
CHAPTER 1

INTRODUCTORY CONCEPTS
AND MATHEMATICS

PART I INTRODUCTION

1-1 Trends and Scopes

In the 21st century, the transcendent and translational technologies include nan-
otechnology, microelectronics, information technology, and biotechnology as well
as the enabling and supporting mechanical and civil infrastructure systems and
smart materials. These technologies are the primary drivers of the century and the
new economy in a modern society. Mechanics forms the backbone and basis of
these transcendent and translational technologies (Chong, 2004, 2010). Papers on
the applications of the theory of elasticity to engineering problems form a significant
part of the technical literature in solid mechanics (e.g. Dvorak, 1999; Oden, 2006).
Many of the solutions presented in current papers employ numerical methods and
require the use of high-speed digital computers. This trend is expected to continue
into the foreseeable future, particularly with the widespread use of microcomputers
and minicomputers as well as the increased availability of supercomputers (Londer,
1985; Fosdick, 1996). For example, finite element methods have been applied to
a wide range of problems such as plane problems, problems of plates and shells,
and general three-dimensional problems, including linear and nonlinear behavior,
and isotropic and anisotropic materials. Furthermore, through the use of computers,
engineers have been able to consider the optimization of large engineering systems
(Atrek et al., 1984; Zienkiewicz and Taylor, 2005; Kirsch, 1993; Tsompanakis et al.,
2008) such as the space shuttle. In addition, computers have played a powerful role
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2 INTRODUCTORY CONCEPTS AND MATHEMATICS

in the fields of computer-aided design (CAD) and computer-aided manufacturing
(CAM) (Ellis and Semenkov, 1983; Lamit, 2007) as well as in virtual testing and
simulation-based engineering science (Fosdick, 1996; Yang and Pan, 2004; Oden,
2000, 2006).

At the request of one of the authors (Chong), Moon et al. (2003) conducted an
in-depth National Science Foundation (NSF) workshop on the research needs of
solid mechanics. The following are the recommendations.

Unranked overall priorities in solid mechanics research (Moon et al., 2003)

1. Modeling multiscale problems:
(i) Bridging the micro-nano-molecular scale

(ii) Macroscale dynamics of complex machines and systems
2. New experimental methods:

(i) Micro-nano-atomic scales
(ii) Coupling between new physical phenomena and model simulations

3. Micro- and nanomechanics:
(i) Constitutive models of failure initiation and evolution

(ii) Biocell mechanics
(iii) Force measurements in the nano- to femtonewton regime

4. Tribology, contact mechanics:
(i) Search for a grand theory of friction and adhesion

(ii) Molecular-atomic-based models
(iii) Extension of microscale models to macroapplications

5. Smart, active, self-diagnosis and self-healing materials:
(i) Microelectromechanical systems (MEMS)/Nanoelectromechanical sys-

tems (NEMS) and biomaterials
(ii) Fundamental models

(iii) Increased actuator capability
(iv) Application to large-scale devices and systems

6. Nucleation of cracks and other defects:
(i) Electronic materials

(ii) Nanomaterials
7. Optimization methods in solid mechanics:

(i) Synthesis of materials by design
(ii) Electronic materials

(iii) Optimum design of biomaterials
8. Nonclassical materials:

(i) Foams, granular materials, nanocarbon tubes, smart materials
9. Energy-related solid mechanics:

(i) High-temperature materials and coatings
(ii) Fuel cells
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10. Advanced material processing:

(i) High-speed machining

(ii) Electronic and nanodevices, biodevices, biomaterials

11. Education in mechanics:

(i) Need for multidisciplinary education between solid mechanics, physics,
chemistry, and biology

(ii) New mathematical skills in statistical mechanics and optimization
methodology

12. Problems related to Homeland Security (Postworkshop; added by the editor)

(i) Ability of infrastructure to withstand destructive attacks

(ii) New safety technology for civilian aircraft

(iii) New sensors and robotics

(iv) New coatings for fire-resistant structures

(v) New biochemical filters

In addition to finite element methods, older techniques such as finite difference
methods have also found applications in elasticity problems. More generally, the
broad subject of approximation methods has received considerable attention in the
field of elasticity. In particular, the boundary element method has been widely
applied because of certain advantages it possesses in two- and three-dimensional
problems and in infinite domain problems (Brebbia, 1988). In addition, other varia-
tions of the finite element method have been employed because of their efficiency.
For example, finite strip, finite layer, and finite prism methods (Cheung and Tham,
1997) have been used for rectangular regions, and finite strip methods have been
applied to nonrectangular regions by Yang and Chong (1984). This increased inter-
est in approximate methods is due mainly to the enhanced capabilities of both
mainframe and personal digital computers and their widespread use. Because this
development will undoubtedly continue, the authors (Boresi, Chong, and Saigal)
treat the topic of approximation methods in elasticity in a second book (Boresi
et al., 2002), with particular emphasis on numerical stress analysis through the use
of finite differences and finite elements, as well as boundary element and meshless
methods.

