
Chapter 1

Introduction to
Simulation-Based Systems
Engineering

Simulation-based systems engineering, discussed in this book, utilizes the concept
of interacting concurrent processes as an integral part of the systems engineering
process. Both discrete-event simulation and Markov models are applied to model
interacting concurrent processes and resources. A key factor to understanding
complex system behavior and structure is through the use of graphical timelines
and simulation traces of the interacting concurrent processes and resources. Time-
lines and simulation traces explicitly show how these interactions affect system
effectiveness and performance, contributing to understanding the systems design
problem.

A commonsense approach to understanding, designing, analyzing, and evalu-
ating complex systems is presented throughout this book. It begins by discussing
traditional ways of thinking about systems and then shows how one of these
views, the operational view of systems, can be best expressed using interacting
concurrent processes. A graphical language, Operational Evaluation Modeling
(OpEM), is introduced (details are in Chapter 2 and the Appendices) that pro-
vides a natural way to describe interacting concurrent processes and implement
them using simulation or Markov models. A graphical discrete-event simula-
tion library, Operational Evaluation Modeling for Context-Sensitive Systems
(OpEMCSS), is discussed, throughout this book, which implements the OpEM
graphical language and provides a means to experiment with complex systems
and do simulation-based systems engineering. A large number of example models
are described that illustrate how to use the OpEMCSS library blocks to model
complex systems. These examples are presented so that a large spectrum of
readers can understand them. Examples of complex systems abound. Consider
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2 INTRODUCTION TO SIMULATION-BASED SYSTEMS ENGINEERING

a distributed vehicle traffic control network located in a large city. Each major
intersection has a vehicle traffic light controller to determine traffic light timing.
In this system, each traffic light controller uses its perceptions about incoming
traffic flow to optimize light timing, thus minimizing local vehicle waiting time.
In Chapter 9, it is shown that the result of each traffic light controller adapting
light timing to accommodate traffic flow coming from other intersections is to
minimize the average waiting time in the entire network. Global minimization
of traffic waiting time results as a consequence of the emergent behavior of this
system, which is the self-synchronization of each traffic controller’s light timing
with other controllers.

As light timing control in the overall traffic grid evolves in the way discussed
above, a complex but definite fractal pattern in network operation, north–south
red-to-green transition times, emerges out of an initial random light pattern. The
emergent behavior of the traffic grid cannot be explained through an under-
standing of each controller alone. Understanding only comes when we study the
interactions of the controllers as they adapt their behaviors in response to per-
ceived information about incoming traffic flow, achieving self-synchronization of
all traffic light controllers in the network.

Most people possess, as common sense, the fundamental ability to understand
such complex systems. Each one of us formulates goals for ourselves all the time
to solve problems confronting us. Once we state our goal, we visualize a set of
tasks or steps that takes us from our current situation to one satisfying our goal.
If we can expect help from others to execute these tasks, we organize the tasks
into a sequential and concurrent arrangement, more commonly called a plan. The
execution of our plan by a group of people hopefully leads to goal satisfaction.
In engineering management, military command and control, and business man-
agement organizations, computer simulation programs are often used to optimize
plans and make them robust in the presence of varying contingencies.

In this chapter, general systems are defined and some of the more com-
monly used system models are described. Next, each reader is asked to analyze
a goal-oriented activity he or she already knows how to do and to build a func-
tional flow model of this activity. Functional flow models are an important part
of the systems engineering process.

Simulation and artificial intelligence (AI) is introduced as a systems design
approach where intelligent agents make decisions that give a system “requisite
variety.” Networks of agents are complex and can have emergent behaviors,
making them complex adaptive systems (CAS). How the traditional systems
engineering process must be modified to design CAS is provided in a discussion
of expansionism versus reductionism in Section 1.1.4.

How simulation programs work is introduced in this chapter and discussed
further in Chapter 2. To provide the necessary background for this discussion,
an introduction to the OpEMCSS graphical simulation library and the OpEM
graphical language is presented first. Next, how a sequential process model works
is discussed, and the same model is used to introduce the idea of run output
convergence. Next, an OpEMCSS simulation of a producer–consumer process
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is used to explain how an interacting concurrent model works, and this model is
also used to discuss the idea of sensitivity analysis using model output data.

The systems engineering process and life cycle for bringing complex sys-
tems into being are described. The concept of “levels of system description”
is discussed (Section 1.3.2) in terms of the systems engineering life cycle. An
OpEMCSS simulation of a systems development process is described to provide
the reader with an explicit understanding of this process and to focus the chapter
discussion on how simulation-based systems engineering can be used to answer
system design questions early in the system life cycle when design changes have
the least impact on project success. The chapter concludes with a summary.

1.1 DEFINITION OF COMPLEX SYSTEMS

In general, a system consists of a network of interrelated and interacting compo-
nents, working together with the common objective of fulfilling some designated
need. The components of a system include facilities, equipment (hardware and
software), material, services, data, skilled personnel, and techniques required to
achieve, provide, and sustain system effectiveness. A system can be organized
into a component hierarchy where components at one level of the hierarchy can
be broken down into a set of components at the next lower level. The rational
for component decomposition is to simplify component interfaces by minimiz-
ing interactions with other components. A good component hierarchy is required
to facilitate systems engineering management, including the development of the
project work breakdown structure (WBS). We will show later that, for complex
systems, a hierarchy of networks is better for system description, analysis, and
evaluation.

For example, consider a transportation system that is decomposed into a set
of top-level components that includes a vehicular system, airline system, and a
railroad system. The airline system is further decomposed at the second level
into a set of components that includes an airplane system. The airplane system is
decomposed at the third level into a set of components that includes a propulsion
system, a fuel system, and a communications system. Each of these compo-
nents can be developed relatively independently by separate product development
teams, which greatly facilitates systems engineering management. However, for
a system of systems (SOS) design problem, where these top-level components
(vehicular system, airline system, railroad system) interact, a network of sys-
tems is more usable. The systems engineering management problem is discussed
further later in the chapter.

A system must have a purpose in that it must be functional and able to respond
to an identified need. If a rock lying on the ground serves no apparent need, then
it can clearly not be a component of a system by our definition. However, suppose
the rock borders a garden. In this case, the rock serves an identified need, and
it is an integral part of the garden “system.” But, is the garden border rock
functional? The rock does not appear to actually do anything to respond to an
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identified need, although it does have a useful purpose. According to Blanchard
and Fabrycky (1998) the rock is a structural component of the system rather than
an operational component that performs a function. The plants in the garden are
the operating components because they transform air, water, and minerals into
plant growth.

However, if we view this system from the outside looking in, we would see
that the rock provides information to the environment defining the boundary of the
system. Therefore, one could say that, since the rock border provides information
as an output of this system, it is functional.

What do we mean by functionally interacting with other entities? How can a
system component be functional? In mathematics, a function transforms inputs
into outputs:

Y = F(X)

Let X be a vector of input signals, Y be a vector of output signals, and F a vector
of equations:

Y = F(X) = (f1(X), f2(X), . . . , fn(X))

For example, the rock border reflects light to define the boundary of the system.
The input X to this function is light from outside the system that is reflected
back from the rock border to again pass outside the system as output Y where it
is transformed into information by an observer viewing the system, defining the
system boundary for the observer.

Thinking about our functional rock, it can be seen that there are three different
views used to visualize this system. One view is the traditional structural system
model where interface mechanisms connect one component to another. The sec-
ond view used is the functional model where inputs are transformed into outputs
by each function in a network of functions. The third view is the external view
that looks at the system from the outside and considers the interactions of the
system with its external systems and the environment.

Traditional electronic circuits and analog control systems have inputs X that
are transformed into outputs Y where all are continuously varying signals. Such
systems are simulated using continuous-time models where time is incremented
in very small, constant time steps. This kind of simulation model is not within
the scope of this book; however, the commercial version of OpEMCSS called
CASSim, which is a product of FORELL Enterprises Inc., includes a continuous
system simulation block.

In this book, we consider discrete-event systems where system interactions
occur at discrete points in time, having a variable time step. A message passing
system, where system components send messages to each other at discrete points
in time, is a discrete-time analogy to the electronic circuits or analog control sys-
tems discussed above. A message received by a component is analogous to an
input signal X. The message X is transformed into output message Y that is sent
to other components. In a message-passing system, messages can represent infor-
mation, data, knowledge, energy, or material flowing through the network. The
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message-passing model is a generalization of the traditional electronic circuits
and analog control systems model.

The structural view of a message-passing system is an architectural diagram
that describes the system architectural components, connecting links from com-
ponent to component, and often the names of the message links required for
component communication in the network.

The operational view of a message-passing system is a behavior diagram that
describes the sequence of tasks that must be performed during a period of time
in order to transform X to Y , and it represents all context-sensitive interactions
among the concurrent tasks performed by a system component. This model also
describes when to send the required messages to other components. One type
of operational model that shows the flow of tasks required to achieve a goal is
called a functional flow model.

The external view is a system context diagram that defines the boundary
between the system and its external systems and environmental context. Also
included in this view is the interface between the external systems and the system.
The names of the message links required for external input/output communica-
tions are often shown.

The concept of a function, which is a major building block in functional
flow models or the operational view as discussed above, is described as a trans-
formation from input X to output Y such that a network of these functions
describes system behavior. In order to design a complex system, the traditional
functional flow model must be expanded into a context-sensitive system (CSS)
model, discussed throughout this book, where the functions are represented as
process threads. In complex systems, these process threads adapt to the current
environmental or system state through inputs from and collaboration with other
functions in order to achieve the requirements of the system.

In order to model CSS behavior, a state vector Z must be added to provide the
function memory of what has happened in the past. Memory is required in order
to control the generation of the function process thread. Function inputs plus
messages from other functions combined with the state vector Z provide infor-
mation that intelligent agents (Chapters 7 and 9) use to select among alternative
process threads. Each alternative thread produces a particular mapping from X

to Y .
Given these additional behavior modeling constructs, function F resembles

a finite-state machine that can adapt to the changing environmental or system
context. An additional model requirement is that when function process threads
work in parallel to collaborate, the process threads must be synchronized to define
the start and end of parallel operation. Further, sensor functions in the system
must adapt to the environmental situation and communicate with other internal
functions to collaborate in order for the system to respond successfully to any
relevant environmental change. Systems that can adapt to the environment are
more likely to have requisite variety, discussed later in this section, and thus
greater system effectiveness.
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To summarize, a system is a network of system components or subsystems
where each component performs functions and sends messages to other compo-
nents and the environment in order to achieve all system requirements. Messages
can represent information, data, knowledge, energy, or material flowing through
the network. If the functions performed and messages sent are allowed to adapt
such that feedback paths in the network occur, then the overall system may exhibit
emergent behaviors that cannot be produced by any simple subset of components
alone. A model that describes a system as network of system components and
focuses on the physical details is called architectural , as discussed above, and
a model that describes a system as a network of functions and focuses on the
behavioral details is called functional flow . The functional flow model is used
during the conceptual system design phase of a system design project; and the
architectural model, after functions have been allocated to the system components
or subsystems, is used during the system design phase. Bringing complex sys-
tems into being is described later in the chapter where these models are discussed
further.

1.1.1 Exercise: Model a Goal-Oriented Activity

Before we introduce how to design a complex system using systems engineering
methodology later in the chapter, let us first consider how computer simulation
can be used in everyday, commonsense problem solving. To simplify our dis-
cussion, think of a goal-oriented activity that you already know how to do. For
example, you might think of fixing car brakes, baking a cake, sewing clothes,
wood working, assembling a bicycle, or making a pizza. Make a list of all the
tasks required to achieve your goal.

For example, in making a pizza, one must: (1) mix the flour, water, and yeast
and let the dough rise, (2) spread the dough on a pizza pan, (3) cut up the
pepperoni and the mushrooms, (4) grate the cheese, and (5) assemble and bake
the pizza.

Next, suppose that you have some help executing your problem-solving plan.
Organize the tasks of your plan into sequential and concurrent tasks and draw
a functional flow diagram. Only tasks that depend on other tasks for input must
be shown as sequential. Tasks should be shown as being executed concurrently
unless they must be performed sequentially.

For example, given that one other person is available to help, pizza making
tasks 1 and 2 can be done concurrently with tasks 3 and 4, but all these tasks
must be completed before we can start task 5.

Figure 1.1 shows a functional flow model of the pizza making tasks. Use the
diagram to visualize making a pizza by starting from the left side of the diagram
and scanning right. The “and” on the left side indicates that tasks 1 and 2 can
be executed concurrently with tasks 3 and 4. The “and” on the right side of the
diagram indicates that all these tasks must complete before task 5 can be started.

A brief overview of the OpEM language and OpEMCSS graphical library
blocks is provided next as background to the agent-based system architectures
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Figure 1.1 Functional flow model of pizza making.
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Figure 1.2 Simulation model of pizza making expressed as a parallel process.

discussion that follows. Also, the concept of timelines is introduced as a means
to visualize concurrent process interactions.

