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&CHAPTER 1

Mathematical Preliminaries: Functions
and Differentials

1.1 PHYSICAL CONCEPTION OF MATHEMATICAL FUNCTIONS
AND DIFFERENTIALS

Science consists of interrogating nature by experimental means and expressing the
underlying patterns and relationships between measured properties by theoretical means.
Thermodynamics is the science of heat, work, and other energy-related phenomena.

An experiment may generally be represented by a set of stipulated control conditions,
denoted x1, x2, . . . , xn, that lead to a unique and reproducible experimental result,
denoted z. Symbolically, the experiment may be represented as an input–output
relationship,

x1, x2, . . . , xn
(input)

,!experiment
z

(output)
(1:1)

Mathematically, such relationships between independent (x1, x2, . . . , xn) and dependent (z)
variables are represented by functions

z ¼ z(x1, x2, . . . , xn) (1:2)

We first wish to review some general mathematical aspects of functional relationships, prior
to their specific application to experimental thermodynamic phenomena.

Two important aspects of any experimentally based functional relationship are (1) its
differential dz, i.e., the smallest sensible increment of change that can arise from corres-
ponding differential changes (dx1, dx2, . . . , dxn) in the independent variables; and (2) its
degrees of freedom n, i.e., the number of “control” variables needed to determine z
uniquely. How “small” is the magnitude of dz (or any of the dxi) is related to specifics
of the experimental protocol, particularly the inherent experimental uncertainty that accom-
panies each variable in question.

For n ¼ 1 (“ordinary” differential calculus), the dependent differential dz may be taken
proportional to the differential dx of the independent variable,

dz ¼ z0 dx (1:3)
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where z0 (the total derivative of z with respect to x) is evidently related to the differentials dz,
dx by the ratio formula

z0 ¼ dz

dx
(1:4)

The validity of (1.3), i.e., the existence of the derivative dz/dx in (1.4), is an essential requi-
site for application of the formalism of differential calculus. It is therefore important that the
magnitudes of differentials dz, dx be taken “sufficiently small” (but not “zero,” a meaning-
less and unphysical extrapolation in this context!) for the limiting ratio in (1.4) to have an
experimentally well-defined value, within usual limits of experimental precision.

For the general case of n variables, the expression for dz must include corresponding
“partial” contributions from each possible differential change dxi. This is expressed by
the important equation

dz ¼
Xn

i¼1

@z

@xi

� �
x

dxi ¼
Xn

i¼1

z0i dxi (1:5)

where

z0i ¼
@z

@xi

� �
x

(1:6)

and where the subscript x denotes the list of all control variables held constant (i.e., all but
the “active” variable dxi). In general, each “partial” derivative (@z/@xi)x in (1.5) [like each
ordinary derivative z0 in (1.3)] is itself a function of all variables on which z depends.
Equation (1.5) is referred to as the “chain rule” of partial differential calculus. It represents
the most fundamental relationship between differential changes for a system with n degrees
of freedom, and often forms the starting point for thermodynamic reasoning.

SIDEBAR 1.1: RECTANGLE EXERCISE

Exercise For a rectangle of sides x, y, find the function for area A ¼ A(x, y), its partial
derivatives with respect to x and y, and its differential dA.

Solution The area function is A(x, y) ¼ xy, so the partial derivatives are (@A/@x)y ¼ y and
(@A/@y)x ¼ x, and the differential is dA ¼ y dx þ x dy.

SIDEBAR 1.2: CIRCUMFERENCE EXERCISE

Exercise Suppose that the circumference of the Earth is snugly encircled with a band of
25,000-mile length. If the band is slightly lengthened by 10 ft, how high above the surface
does it rise? (Does the Earth’s precise circumference matter?)