However, in spite of the widespread use of approximate methods in elastic-
ity (Boresi et al., 2002), the basic concepts of elasticity are fundamental and
remain essential for the understanding and interpretation of numerical stress analy-
sis. Accordingly, the present book devotes attention to the theories of deformation
and of stress, the stress–strain relations (constitutive relations), nano- and bio-
mechanics, and the fundamental boundary value problems of elasticity. Extensive
use of index notation is made. However, general tensor notation is used sparingly,
primarily in appendices.

In recent years, researchers from mechanics and other diverse disciplines have
been drawn into vigorous efforts to develop smart or intelligent structures that can
monitor their own condition, detect impending failure, control damage, and adapt
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to changing environments (Rogers and Rogers, 1992). The potential applications
of such smart materials/systems are abundant: design of smart aircraft skin embed-
ded with fiber-optic sensors (Udd, 1995) to detect structural flaws, bridges with
sensoring/actuating elements to counter violent vibrations, flying microelectrome-
chanical systems (Trimmer, 1990) with remote control for surveying and rescue
missions, and stealth submarine vehicles with swimming muscles made of special
polymers. Such a multidisciplinary infrastructural systems research front, repre-
sented by material scientists, physicists, chemists, biologists, and engineers of
diverse fields—mechanical, electrical, civil, control, computer, aeronautical, and
so on—has collectively created a new entity defined by the interface of these
research elements. Smart structures/materials are generally created through syn-
thesis by combining sensoring, processing, and actuating elements integrated with
conventional structural materials such as steel, concrete, or composites. Some of
these structures/materials currently being researched or in use are listed below
(Chong et al., 1990, 1994; Chong and Davis, 2000):

• Piezoelectric composites, which convert electric current to (or from) mechan-
ical forces

• Shape memory alloys, which can generate force through changing the tem-
perature across a transition state

• Electrorheological (ER) and magnetorheological (MR) fluids, which can
change from liquid to solid (or the reverse) in electric and magnetic fields,
respectively, altering basic material properties dramatically

• Bio-inspired sensors and nanotechnologies, e.g., graphenes and nanotubes

The science and technology of nanometer-scale materials, nanostructure-based
devices, and their applications in numerous areas, such as functionally graded mate-
rials, molecular-electronics, quantum computers, sensors, molecular machines, and
drug delivery systems—to name just a few, form the realm of nanotechnology
(Srivastava et al., 2007). At nanometer length scale, the material systems con-
cerned may be downsized to reach the limit of tens to hundreds of atoms, where
many new physical phenomena are being discovered. Modeling of nanomateri-
als involving phenomena with multiple length/time scales has attracted enormous
attention from the scientific research community. This is evidenced in the works
of Belytschko et al. (2002), Belytschko and Xiao (2003), Liu et al. (2004), Arroyo
and Belytschko (2005), Srivastava et al. (2007), Wagner et al. (2008), Masud and
Kannan (2009), and the host of references mentioned therein. As a matter of fact,
the traditional material models based on continuum descriptions are inadequate at
the nanoscale, even at the microscale. Therefore, simulation techniques based on
descriptions at the atomic scale, such as molecular dynamics (MD), has become an
increasingly important computational toolbox. However, MD simulations on even
the largest supercomputers (Abraham et al., 2002), although enough for the study of
some nanoscale phenomena, are still far too small to treat the micro-to-macroscale
interactions that must be captured in the simulation of any real device (Wagner
et al., 2008).
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Bioscience and technology has contributed much to our understanding of human
health since the birth of continuum biomechanics in the mid-1960s (Fung, 1967,
1983, 1990, 1993, 1995). Nevertheless, it has yet to reach its full potential as a
consistent contributor to the improvement of health-care delivery. This is due to the
fact that most biological materials are very complicated hierachical structures. In the
most recent review paper, Meyers et al. (2008) describe the defining characteristics,
namely, hierarchy, multifunctionality, self-healing, and self-organization of biolog-
ical tissues in detail, and point out that the new frontiers of material and structure
design reside in the synthesis of bioinspired materials, which involve nanoscale
self-assembly of the components and the development of hierarchical structures.
For example the amazing multiscale bones structure—from amino acids, tropocol-
lagen, mineralized collagen fibrils, fibril arrays, fiber patterns, osteon and Haversian
canal, and bone tissue to macroscopic bone—makes bones remarkably resistant to
fracture (Ritchie et al., 2009). The multiscale bone structure of trabecular bone and
cortical bone from nanoscale to macroscale is illustrated in Figure 1-1.1. (Courtesy
of I. Jasiuk and E. Hamed, University of Illinois – Urbana). Although much signif-
icant progress has been made in the field of bioscience and technology, especially
in biomechanics, there exist many open problems related to elasticity, including
molecular and cell biomechanics, biomechanics of development, biomechanics of
growth and remodeling, injury biomechanics and rehabilitation, functional tissue
engineering, muscle mechanics and active stress, solid–fluid interactions, and ther-
mal treatment (Humphrey, 2002).