An OpEMCSS simulation model of pizza making, expressed as a parallel
process, is shown in Figure 1.2. A parallel process is defined as the set of all
possible sequences of system states and events that represents the operational
behavior of a system or organization, and, in this case, it describes all possible
operational sequences that represent alternatives in how our pizza could be made.
One can imagine that as the state reaction times of the tasks vary, the order of
the events would change, resulting in different operational processes.

The blocks shown in Figure 1.2 implement the functional flow diagram
described by Figure 1.1. The Begin Event block starts the simulation of making
a pizza. The next block is a Split Action block that creates the two concurrent
subprocesses T1, T2 and T3, T4 as shown. Four Reaction Time Event blocks
follow, which model the time it takes to execute each task. The Assemble Event
block waits for both concurrent processes to complete execution before task
5, modeled by a Reaction Time Event block, can start. The End Event block
terminates each pizza making sequence and collects system performance data.
See Appendix A for more about these model blocks.

Timelines and simulation traces describe the concurrent arrangement of pro-
cess tasks as they are executed in time. They are analyzed to identify interactions
among the concurrent processes that affect system performance and effectiveness.
Suppose the state set of the top process is Q1 = {B, T1, T2, T5, I1, E} and the
state set of the bottom process is Q2 = {T3, T4, I2, �}. The Cartesian product
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set is Q = {Q1 × Q2}. A subset of the set Q that describes the possible system
states that can occur is called the state space set S:

S = {(B, �), (T1, T3), (T1, T4), (T2, T3), (T2, T4), (T1, I2),

(T2, I2), (I1, T3), (I1, T4), (T5, �), (E, �)}

The pizza making process begins as a sequential process in parallel state (B,�)
where � represents the null state for process 2. The process splits into two concur-
rent processes that can be in any of the next eight parallel states (T1,T3), (T1,T4),
(T2,T3), (T2,T4), (T1, I2), (T2, I2), (I1, T3), and (I1, T4). When both concurrent
processes complete [parallel state (T2,T4) completes], the process synchronizes
and becomes a sequential process again. State (T5,�) represents executing task
T5 where � represents the null state for process 2. The last state of the process
is (E,�), which occurs after task T5 is complete. There are many alternative
pizza making, parallel process outcomes depending on how long it takes to per-
form each task. Parallel states (T1,T3) and (T2,T4) always occur; however, the
occurrence of states (T1,T4) or (T2,T3) depends on the relative timing of states T1

and T3. Timelines and simulation traces are both ways to visualize the order of
execution of the parallel system states in order to evaluate process interactions
that are affecting system performance and effectiveness.

The external, structural, and operational views are all required to completely
describe a system. The operational view is expressed as a parallel process based
on sequences of system states and events. Each system state includes the discrete
state of each concurrent process. For example, pizza making system state (T1,T3)
includes top process state T1 and bottom process state T3, and it only occurs when
T1 and T3 are performed at the same time. Discrete states represent periods of time
where tasks are being performed by resources or tasks are waiting for some logi-
cal condition to be satisfied. Wait states are discussed later in the chapter. Events
are changes of system state that occur at discrete points in time. Each sequence
of system states and events is called a parallel process instance or process thread.
In the above example, subprocesses T1, T2 and T3, T4 are each concurrent subpro-
cesses that interact through the split and assemble construct shown in Figure 1.2.

In applying the operational view, we are interested in representing process
interactions such as synchronization where one process waits for another process
before it can continue or resource contention where one process waits for a
resource that another process is using. Synchronization can occur when a process
waits for data to be sent from another process or waits for task completion in
another process. Another important interaction involves a task changing what
it does in response to a message from another task. The objective in applying
the operational view is to optimize the operational performance and mission
effectiveness of the system.

The structural view is expressed as a network of interconnected components
or subsystems. In applying the structural view, we are interested in representing
the interface for communication among the components. At the conceptual and
preliminary systems design level, we are interested in what data or messages
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are flowing from one component to another. We are also interested in the com-
munication channel bandwidth in bytes per second that determines how long it
takes to send each message. At the detailed hardware–software design level we
are interested in exactly how these messages are sent, including the protocols
used and the electrical characteristics of the link. The objective in applying the
structural view is to optimize the structural performance of the system and to
simplify the component interfaces.

The external view is expressed as a context diagram showing connections
between the system and all relevant external systems contained in the system
environment. In applying the external view, we are interested in determining
the real environmental demands on the system. Systems context diagrams show
the system boundary and interfaces with the external systems. The input/output
interface between the concept system and all external systems is specified so that
a dynamic model of the environmental demands on the system can be developed.

The system design and analysis methodology presented in this book generally
begins with the external view to model the environmental demands on the
system. The operational view is developed next in order to perform design
trade-off analysis early in the system design process and then proceeds toward
the structural view to optimize the physical system. We believe that this is
consistent with our philosophy of designing a system from the top-down and
building a system from the bottom-up.

1.1.2 Agent-Based System Architectures

A modern variation of the message-passing model discussed earlier in the chapter,
which has been developed to deal with complexity, is called an “agent-based
system architecture.” Multiagent systems are discussed in more detail in Chapter
9; however, a brief introduction is presented here. The important concept of
requisite variety is also discussed.

An agent-based system architecture is a network of intelligent agents that
share facts with other agents and adapt their behavior in response to these shared
facts; indeed, intelligent agents apply knowledge in the form of rules to transform
input to output facts and to make decisions to adapt their behavior. Through such
collaboration, an agent-based system achieves overall system goals, and it often
exhibits emergent behavior. In some systems, agents are able to learn new rules
and evolve new shared facts as discussed in Chapters 7 and 9.

In an OpEMCSS model of an agent-based system, facts are modeled as
ExtendSim (a registered trademark of Imagine That Inc. of San Jose, Califor-
nia) attributes, where each attribute consists of a symbolic name combined with
a numerical value. Attributes also model other state variables that expand the
meaning of discrete states in order to model process control variables and pro-
vide memory of past actions. Each process instance in a system simulation can
have many associated ExtendSim attributes.

OpEMCSS blocks introduced for the first time in the agent-based system
architecture example shown in Figure 1.3 are: (1) Message Event Action block
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Figure 1.3 Agent-based system architecture.

that allows one process instance to send up to four attributes to other selected
process instances, (2) Wait Until Event block that allows a process instance to
wait until logic based on global attributes is true before continuing to the next
state, and (3) Alternate Action block that allows attribute-based logic to decide
which alternate subprocess to execute next.

Figure 1.3 shows an agent-based architecture expressed using the operational
view. In this figure, an agent is shown as a collection of concurrent processes
that are empowered to make decisions. Process 1 (task A) and process 2 (task
B) are performed concurrently as indicated by the OpEMCSS language Split
Action Split1 and Assemble Event Assemble1 blocks shown in the figure. When
processes 1 and 2 are both complete, process 3 (task C) continues and processes
1 and 2 cease to exist.

During process 4, task D is performed before one of the alternative tasks E or
F is selected. When process 3 of agent X continues after the assemble event, facts
about processes 1 and 2 activities are sent to process 4 using the Message Event
Action block. Process 4 waits in a Wait Until Event block until the message is
received. The choice between tasks E or F , made by an Alternate Action block,
depends on these shared facts. Therefore, process 4 modifies its behavior based
on the activities of processes 1 and 2 of agent X. This is an example of an agent
adapting its behavior in response to message facts received from another agent.
Such adaptation can result in emergence.

The amount of knowledge sharing and the strength of feedback paths in a
multiagent network is critical to achieving the desired emergent behavior. This is
a basic principle of complex systems that is discussed in more detail in Chapters
7 and 9. If every agent shares with every other agent (and each agent adapts),
the coupling may be too great and overall system behavior becomes chaotic. If
too few agents communicate, the overall system may be static and unresponsive
to a changing environment. However, if the right agents communicate just the
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right knowledge facts with each other and the strength of each agent’s response
is just right, the system achieves the desired emergent behavior. This is called
operating at the edge of chaos (Kauffman, 1995).

The problem for system designers is to determine the optimal amount of
knowledge sharing and the required rules to make the decisions that are the most
effective for the system. In the vehicle traffic control network discussed above,
the offset traffic control signal based on incoming traffic flow patterns had to
be just right for the intersection controllers to self-synchronize and minimize the
average vehicle waiting time in the network. The desired emergent behavior for
the traffic control system was achieved by experimenting with the feedback in
the network. This was done by trying different sets of fuzzy control rules and
control system gains.

1.1.3 Simulation and AI-Based System Design

A simulation and AI-based system design methodology is introduced that can
assist a person in developing an intelligent, agent-based system. This methodol-
ogy is discussed further later in this chapter and in Chapters 3 and 9.

Agent collaboration allows very complex systems to be designed and built.
Suppose there are N agents in a system and each agent can exhibit one of M

alternative agent process instances. An agent process instance is a sequence of
one or more tasks performed during a period of time. The total number of possible
system process instances for the system is MN . Recall that in the pizza making
example, there were two people (agents) working together to make a pizza. When
we combined the two concurrent agent process instances describing the activities
of the two people, there were two alternative state-event sequences or system
process instances possible that represent making a pizza. Alternative system pro-
cess threads result from relative task execution timing, as in the pizza system,
and from alternative agent process threads resulting from shared communications
as discussed here.

If agents can adapt their individual process threads to achieve system goals
(collaborate) such that all MN system process instances can actually occur, then
system complexity, measured in terms of the number of total system process
instances, increases exponentially as N increases. A network of relatively simple
agents can be complex as measured in terms of the very large number of overall
system process outcomes that can occur.

Almost 50 years ago Ross Ashby (1961) referred to this form of complexity
as “variety.” Based on the concept of variety, he formulated his law of requisite
variety. The law of requisite variety states that a system can achieve its mission
goals as long as the variety of the system (MN system process instances) is
greater than the variety of the environment with which the system is competing or
contending. In order to maintain requisite variety and thus improve the chances of
survival in a competitive world, the vector in naturally occurring, coevolutionary
systems is generally in the direction of increasing complexity. I believe that
natural selection works in favor of systems having requisite variety relative to
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their environment. Thus, systems having requisite variety tend to survive better
than those that do not. However, when all agents are seeking requisite variety,
then the environment tends to become more and more complex. It is interesting
to see the many different ways that agents achieve requisite variety in nature.

In order to maximize variety, it is necessary that most of the MN system
process instances can actually occur. Using distributed control, there seems to
be more freedom to select the best overall system process thread for each sit-
uation than when using centralized control, which may unnecessarily constrain
system operation. Another obvious problem with centralized control is that all
feature facts needed to make the decision must be sent to a central node. After
the decision is made, commands must be sent out to all nodes involved in exe-
cuting the decision. An even worse communications bottleneck occurs if raw
perception data is sent to the centralized decision node instead of feature facts.
Further, the rules required for a centralized decision are usually much more com-
plex than a distributed decision because the decision context is larger and more
complex (Chapter 7). Breaking a problem into solvable parts has long been done
to simplify the solution. Much current research is being done now in the area
of network centric operations (NCO) and systems of systems (SOS) to reduce
system complexity.

In a distributed decision, inferences required to transform raw perceptions
into feature facts and form alternative decision hypotheses are spread over many
nodes. The nodes communicate feature facts and alternative decisions to reach a
consensus about what each node should do. Distributed decision making greatly
simplifies node communication and allows the overall system to consider more
alternative system process threads in its search to discover the best one in each sit-
uation. Modern business organizations and military C4ISR systems have already
proved the benefits of distributed, self-synchronizing systems. These are discussed
further in Chapters 7 and 9 where a Classifier Event Action block is discussed
that discovers rules that produce optimal system process threads.

1.1.4 Expansionism Versus Reductionism

The purpose of using the OpEMCSS simulation library is to understand, design,
analyze, and evaluate intelligent, multiagent systems and other systems by first
applying an expansionist approach and then using the traditional reductionist
methodology. First, applying expansionism, an optimal system concept is devel-
oped where the operation and interactions of agent process threads are optimized
within the system operational environment to produce the best system behavior
for each situation. Second, using reductionism, the system is decomposed into a
hierarchy of agent networks to facilitate system engineering management and to
optimize the design of the physical system.

Expansionism is characterized by:

Synthesis: Designing a system that is a collection of communicating process
threads where each process thread is associated with an agent
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Context-Sensitive Systems: Explaining the behavior of each process instance
in terms of its interactions and context as well as task flow

System Theory: Understanding emergent system behavior in terms of process
collaboration and adaptation from the top-down

In contrast, the traditional reductionist approach to system design is charac-
terized by:

Analysis: Designing a system by reducing it to a hierarchy of relatively simple
components having simple interfaces and minimal interactions with each
other

Mechanistic Systems: Explaining that each component transforms inputs into
outputs such that each transformation does not change as a function of the
inputs

System Theory: Understanding overall system behavior in terms of the indi-
vidual behaviors of its components from the bottom-up

A system can be reduced to independently operating components, but we
cannot analyze each component independently and then integrate the analysis
results to understand the system as a whole. The reason for this is that col-
laborating components transform each other, producing a much more complex
system behavior than would be predicted by an independent study of each of the
individual components.