Solution Circumference C and radius R are related by R ¼ C/2p. To determine the
small radial change dR accompanying a change of circumference dC, we need R0 ¼
dR/dC ¼ 1/2p. We can therefore approximate the radial increase DR as DR ¼ R0DC ¼
(1/2p)(10 ft) ffi 1.59 ft (independent of C ).
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The important functional relationships of thermodynamic systems also permit second
derivatives to be evaluated. For example, the derivative function z0i ¼ z0i(x1, x2, . . . , xn) of
(1.6) can be differentiated with respect to a second variable xj to give the mixed second
derivative of z with respect to xi and xj,

z00ij ¼
@z0i
@xj

� �
x

¼ @2z

@xi@xj
(1:7)

As first shown by J. W. Gibbs, the analytical characterization of thermodynamic equili-
brium states can be expressed completely in terms of such first and second derivatives of
a certain “fundamental equation” (as described in Section 5.1).

Note that differentials (dz) have fundamentally different mathematical character than do
functions (such as z, z0, z00). The former are inherently “infinitesimal” (microscopic) in scale
and carry multivariate dependence on all possible “directions” of change, whereas the latter
carry only macroscopic numerical values. Thus, it is mathematically inconsistent to write
equations of the form “differential ¼ function” (or “differential ¼ derivative”), just as it
would be inconsistent to write equations of the form “vector ¼ scalar” or “apples ¼
oranges.” Careful attention to proper balance of thermodynamic equations with respect
to differential or functional character will avert many logical errors.

The student of thermodynamics must learn to cope with the functional, differential, and
derivative relationships in (1.2)–(1.7) from a variety of formulaic, graphical, and experi-
mental aspects. Let us briefly discuss each in turn.

Formulaic Aspect The student should be familiar with analytical formulas for deriva-
tives z0 of common algebraic and transcendental functions z, such as

z ¼ x n, z0 ¼ nx n�1; or z ¼ un, z0 ¼ nun�1u0 (1:8a)

z ¼ ex, z0 ¼ ex; or z ¼ eu, z0 ¼ euu0 (1:8b)

z ¼ ln x, z0 ¼ 1
x

; or z ¼ ln u, z0 ¼ u0

u
(1:8c)

These formulas are also generally sufficient for partial derivatives (because holding some
terms constant in z can only simplify its differentiation!). Although such formulas may
prove useful in certain contexts (such as homework problems based on assumed functional
forms of forgiving mathematical simplicity), they are less useful than, for example, graphi-
cal or numerical techniques for dealing with realistic experimental data.

Graphical Aspect Functional relationships such as (1.1) and (1.2) can often be most
effectively depicted in graphical (or geometric model) form. Innovative graphical
methods were developed by Gibbs and others to display the complex thermodynamic
relationships of single- and multicomponent chemical systems, as illustrated in Fig. 1.1.
For thermodynamic purposes, the ability to “read” equations such as (1.2)–(1.5) through
graphical visualization is more important than facility with analytical formulas such
as (1.8a–c).

Graphical visualization of a function z or its derivative(s) is similar in the case of ordi-
nary (n ¼ 1) and multivariate systems, except that the latter necessarily requires additional
dimensions. In a standard 2-dimensional graph, the height of the curve at given x0
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represents the “strength” of z ¼ z(x0), whereas the slope of the curve is the first derivative
z0 ¼ z0(x0) and the curvature (variation of slope) is the second derivative z00 ¼ z00(x(0)). In a
corresponding multidimensional graph, the slope z0i ¼ (@z/@xi)x of the surface generally
depends on which “direction” dxi is chosen (different slopes in different directions), and
a similar remark applies to the curvature z00ij for any chosen pair of directions dxi, dxj. In
general, the slope or curvature in the x direction is independent of that in the y direction,
so each partial derivative expresses independent information about the function. Of
course, in the thermodynamic context, the partial derivatives generally correspond to
experimental “response functions,” such as heat capacity or compressibility, that have no
literal topographic character. However, it is useful to retain the intuitive topographic
imagery (e.g., of a ski hill) to recognize that “slope” and “curvature” must generally
depend on the “directions” chosen.

