tools of probability and statistics, but they 
have also contributed to the field of statistics by developing techniques to 
organize, analyze, and test data. Let’s look at examples from physics and 
engineering (the study of natural phenomena in terms of basic laws and 
physical quantities and the design of physical artifacts) and biology (the 
study of living organisms) in the natural sciences, and psychology (the study 
of the human mind) and economics (the study of production, resource allo-
cation, and consumption of goods and services) in the social sciences. 

Statistical physics is the branch of physics that applies probability and 
statistics for handling problems involving large populations of particles. One 
of the first areas of application was the explanation of thermodynamics laws 
in terms of statistical mechanics. It was an extraordinary scientific achieve-
ment with far-reaching consequences. In the field of engineering, the analysis 
of risk, be it natural or industrial, is another area that makes use of statistical 
methods. This discipline has contributed important innovations especially in 
the study of rare extreme events. The engineering of electronic communica-
tions applied statistical methods early, contributing to the development of 
fields such as queue theory (used in communication switching systems) and 
introduced the fundamental innovation of measuring information. 

Biostatistics and biomathematics within the field of biology include 
many areas of great scientific interest such as public health, epidemiology, 
demography, and genetics, in addition to designing biological experiments 
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(such as clinical experiments in medicine) and analyzing the results of those 
experiments. The study of the dynamics of populations and the study of 
evolutionary phenomena are two important fields in biomathematics. Biom-
etry and biometrics apply statistical methods to identify quantities that 
characterize living objects. 

Psychometrics, a branch of psychology, is concerned with designing 
tests and analyzing the results of those tests in an attempt to measure or 
quantify some human characteristic. Psychometrics has its origins in person-
ality testing, intelligence testing, and vocational testing, but is now applied 
to measuring attitudes and beliefs and health-related tests. 

Econometrics is the branch of economics that draws heavily on statis-
tics for testing and analyzing economic relationships. Within econometrics, 
there are theoretical econometricians who analyze statistical properties of 
estimators of models. Several recipients of the Nobel Prize in Economic Sci-
ences received the award as a result of their lifetime contribution to this 
branch of economics. To appreciate the importance of econometrics to the 
discipline of economics, when the first Nobel Prize in Economic Sciences 
was awarded in 1969, the corecipients were two econometricians, Jan Tin-
bergen and Ragnar Frisch (who is credited for first using the term econo-
metrics in the sense that it is known today). Further specialization within 
econometrics, and the area that directly relates to this book, is financial 
econometrics. As Jianqing Fan (2004) writes, financial econometrics

uses statistical techniques and economic theory to address a variety 
of problems from finance. These include building financial models, 
estimation and inferences of financial models, volatility estimation, 
risk management, testing financial economics theory, capital asset 
pricing, derivative pricing, portfolio allocation, risk-adjusted returns, 
simulating financial systems, hedging strategies, among others.

Robert Engle and Clive Granger, two econometricians who shared the 2003 
Nobel Prize in Economics Sciences, have contributed greatly to the field of 
financial econometrics. 

Historically, the core probability and statistics course offered at the uni-
versity level to undergraduates has covered the fundamental principles and 
applied these principles across a wide variety of fields in the natural sciences 
and social sciences. Universities typically offered specialized courses within 
these fields to accommodate students who sought more focused applica-
tions. The exceptions were the schools of business administration that 
early on provided a course in probability and statistics with applications to 
business decision making. The applications cut across finance, marketing, 
management, and accounting. However, today, each of these areas in busi-
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ness requires specialized tools for dealing with real-world problems in their 
respective disciplines. 