Consider a double spring–mass system shown in Figure 1.4. This system
can be reduced to two, single spring–mass components that interact. If each
individual spring–mass system is studied independently, a simple, second-order
harmonic response is observed for each. However, if the components are studied
together, a more complex, fourth-order response is observed. This system of
closely coupled components results in much more complex system behavior than

X1 X2

K2K1

M1 M2

M1/ K1 M2/ K2

X1 X2

U(t)

U(t)

+−+−

Figure 1.4 Problem with reductionist/mechanistic view.
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a study of the individual component behaviors would suggest by themselves.
This double spring–mass system is linear because the same input always
produces the same output. Nonlinear transformations such as occur in CAS
can make the system behavior much more complex because the same input
does not always produce the same output. Thus, the traditional reductionist
approach to system design must be modified when dealing with such complex
systems.

Once a top-level concept of the whole system has been developed using the
expansionist system design methodology, the system concept is decomposed into
a hierarchy of components or agent networks suitable for hardware–software
engineering and project management. From the previous discussion, we can see
that what makes designing an intelligent, multiagent system difficult is discov-
ering the facts and rules each agent needs to make decisions and which of the
facts agents must share in order to collaborate. Once we determine the facts
that must be shared, we can define the process-to-process communication link
requirements. We can then consider alternative allocations of process instances
to components or agents in order to minimize agent-to-agent communication
message flow and the number of communication links required. Agent inter-
face considerations can then be traded-off against other requirements such as
technology, reliability, availability, and cost.

The point is that process-to-process communication requirements, needed to
support decision making and collaboration, must be determined before the system
is decomposed into a hierarchy of networks. The major steps of a simulation and
AI-based system design and evaluation methodology for intelligent, multiagent
systems are as follows:

1. Develop a parallel process model that describes desired system operation
within the operational environment using the OpEMCSS library blocks.

2. Determine what facts and rules each process requires to collaborate by
modeling decision making using the Classifier Event Action block in the
OpEMCSS library to automate the search for rules.

3. Map process instances to components or agents in a way that simplifies the
interfaces and communications as well as other requirements.

4. Model agent motion of system and environmental entity spatial interactions
if required. Evaluate design trade-offs and optimize system design in terms
of other considerations such as technology, reliability, availability, and cost.

5. Document systems analysis results and concomitant systems design specifi-
cations. These major steps of a simulation and AI-based system design and
evaluation methodology discussed here will be expanded upon and added
to during the remainder of the chapter until a detailed OpEMCSS simula-
tion model is finally described. The end result is that the reader will come
to understand how simulation and AI can be integrated into the modern
systems design and development process.
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The Classifier Event Action block, discussed above, is able to simulate the
AI capability of agents to apply knowledge in the form of rules to transform
process instance condition attributes into process instance action attributes. The
action attributes can be used by an Alternate Action block to decide which alter-
native process thread to execute next; further, these attributes can also specify
the functional message output Y of a component or agent as discussed above.
The classifier block is discussed further in Chapter 7, and in Chapters 7, 8, and
9 it is applied in many decision-making examples.

1.1.5 Summary

This introductory section was intended to begin with commonly understood struc-
tural, operational, and external views of systems and then to introduce the concept
of a parallel process as a way of thinking about interacting concurrent processes.
It was shown that the parallel process concept provides a more detailed oper-
ational model than the functional flow model, which facilitates understanding,
designing, analyzing, and evaluating complex systems. The parallel process con-
cept was introduced using the OpEM graphical modeling language, which is
discussed in more detail in Chapter 2. The expansionist systems engineering
methodology, introduced in this section, is discussed further later in the chapter
and in Chapters 3 and 9. In the next section, we will show how to apply simulation
as part of a general problem-solving approach and expansionist simulation-based
systems design, analysis, and evaluation methodology for complex systems.

1.2 USING SIMULATION TO UNDERSTAND COMPLEX SYSTEMS

Knowing how OpEM simulations work can help understand complex systems.
An OpEM simulation is an abstract description of the structure and behavior of
a complex system that is easier to understand than the system itself. Because an
OpEM simulation is unambiguous and executable, it can be used to numerically,
rather than subjectively, evaluate the impact of the structure and behavior of the
system, as designed, on system performance and effectiveness. In this section,
the ExtendSim user environment and OpEMCSS libraries are summarized briefly
to provide an overview of their capabilities. A more detailed system development
procedure is described and then applied to a space station system example. A
purely sequential process model is used to introduce how simulations work and
to discuss the concept of model output convergence. A simple parallel process
is used as an example of how parallel process simulations work and to introduce
the concept of sensitivity analysis. This section is concluded with a summary.

1.2.1 ExtendSim Discrete-Event Simulation User Environment
and OpEMCSS Overview

The purpose of this book is to present concepts and methods needed to engineer
complex systems using discrete-event simulation (DES) and artificial intelligence
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(AI). Hands-on experiments using discrete-event simulation and Markov models
have been included throughout the book in order for the reader to achieve a better
understanding of complex systems and a greater utilization of these concepts and
methods during the simulation-based systems engineering process. In order to
do the hands-on experiments, facility with using ExtendSim and the OpEMCSS
library is required.

Operational Evaluation Modeling (OpEM) for Context-Sensitive Systems
(CSS), or OpEMCSS, is a graphical, DES library that expands the ExtendSim
simulation software environment in order to model context-sensitive systems
(CSS). A CSS has system state transitions that depend on the global system
context rather than only one local process thread. For example, the two-agent
system, shown in Figure 1.3, has a state transition in process 4 of agent Y that
depends on information received from process 3 of agent X.

It is recommended that the reader read through Appendix A, in the back
of the book, now and do the exercises in order to immediately (rather than
incrementally) gain the required facility with using ExtendSim and the OpEMCSS
library. Appendix A first discusses minimum requirements for successful CSS
modeling languages and provides a modeling languages survey that includes:
(1) Petri nets, (2) IDEF0 functional flow diagrams, and (3) ExtendSim queuing
diagrams. Next, the OpEM graphical modeling language is compared to these
other languages and the rationale for using OpEMCSS is explained. OpEMCSS
familiarization exercises are described that include: (1) how to set up ExtendSim
with OpEMCSS libraries and models, (2) ExtendSim environment overview, and
(3) block familiarization exercises that will instruct the user as to what each
of the basic OpEMCSS blocks contributes when building an OpEM simulation
model in ExtendSim.

Throughout the book, the presentation of the concepts and methods needed to
engineer complex systems is organized such that many of the OpEMCSS blocks
are described in the chapters in order to have explicit examples that facilitate
the desired hands-on experience. The basic idea is that understanding what the
blocks do in a model facilitates the understanding of complex systems. This is
because a simulation model is an abstracted description of a complex system
that is designed to answer questions about that system. In addition to block
descriptions in the text, Appendix B focuses on blocks that are not adequately
discussed elsewhere, but it also provides a summary description of all the blocks.

OpEMCSS can be used to evaluate alternative component morphological
instantiations of component algorithms and methods, discussed in the next
section, in order to discover hidden synergisms among particular sets of
algorithms that optimize overall system effectiveness and performance. This is
something that OpEMCSS can do very well using ExtendSim’s capabilities to
develop special blocks that implement detailed component algorithms. More
detailed and globally optimized component requirements can be determined and
added to the system design specification. These additional derived requirements,
which are subsequently imposed during hardware and software design, will
allow a more globally optimized system design to be brought into being.
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Appendix C discusses the Special Event Action block that is included in
the OpEM auxiliary library (current version is OpEMAUX7.LIX). Whereas the
OpEMCSS main library is protected (access to block MODAL code is denied),
the OpEM auxiliary library MODAL code can be modified by the user to imple-
ment component algorithms. All event action blocks receive a process instance
item index (an integer that indexes the item array), modify item attribute values
(local and/or global), and then send the item index to the next block. In order
to modify item attributes, a MODAL procedure ExecuteEventAction() obtains
the values of local and global input attributes, computes the new output attribute
values, and then modifies the value of each output attribute, either locally and/or
globally. An example discussed in Chapter 2 provides more information about
how an OpEMCSS model works.

1.2.2 Simulation Model Development Procedure

Simulation has become, in the last few years, a mandatory part of the systems
engineering process, especially as applied to the engineering of complex systems.
Large military, manufacturing, and transportation systems are too complex to be
designed and evaluated without the use of simulation. Business organizations are
currently being reengineered and intelligent enterprises are being designed, and
simulation is a natural tool to design and evaluate them. Computer simulation
and Markov models are used throughout this book to perform a numerical evalu-
ation of system performance and effectiveness. Other models such as functional
flow diagrams, network graphs, semantic networks, and hierarchy charts are used
during the development of these computer models.

Two kinds of systems engineering tools are typically applied to support the
engineering of complex systems and the simulation-based systems engineering
process: (1) tools that automate the system development process and produce a
system development database such as CORE (Buede, 1999) and (2) tools that are
used for concept exploration and discovery such as OpEMCSS (Clymer, 1997).

A system development database tool is used for complete automation of the
systems engineering process from design team entry of requirements until gener-
ation of the system specification documents. Such a tool allows a central design
database to be accessed by members of a design team and design description or
decision-making information, including issues and risks, to be entered and shared.
A system development database can be used to map the functional model onto the
system component architecture, and it can generate system design specification
documents.

Limited modeling capability can be provided in design capture database tools
to check the consistency of a design; however, these tools are not usually suit-
able for concept exploration and discovery and systems analysis and evaluation.
A concept exploration and discovery and systems analysis and evaluation tool
such as OpEMCSS mitigates system development problems that are caused by
the failure to optimize the interoperability and synergisms among all component
algorithms and methods at the overall system level. Further, the interactions of
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the system with its external systems and the dynamic demands of the opera-
tional environment on the system must also be included in a system-level model.
Design-capture database tools currently do not model detailed component algo-
rithms or the dynamic demands of a coevolutionary operational environment.
However, a design-capture database tool does support the overall systems devel-
opment process discussed later in the chapter. Therefore, design-capture database
tools and concept exploration and discovery and systems analysis and evaluation
tools such as OpEMCSS are complementary and, thus, both required to per-
form simulation-based systems engineering. In this section, a simulation model
development procedure is described and an example system design problem is
presented, and a few steps of this procedure are highlighted. In the introduction
to this chapter, we developed a functional flow model of a goal-oriented activity
that we already knew how to do. This exercise allowed us to focus on the graph-
ical modeling tools rather than the problem itself. However, our ultimate goal is
to be able to explore a problem space to develop the best solution concept to
solve a customer problem that we do not already know how to do. Generating
many alternate concepts that solve the problem in its operational environment,
each expressed as a simulation model, and then evaluating each solution to find
the best one summarizes our simulation-based systems design methodology. The
simulation model development procedure that follows in this section involves
additional steps not needed for the previous design exercise because now we
want to solve a system design problem that we do not already know how to do.

For each system design problem to be solved, the following steps are recom-
mended:

1. Define the system problem to be solved and describe system scenario or
context. This step produces a context diagram or external model.

2. Define the missions and mission objectives of the system and measures
of effectiveness. This step defines system effectiveness and performance
parameters to be estimated by the model.

3. Define objectives for study of each system solution using a model. What
questions a model must answer often dictates model details.

4. List tasks that must be performed to achieve each mission objective. What
must the system do in order to achieve each mission objective?

5. Subdivide tasks into periods of time represented by states where: (a) a task
is being performed by a resource and (b) a task is waiting for a logical
condition to be satisfied.

6. Group purely sequential tasks into the same processes and tasks that can be
performed concurrently into separate processes. Always allow for maximum
permissible parallelism: Tasks are sequential only if they must be done that
way.

7. Manually develop timelines of concurrent states that describe system oper-
ation and assist visualization of system operation. Show process states on
the timeline and indicate when one process sends data to another process or
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releases a resource to another process. Identify all context-sensitive inter-
actions as they occur in the timeline.

8. Develop a directed graph model diagram on the computer screen as dis-
cussed in Appendix A. Start with task and wait states, then add state variable
attributes to model interactions and physical details as well as data collec-
tion for model output. The model is visualized from the timeline, then
generalized for all cases.

9. Generate timelines or traces from simulation output as discussed above to
verify and validate the model and modify the directed graph model diagram
until satisfied.

10. Operate the model to achieve the model objectives and report analysis
results.

This simulation model development procedure is executed within and receives
input from the general systems development procedure. The interface between
the simulation model development procedure and general systems development
procedure is discussed in the next major section of the chapter.

Example applications of this procedure will be presented during the remainder
of this chapter and Chapter 3. Suppose a system consists of a space station
factory in low Earth orbit having (ND) docks at the space station, (NS) shuttle
vehicles, and (NR) refurbishing facilities for the shuttles. Further, suppose that
the overall capability of the space station system to process shuttle missions
requires evaluation.