Figure 1.1 Geometrical model depicting thermodynamic properties of water in “Gibbs coordi-
nates.” This plaster model, currently in the Beinecke Library at Yale University, was created by
noted British physicist James Clark Maxwell as a gift to American thermodynamicist J. Willard
Gibbs (see www.public.iastate.edu/�jolls/ for computer-generated representations by Professor
K. R. Jolls).
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Experimental Aspect Experimental evaluation of a derivative z0 (or z0i in the multi-
variate case) might be envisioned with the following schematic “z-meter” apparatus:

This apparatus, together with the usual mathematical expression for the limit ratio in
(1.4), suggests the experimental protocol for measuring partial derivatives of z. Suppose
that the effect of slightly tweaking the control x-dial about its initial setting x(0) by Dx is
to give a slight deflection Dz of the z-needle from its initial position z(0). Then the derivative
(1.4) can be evaluated as the limit

z0 x(0)
� �

¼ dz

dx

����
x(0)

¼ lim
Dx!“0”

Dz

Dx
¼ lim

Dx!“0”

z(x(0) þ Dx)� z(0)

Dx
(1:9)

Here the “0” of the limit means “sufficientlysmall for the limit to exist,” which is to be understood
more precisely in the context of the experiment. A corresponding z-meter in the multivariable
case would have n xi-dials, each of which is tweaked in turn (holding the remaining n 2 1
dials fixed) to determine the successive partial derivatives zi, i ¼ 1, 2, . . . , n. It is noteworthy
that the multivariate dz carries sufficient information to evaluate each of its possible monovariate
dxi derivatives z0i, confirming its status as a more powerful type of mathematical object.

We emphasize that mathematical limiting operations such as (1.9) must make physical sense
in order to usefully serve thermodynamic applications. The student should always be prepared to
make physical estimates of “how small” a sensible differential must be chosen for ratios such as
(1.4) or (1.9) to have experimentally well-defined values. (For example, it makes no sense to
measure the rainfall rate in a hurricane with a rainfall volume increment corresponding to
one droplet, or one molecule, or smaller!) For physical purposes, a differential dz must be
sufficiently small for onset of the linear regime expressed by (1.3) or (1.5), but never so small
as to raise unjustified concerns about “dividing by zero” in equations such as (1.4) or (1.9).

1.2 FOUR USEFUL IDENTITIES

The special case of n ¼ 2 degrees of freedom is often of particular interest. For this purpose,
we write the function as z ¼ z(x, y), with the differential dz being given by the usual chain-
rule expression

dz ¼ @z

@x

� �
y

dxþ @z

@y

� �
x

dy (1:10)

This is the starting point for the four mathematical identities to be derived below.
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(i) Reduction to n 5 1 (Single Degree of Freedom) Suppose that the “indepen-
dent” variables x ¼ x(u), y ¼ y(u) are both simple functions of a single variable u, so
that z ¼ z(u) has only “ordinary” derivative dependence on u. What is dz/du? To obtain
this ratio, we can simply divide dz (1.10) by du to obtain

dz

du
¼ @z

@x

� �
y

dx

du
þ @z

@y

� �
x

dy

du
(1:11)

Note closely the distinctions between ordinary (d ) and partial (@) derivatives throughout
this formula.

Note also that we employ “physicist’s notation” for functions, in which both z ¼ z(u)
and z ¼ z(x, y) express how z depends on the variables specified in parentheses (even
though the mathematical formulas that express this dependence might be quite different
in the two cases). Although somewhat “unmathematical,” the chosen notation better
expresses the experimental relationship (1.1), in which control variables xi might be
chosen for convenience in many ways, but the target property z is independent of this
choice. For example, the volume of a sphere could be equivalently expressed in terms of
its measured diameter [V ¼ V(d ) ¼ pd3/6] or surface area [V ¼ V(A) ¼ (p1/2/6)A3/2],
despite the fact that the mathematical dependence (i.e., whether there is a cubic or three-
halves power in the chosen measurement argument) is different in the two cases.