This brings us to the focus of this book. Finance is an area that relies 
heavily on probability and statistics. The quotation above by Jianqing Fan 
basically covers the wide range of applications within finance and identifies 
some of the unique applications. Two examples may help make this clear. 
First, in standard books on statistics, there is coverage of what one might 
refer to as “probability distributions with appealing properties.” A distri-
bution called the “normal distribution,” referred to in the popular press 
as a “bell-shaped curve,” is an example. Considerable space is devoted to 
this distribution and its application in standard textbooks. Yet, the over-
whelming historical evidence suggests that real-world financial data com-
monly used in financial applications are not normally distributed. Instead, 
more focus should be on distributions that deal with extreme events, or, in 
other words, what are known as the “tails” of a distribution. In fact, many 
market commentators and regulators view the failure of financial institu-
tions and major players in the financial markets to understand non-normal 
distributions as a major reason for the recent financial debacles through-
out the world. This is one of the reasons that, in certain areas in finance, 
extreme event distributions (which draw from extreme value theory) have 
supplanted the normal distribution as the focus of attention. The recent 
financial crisis has clearly demonstrated that because of the highly leveraged 
position (i.e., large amount of borrowing relative to the value of equity) of 
financial institutions throughout the world, these entities are very sensitive 
to extreme events. This means that the management of these financial insti-
tutions must be aware of the nature of the tails of distributions, that is, the 
probability associated with extreme events.

As a second example, the statistical measure of correlation that measures 
a certain type of association between two random variables may make sense 
when the two random variables are normally distributed. However, correla-
tion may be inadequate in describing the link between two random variables 
when a portfolio manager or risk manager is concerned with extreme events 
that can have disastrous outcomes for a portfolio or a financial institution. 
Typically models that are correlation based will underestimate the likelihood 
of extreme events occurring simultaneously. Alternative statistical measures 
that would be more helpful, the copula measure and the tail dependence, are 
typically not discussed in probability and statistics books.

It is safe to say that the global financial system has been transformed 
since the mid-1970s due to the development of models that can be used 
to value derivative instruments. Complex derivative instruments such as 
options, caps, floors, and swaptions can only be valued (i.e., priced) using 
tools from probability and statistical theory. While the model for such pric-
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ing was first developed by Black and Scholes (1976) and known as the 
Black-Scholes option pricing model, it relies on models that can be traced 
back to the mathematician Louis Bachelier (1900).

In the remainder of this introductory chapter, we do two things. First, 
we briefly distinguish between the study of probability and the study of sta-
tistics. Second, we provide a roadmap for the chapters to follow in this book.

PROBABILITY VS. STATISTICS

Thus far, we have used the terms “probability” and “statistics” collectively 
as if they were one subject. There is a difference between the two that we 
distinguish here and which will become clearer in the chapters to follow.

Probability models are theoretical models of the occurrence of uncer-
tain events. At the most basic level, in probability, the properties of certain 
types of probabilistic models are examined. In doing so, it is assumed that 
all parameter values that are needed in the probabilistic model are known. 
Let’s contrast this with statistics. Statistics is about empirical data and can 
be broadly defined as a set of methods used to make inferences from a 
known sample to a larger population that is in general unknown. In finance 
and economics, a particular important example is making inferences from 
the past (the known sample) to the future (the unknown population). In sta-
tistics. we apply probabilistic models and we use data and eventually judg-
ment to estimate the parameters of these models. We do not assume that all 
parameter values in the model are known. Instead, we use the data for the 
variables in the model to estimate the value of the parameters and then to 
test hypotheses or make inferences about their estimated values. 

Another way of thinking about the study of probability and the study 
of statistics is as follows. In studying probability, we follow much the same 
routine as in the study of other fields of mathematics. For example, in a 
course in calculus, we prove theorems (such as the fundamental theory of 
calculus that specifies the relationship between differentiation and integra-
tion), perform calculations given some function (such as the first deriva-
tive of a function), and make conclusions about the characteristics of some 
mathematical function (such as whether the function may have a minimum 
or maximum value). In the study of probability, there are also theorems to 
be proven (although we do not focus on proofs in this book), we perform 
calculations based on probability models, and we reach conclusions based 
on some assumed probability distribution. In deriving proofs in calculus or 
probability theory, deductive reasoning is utilized. For this reason, probabil-
ity can be considered as a fundamental discipline in the field of mathematics, 
just as we would view algebra, geometry, and trigonometry. In contrast, 
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statistics is based on inductive reasoning. More specifically, given a sample 
of data (i.e., observations), we make generalized probabilistic conclusions 
about the population from which the data are drawn or the process that 
generated the data. 