The mission of the space station is to dock with each arriving shuttle, unload
and load cargo and passengers, and undock the shuttle. Shuttle missions are gen-
erated and arrive periodically at the space station. The system design problem to
be solved is to determine under what conditions shuttle missions can be accom-
modated by the space station with little mission delay and high space station and
shuttle resource utilization.

A shuttle mission consists of: (1) mission planning, PLN; (2) load cargo aboard
shuttle and boost shuttle to low Earth orbit, arriving at the space station, LDB;
(3) move to dock, unload, and load cargo and passengers, MUL; and (4) deorbit,
land, and unload cargo and passengers, DLU. When a shuttle finishes a mission,
it must be refurbished, RFB, before it can be assigned to another mission. A
mission is generated every 48 hours. Mission times are PLN, 24; LDB, 18;
MUL, 24; DLU, 18; and RFB, 48 hours.

System operation can be visualized as two processes in parallel—a mission
generator process and a mission execution process thread for each shuttle mission
in the system. A timeline, as mentioned in the above procedure, is a graphical
display of a simulation trace. An example timeline of a shuttle mission is shown
in Figure 1.5. The vertical dotted lines indicate process interactions. Each mis-
sion generated is connected to the beginning of an instance of a shuttle mission
execution process. When mission execution is complete, refurbishment follows.

An OpEMCSS simulation model of space station system operation is shown in
Figure 1.6. This model was developed using the simulation model development
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Figure 1.5 Example timeline of a shuttle mission.

Figure 1.6 Simulation model of space station system operation.

procedure described in this section. The Wait Until Event blocks were added to
the model so that shuttle missions could wait when space station system resources
are busy.

As an exercise, run the model with the mission interarrival time first con-
stant (k = 0) and then exponentially distributed (k = 1). See Appendix A for an
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explanation of change parameter k. Explain why the two timelines generated are
so different. What basic principle of system operation is represented here?

1.2.3 Simulation Programs: How Serial and Parallel Process Models Work

A sequential process model, the thief of Baghdad process, is discussed to intro-
duce how sequential process simulations work and to discuss the concept of model
output convergence. A simple parallel process model, a producer–consumer pro-
cess, is used as an example of how parallel process simulations work and to
introduce the concept of sensitivity analysis.

Thief of Baghdad Process The thief of Baghdad scenario is as follows. A thief
is arrested and placed in a prison cell. Three hidden tunnels lead away from the
cell. Two of the tunnels emerge secretly into the prison courtyard. If the thief
takes one of these tunnels, he is immediately captured when he emerges into the
courtyard, and he is returned to his cell. It takes 3 hours to crawl through the
first tunnel and 1 hour to crawl through the second tunnel. The third tunnel leads
to freedom, and it takes 1 hour of crawling time to escape. Each time the thief
emerges into the courtyard, he is so severely beaten that he cannot remember
the tunnels he has already taken. Thus, the probability of choosing each tunnel
remains the same each time a tunnel is chosen. The objective of the study is to
answer the question: What is the average time required for the thief to regain his
freedom?

An OpEM-directed graph model of the thief of Baghdad process is shown in
Figure 1.7. The model consists of 6 states and 5 events. The circles represent
states, periods of time required to perform the escape process. The states are: (1)
begin, B; (2) cell, C; (3) tunnel 1, T1; (4) tunnel 2, T2; (5) tunnel 3, T3; and (6)
end, E. The brackets < > in the process diagram represent changes in state or
events where the process transitions from one state to the next. Mission attributes
are parameter values that control sequential process outcomes, and they are inputs
to the simulation model that are often varied to observe their affect on model
outputs. Mission attributes for the thief of Baghdad process are reaction times
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Figure 1.7 Thief of Baghdad process.
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RC, RT1, RT2, and RT3 and probabilities P1 and P2. These mission attributes are
initialized by event E1 to start a replication of the escape process. For example,
reaction time mission attribute RT1 defines the time (3 hours) that the thief spends
in the tunnel 1 state. Reaction time mission attributes RC, RT2, and RT3 each
define 1 hour spent in the other states; respectively. The B state represents the
time before the thief enters prison, and the E state models the time after the
thief escapes from prison. Thus, each escape process replication begins with a
transition from the B state to the C state (event E1) and ends with a transition
from the T3 state to the E state (event E5).

The C state represents a 1-hour period when the thief is in his cell and search-
ing for a tunnel. When the reaction time for the C state is complete (defined by
mission attribute RC), a transition out of the C state occurs (event E2). The thief
chooses tunnel 1 with probability P1, tunnel 2 with probability P2, or tunnel 3
with probability 1 − P1 − P2. Because of thief’s memory loss, the probability
distribution used does not change based on past choices. A Markov model that
allows the thief to have memory of past choices is described in Chapter 4. How
to make a selection among several alternate event actions based on a discrete
probability density distribution is described in Chapter 2.

Mission attribute reaction time values RC − 1, RT1 − 3, RT2 − 1, and RT3 −
1 and mission attribute probabilities P1 − 0.1 and P2 − 0.1 are used in a run of
the model. Two event-state replication traces generated by the simulation model
are

B − C − T1 − C − T1 − C − T1 − C − T1 − C − T3 − E > escape time 18

B − C − T1 − C − T3 − E > escape time 6

The simulation run outputs are the average escape time (12 units) and the percent
of the process time spent in each state C (29%), T1 (63%), T2 (0%), and T3
(8%), computed over all replications of the process. From these values we can
determine where the thief spends most of his time during an escape sequence.
Of course, these results depend on the mission attribute value inputs (key per-
formance parameters, KPPs) used to characterize the process.

Figure 1.8 shows a flowchart of the simulation program that generates the
event-state replications discussed above and then calculates the average escape
time and percentage of time the process spends in each state. The flowchart
consists of Start, Input KPPs, Initialize, Execute Next Event, More Events?,
Another?, Output Run Report, and Stop blocks. The simulation begins by imput-
ing mission attribute values (RC, RT1, RT2, RT3, P1, and P2), run options, and
initializing all data collection counters needed to compute the simulation run
outputs. The run options are the number of run replications (event-state traces)
and activation of event-state trace output. Studying event-state trace outputs is
required to debug a model; however, computing simulation run outputs based
on many replications requires no trace output. Data collection counters C, T1,
T2, and T3 (accumulates the total time in each state), TOTIME (accumulates
total escape time), and the seed of the uniform random number generator U(0,1)
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Figure 1.8 Flowchart of sequential simulation program.

described in Chapter 2 are initialized to start a simulation run of one or more
event-state replications.

A set of event-state replications is generated by the iteration loop of blocks
consisting of Initialize, Execute Next Event, More Events?, and Another? The
number of escape sequences generated by this loop is defined by parameter
TOTMIS (TOTal MISsions), which is specified as a run option.

An escape, event-state replication begins in the B state as discussed above.
The Initialize block initializes model state variables and executes event 1 of the
process. If the Boolean run option variable TRCFLG (TRaCe FLaG) was set
by the Input KPPs block, then the event-state replication trace is printed as a
simulation output.

A second iteration loop consisting of Execute Next Event and More Events?
generates the desired event-state sequence for a single replication. The Exe-
cute Next Event block performs data collection and schedules the next event in
the sequence. For example, when event 2 is executed, mission attribute RC is
added to the data collection attribute C. Attribute RC is also added to replication
time variable TNOW (Time NOW), which maintains the current time during an
event-state sequence. For each event, the event-state trace is printed if that option
is selected. The remaining events follow a similar pattern.

Event 2 is unique in the thief of Baghdad simulation in that it uses a discrete
probability distribution to select a tunnel. How to do this will be described in
Chapter 2.

The More Events? block determines when the event-state sequence is complete
for a single replication. For the thief of Baghdad simulation, the event-state
replication (process thread) ends when event 5, and escape to freedom occurs.

An important task when applying simulation to solve systems design problems
is sensitivity analysis, which requires convergence of simulation output to a
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steady-state value. Figure 1.9 shows average escape time for the thief of Baghdad
process as a function of number of escapes. As the number of simulated escape
sequence replications increases, a larger sample of process outcomes is used to
calculate the average escape time. Figure 1.10 shows a run listing for 100,000
escapes with no event-state trace. The converged average escape time shown is
2.75 hours, which is confirmed in Chapter 4 by a Markov model of the thief of
Baghdad process. As shown in Figure 1.9, the average escape time converges to
the true value of 2.75 hours after about 7000 escapes. Run the OpEMCSS thief
of Baghdad simulation TFBAGDAD.MOX for 10,000 replications and observe
where convergence occurs. Use the Pause/Resume ||> button to pause the run
so you can see the number of replications at the bottom of the ExtendSim model

INPUT REACTION TIMES FOR STATES C, T1, T2, T3
1,3,1,1
INPUT PROBABILITIES P1 AND P2
.1,.1
INPUT 1 FOR EVENT STATE TRACE, ELSE 0, THEN TOTHIS
0,100000

REPORT OF THIEF OF BAGHDAD PROCESS SIMULATION
AVERAGE ESCAPE TIME IS 2.75
PERCENT IN STATE C IS .46
PERCENT IN STATE T1 IS .14
PERCENT IN STATE T2 IS .04
PERCENT IN STATE T3 IS .36

Figure 1.10 Run report for 100,000 escapes with no event-state trace.
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window. Note how the average escape time varies ±2.75 as the number of
escapes increases. The variation is large at first but decreases as the number of
replications increases. Convergence of the average escape is a predicted by the
law of large numbers discussed in Chapter 2.

Application of OpEMCSS to a Calculator Factory The calculator factory sim-
ulation model describes two concurrent process threads. The simulation program
described by the flowchart in Figure 1.8 must be modified to simulate concurrent
process threads. The program must now use a time-ordered list to keep track of
all pending events in the model that are associated with the concurrent event-state
sequences. In the sequential process simulation program, simulation time TNOW
was advanced after each event was executed. However, in the parallel process
simulation program, simulation time is only advanced when all events scheduled
for the same current time have been executed. An additional modification of the
parallel process simulation program is execution of Wait States, which use logic
based on state variable values to decide when an event occurs. The logic for each
pending wait state event must be evaluated at each discrete simulation time after
all the reaction time events have been executed. The flowchart for the parallel
process simulation program is discussed further in Chapter 2.

The parallel process simulation program discussed above is called event ori-
ented . The ExtendSim + OpEMCSS parallel process simulation program is called
object oriented . In ExtendSim + OpEMCSS, the process state-to-state transitions
are modeled by an item record where the item pointer moves from block to block
in the process diagram. In event-oriented simulation programs, a sequence of
event procedures is executed to generate the same event-state trace.

The ExtendSim + OpEMCSS version of the thief of Baghdad process is com-
pared and contrasted with an event-oriented version to demonstrate how parallel
process simulations work. In Chapter 2, how event-oriented and ExtendSim +
OpEMCSS models work for interacting concurrent processes will be discussed
further.

Scenario Producer–consumer process, shown in a factory scenario in
Figure 1.11, provides an example of a parallel process simulation where the
processes interact. Workstation 1 assembles hand calculators. Major parts of
the calculator are the printed wiring board with integrated circuits mounted, the
plastic case, and the battery. The worker at station 1 can assemble a calculator in
an average of 60 seconds. After finishing a calculator, he places it on a conveyor
belt. The calculator moves toward workstation 2. The packer at workstation 2
removes the calculator from the belt and packages it in a suitable container
for shipping. Packing the calculator for shipment takes 90 seconds on average.
When finished, the packer places the calculator package on a stack and begins
packing the next calculator.

To ensure the safety of the operation, the conveyor belt can be accessed by
only one workstation at a time. Therefore, while the assembler places a calculator
on the conveyor and moves it toward the packer, the conveyor cannot be accessed
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Figure 1.11 Producer–consumer process shown in factory scenario.

by the packer. Likewise, when the packer moves the conveyor belt to obtain a
calculator at the end of the belt, the assembler cannot access the conveyor. For this
reason, two doors have been added to the conveyor belt. When a calculator has
been assembled and the conveyor is not being used by the packer, the assembler
opens door 1 and places the calculator on the belt. He closes the door and moves
the conveyor until a calculator reaches door 2, where the conveyor automatically
stops. Since the conveyor can hold up to 10 calculators between doors 1 and 2,
one to nine time units are required to move the conveyor, depending on how
many calculators are already on the belt. If the conveyor is not being used by the
assembler, and the packer needs a calculator, he opens door 2, moves a calculator
one position toward the end of the conveyor belt, and removes it from the belt.
Only one time unit is required to move a calculator the one position from door
2 to the end of the conveyor belt, where the packer removes it.

The conveyor belt is a potential bottleneck that cannot be eliminated because
it passes through a large fire wall that separates the manufacturing area from the
warehouse area. Four wait conditions can slow the production and packaging of
calculators. First, the conveyor belt may be full of calculators; so the assembler
must wait for the packer to remove one. Second, the packer may be accessing the
conveyor belt; so the assembler must wait. Third, the assembler may be accessing
the conveyor belt; so the packer must wait. Fourth, the belt may be empty; so
the packer must wait until a calculator is assembled.