Current research activities aim at understanding, synthesizing, and processing
material systems that behave like biological systems. Smart structures/materials
basically possess their own sensors (nervous system), processor (brain system),
and actuators (muscular systems), thus mimicking biological systems (Rogers and
Rogers, 1992). Sensors used in smart structures/materials include optical fibers,
micro-cantilevers, corrosion sensors, and other environmental sensors and sensing
particles. Examples of actuators include shape memory alloys that would return
to their original shape when heated, hydraulic systems, and piezoelectric ceramic
polymer composites. The processor or control aspects of smart structures/materials
are based on microchip, computer software, and hardware systems.

Recently, Huang from Northwestern University and his collaborators developed
the stretchable silicon based on the wrinkling of the thin films on a prestretched sub-
strate. This is important to the development of stretchable electronics and sensors
such as the three-dimensional eye-shaped sensors. One of their papers was pub-
lished in Science in 2006 (Khang et al., 2006). The basic idea is to make straight
silicon ribbons wavy. A prestretched polymer Polydimethylsiloxane (PDMS) is
used to peel silicon ribbons away from the substrate, and releasing the prestretch
leads to buckled, wavy silicon ribbons.

In the past, engineers and material scientists have been involved extensively
with the characterization of given materials. With the availability of advanced
computing, along with new developments in material sciences, researchers can
now characterize processes, design, and manufacture materials with desirable per-
formance and properties. Using nanotechnology (Reed and Kirk, 1989; Timp, 1999;
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Figure 1-1.1

Chong, 2004), engineers and scientists can build designer materials molecule by
molecule via self-assembly, etc. One of the challenges is to model short-term
microscale material behavior through mesoscale and macroscale behavior into
long-term structural systems performance (Fig. 1-1.2). Accelerated tests to sim-
ulate various environmental forces and impacts are needed. Supercomputers and/or
workstations used in parallel are useful tools to (a) solve this multiscale and size-
effect problem by taking into account the large number of variables and unknowns
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∼ systems
integration
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self-assembly microstructures interfacial structures columns lifelines
nanofabrication smart materials composites plates airplanes

Figure 1-1.2 Scales in materials and structures.

to project microbehavior into infrastructure systems performance and (b) to model
or extrapolate short-term test results into long-term life-cycle behavior.

According to Eugene Wong, the former engineering director of the National
Science Foundation, the transcendent technologies of our time are

• Microelectronics—Moore’s law: doubling the capabilities every 2 years for
the past 30 years; unlimited scalability

• Information technology: confluence of computing and communications

• Biotechnology: molecular secrets of life

These technologies and nanotechnology are mainly responsible for the tremen-
dous economic developments. Engineering mechanics is related to all these tech-
nologies based on the experience of the authors. The first small step in many of
these research activities and technologies involves the study of deformation and
stress in materials, along with the associated stress–strain relations.

In this book following the example of modern continuum mechanics and the
example of A. E. Love (Love, 2009), we treat the theories of deformation and of
stress separately, in this manner clearly noting their mathematical similarities and
their physical differences. Continuum mechanics concepts such as couple stress and
body couple are introduced into the theory of stress in the appendices of Chapters 3,
5, and 6. These effects are introduced into the theory in a direct way and present no
particular problem. The notations of stress and of strain are based on the concept
of a continuum, that is, a continuous distribution of matter in the region (space) of
interest. In the mathematical physics sense, this means that the volume or region
under examination is sufficiently filled with matter (dense) that concepts such as
mass density, momentum, stress, energy, and so forth are defined at all points in the
region by appropriate mathematical limiting processes (see Chapter 3, Section 3-1).