OVERVIEW OF THE BOOK

The 21 chapters that follow in this book are divided into four parts covering 
descriptive statistics, probability theory, inductive statistics, and multivari-
ate linear regression. 

Part One: Descriptive Statistics

The six chapters in Part One cover descriptive statistics. This topic covers 
the different tasks of gathering data and presenting them in a more concise 
yet as informative as possible way. For example, a set of 1,000 observations 
may contain too much information for decision-making purposes. Hence, 
we need to reduce this amount in a reasonable and systematic way. 

The initial task of any further analysis is to gather the data. This pro-
cess is explained in Chapter 2. It provides one of the most essential—if 
not the most essential—assignment. Here, we have to be exactly aware of 
the intention of our analysis and determine the data type accordingly. For 
example, if we wish to analyze the contributions of the individual divisions 
of a company to the overall rate of return earned by the company, we need a 
completely different sort of data than when we decompose the risk of some 
investment portfolio into individual risk factors, or when we intend to gain 
knowledge of unknown quantities in general economic models. As part of 
the process of retrieving the essential information contained in the data, we 
describe the methods of presenting the distribution of the data in compre-
hensive ways. This can be done for the data itself or, in some cases, it will be 
more effective after the data have been classified. 

In Chapter 3, methodologies for reducing the data to a few representa-
tive quantities are presented. We refer to these representative quantities as 
statistics. They will help us in assessing where certain parts of the data are 
positioned as well as how the data disperse relative to particular positions. 
Different data sets are commonly compared based on these statistics that, in 
most cases, proves to be very efficient.

Often, it is very appealing and intuitive to present the features of certain 
data in charts and figures. In Chapter 4, we explain the particular graphical 
tools suitable for the different data types discussed in Chapter 2. In general, 
a graphic uses the distributions introduced in Chapter 2 or the statistics 
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from Chapter 3. By comparing graphics, it is usually a simple task to detect 
similarities or differences among different data sets. 

In Chapters 2, 3, and 4, the analysis focuses only on one quantity of 
interest and in such cases we say that we are looking at univariate (i.e., one 
variable) distributions. In Chapter 5, we introduce multivariate distribu-
tions; that is, we look at several variables of interest simultaneously. For 
example, portfolio analysis relies on multivariate analysis. Risk manage-
ment in general considers the interaction of several variables and the influ-
ence that each variable exerts on the others. Most of the aspects from the 
one-dimensional analysis (i.e., analysis of univariate distributions) can be 
easily extended to higher dimensions while concepts such as dependence 
between variables are completely new. In this context, in Chapter 6 we put 
forward measures to express the degree of dependence between variables 
such as the covariance and correlation. Moreover, we introduce the condi-
tional distribution, a particular form of distribution of the variables given 
that some particular variables are fixed. For example, we may look at the 
average return of a stock portfolio given that the returns of its constituent 
stocks fall below some threshold over a particular investment horizon. 

When we assume that a variable is dependent on some other variable, 
and the dependence is such that a movement in the one variable causes a 
known constant shift in the other, we model the set of possible values that 
they might jointly assume by some straight line. This statistical tool, which 
is the subject of Chapter 6, is called a linear regression. We will present mea-
sures of goodness-of-fit to assess the quality of the estimated regression. A 
popular application is the regression of some stock return on the return of a 
broad-based market index such as the Standard and Poor’s 500. Our focus in 
Chapter 6 is on the univariate regression, also referred to as a simple linear 
regression. This means that there is one variable (the independent variable) 
that is assumed to affect some variable (the dependent variable). Part Four 
of this book is devoted to extending the bivariate regression model to the 
multivariate case where there is more than one independent variable.