(ii) Change of Differentiated Variable Suppose that we re-express z ¼ z(x, u) as a
function of x and a new variable u, where the “old” variable y ¼ y(x, u) is also expressible
in the new independent variables (x, u). To find the expression for (@z/@u)x from the “old”
differential expression (1.10), we merely divide (1.10) throughout by “du at constant x”
[replacing the constrained ratio “dz/du at constant x” on the left-hand side by the proper
partial derivative notation, (@z/@u)x, and similarly for both ratios on the right-hand side]:

@z

@u

� �
x

¼ @z

@x

� �
y

@x

@u

� �
x

þ @z

@y

� �
x

@y

@u

� �
x

However, the partial derivative (@x/@u)x ¼ 0 (because, at constant x, derivatives of x with
respect to anything must vanish). The above equation thereby simplifies to

@z

@u

� �
x

¼ @z

@y

� �
x

@y

@u

� �
x

(1:12)

Note how the right-hand side has the proper “balance” of differential terms, as though dy
can be cancelled from numerator and denominator to give the desired partial derivative.

(iii) Change of Variable Held Constant Under the same change of variables
(x, y) ! (x, u), we can also obtain the partial derivative (@z/@x)u (with the new variable
u held constant). Starting again from (1.10), we “divide by dx at constant u” on both
sides (using proper partial derivative notation for the constrained ratios) to obtain

@z

@x

� �
u

¼ @z

@x

� �
y

@x

@x

� �
u

þ @z

@y

� �
x

@y

@x

� �
u
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But (@x/@x)u ¼ 1 (since the variations of x with itself are unity, no matter what else is con-
stant), so the equation becomes

@z

@x

� �
u

¼ @z

@x

� �
y

þ @z

@y

� �
x

@y

@x

� �
u

(1:13)

Note that this identity clearly shows that (@z/@x)y = (@z/@x)u, i.e., that the variable held
constant matters in these derivatives! (Strictly speaking, a lazy notation such as “@z/@x”
has no meaning whatsoever!) Although the inconvenient notation of partial derivatives
makes it somewhat tedious to keep the inactive (constant) “background” variables in
mind, it is important from a physical and pedagogical standpoint that this be done as care-
fully as possible. (The tedium of this notation is avoided in the geometrical thermody-
namics to be presented in Part III.)

SIDEBAR 1.3: CHANGE-OF-VARIABLE EXERCISE

Exercise Suppose the rectangular area A in Sidebar 1.1 is expressed in terms of side x and
perimeter P. What are (@A/@P)x and (@A/@x)P?

Solution The new and old variables are related by P ¼ 2(x þ y), or

y ¼ 1
2 P� x

so that

@y

@x

� �
P

¼ �1,
@y

@P

� �
x

¼ 1
2

From the identity (1.12), we obtain

@A

@P

� �
x

¼ @A

@y

� �
x

@y

@P

� �
x

¼ (x)
1
2

� �
¼ 1

2 x

Similarly, from the identity (1.13), we obtain

@A

@x

� �
P

¼ @A

@x

� �
y

þ @A

@y

� �
x

@y

@x

� �
P

¼ yþ (x)(�1) ¼ 1
2 P� 2x

[Of course, in this case, it is also possible to solve explicitly for A ¼ A(x, P) ¼ 1
2Px2x2 and

differentiate directly, but this “direct” route is often less practical than use of the identities
(1.12), (1.13).]