1-2 Theory of Elasticity

The theory of elasticity, in contrast to the general theory of continuum mechanics
(Eringen, 1980), is an ad hoc theory designed to treat explicity a special response
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of materials to applied forces—namely, the elastic response, in which the stress
at every point P in a material body (continuum) depends at all times solely on
the simultaneous deformation in the immediate neighborhood of the point P (see
Chapter 4, Section 4-1). In general, the relation between stress and deformation
is a nonlinear one, and the corresponding theory is called the nonlinear theory
of elasticity (Green and Adkins, 1970). However, if the relationship of the stress
and the deformation is linear, the material is said to be linearly elastic, and the
corresponding theory is called the linear theory of elasticity .

The major part of this book treats the linear theory of elasticity. Although
ad hoc in form, this theory of elasticity plays an important conceptual role in the
study of nonelastic types of material responses. For example, often in problems
involving plasticity or creep of materials, the method of successive elastic solu-
tions is employed (Mendelson, 1983). Consequently, the theory of elasticity finds
application in fields that treat inelastic response.

1-3 Numerical Stress Analysis

The solution of an elasticity problem generally requires the description of the
response of a material body (computer chips, machine part, structural element, or
mechanical system) to a given excitation (such as force). In an engineering sense,
this description is usually required in numerical form, the objective being to assure
the designer or engineer that the response of the system will not violate design
requirements. These requirements may include the consideration of deterministic
and probabilistic concepts (Thoft-Christensen and Baker, 1982; Wen, 1984; Yao,
1985). In a broad sense the numerical results are predictions as to whether the
system will perform as desired. The solution to the elasticity problem may be
obtained by a direct numerical process (numerical stress analysis) or in the form
of a general solution (which ordinarily requires further numerical evaluation; see
Section 1-4).

The usual methods of numerical stress analysis recast the mathematically posed
elasticity problem into a direct numerical analysis. For example, in finite difference
methods, derivatives are approximated by algebraic expressions; this transforms
the differential boundary value problem of elasticity into an algebraic boundary
value problem requiring the numerical solution of a set of simultaneous algebraic
equations. In finite element methods, trial function approximations of displace-
ment components, stress components, and so on are employed in conjunction with
energy methods (Chapter 4, Section 4-21) and matrix methods (Section 1-28), again
to transform the elasticity boundary value problem into a system of simultaneous
algebraic equations. However, because finite element methods may be applied to
individual pieces (elements) of the body, each element may be given distinct mate-
rial properties, thus achieving very general descriptions of a body as a whole.
This feature of the finite element method is very attractive to the practicing stress
analyst. In addition, the application of finite elements leads to many interesting
mathematical questions concerning accuracy of approximation, convergence of the
results, attainment of bounds on the exact answer, and so on. Today, finite element
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methods are perhaps the principal method of numerical stress analysis employed to
solve elasticity problems in engineering (Zienkiewicz and Taylor, 2005). By their
nature, methods of numerical stress analysis (Boresi et al., 2002) yield approximate
solutions to the exact elasticity solution.

1-4 General Solution of the Elasticity Problem

Plane Elasticity. Two classical plane problems have been studied extensively:
plane strain and plane stress (see Chapter 5). If the state of plane isotropic elasticity
is referred to the (x, y) plane, then plane elasticity is characterized by the conditions
that the stress and strain are independent of coordinate z, and shear stress τxz, τyz

(hence, shear strains γxz, γyz) are zero. In addition, for plane strain the extensional
strain εz equals 0, and for plane stress we have σz = 0. For plane strain problems
the equations represent exact solutions to physical problems, whereas for plane
stress problems, the usual solutions are only approximations to physical problems.
Mathematically, the problems of plane stress and plane strain are identical (see
Chapter 5).

One general method of solution of the plane problem rests on the reduction of
the elasticity equations to the solution of certain equations in the complex plane
(Muskhelishvili, 1975).1 Ordinarily, the method requires mapping of the given
region into a suitable region in the complex plane. A second general method rests
on the introduction of a single scalar biharmonic function, the Airy stress function,
which must be chosen suitably to satisfy boundary conditions (see Chapter 5).