An extension of the regression model to the case where the data set in 
the analysis is a time series is described in Chapter 7. In time series analysis 
we observe the value of a particular variable over some period of time. We 
assume that at each point in time, the value of the variable can be decom-
posed into several components representing, for example, seasonality and 
trend. Instead of the variable itself, we can alternatively look at the changes 
between successive observations to obtain the related difference equations. 
In time series analysis we encounter the notion of noise in observations. A 
well-known example is the so-called random walk as a model of a stock 
price process. In Chapter 7, we will also present the error correction model 
for stock prices. 
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Part Two: Basic Probability Theory

The basics of probability theory are covered in the nine chapters of Part Two. 
In Chapter 8, we briefly treat the historical evolution of probability theory 
and its main concepts. To do so, it is essential that mathematical set opera-
tions are introduced. We then describe the notions of outcomes, events, and 
probability distributions. Moreover, we distinguish between countable and 
uncountable sets. It is in this chapter, the concept of a random variable is 
defined. The concept of random variables and their probability distributions 
are essential in models in finance where, for example, stock returns are mod-
eled as random variables. By giving the associated probability distribution, 
the random behavior of a stock’s return will then be completely specified. 

Discrete random variables are introduced in Chapter 9 where some of 
their parameters such as the mean and variance are defined. Very often we 
will see that the intuition behind some of the theory is derived from the vari-
ables of descriptive statistics. In contrast to descriptive statistics, the param-
eters of random variables no longer vary from sample to sample but remain 
constant for all drawings. We conclude Chapter 9 with a discussion of the 
most commonly used discrete probability distributions: binomial, hypergeo-
metric, multinomial, Poisson, and discrete uniform. Discrete random vari-
ables are applied in finance whenever the outcomes to be modeled consist 
of integer numbers such as the number of bonds or loans in a portfolio that 
might default within a certain period of time or the number of bankruptcies 
over some period of time.

In Chapter 10, we introduce the other type of random variables, con-
tinuous random variables and their distributions including some location 
and scale parameters. In contrast to discrete random variables, for continu-
ous random variables any countable set of outcomes has zero probability. 
Only entire intervals (i.e., uncountable sets) can have positive probability. 
To construct the probability distribution function, we need the probability 
density functions (or simply density functions) typical of continuous ran-
dom variables. For each continuous random variable, the density function is 
uniquely defined as the marginal rate of probability for any single outcome. 
While we hardly observe true continuous random variables in finance, they 
often serve as an approximation to discretely distributed ones. For example, 
financial derivatives such as call options on stocks depend in a completely 
known fashion on the prices of some underlying random variable such as 
the underlying stock price. Even though the underlying prices are discrete, 
the theoretical derivative pricing models rely on continuous probability dis-
tributions as an approximation. 

Some of the most well-known continuous probability distributions are 
presented in Chapter 11. Probably the most popular one of them is the nor-
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mal distribution. Its popularity is justified for several reasons. First, under 
certain conditions, it represents the limit distribution of sums of random 
variables. Second, it has mathematical properties that make its use appeal-
ing. So, it should not be a surprise that a vast variety of models in finance 
are based on the normal distribution. For example, three central theoretical 
models in finance—the Capital Asset Pricing Model, Markowitz portfolio 
selection theory, and the Black-Scholes option pricing model—rely upon it. 
In Chapter 11, we also introduce many other distributions that owe their 
motivation to the normal distribution. Additionally, other continuous distri-
butions in this chapter (such as the exponential distribution) that are impor-
tant by themselves without being related to the normal distribution are dis-
cussed. In general, the continuous distributions presented in this chapter 
exhibit pleasant features that act strongly in favor of their use and, hence, 
explain their popularity with financial model designers even though their 
use may not always be justified when comparing them to real-world data. 