The relevant measure of effectiveness (MOE) for the calculator factory system
is the average number of calculators produced and packed per minute. Besides
the conveyor belt logical wait constraints, factory operation is affected by how
much time is required for the assembler and the packer to perform their various
work tasks. The logical wait constraints are required for safety and are out of our
control; however, task reaction times can be changed. The objective of this sim-
ulation project is to balance the logical wait times and maximize the throughput
of the calculator factory system.
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Figure 1.12 Directed-graph model of producer–consumer process.

OpEMCSS Model The parallel process model shown in Figure 1.12 was origi-
nally described in Dijkstra ((1968)) for two computers sharing a common memory
buffer. One computer produces an output called a “portion” and places it in a
buffer cell in memory. Another computer takes a portion from the buffer and
processes it. This process is known as the producer–consumer process. The
problem, discussed by Dijkstra ((1968)), is to coordinate buffer accesses made
by the two processes to ensure they do not access the same buffer cell at the
same time. The coordination method must allow the processes to operate inde-
pendently, except when both need the buffer. In his study, Dijkstra describes
the producer–consumer process using a modified ALGOL-type language; it is
represented here using the OpEM directed-graph language expressed using some
of the OpEMCSS library blocks.

Discrete states of the producer process are: (1) Produce Calc, PRD, time to
produce a calculator; (2) Wait for space, WTS, time waiting for an empty space
on the conveyor belt to become available; (3) Wait for belt 1, WB1, time waiting
by the assembler for the belt to become free when the belt is in use by the packer;
(4) Calc on belt, PCB, time to place a calculator on the conveyor belt and move it
toward the packer; and (5) the time the assembler is idle after the last calculator
has been produced while waiting for the packer to empty the conveyor belt.

Discrete states of the consumer process, shown in Figure 1.12 are: (1) Wt for
Calc, WTC, time waiting for a calculator to be placed on the conveyor belt by
the assembler when the belt is empty; (2) Wait for belt 2, WB2, time waiting
by the packer for the conveyor belt when the belt is in use by the assembler;
(3) Take Calc from Belt, TCB, time to move a calculator through door 2 to the
end of the belt and remove it; (4) Package Calc, PAK, time to package a calcu-
lator; and (5) a transient idle state that occurs after the last calculator has been
packaged.
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Figure 1.13 Timeline for visualizing system operation.

The OpEMCSS model shown Figure 1.12 describes all possible sequences of
states and events that represent the operational behavior of the calculator factory.
The timeline of Figure 1.13 is only one particular sequence. As shown in the
timeline, three process control state variables are used to control access to the belt
in order to place and remove calculators. These attributes are: (1) NQ, current
number of calculators on the belt; (2) NE, current number of available spaces
on the belt, and (3) B, belt is free or in use. The fact that NQ in the timeline is
always zero is a clue to the cause of low calculator throughput of the factory. Run
the OpEMCSS producer–consumer model PRODCONS.MOX in trace mode to
confirm this timeline.

When two or more processes being performed concurrently share a common
buffer, they may both attempt to access the buffer at the same instant. If one
process is reading the contents of a buffer cell, and a second process interrupts
this task to change the buffer cell contents, a system error will result. In the cal-
culator factory system, simultaneous access of the conveyor belt by the assembler
and packer is a safety hazard, resulting in the required logical wait constraints
discussed above.

In his classic study, Dijkstra ((1968)) presents a series of solutions to this prob-
lem that lead to the conclusion that a set of uninterruptible primitive operations
is needed. These are called P and V operations here. They operate on process
control, state variables. He calls these semaphores to provide error-free commu-
nication between processes. The P operation tests the value of a semaphore.
If zero, the process waits until it is positive again. If positive, it is decre-
mented, and the process continues. The V operation increments the value of
the semaphore. The testing and decrementing of the P operation and increment-
ing of the V operation cannot be interrupted to avoid simultaneous access of a
semaphore.

In the producer–consumer model, state variable B controls access to the con-
veyor belt, NE signals that the belt is full, and NQ signals that the belt is empty.
In general, the P operation defines occurrence logic of the Wait for space and
Wait for belt 1 states of the producer process and of the Wt for calc and Wait
for belt 2 states of the consumer process. The V operation increments state vari-
ables used in signaling when the appropriate action is complete for each state
variable or semaphore. Semaphores NQ and B are incremented when state PCB
completes, and NE and B are incremented when state TCB completes.
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What do you think happens if the order of the Wait for space and Wait for
belt 1 states is reversed on the directed graph? Swap the wait state blocks in the
producer and consumer processes and run the revised model in trace mode to
observe what happens. This is an important principle of complex systems.

1.2.4 Sensitivity Analysis

Two main types of management information are obtained from an OpEMCSS
simulation model. These are measures of effectiveness (MOEs) and measures
of performance (MOPs). Measures of effectiveness provide information about
how well the system achieves its mission objectives. Measures of performance
measure system efficiency and resource utilization, and they provide clues about
where bottlenecks are in the system. These clues lead to recommendations to
improve system effectiveness. In the assembler–packer process, the MOE is
system throughput, and there are four MOPs representing the average wait time
for each wait state in the model. A simulation model produces MOEs and MOPs
as a function of the values of mission attributes. A mission attribute or KPP is a
model input parameter that characterizes the operation of people and equipment
as they perform a particular mission function or task. To obtain the value of
each mission attribute, the attribute must be precisely defined. Precise definition
allows the value of each mission attribute to be obtained from an operational test
or from a detailed model of system or component operation.

Some process-level mission attributes are availability, operational reliability,
capability, personnel ability, and reaction time. Availability is the probability that
a collection of equipment required to perform a function is not in a failure state
at the start of a test. Operational reliability is the probability that the collection
of equipment required to perform the process will not fail when called upon to
perform the process, given that the equipment was available at the start of test.
Capability is the probability that the collection of equipment required to perform
the process will not cause the process to fail to achieve its objectives, given
that the equipment is available and operationally reliable. Personnel ability is
the probability that the people required to perform the process will not cause
the process to fail to achieve its mission objectives, given that the equipment
required is available and operationally reliable. Reaction time is calculated from
the start of the test to either the time the objective is achieved (for successful
outcomes) or the end of test (or abort event) for an unsuccessful outcome.

It is important to include failures that result in task abort times in your simu-
lation model because, even though the task is unsuccessful, resources are being
used. Therefore, probabilities of failure must be included in the simulation model.
These KPP probabilities allow numerical evaluation of how sensitive MOEs and
MOPs are to possible system failures. After a failed task aborts, failure recovery
processes must be designed and simulated, and it must be determined under what
failure conditions system requirements can be met.

A mission process model provides management information as a function of
mission attributes or KPPs. Figure 1.14 shows such a graph. Evaluation of the
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Sensitivity curve: Plot of steady-state mean value of moe 
based on a large sample of process outcomes, requiring an
efficient simulation program to develop
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Figure 1.14 Sensitivity curve of mission attribute vs. MOE.

graph reveals the potential improvement �MI/�P . This measures how sensitive
management information (MI) is to changes in mission attribute or KPP (P ).
Mission attributes with the largest gain are the best candidates for improving
system effectiveness. A sensitivity curve is developed for each mission attribute
to identify all high-gain areas for improvement. Each sensitivity curve also shows
where no further gain is possible, as indicated by the saturation region on the
figure. Team members can use the directed-graph model of the mission process
to discuss the high-gain areas identified by sensitivity analysis and share ideas
about how to improve the process.

Any design team member may run the program to change mission attribute val-
ues and produce a variety of output formats, such as a sensitivity curve. Changes
in the value of mission attributes are accomplished simply by opening the appro-
priate OpEMCSS block dialogs and changing values in the proper parameter or
equation boxes.

As an exercise, run the Prodcons.mox simulation and develop some sensitivity
curves. Run the simulation repeatedly and vary each reaction time PRD and
PAK from 10 to 90 seconds in steps of 10 for each run. Plot the five model
scoreboard values as a function of these reaction time values. Run simulation
repeatedly for each reaction time PCB and TCB for mean values of 10 and 5
for each run. Plot the model scoreboard values as a function of these reaction
time values. For each MOE/MOP plot, reset each mission attribute to its nominal
value, repeat this procedure for the next MOE/MOP plot. What values of the
mission attributes optimize the throughput of the calculator factory? How can
we balance manufacturing system work flow using only minimal changes to the
mission attributes?

1.3 BRINGING COMPLEX SYSTEMS INTO BEING

Systems engineering is concerned with two activities: (1) determining what is the
real problem and (2) documenting the best solution. Systems that can be designed
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using systems engineering methodology are as varied as a military command and
control system, transportation network, manufacturing production line, or busi-
ness organization. The modern practice of systems engineering makes use of
integrated product development teams that include engineers, scientists, market-
ing people, manufacturing specialists, product support personnel, stakeholders,
and others. These multidisciplinary teams often start with a vague statement that
“things could be better” and proceed through dialog with the stakeholders to
identify the problem and then find the best solution.

In complex systems, the statement of the problem—called the system
requirements—and the description of the problem solution—called the system
design specification—can be quite voluminous. Therefore, computer databases,
such as CORE, are now used to manage the system requirements and the system
design specification as they evolve during the system engineering life cycle.
These databases have replaced traditional methods that used paper documents
because: (1) databases can be made much less ambiguous in describing the
requirements and the system design specification than ordinary English text
documents and (2) computer databases can be maintained current while being
shared by the integrated product development team as the requirements and
system specifications evolve.

Simulation models are a good way to evaluate alternative system concepts and
designs in order to determine the “best” way to satisfy the system requirements.
Simulation models can also be used to allocate top-level system requirements to
lower level system descriptions. In previous sections of this chapter, we discussed
the nature of complex systems and how the OpEM graphical modeling language
provides a formal, explicit representation of operation, and structure that is needed
for complex systems. In this section we will describe the systems engineering,
systems development process, and life cycle, discussing how simulation can assist
in design of complex systems.

1.3.1 Definition of Systems Engineering

According to Blanchard and Fabrycky (1998), systems engineering is the appli-
cation of scientific and engineering efforts to: (1) transform an operational need
into a description of systems performance parameters and a preferred system
configuration through the iterative process of functional analysis, synthesis, sim-
ulation, optimization, design, test, and evaluation; (2) integrate related technical
parameters and assure compatibility of all physical, functional, and program inter-
faces in a manner that optimizes the total system design and definition; and (3)
integrate functional design, reliability, maintainability, human factors, system
support, safety, security, and other related specialties into the total engineering
effort.

According to Buede (1999), engineering of a system is an engineering disci-
pline that develops, matches, and trades-off requirements, functions, and alter-
native system resources to achieve a cost-effective, life-cycle balanced product
based on the needs of the stakeholders.
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Stakeholders include users, owners, manufacturers, maintainers, and trainers
to name a few. Progress is achieved through iteration of the system develop-
ment process that proceeds from operational needs to system-level requirements
to component and configuration item (CI) specifications. In general, the system
development process concerns are: what the system does, how well the sys-
tem must do what it does, and how the system should be tested to assure all
requirements have been met.

A member of an integrated product development team (IPDT) must possess the
following characteristics: (1) think in terms of the entire system life cycle (con-
ceptual design, preliminary system design, detailed hardware–software design,
production/construction, maintenance and support, retirement, and disposal); (2)
recognize the importance of reliability, maintainability, human factors, supporta-
bility, producibility, disposability, product quality, economic, and related factors
at program inception; (3) utilize computer-aided systems engineering (CASE)
tools, such as CORE; and (4) understand the various phases of a program, differ-
ent organizational activities and their interfaces, and the communication processes
that need to exist for effective systems engineering management. IPDT members
include stakeholders, system architects, discipline engineers, systems analysts,
systems engineering process engineers (i.e., CORE experts), and project man-
agement.

How does systems engineering relate to systems science and systems analy-
sis? Systems science is concerned with systems theory and formal models that
lead to insights into first principles of complex systems operation and structure.
Systems science provides a concise “way of thinking” about complex systems.
Context-sensitive systems (CSS) theory, discussed throughout this book, is an
example of systems science. Systems analysis is the iterative process of applying
various analytical methods (such as simulation, Markov models, and optimization
techniques) in the evaluation and optimization of system requirements, alternative
system concepts, and component architectures including interfaces. Systems engi-
neering incorporates system scientific principles and employs systems analysis
methods to attain its objectives.