(iv) Jacobi (Cyclic) Identity A provocative identity of great generality and usefulness
for n ¼ 2 is obtained by considering (1.10) under conditions of constant z (i.e., dz ¼ 0). If
we then “divide by dx at constant z” (making the usual change of notation from ratio to
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partial derivative), we obtain

0 ¼ @z

@x

� �
y

þ @z

@y

� �
x

@y

@x

� �
z

Noting that (@z/@x)y ¼ 1/(@x/@z)y, we can rewrite the above equation as

@x

@y

� �
z

@z

@x

� �
y

@y

@z

� �
x

¼ �1 (1:14a)

Alternately, we can rewrite this identity as

@x

@y

� �
z

¼ � @z=@yð Þx
(@z=@x)y

(1:14b)

As one can see in (1.14a), the variables (x, y, z) are “cycled” in the three derivatives, each
appearing once in the numerator, once in the denominator, and once as the constant
variable. The cyclic symmetry makes it easy (and advisable) to commit this identity to
memory, even if it can be easily rederived from (1.10) for use as needed.

The identities (1.11)–(1.14) are among the most commonly employed in thermody-
namic derivations, because two degrees of freedom underlie the important special case
of “simple” substances (pure, homogeneous), as will be subsequently described.

1.3 EXACT AND INEXACT DIFFERENTIALS

While the existence of a functional relationship z ¼ z(x1, x2, . . . , xn) allows its differential
dz to be unambiguously determined, the reverse need not be the case. Differentials dz for
which no corresponding function z exists are called inexact (or “imperfect,” often marked
with a slash: d�), whereas those for which z exists are exact (or “perfect”). The basic distinc-
tion between exact (d-type) and inexact (d�-type) differentials lies at the heart of thermodyn-
amic usage of the differential concept, so we must understand clearly how the two cases can
be mathematically distinguished. Differentials of heat, for example, are found to belong to
the “imperfect” category, whereas those of energy are “perfect.”

It might seem that a suitable z (up to an arbitrary constant) could always be generated
from a given differential form dz by merely evaluating the integral

z ¼?
ð

dz

This is indeed always possible for a single variable n ¼ 1 (ordinary calculus), where the
distinction between exact and inexact differentials disappears. However, for n . 1, it is
clear that integrals over dz must generally depend on the chosen path along which the inte-
gration is performed. Integrals of multivariate differentials are called line integrals (or path
integrals) to indicate this distinction from ordinary (monovariate) integrals. For inexact d�z,
the line integral

Ð
d�z is path-dependent (and therefore not uniquely defined), the signature
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defect of inexactness. Only in the case of an exact differential dz does the indefinite integralÐ
dz evaluate to a unique function z, independent of the chosen integration path.

Let us first consider this issue in the simple case n ¼ 2, with independent variables x, y
and dependent variable z. If a well-defined function z(x, y) exists, then dz [of the form
(1.10)] is certainly exact. Furthermore, if we evaluate the definite integral from initial
(x1, y1) to final (x2, y2), the result is simply

I ¼
ðx2,y2

x1,y1

dz ¼ z x2, y2ð Þ � z x1, y1ð Þ (1:15)

The important point is that the final value of the integral depends only on the two endpoints,
i.e., the value of the function z at (x1, y1) and (x2, y2), but not the chosen path of integration
(as illustrated in Sidebar 1.4). Moreover, in the special case of a cyclic integral (denoted

Þ
),

where “initial” and “final” limits coincide, the integral (1.15) necessarily vanishes for an
exact differential, independent of how the cyclic path is chosen. We can therefore state
the following integral criterion for exactness:

Integral criterion: The differential dz is exact if and only ifÞ
dz ¼ 0 for all possible paths

(1:16a)

A closely related criterion can be stated in graphical terms:

Graphical criterion: The differential dz is exact if and only if its integral

z(x, y) ¼
Ð

dz is graphable
(1:16b)

This criterion is rather self-evident, because the condition that z ¼ z(x, y) be “graphable” is
merely that a unique z-value be given any chosen x, y, i.e., that z ¼ z(x, y) satisfies the
requirements of a function. However, both criteria require global (integral) information
that may be difficult to obtain from local measurements.