Despite the use of the widespread use of the normal distribution in 
finance, it has become a widely accepted hypothesis that financial asset 
returns exhibit features that are not in agreement with the normal distribu-
tion. These features include the properties of asymmetry (i.e., skewness), 
excess kurtosis, and heavy tails. Understanding skewness and heavy tails is 
important in dealing with risk. The skewness of the distribution of say the 
profit and loss of a bank’s trading desk, for example, may indicate that the 
downside risk is considerably greater than the upside potential. The tails 
of a probability distribution indicate the likelihood of extreme events. If 
adverse extreme events are more likely than what would be predicted by the 
normal distribution, then a distribution is said to have a heavy (or fat) tail. 
Relying on the normal distribution to predict such unfavorable outcomes 
will underestimate the true risk. For this reason, in Chapter 12 we present a 
collection of continuous distributions capable of modeling asymmetry and 
heavy tails. Their parameterization is not quite easily accessible to intuition 
at first. But, in general, each of the parameters of some distribution has a 
particular meaning with respect to location and overall shape of the distri-
bution. For example, the Pareto distribution that is described in Chapter 12 
has a tail parameter governing the rate of decay of the distribution in the 
extreme parts (i.e., the tails of the distribution). 

The distributions we present in Chapter 12 are the generalized extreme 
value distributions, the log-normal distribution, the generalized Pareto distri-
bution, the normal inverse Gaussian distribution, and the α-stable (or alpha-
stable) distribution. All of these distributions are rarely discussed in intro-
ductory statistics books nor covered thoroughly in finance books. However, 
as the overwhelming empirical evidence suggests, especially during volatile 
periods, the commonly used normal distribution is unsuitable for modeling 
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financial asset returns. The α-stable distributions, a more general class of 
limiting distributions than the normal distribution, qualifies as a candidate 
for modeling stock returns in very volatile market environments such as dur-
ing a financial crisis. As we will explain, some distributions lack analytical 
closed-form solutions of their density functions, requiring that these distribu-
tions have to be approximated using their characteristic functions, which is a 
function, as will be explained, that is unique to every probability distribution. 

In Chapter 13, we introduce parameters of location and spread for both 
discrete and continuous probability distributions. Whenever necessary, we 
point out differences between their computation in the discrete and the 
continuous cases. Although some of the parameters are discussed in earlier 
chapters, we review them in Chapter 13 in greater detail. The parameters 
presented in this chapter include quantiles, mean, and variance. Moreover, 
we explain the moments of a probability distribution that are of higher 
order (i.e., beyond the mean and variance), which includes skewness and 
kurtosis. Some distributions, as we will see, may not possess finite values of 
all of these quantities. As an example, the α-stable distributions only has a 
finite mean and variance for certain values of their characteristic function 
parameters. This attribute of the α-stable distribution has prevented it from 
enjoying more widespread acceptance in the finance world, because many 
theoretical models in finance rely on the existence of all moments.

The chapters in Part Two thus far have only been dealing with one-
dimensional (univariate) probability distributions. However, many fields 
of finance deal with more than one variable such as a portfolio consisting 
of many stocks and/or bonds. In Chapter 14, we extend the analysis to 
joint (or multivariate) probability distributions, the theory of which will be 
introduced separately for discrete and continuous probability distributions. 
The notion of random vectors, contour lines, and marginal distributions are 
introduced. Moreover, independence in the probabilistic sense is defined. As 
measures of linear dependence, we discuss the covariance and correlation 
coefficient and emphasize the limitations of their usability. We conclude the 
chapter with illustrations using some of the most common multivariate dis-
tributions in finance. 

Chapter 15 introduces the concept of conditional probability. In the 
context of descriptive statistics, the concept of conditional distributions was 
explained earlier in the book. In Chapter 15, we give the formal definitions 
of conditional probability distributions and conditional moments such as 
the conditional mean. Moreover, we discuss Bayes’ formula. Applications in 
finance include risk measures such as the expected shortfall or conditional 
value-at-risk, where the expected return of some portfolio or trading posi-
tion is computed conditional on the fact that the return has already fallen 
below some threshold. 