A summary of the systems engineering, systems development process includes
the following tasks: (1) dialog with the stakeholders to acquire knowledge about
the problem to be solved; (2) translate stakeholder problem description into
top-level technical (originating) requirements that are measurable and observable;
(3) define the functions required for the system to accomplish all mission objec-
tives and organize these functions into concurrent processes that collaborate; (4)
develop alternative operational concepts each expressed as a parallel process and
evaluate them, and select concept that best satisfies the originating requirements;
(5) allocate each functional process to a component within a network of system
components, called the system architecture, and evaluate alternative allocations
in order to discover the best system design in terms of all requirements; (6)
determine system requirements at lower levels of system decomposition (compo-
nent and configuration item levels) needed to optimize top-level system process
and structural requirements using simulation; (7) decompose system design into
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a network of networks from the top down until a level is reached where each
system component or configuration item can be developed by an independent
design team, and (8) use a computer database to document the conceptual and
preliminary system design in terms of system requirements, including all data
and rationale for all design decisions. Simulation is used throughout the systems
development process to overlap design and verification activities in order to find
system deficiency problems as early as possible during the systems engineering
life cycle.

1.3.2 Levels of System Description

Levels of system description, shown in Figure 1.15, are listed from top to bottom:
(1) mission, (2) function, (3) parallel process, (4) resources, and (5) physical
system, plus an interface between the process level and the resource level. In
top-down system design, a system or organization is defined starting at the
mission level and proceeding to the physical level. In contrast, during detailed
hardware–software design, system components are designed, built, and tested
from the bottom-up.

The mission level is concerned with overall objectives of an organization or
system and its operational environment. Mission effectiveness is defined as the
ability of an organization or system to perform its mission and achieve its mission
objectives while operating within its operational environment. The ability of a
system or organization to perform its mission can be measured in several ways;
thus, mission effectiveness is often a vector of measures. The most common mea-
sures deal with the probability of achieving each mission objective. Each MOE
must be defined so as to be observable and measurable. Performance measures
relate to user satisfaction, system efficiency, response time, or use of resources.
Measures of performance are concerned not only with whether the objectives
were achieved or not but also with how well the system performed its mission.

At the function level, precisely what tasks must be done to achieve each
mission objective is determined. Each function is defined in terms of required

Mission level Mission, mission objectives, user environment, measures
of effectiveness

Function level Functions, interactions among functions and environment,
functional flow diagrams

Parallel process level Parallel process, sequences of states and events, directed
graph model

Mission attribute User What

Interface Producer How
Resources level Resource sets, equiment

Dependency diagrams
Physical system level Physical system

Figure 1.15 Levels of system description.
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inputs, the task to be performed, and the outputs produced. Interactions among the
functions and with the environment are described by flow diagrams. Functional
flow diagrams describe the sequence in which the functions are performed, as
well as the connection between inputs and outputs among the functions and with
the environment. Often, a hierarchy of functional flow diagrams is developed, the
level of detail increasing as each level is expanded. The diagrams also specify
functions that can be performed simultaneously. Thus, they specify the sequential
and parallel arrangement of functions defined by the input/output relationships.
Flow diagrams are useful for specifying exactly what a system or organization
is to do without considering how the functions will be carried out. They allow
the user to express his or her need in terms of what is required, rather than in
terms of a proposed solution. Functional flow diagrams are often used by CASE
tools such as CORE (Buede, 1999), to specify what the system does first before
considering how it will be done. This avoids converging to a physical component
architecture design before the stakeholder problem is understood adequately.

At the parallel process level, an OpEMCSS model is developed that describes
operational behavior of an organization or system. A parallel process model
can also be developed as a hierarchy from the top down using ExtendSim’s
hierarchical blocks. To develop a parallel process model, each function in the
flow diagram is subdivided into periods of time called states, when either: (1)
a function is being performed by a resource or (2) a function is either waiting
for a resource to become available or for some other logical condition to be
satisfied before it can continue. The OpEMCSS simulation model of the Buede
system development process, discussed in the next section, is an example of
translating ambiguous and unexecutable IDEF0 diagrams into an unambiguous
and executable OpEMCSS simulation.

The physical system is represented as a collection of resources, each of which
is a group of people and equipment needed to perform particular system functions.
In Chapter 5, the relationships between resources and functions are represented
using equipment dependency diagrams, and they are used to compute reliability
and availability. Reliability failures and system recovery processes must also be
included in the system design model as well as resource contention discussed
previously.

After states of the process have been identified, an OpEM directed-graph
description of the process is developed that defines the sequences of states and
events allowed for the process. In the directed graph, functions that always occur
in the same time sequence are grouped to form a process. Functions that can
be performed concurrently are grouped into separate processes, forming paral-
lel processes. A parallel process model always allows for the highest degree of
parallelism possible, independent of the physical system. Program logic specifies
the particular level of parallelism achievable for a given architectural design.
Examples in later chapters show how logic can specify the degree of parallel
operation achievable for a given architectural design. The behavior of the envi-
ronment in which the system operates is also represented by process threads
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included in the system model to simulate the dynamic demands of the environ-
ment on a system. When a system model includes the environmental and external
system processes, it is called an operational model .

A mission attribute, as discussed above, characterizes the operation of a collec-
tion of people and equipment performing a particular mission function. Mission
attributes, also called key performance parameters (KPPs), are used to aggregate
system details in order to simplify a model. However, we must make sure that
the individual aggregations do not interact. We want to reduce system details
in the model without masking system complexity issues. Some attributes are
probabilities of alternate actions; decision-making rules; task reaction time; and
probabilities of failure that result from resource availability, operational relia-
bility, capability, and personnel ability. Mission attribute, or KPP, values are
obtained from the objectives hierarchy document. A resource is a collection of
people and equipment that performs a function or mission task. It represents the
aggregate structure of the physical system prior to the definition of the physi-
cal system component architecture. Consider an elevator system in an apartment
building. If there are three elevators, there are three elevator processes in parallel.
Each process can consist of four states: (1) idle, (2) move one floor, (3) open
door, and (4) close door. For the elevator process to perform these functions, an
associated elevator resource must be available and operating. See Chapter 9 for
a detailed elevator model.

The physical system level is the detailed physical description of how the
system operates. This includes the physical system component architecture and
all the algorithms and methods needed to achieve all system performance, cost,
and schedule requirements.

1.3.3 Systems Engineering Life Cycle

One version of the systems engineering life cycle is shown as a timeline diagram
in Figure 1.16, and it is described in more detail in Blanchard and Fabrycky
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Figure 1.16 Systems engineering life cycle.
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(1998). The detailed phases shown are conceptual design, preliminary system
design, detailed hardware–software design, production/construction, maintenance
and support, retirement, and disposal. Manufacturing and product support con-
figuration design and development are shown concurrent with system design
(conceptual, preliminary, and detailed system design) in order to emphasize the
multidisciplinary nature of the design team.

The phases of the systems engineering life cycle according to the Defense
Systems Management College (DSMC) are mission area analysis, concept eval-
uation, program definition and risk management, engineering and manufacturing
development, production and deployment, operations and support, and disposal.

Mission area analysis is the “front end” of the systems engineering process
where the “real” problem is defined and the top-level requirements are specified
in the database. Scenario descriptions of what the system will do to solve the
stakeholder’s problem are specified. As discussed in the summary of the model
development procedure, system mission, mission objectives, environment and
contextual interfaces, and measures of effectiveness are defined. According to
Buede (1999), requirements can be organized into a hierarchy that consists of
mission, originating, derived, and system requirements. Mission requirements are
obtained from the stakeholders and define the stakeholder’s problem. Originating
requirements define the system design problem as constrained by the mission
requirements. Derived requirements are obtained by simulating alternative oper-
ational concepts in order to identify trades leading to more detailed requirements
that further constrain the system design problem. System requirements are mis-
sion, originating, and derived requirements stated in precise engineering terms.

During concept evaluation, the design team identifies all feasible system con-
cepts to achieve the system missions and mission objectives and evaluates each
concept using the specified operational scenarios. Mission objectives are decom-
posed into functions, interactions among functions, interfaces with the envi-
ronment, and functional flow diagrams. In the model development procedure
discussed above, functional flow diagrams are translated into OpEMCSS process
diagrams that describe sequences of states and events, message passing among
processes, and process synchronization and resource contention. The OpEMCSS
process diagrams allow simulation of alternative system concepts and evalua-
tion of trade-offs including the dynamic demands that the operational scenarios
place on the system. Alternative technologies and processes are considered, and
processes are allocated to top-level, architectural components and evaluated.
The design team attempts to simplify component interfaces and communications
required for collaboration and, at the same time, maximize system effectiveness
(mission effectiveness, reliability, availability, etc.) and minimize cost.

The conceptual design phase culminates in the: (1) systems design specifi-
cation (type A) that describes top-level system requirements and, at least, one
feasible solution stated in terms of functions, processes, top-level architectural
components and interfaces, and design of the system qualification system; (2)
systems engineering management plan (SEMP), which discusses the organiza-
tion and work required for the system acquisition phase; (3) test and evaluation



BRINGING COMPLEX SYSTEMS INTO BEING 37

master plan (TEMP), which defines the demonstration and validation modeling
and testing to assure all requirements have been met; and (4) conceptual design
review where the decision to continue is made by the stakeholders.

If the stakeholders accept the conceptual design, then the preliminary system
design (demonstration and validation) phase can begin. The system design speci-
fication (type A) provides operational and maintenance requirements (a statement
of the problem) and a very top-level description of one or more feasible solutions.
Given these results from the conceptual design phase, the systems engineering
process is again applied. However, now team efforts focus on system functional
analysis, synthesis and allocation of requirements to subsystems, simulation and
optimization, and production of detailed component specifications (type B, C,
D, E).

The systems engineering process is iterated until a level of system descrip-
tion is reached where detailed hardware–software design can be effectively and
efficiently performed. The complexity of each component or CI, defined by a
detailed component specification, is appropriate for a single, independent, design
team of about 7–12 people to handle. Further, the requirements for each compo-
nent at this level have been specified such that, when the component is built, it
can be integrated into the system and the overall system will satisfy all top-level
requirements. Computer simulation of the system, modeled as a set of concurrent
processes allocated to a component network, is a cost-effective way to make
sure that top-level system requirements are decomposed properly all the way to
the component level required for a successful detailed design effort. Further,
simulation can evaluate alternative component architectures in terms of sys-
tems effectiveness and cost, and using the OpEMCSS special blocks, alternative
detailed algorithms and methods can be evaluated.

In large, complex systems, the architecture is expressed as a component net-
work of networks in order to simplify the detailed hardware–software design
problem. Thus, the top-level requirements must be decomposed to provide com-
ponent and CI requirements. For example, suppose the top-level availability
(probability that the system will be available when called upon to function)
is required to be 0.999999. If the system is decomposed into four components
at the next level down, what must the availability of each of these components
be in order to achieve the top-level system availability? We will consider this
problem further in Chapter 5.

The preliminary systems design phase culminates in a system design review
where the decision is made whether or not to continue. If a decision is made to
continue, then the detailed hardware–software design and development (full-scale
development) phase can begin. During detailed design, each system component
is designed, based on its detailed component specification, and one or more pro-
totypes are built. Prototypes usually evolve from ad hoc, breadboard models to
engineering models to manufacturing prototypes that confirm that all manufac-
turing processes and product documents are ready for the production/construction
phase.
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Prototype system components are designed, built, and tested from the
bottom-up. Therefore, improper flow down of top-level requirements to system
components may not be identified until system integration and test, which occurs
at the end of the detailed design phase, where correction becomes very costly.
These errors could require changes in the manufacturing and product support
configurations, product documentation, and product system. Thus, proper flow
down of requirements during conceptual and preliminary systems design is
critical to project success. Simulation of the system as a network of networks
allows virtual verification of correct requirements flow down to be done early
in the project.

The detailed design phase results in product, manufacturing, and product sup-
port specifications. Production of manufacturing prototypes occurs to test the
manufacturing system and provide for operational tests. A critical design review
decides if the system will go to full production.

In summary, simulation can be used to determine and specify detailed com-
ponent requirements, including detailed algorithms and methods, necessary to
achieve top-level system requirements. This must be done during the concep-
tual and preliminary systems design phases when it is much cheaper to make
design changes. Further, at each stage of system design and development, it
is necessary to evaluate the proposed design in terms of system requirements.
During conceptual design, discrete-event simulation (DES) is used to evaluate
the design and perform the requirements flow down. Next, during preliminary
systems design, combined continuous and DES is performed to evaluate alterna-
tive technologies and software algorithms. As part of risk management, alternate
implementation approaches for high-risk functions can be included in the simu-
lation until a clear choice can be made. During detailed hardware and software
design, real-time simulations including hardware/software/man-in-the-loop tech-
niques are used to evaluate prototype components (hardware or software) within
a simulated operational environment.

Finally, system integration occurs and the complete system is subjected to a
rigorous test and evaluation procedure to verify and validate that all requirements
have been satisfied. Simulation may continue to be used during production and
product use phases of the life cycle to evaluate enhancements or the affect of
changes that occur during the system operation phase.

1.3.4 Simulation of the System Development Process

The system development process is a goal-oriented activity that can be decom-
posed into a functional flow of sequential and concurrent tasks just like the pizza
making process discussed at the beginning of this chapter. An OpEMCSS pro-
cess diagram (PM SM Duality.MOX) of an organization that performs system
development projects, as described in Buede (1999), is shown in Figure 1.17.
The model consists of three top-level processes: (1) project arrival, (2) technical
management, and (3) systems design project.