SIDEBAR 1.4: SUMMIT TRAIL PROBLEM

Problem On the coast of Hawaii, a sign points to a distant volcano with the information,
“Summit: distance ¼ 15.3 km, altitude ¼ 4.2 km.” How can one determine which (if either)
of the differential quantities dl (distance) or dh (altitude) is exact?

Solution By measuring (e.g., with ruler and altimeter) the differential changes dl, dh and
integrating (summing up) their cumulative changes Il, Ih from coast to summit,

Il ¼
ðsummit

coast

dl, Ih ¼
ðsummit

coast

dh

one could verify experimentally that Ih is independent of the path chosen to the summit, so
that dh is exact, whereas Il is path-dependent, so that d�l is inexact by (1.16a).
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As an alternative strategy, one might ask in a local bookshop for an “altitude map” and a
“distance map” for Hawaii. A mathematically savvy shopkeeper may reply that the first (a
“topo map”) is readily available, because altitude is easily graphable in topographic form,
whereas the second is not, because distance is inherently a path-dependent, ungraphable
quantity. This reply points, by (1.16b), to the same conclusion.

A more convenient differential criterion for exactness was established by Euler. Suppose
that the differential dz consists as usual of contributions from dx and dy variations,

dz ¼ M(x, y) dxþ N(x, y) dy

where the respective coefficients M ¼ M(x, y) and N ¼ N(x, y) are stipulated functions of
x and y. We can then state the Euler criterion as follows:

Euler criterion (n¼ 2): The differential dz¼M dxþN dy is exact if and only if

@M

@y

� �
x

¼ @N

@x

� �
y

at every point x, y
(1:17)

It is easy to recognize that the Euler criterion will be satisfied if the integral or graphical
criteria (1.16) are satisfied. Suppose that z(x, y) indeed exists (e.g., displayed as a graph), so
that (1.10) is assured. Comparison of (1.10) with the assumed form of the differential then
shows that

M(x, y) ¼ @z

@x

� �
y

, N(x, y) ¼ @z

@y

� �
x

(1:18)

The M-derivative of the Euler criterion (1.17) can therefore be evaluated as

@M

@y

� �
x

¼ @

@y

@z

@x

� �
y

 !
x

¼ @2z

@y @x
(1:19a)

whereas the N-derivative is similarly

@N

@x

� �
y

¼ @

@x

@z

@y

� �
x

� �
y

¼ @2z

@x @y
(1:19b)

The Euler criterion is therefore equivalent to the familiar “mixed partials of a function are
equal” rule of calculus. This cross-differentiation rule is also the condition for the function
z(x, y) to have well-defined (single-valued) first derivatives at each point, and thus to be
graphable.
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SIDEBAR 1.5: EXACT DIFFERENTIAL EXERCISES

Exercises Use the Euler criterion (1.17) to determine whether each of the following
differentials dz is exact or inexact:

(a) dz ¼ y dxþ x dy

(b) dz ¼ y2 dxþ xy dy

(c) dz ¼ ( y=x) dxþ ln(x) dy

(d) dz ¼ 2x�1=3y7(y dxþ 12x dy)

Solutions (a) exact; (b) inexact; (c) exact; (d) exact. To work out the solution of (d) in
more detail, we note that

M ¼ 2x�1=3y8, N ¼ 24x2=3y7

so that

@M

@y

� �
x

¼ 16x�1=3y7 ¼ @N

@x

� �
y

as required for exactness.

SIDEBAR 1.6: ILLUSTRATIVE LINE INTEGRALS

Let us examine the line integrals of two simple inexact differentials, namely,

d�z1 ¼ y dx, d�z2 ¼ x dy (S1:6-1)

to see their explicit path dependence. We employ the path y ¼ y(x) shown in figure
panel (a) to connect the initial point P ¼ (x1, y1) to the final point Q ¼ (x2, y2) in the
definite integrals

I1 ¼
ðQ
P

d�z1 ¼
ðQ
P

y dx, I2 ¼
ðQ
P

d�z2 ¼
ðQ
P

x dy (S1:6-2)