10 Probability and statistics for finance

The last chapter in Part Two, Chapter 16, focuses on the general struc-
ture of multivariate distributions. As will be seen, any multivariate distribu-
tion can be decomposed into two components. One of these components, 
the copula, governs the dependence between the individual elements of a 
random vector and the other component specifies the random behavior of 
each element individually (i.e., the so-called marginal distributions of the ele-
ments). So, whenever the true distribution of a certain random vector repre-
senting the constituent assets of some portfolio, for example, is unknown, we 
can recover it from the copula and the marginal distributions. This is a result 
frequently used in modeling market, credit, and operational risks. In the 
illustrations, we demonstrate the different effects various choices of copulae 
(the plural of copula) have on the multivariate distribution. Moreover, in this 
chapter, we revisit the notion of probabilistic dependence and introduce an 
additional dependence measure. In previous chapters, the insufficiency of the 
correlation measure was pointed out with respect to dependence between 
asset returns. To overcome this deficiency, we present a measure of tail 
dependence, which is extremely valuable in assessing the probability for two 
random variables to jointly assume extremely negative or positive values, 
something the correlation coefficient might fail to describe. 

Part Three: Inductive Statistics

Part Three concentrates on statistical inference as the method of drawing 
information from sample data about unknown parameters. In the first of the 
three chapters in Part Three, Chapter 17, the point estimator is presented. 
We emphasize its random character due to its dependence on the sample 
data. As one of the easiest point estimators, we begin with the sample mean 
as an estimator for the population mean. We explain why the sample mean 
is a particular form of the larger class of linear estimators. The quality of 
some point estimators as measured by their bias and their mean square er-
ror is explained. When samples become very large, estimators may develop 
certain behavior expressed by their so-called large sample criteria. Large 
sample criteria offer insight into an estimator’s behavior as the sample size 
increases up to infinity. An important large sample criterion is the consis-
tency needed to assure that the estimators will eventually approach the 
unknown parameter. Efficiency, another large sample criterion, guarantees 
that this happens faster than for any other unbiased estimator. Also in this 
chapter, retrieving the best estimator for some unknown parameter, which 
is usually given by the so-called sufficient statistic (if it should exist), is ex-
plained. Point estimators are necessary to specify all unknown distributional 
parameters of models in finance. For example, the return volatility of some 
portfolio measured by the standard deviation is not automatically known 
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even if we assume that the returns are normally distributed. So, we have to 
estimate it from a sample of historical data. 

In Chapter 18, we introduce the confidence interval. In contrast to the 
point estimator, a confidence interval provides an entire range of values 
for the unknown parameter. We will see that the construction of the confi-
dence interval depends on the required confidence level and the sample size. 
Moreover, the quality criteria of confidence intervals regarding the trade-off 
between precision and the chance to miss the true parameter are explained. 
In our analysis, we point out the advantages of symmetric confidence inter-
vals, as well as emphasizing how to properly interpret them. The illustra-
tions demonstrate different confidence intervals for the mean and variance 
of the normal distribution as well as parameters of some other distributions, 
such as the exponential distribution, and discrete distributions, such as the 
binomial distribution. 