The interaction with the organization’s environment is modeled by the project
arrival process. Projects arrive periodically and enter the organization where they
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Figure 1.17 OpEMCSS process diagram of an organization that performs system
development projects.

are passed on to the technical management process. The first task of technical
management is project planning where the complexity of the project, resources
required, and schedule is estimated. After project planning is complete, a project
is passed to the systems design project process. Technical management continues
to monitor the project and take corrective action when the project deviates from
the planned schedule.

The systems design project process is shown in Figure 1.17 as six, concurrent
hierarchical boxes: (1) define system-level design problem, (2) develop system
functional architecture, (3) design system physical architecture, (4) develop sys-
tem operational architecture, (5) develop interface architecture, and (6) develop
qualification system. First, the Define system-level design problem process is
performed that produces a set of approved problem definition documents. Next,
the Develop system functional architecture process is performed that produces
a system-level functional architecture description. Functional design is followed
by the Design system physical architecture process. A candidate generic phys-
ical architecture is selected, and the functional architecture design is reworked
to be compatible with the physical architecture. While the functional architec-
ture is being updated, a candidate physical architecture is specified that includes
detailed algorithms and methods. When an approved system problem definition,
system-level functional architecture, and candidate physical system architecture
descriptions are available, the Develop system operational architecture process
is performed. During this process, performance and risk analysis is performed
using a system design simulation model (system emulation) that may result in
requirement changes, functional architecture changes, or physical architecture
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changes. Given that system performance requirements are satisfied and satisfac-
tory project risk is determined, stakeholder approval for the system design is
sought. An approved operational architecture and an approved system problem
definition allow the Develop interface architecture and Develop qualification sys-
tem processes to be performed concurrently with the documentation of subsystem
specifications.

Define System-Level Design Problem The Buede functional flow IDEF0
model for the Define System-Level Design Problem is shown in Figure 1.18
translated into OpEMCSS processes. Each function is modeled by two Wait
Until Event blocks, a Global Reaction Time Event block, and one or more Local
Event Action and Message Event Action blocks. First, a function process waits
for all required artifacts to be available to start the function process. Second, a
function process waits for all people and equipment resources needed to perform
the function to be available. Third, the time to perform the function is modeled
by the reaction time block. Fourth, global attribute counters are updated to model
all artifacts produced by the function for the current project. A Message Event
Action block is used to share these artifact attributes with all function processes
for the project. The six Define system-level design problem processes are as
follows.

Figure 1.18 OpEMCSS process diagram of the Define System-Level Design Problem
process.
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Develop Operational Concept (Mission Analysis) The operational concept
consists of the external systems diagram, a collection of operational scenarios,
and mission requirements. The external systems diagram defines the system as
it interacts with its environment, and it is defined in very general terms during
mission analysis. A collection of dynamic operational scenarios is developed that
define system use and the dynamic demands of the external systems and system
environment on the system. Mission requirements are obtained from stakeholder
inputs and are stated to maximize design flexibility. The operational concept
covers the entire life cycle of the system and completely defines the stakeholder
problem using common language.

Define System Boundary with an External Systems Diagram The external
systems diagram shows the system boundary and interfaces with the external
systems, and it is developed through analysis and evaluation of the operational
concept. For example, timeline analysis can be used to make input/output require-
ments between the external systems and the system more explicit to facilitate
drawing the system boundary and needed interfaces.

Develop System Objective Hierarchy The objective hierarchy forms the value
system used to define the stakeholder’s satisfaction with the system. Objectives
are divided into program and operational. Included in operational objectives are
required values for MOEs that measure system performance from outside the
system and MOPs that measure system performance from within the system.
MOPs include system response latencies, wait times, accuracy, system RMA
(reliability, availability, maintainability), user satisfaction, and system quality.
Program objectives include costs and schedule.

Develop, Analyze, and Refine System Requirements The originating require-
ments document (ORD) is stated in the language of the stakeholders, and it
is derived from the operational concepts, external systems diagram, mission
requirements, and stakeholder objectives. The ORD is formed into a hierarchy
of individual requirement statements that can later be associated with the system
functions and architectural components including external and internal interfaces.
There are four categories of originating requirements: (1) input/output (external
systems and context), (2) technology and systemwide (technology, suitability,
cost, and schedule), (3) trade-off (value algorithms), and (4) system qualification
(methods and plans). A requirements database assures that each system require-
ment is traceable to the implementation of the requirement and includes the
stakeholder level of need (how bad do they want it) in order to facilitate design
trade-offs relative to cost and schedule.

Define Qualification System Requirements Given the system requirements,
the qualification system requirements are specified in order to assure verification
(build the system right?) and validation (build the right system?) is achieved. The
qualification system requirements are used to specify the hardware and software
systems used during component, subsystem, and system tests.
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Ensure Requirements Feasibility The set of requirements can include conflict-
ing goals or not fit within the scope of the system’s boundary and fundamental
mission objectives. The requirements may imply deviation of development cost,
schedule, or risk from that originally planned.

Obtain Approval of Requirements Documentation The stakeholders must
approve the ORD. The ORD defines the stakeholder problem. The Ensure require-
ments feasibility process terminates with three alternative paths: (1) begin Define
qualification system requirements process, (2) return to Develop, analyze, and
refine system requirements process to correct feasibility problems, or (3) return
to top of model for major changes to the operational concept, system boundary,
or system objectives due to engineering requirements issues. The Obtain approval
of requirements documentation process has two alternative paths: (1) (ORD okay)
continue with the functional system design or (2) (ORD has stakeholder issues)
return to top of model for major changes to the operational concept, system
boundary, or system objectives. Currently, these alternative action paths in the
model are decided by probabilities that are a function of project complexity and
organization technical competencies. The KPPs used to decide these alternate
process paths are shown on the right-central area of Figure 1.18.

Develop System Functional Architecture The Buede functional flow IDEF0
model for the Develop System Functional Architecture is shown in Figure 1.19
translated into OpEMCSS processes.

According to Hatley and Pirbhai 1 (1988), a functional architecture consists
of: (1) input processing, (2) process model (transform inputs to outputs), (3) out-
put processing, (4) control model, (5) maintenance model, and (6) user interface
processing. Design methods include both top-down, bottom-up, and a combina-
tion. The 10-step simulation development methodology presented in this book
is a combination of top-down and bottom-up. Functions required to achieve
each mission objective are listed and then combined into sequential and parallel
arrangement. Systems analysis is performed as the model is expanded top-down
to include more and more functional details.

Create Simple Functionalities for Operational Concept The operational con-
cept includes a description of all external systems as they interact with the system.
The inputs from external systems and outputs to external systems are specified.
Simple functionalities describe the functions required to receive an external input
and generate the appropriate external output.

Draft and Evaluate Functional Model Simple functionalities are combined to
produce a draft functional model. Several inputs may be required to be combined
to produce an output.

Draft Data Model for Functional Model Data items represent data, material,
or energy that flow through the system from inputs to outputs.
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Figure 1.19 OpEMCSS process diagram of the Develop System Functional Archi-
tecture process.

Complete Functional and Data Models The draft functional and data models
are combined to complete the functional architecture. Control items that are
internally generated data items and define when functions can be executed are
added to the model. User interface processing and system maintenance and failure
recovery functions are added also.

Trace Input/Output Requirements to Functions and Items Input/output
requirements are linked to the functions and data items. This ensures that all
functions and data items are required. Any that do not have a link are either
removed or derived requirements are added and linked to the function. During
functional design, if a function is added that is considered required but has no
originating requirement, a corresponding derived requirement is added subject
to stakeholder approval.

Design System Physical Architecture The Buede functional flow IDEF0
model for the Design System Physical Architecture is shown in Figure 1.20
translated into OpEMCSS processes. The physical system architecture defines
specifically how the system-level functional architecture is implemented. If the
functions can be specified to have a one-to-one relationship with a physical
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Figure 1.20 OpEMCSS process diagram of Design System Physical Architecture
process.

component that performs the function, then the next project function is greatly
simplified.

Brainstorm and Select a Generic Physical Architecture Given the
system-level functional architecture, alternative generic physical architecture
concepts are defined and evaluated. The functional architecture is designed to
optimize mission effectiveness that is the probability that the system will achieve
all mission objectives when called upon to do so. The physical architecture is
designed to optimize mission performance that includes various performance
measures, reliability, availability, survivability, social acceptance, and others. A
system design simulation model can be used to select a candidate generic physical
architecture, and the system functional architecture definition is then updated to
accommodate the specifics of the candidate generic physical architecture selected.

Generate a Morphological Box for Alternate Instantiated Physical Architecture
A generic physical architecture defines the structure of the components but not
what algorithms or methods the components use. The morphological box is a
way to define the collection of all alternative sets of component algorithms and
methods to be evaluated where each alternative is an instantiated physical archi-
tecture.

Select Alternate Instantiated Physical Architecture An operational simulation
must be used to evaluate these alternative instantiated physical architectures and
select a candidate that optimizes mission effectiveness and mission performance.
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Figure 1.21 OpEMCSS process diagram of Develop System Operational Architec-
ture process.

Develop System Operational Architecture The Buede functional flow IDEF0
model for the Develop System Operational Architecture is shown in Figure 1.21
translated into OpEMCSS processes. The system-level functional architecture and
an associated instantiated physical architecture are combined to produce a system
operational architecture, bringing the entire design together (including interfaces
and qualification system), documenting it, and obtaining stakeholder approval.
The processes are as follows.

Allocate Functions and Systemwide Requirements to Physical Subsystems
This is the most critical design step because it affects whether the system meets
all mission objectives or not. Functions must be allocated to hardware, software,
or people resulting in flexibility versus speed trade-offs. Further, allocation of
functions to components affects greatly the complexity of the component inter-
faces. Systemwide requirements such as reliability and failure recovery must be
allocated to each component resulting in additional trade-offs.

Define and Analyze Functional Activation and Control Structure Each func-
tion requires certain input artifacts to be available in order to begin execution,
defining precedence relationships among the functions. Further, functions often
collaborate to produce output artifacts, requiring behavior synchronization. The
activation and control structure must be evaluated to assure that no deadlocks
can occur and the behavior is consistent.

Conduct Performance and Risk Analyses Operational simulation must be used
to evaluate each candidate architecture to verify all requirements are met, includ-
ing mission effectiveness and mission performance. As shown in Figure 1.21,
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performance and risk analysis can result in requirements, functional architecture,
or physical architecture changes.

Document Architectures and Obtain Approval As shown in Figure 1.21,
failure to obtain stakeholder approval can also result in requirements, functional
architecture, or physical architecture changes.

Document Subsystems Specification Once stakeholder approval has been
obtained for an architecture, the interface architecture and qualification system
are developed. At the same time component specifications for the architecture
are written. These documents are provided to hardware/software detailed design
teams.

Develop Interface Architecture The processes are: (1) Define interface
requirements, (2) Evaluate and select high-level interface architecture, (3)
Develop functional architecture for interface, (4) Develop physical architecture
for interface, and (5) Develop operational architecture for interface. Any of
these five processes may require rework.

Develop Qualification System The processes are: (1) Document subsystem
specifications, (2) Define qualification system design, (3) Develop functional
architecture of qualification system, (4) Develop physical architecture of quali-
fication system, (5) Develop operational architecture of qualification system, (6)
Develop interfaces of qualification system, and (7) Define models for qualifica-
tion. Any of the first three processes may require rework.

1.3.5 Simulation-Based Systems Engineering

The solution space for a complex system is astronomical in size and, thus, requires
automated design search methods in order to achieve optimal mission effective-
ness, system performance, cost, and schedule.

Simulation-based systems engineering using the ExtendSim library OpEMCSS
allows the automation of the search for the optimal combination of component
algorithms and methods that defines an instantiated physical architecture. Also,
the development of functional control rules can be automated. In fact, the optimal
combination of an instantiated physical architecture and concomitant functional
control rules can be determined.

In OpEMCSS, special blocks can be created that implement alternative com-
ponent algorithms and methods in the model that are selectable by an attribute.
This can be done for each component. An Evolutionary Algorithm (EA) block
can be used to search the solution space by selecting the optimal combination
of these attributes (algorithms and methods) as defined by an evaluator function
added to the system design simulation. The solution space is defined by the col-
lection of all alternative sets of component algorithms and methods. See Chapter
3 discussion on optimizing an inventory system.
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Further, using OpEMCSS, a Classifier Event Action block can be used to learn
the function control rules as well as overall system strategic decision-making
rules, allowing intelligent interactions between the system and its environment.
See discussions in Chapters 7–9 on intelligent decision-making systems.

Another idea is to use a Classifier Event Action block as a design agent that
operates independently of the system model but part of the simulation program.
This design agent takes system evaluations as input and makes changes to the
design in a search for the best design that meets all stakeholder requirements.
The design agent rules would be developed manually by systems engineers to
oversee the design process.