The first integral I1 is just the area under the curve y ¼ y(x), as shown by the shaded
region in panel (b). Similarly, the second integral I2 is the area to the left of this
curve, as shown by the shaded region in panel (c). Clearly, the values of both I1

and I2 are dependent on the chosen path of integration, confirming that d�z1 and d�z2

are inexact. However, the sum of these differentials, dz¼ d�z1 þ d�z2 ¼ y dxþ x dy, is
evidently exact [cf. part (a) of Sidebar 1.5]. By inspection, its integral

I ¼
ðQ
P

dz ¼ I1 þ I2 (S1:6-3)

is the total area of the shaded L-shaped region in panel (d), which depends on the
endpoints (x1, y1), (x2, y2) but not the connecting path.
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For arbitrary n, the more general statement of the Euler criterion can be formulated in
terms of a general n-term differential form

dz ¼
Xn

i¼1

Ridxi (1:20)

with coefficients Ri ¼ Ri(x1, x2, . . . , xn). The generalization of (1.17) is

Euler criterion (general n): The differential dz¼ R1 dx1þR2 dx2þ � � � þRn dxn (1:21)

is exact if and only if
@Ri

@xj

� �
x

¼ @Rj

@xi

� �
x

for all i, j¼ 1, 2, . . . , n

(i.e., mixed partial derivatives are equal for any chosen pair of variables xi, xj):

This fundamental relation underlies all thermodynamic descriptions of exact (conserved)
differential quantities such as internal energy or entropy, as will be shown in subsequent
chapters.
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Finally, we briefly mention the concept of an integrating factor, a multiplicative factor
(L) that converts an inexact differential (d�f ) to an exact differential (dg), namely,

Ld�f ¼ dg (1:22)

Integrating factors L may or may not exist for a given d�f, and if they exist, they are generally
non-unique (e.g., L0 ¼ cL is also an integrating factor for any constant c). In simple cases,
an integrating factor can be guessed “by inspection”; for example, it is easy to see that L ¼
1/y is an integrating factor for the inexact differential in Sidebar 1.5(b). In more complex
cases, the Euler condition (1.21) can be used to convert (1.22) into a differential equation
for determining L. In the thermodynamic context, however, the most important integrating
factor is that for the differential of heat, and this factor (namely, L ¼ 1/T, the inverse temp-
erature) will be obtained from physical considerations, rather than, for example, by solving
a differential equation.

1.4 TAYLOR SERIES

A common situation in thermodynamics is that some property z(x) and its lower derivatives
(z0, z00, z000, . . .) have been measured at a certain point x0, and one wishes to use this infor-
mation to approximate the behavior of the function z(x0 þ Dx) in the Dx-neighborhood of
x0. For this purpose, the fundamental Taylor series (or MacLaurin series, the special case
for x0 ¼ 0) yields approximations that are useful for sufficiently small Dx:

z(x0 þ Dx) ’ z(x0)þ z0(x0)Dxþ 1
2!

z00(x0)(Dx)2 þ 1
3!

z000(x0)(Dx)3 þ � � � (1:23)

The student of thermodynamics should be able to generate such Taylor series expansions
for common algebraic and trigonometric functions.

SIDEBAR 1.7: TAYLOR SERIES EXERCISES

Exercises Use the first few terms of the Taylor series expansion (1.23) to develop small-x
approximations for the functions

(a) z(x) ¼ (1� x)�1

(b) z(x) ¼ ln(1þ x)

(c) z(x) ¼ [cos(x)]�1=2

(d) z(x) ¼ (1þ x2)1=2

Solutions

(a) (1� x)�1 ’ 1þ xþ x2 þ x3 þ � � �
(b) ln(1þ x) ’ x� x2=2þ x3=3� � � �
(c) [cos (x)]�1=2 ’ 1þ x2=4þ 7x4=96þ � � �
(d) (1þ x2)1=2 ’ 1þ x2=2� x4=8þ � � �
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