The final chapter in Part Two, Chapter 19, covers hypothesis testing. In 
contrast to the previous two chapters, the interest is not in obtaining a single 
estimate or an entire interval of some unknown parameter but instead in veri-
fying whether a certain assumption concerning this parameter is justified. For 
this, it is necessary to state the hypotheses with respect to our assumptions. 
With these hypotheses, one can then proceed to develop a decision rule about 
the parameter based on the sample. The types of errors made in hypothesis 
testing—type I and type II errors—are described. Tests are usually designed 
so as to minimize—or at least bound—the type I error to be controlled by 
the test size. The often used p-value of some observed sample is introduced 
in this chapter. As quality criteria, one often focuses on the power of the test 
seeking to identify the most powerful test for given hypotheses. We explain 
why it is desirable to have an unbiased and consistent test. Depending on the 
problem under consideration, a test can be either a one-tailed test or a two-
tailed test. To test whether a pair of empirical cumulative relative frequency 
distributions stem from the same distribution, we can apply the Kolmogorov-
Smirnov test. The likelihood-ratio test is presented as the test used when we 
want to find out whether certain parameters of the distribution are zero or 
not. We provide illustrations for the most common test situations. In particu-
lar, we illustrate the problem of having to find out whether the return vola-
tility of a certain portfolio has increased or not, or whether the inclusion of 
new stocks into some portfolio increased the overall portfolio return or not.

Part Four: Multivariate Linear Regression

One of the most commonly used statistical tools in finance is regression 
analysis. In Chapter 6, we introduced the concept of regression for one in-
dependent and one dependent variable (i.e., univariate regression or simple 
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linear regression). However, much more must be understand about regres-
sion analysis and for this reason in the three chapters in Part Four we extend 
the coverage to the multivariate linear regression case.

In Chapter 20, we will give the general assumptions of the multivari-
ate linear regression model such as normally and independently distributed 
errors. Relying on these assumptions, we can lay out the steps of estimating 
the coefficients of the regression model. Regression theory will rely on some 
knowledge of linear algebra and, in particular, matrix and vector notation. 
(This will be provided in Appendix B.) After the model has been estimated, 
it will be necessary to evaluate its quality through diagnostic checks and 
the model’s statistical significance. The analysis of variance is introduced to 
assess the overall usefulness of the regression. Additionally, determining the 
significance of individual independent variables using the appropriate F-sta-
tistics is explained. The two illustrations presented include the estimation of 
the duration of certain sectors of the financial market and the prediction of 
the 10-year Treasury yield. 

In Chapter 21, we focus on the design and the building process of mul-
tivariate linear regression models. The three principal topics covered in this 
chapter are the problem of multicollinearity, incorporating dummy variables 
into a regression model and model building techniques using stepwise regres-
sion analysis. Multicollinearity is the problem that is caused by including in 
a multivariate linear regression independent variables that themselves may be 
highly correlated. Dummy variables allow the incorporation of independent 
variables that represent a characteristic or attribute such as industry sector or 
a time period within which an observation falls. Because the value of a vari-
able is either one or zero, dummy variables are also referred to as binary vari-
ables. A stepwise regression is used for determining the suitable independent 
variables to be included in the final regression model. The three methods that 
can be used in a stepwise regression—stepwise inclusion method, stepwise 
exclusion method, and standard stepwise regression method—are described.

In the introduction to the multivariate linear regression in Chapter 21, 
we set forth the assumptions about the function form of the model (i.e., that 
it is linear) and assumptions about the residual or error term in the model 
(normally distribution, constant variance, and uncorrelated). These assump-
tions must be investigated. Chapter 22 describes these assumptions in more 
detail and how to test for any violations. The tools for correcting any viola-
tion are briefly described.

Appendixes

Statistics draws on other fields in mathematics. For this reason, we have in-
cluded two appendices that provide the necessary theoretical background in 
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mathematics to understand the presentations in some of the chapters. In Ap-
pendix A, we present important mathematical functions and their features 
that are needed primarily in the context of Part Two of this book. These 
functions include the continuous function, indicator function, and mono-
tonic function. Moreover, important concepts from differential and integral 
calculus are explained. In Appendix B, we cover the fundamentals of matrix 
operations and concepts needed to understand the presentation in Part Four.  

In Appendix C, we explain the construction of the binomial and multi-
nomial coefficients used in some discrete probability distributions covered 
in Chapter 9. In Appendix D, we present an explicit computation of the 
price formula for European-style call options when stock prices are assumed 
to be log-normally distributed.