Finally, an OpEMCSS system design simulation could be linked to the design
capture database tool to receive KPPs for model inputs and for automatic update
of the design database once an optimal design has been discovered. The sys-
tem development process, discussed in the previous section, would be modified
to allocate requirements to components after the optimal instantiated physical
architecture and functional control rules have been discovered. The system devel-
opment functions Select alternate Instantiated Physical Architecture, Define and
analyze functional activation and control structure, and Conduct performance
and risk analyses would be combined into a single function implemented by the
system design optimization model.

1.4 SUMMARY

The concept of a parallel process can be used to improve the stakeholder–prod
ucer dialog. The stakeholders of a system or organization are the people with a
problem to be solved or other interest in the system (manufacturing, maintenance,
training, etc.). The producer is the team of design engineers who try to satisfy
the stakeholder’s needs. The dialog between stakeholders and producer consists
of the stakeholders expressing their needs and the producer determining the best
alternative to satisfy these needs. The stakeholders and producer view system
operation differently and speak different languages.

An OpEMCSS graphical simulation model is a means of expressing the stake-
holder’s view of system operation and structure in a language both sides can
understand. Performance requirements of the stakeholders, called key perfor-
mance parameters (KPPs), can be expressed as a set of mission attributes that
are the inputs of the system design model. An OpEMCSS graphical simulation
model of the system provides the structure of states and events that can be used to
define system evaluation criteria (needed to design the evaluation system) that is
derived directly from stakeholder requirements. The MOEs and MOPs displayed
in the model scoreboard and the run report, the outputs of the system design
model or emulation, are derived from stakeholder requirements and are under-
standable by stakeholders. Finally, animation of process flow, message passing,
and agent motion make it easy for stakeholders to understand the proposed system
solution, expressed by the system design model, and visualize design trade-offs.
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A system model can be verified by team members and the stakeholders. Both can
be involved in the development of the OpEMCSS graphical simulation model,
either directly (by selecting and connecting the blocks) or indirectly (through
review and comment). Team members can review event-state traces (timelines)
to verify and validate that the system design expressed by the OpEMCSS sim-
ulation model is correct. They can further validate the model using a statistical
report, based on sufficient replications for convergence, by simulating a scenario
in which the outcome can be predicted by other means. Involvement by the stake-
holders and team members builds confidence in the system definition model and
greatly increases the ability of model users to understand system model results.

The OpEMCSS graphical simulation language can be used to evaluate a sys-
tem design as defined by a design specification and requirements database such as
CORE discussed in Buede (1999). The language describes explicitly functional
decomposition, concurrent interactions among parallel functions, and message
flow. It can represent multiple instantiation of processes and their synchroniza-
tions. Processes can come into existence, interact concurrently, and go out of
existence using explicit language blocks for expression. Processes can send and
receive messages, and processes can wait for messages before continuing with
the next function in order to model either data or control flow.

OpEMCSS can represent different views that are commonly used to simulate
systems. These views are queuing systems, process and resource, and functional
flow. The physical architecture as a network of communicating components can
also be modeled.

Queuing systems is a view that models a network of queues and servers. The
OpEMCSS Wait Until Event block works with either of the two reaction time
blocks to model a queue and server. The Priority.mox model, discussed at the end
of Chapter 2, is an example of preemptive, priority scheduling in a single-queue
single-server system that is difficult to represent in some simulation languages.

Process and resources approach is a view that models the operation and struc-
ture of a system. The space station and the producer–consumer model, discussed
in this chapter, are only two examples. More are described in Chapters 2, 3, 7,
8, and 9.

Functional flow is a view that models a network of functions that send mes-
sages to each other. Messages are transformed from input to output as one action
of a function. As discussed above, processes can pass messages (process instance
item attributes) among each other. Also, a set of OpEMCSS blocks have been pro-
vided so that agents can pass messages (message items) among each other. The
agents are represented as hierarchical blocks in ExtendSim that are connected
to each other using explicit communication link blocks. Thus, communication
channel capacity can be modeled explicitly. A combined process and resource
and message flow model is discussed in Chapter 9.

The OpEMCSS library blocks can represent queuing, concurrent process inter-
actions and synchronization, message passing and functional flow, and component
network communications. It is a very rich language with which to express sys-
tem designs as well as to facilitate team dialog. How can you learn to understand
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and design complex systems using simulation-based systems engineering (SBSE)
methodology that uses combined descriptive and executable models? We believe
that system complexity is directly related to the degree of context sensitivity of
state transitions required to model the system. Thus, in this book we begin with
context-free, queuing systems such as the space station, continue with moder-
ately context-sensitive systems such as the assembler–packer model, and then
proceed finally to highly context-sensitive systems such as the traffic grid model
discussed in Chapter 9.

Chapter 2 discusses basic simulation concepts. In particular, the statistical
aspects of simulation are summarized briefly, the OpEM graphical language
is described in more detail, and the Petri net model is compared to OpEM
graphs in order to better understand context-sensitive systems theory. How sim-
ulations of interacting concurrent processes work is discussed, comparing both
event-oriented procedural and object-oriented OpEMCSS implementations. Sev-
eral context-sensitive systems are described that use the basic OpEMCSS blocks.
The second model is a very simple example of a context-sensitive system that
can be difficult to model using some simulation languages.

Chapter 3 provides a series of examples that demonstrate the system design
and model development procedure using the basic OpEMCSS blocks. It also
discusses advanced applications using some of the more advanced features of the
basic blocks to model preemption and direct execution of events. The best way
to learn to understand and design complex systems is to do a class project. Some
suggested projects are discussed in the Chapter 3 problems section.

We have found that after a person gains a basic understanding of the queuing
system and process and resource views through the study of example simulation
models, a concise mathematical view can be meaningful. In Chapter 4, Markov
models are presented that assist in understanding context-sensitive systems the-
ory by providing an explicit mathematical representation of interacting concurrent
processes. The state space is mapped onto the set of positive integers and a state
transition matrix defines all state-to-state transition rules. A Markov model is
analytical and provides faster model results than a simulation. Further, reliability
and availability, discussed in Chapter 5, and queuing theory, discussed in Chapter
6, are based on Markov models. In complex systems, components share knowl-
edge and adapt their behaviors in order to collaborate to achieve overall system
objectives. As a result of such collaboration, the system often exhibits one or
more emergent behavioral patterns. Determining the facts and rules required for
collaboration is not easy, but it is greatly facilitated using an OpEMCSS graph-
ical simulation model. The Classifier Event Action block, discussed in Chapter
7, implements a forward chaining, crisp or fuzzy expert system controller that
applies rules to process instance attributes to make decisions. The Classifier Event
Action block also includes a rule generation capability to facilitate knowledge
engineering. The rules can be used to transform input facts into output facts
that are sent to other processes. Some of these output facts can specify which
alternative behavior a process should exhibit in order to collaborate.
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We have found that when modeling physical systems, the motion and the
spatial interactions of agents can be difficult to program. In Chapter 8, a set of
OpEMCSS blocks is described that manage agent motion and interactions using
a linear model based on discrete events. Continuous time models of agent motion
can be very slow to run. When modeling agent motion using discrete events, a
simulation runs much faster. As an example of agent motion modeling, a sonar
array simulation where ships move in relation to sonar sensors is described. This
process uses the Classifier Event Action block to decide what kind of ship has
been detected.

In Chapter 9, we discuss multiagent systems. Context-sensitive systems (CSS)
theory, agents, and agent interactions are discussed first to introduce the chapter.
Next, the California State University Fullerton (CSUF) engineering building ele-
vators are modeled as a multiagent system where each elevator is an agent that
collaborates with the other elevator to reduce the waiting time for people want-
ing to use an elevator. A distributed vehicle traffic light system simulation is
discussed next as a more complex example of a multiagent system as well as an
SOS. In this model, each traffic light controller is an agent that adapts its behav-
ior to achieve a highly desirable emergent behavior: The average vehicle waiting
time in the network is reduced relative to an uncontrolled system. To conclude
Chapter 9, OpEMCSS blocks are discussed that model various forms of agent
communications, provide for separate local agent memories to store agent knowl-
edge, and implement global agent “blackboards” used to facilitate collaboration
during group problem solving and planning. An example of a multiagent model
is discussed that features the use of these blocks.

Appendices A, B, and C collectively provide a user’s manual for OpEMCSS
model development.

PROBLEMS

1. Think of a goal-oriented activity that you already know how to do. For
example, you might think of fixing car brakes, baking a cake, sewing clothes,
wood working, or assembling a bicycle. Make a list of all the tasks required
to achieve your goal. Next, assume you have lots of help. Organize your tasks
into a functional flow diagram showing the sequential and concurrent relation-
ships among the tasks. Use the basic OpEMCSS blocks to create a parallel
process representation of your activity.

2. In a communications system, messages are divided into blocks and transmitted
one block at a time. After each block is sent, a series of bytes called the block
check are sent to allow the receiver to check the accuracy of information in
the received message block. If an error is detected, the receiver requests that
the block be transmitted again. The communications process diagram is shown
in Figure 1.22.
Mission attribute P1 is the probability that a valid message is received (no
block check error), and (1 − P1) is the probability that the block must be
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Figure 1.22 Communications system.

retransmitted. Attribute P2 is the probability that the last block of the message
has been sent, and P2 equals the inverse of the number of blocks required
to send a message. These probabilities are combined as shown in the figure
to provide probabilities for the three alternate action paths out of events E3
and E5. P1 is 0.9, and a message is divided into 10 equal-sized blocks for
transmission. It takes 10 time units to send a block and one time unit to
perform the block check.
What percent of the total time required to send a message is the system in
the BL state and doing useful work? What is the expected number of time
units required to send a message? Develop an OpEMCSS simulation model
similar to the thief of Baghdad model to answer these questions. Determine
how many messages must be sent to obtain a large enough sample of outcomes
to achieve convergence of model statistics by developing a convergence plot.

3. It is well known among gamblers that the odds favor the house in the game
of craps. The rules of the game are as follows: On the first roll of a game, if
the gambler rolls a 7 or 11, he wins $100, and the game is over. If he rolls
a 2, 3, or 12 on the first roll, he loses $100, and the game is over. If on the
first roll he rolls anything else, say N , he rolls again and continues the game.
On any subsequent roll of a game, the gambler must roll the same value as
the first roll, N , to win $100 and conclude the game. If he rolls a 7 on any
subsequent roll, he loses $100, and the game is over. If he rolls anything other
than N or 7, the game continues and he rolls again.
If a gambler plays craps long enough, he will lose all his money. If a gambler
goes to Las Vegas with $1000 to start and bets $100 per game (where each
roll of the dice requires 60 seconds, on average), how many hours are required
for the gambler to lose all his money? What is the average probability of the
gambler winning a game? A process diagram describing a trip to Las Vegas to
play craps is shown in Figure 1.23. Write a simulation program similar to the
thief of Baghdad model to answer these questions. Determine the number of
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trips to Las Vegas that must be simulated to obtain a large enough sample of
outcomes to achieve convergence of model statistics. Develop a convergence
curve for both the probability of winning a game and the average number of
games required to lose all your money. Explain the difference in convergence
rates between these two statistics.

4. Run the OpEMCSS simulation (PRODCONS.MOX) and develop sensitivity
curves. Run the simulation and vary each reaction time Produce Calc, PRD,
and Package Calc, PAK, from 10 to 90 seconds in steps of 10. Plot the
five-model scoreboard values as a function of these reaction time values.
Run simulation for each reaction time Calc on Belt, PCB, and Take Calc
from Belt, TCB, for mean values of 10 and 5. Plot the model scoreboard
values as a function of these reaction time values. For each MOE/MOP plot,
reset each mission attribute to its nominal value, repeat this procedure for
the next MOE/MOP plot. What values of the mission attributes optimizes
the throughput of the calculator factory? How can we balance manufacturing
system work flow using only minimal changes to the mission attributes?

5. Read the chapter and answer the following questions.

a. What is it that distinguishes a complex adaptive system (CAS) from an
ordinary network of system components?

b. Given a system has two or more concurrent processes being executed, what
is a context-sensitive interaction among these processes? What is it about
system operation that makes a system context-sensitive as defined in this
book?

c. Explain the difference between reductionism and expansionism as they
apply to system design and evaluation.

d. Describe each of the phases of the systems engineering life cycle.
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e. Describe each task of the systems engineering process and explain how
these tasks change during the systems engineering life cycle.

f. Explain how the distributed traffic control system is a CAS. What is the
emergent behavior of this system?

g. What are the three main views of the system used in systems analysis?
h. In the operational view there are two conceptual models commonly used to

describe system operation: process and resource model and queuing theory
model. What is the difference between these two?

i. In the structural view there are two conceptual models commonly used:
data and control flow (DCF) model and component architecture diagram.
What is the difference between these two?

j. What are the levels of system description that are developed throughout
the systems engineering life cycle?

k. What does a split event do in a process model?
l. What does an assemble event do?
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