Three-Dimensional Elasticity. In contrast to the problem of plane elasticity,
the construction of general solutions of the three-dimensional equations of elasticity
has not as yet been completely achieved. Many so-called general solutions are really
particular forms of solutions of the three-dimensional field equations of elasticity
in terms of arbitrary, ad hoc functions. Particular examples of general solutions
are employed in Chapter 8 and in Appendix 5B. In many of these examples,
the functions and the form of solution are determined in part by the differential
equations and in part by the physical features of the problem. A general solution of
the elasticity equations may also be constructed in terms of biharmonic functions
(see Appendix 5B). Because there is no apparent reason for one form of general
solution to be readily obtainable from another, a number of investigators have
attempted to extend the generality of solution form and show relations among
known solutions (Sternberg, 1960; Naghdi and Hsu, 1961; Stippes, 1967).

1-5 Experimental Stress Analysis

Material properties that enter into the stress–strain relations (constitutive relations;
see Section 4-4) must be obtained experimentally (Schreiber et al., 1973; Chong
and Smith, 1984). In addition, other material properties, such as ultimate strength

1See also Appendix 5B.
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and fracture toughness, as well as nonmaterial quantities such as residual stresses,
have to be determined by physical tests.

For bodies that possess intricately shaped boundaries, general analytical (closed-
form) solutions become extremely difficult to obtain. In such cases one must
invariably resort to approximate methods, principally to numerical methods or to
experimental methods. In the latter, several techniques such as photoelasticity, the
Moiré method, strain gage methods, fracture gages, optical fibers, and so forth
have been developed to a fine art (Dove and Adams, 1964; Dally and Riley, 2005;
Rogers and Rogers, 1992; Ruud and Green, 1984). In addition, certain analogies
based on a similarity between the equations of elasticity and the equations that
describe readily studied physical systems are employed to obtain estimates of solu-
tions or to gain insight into the nature of mathematical solutions (see Chapter 7,
Section 7-9, for the membrane analogy in torsion). In this book we do not treat
experimental methods but rather refer to the extensive modern literature available.2

1-6 Boundary Value Problems of Elasticity

The solution of the equations of elasticity involves the determination of a stress or
strain state in the interior of a region R subject to a given state of stress or strain
(or displacement) on the boundary B of R (see Chapter 4, Section 4-15). Subject
to certain restrictions on the nature of the solution and of region R and the form
of the boundary conditions, the solution of boundary value problems of elasticity
may be shown to exist (see Chapter 4, Section 4-16). Under broader conditions,
existence and uniqueness of the elasticity boundary value problem are not ensured.
In general, the question of existence and uniqueness (Knops and Payne, 1971)
rests on the theory of systems of partial differential equations of three independent
variables.

In particular forms the boundary value problem of elasticity may be reduced
to that of seeking a single scalar function f of three independent variables, say
(x, y, z); that is, f = f (x, y, z) such that the stress field of strain field derived from
f satisfies the boundary conditions on B. In particular for the Laplace equation,
three types of boundary value problems occur frequently in elasticity: the Dirichlet
problem, the Neumann problem, and the mixed problem. Let h(x, y) be a given
function that is defined on B, the bounding surface of a simply connected region
R. Then the Dirichlet problem for the Laplace equation is that of determining a
function f = f (x, y) that

1. is continuous on R + B,
2. is harmonic on R, and
3. is identical to h(x, y) on B.

2Experimental Mechanics and Experimental Techniques , both journals of the Society for Experimen-
tal Mechanics (SEM), contain a wealth of information on experimental techniques. In addition, the
American Society for Testing and Materials (ASTM) publishes the Journal of Testing and Evaluation ,
the Geotechnical Testing Journal , and other journals.
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The Dirichlet problem has been shown to possess a unique solution (Greenspan,
1965). However, analytical determination of f (x, y) is very much more difficult to
achieve than is the establishment of its existence. Indeed, except for special forms
of boundary B (such as the rectangle, the circle, or regions that can be mapped
onto rectangular or circular regions), the problems of determining f (x, y) do not
surrender to existing analytical techniques.

The Neumann boundary value problem for the Laplace equation is that of deter-
mining a function f (x, y) that

1. is defined and continuous on R + B,

2. is harmonic on R, and

3. has an outwardly directed normal derivative ∂f/∂n such that ∂f/∂n = g(x, y)

on B, where g(x, y) is defined and continuous on B.

Without an additional requirement [namely, that f (x, y) has a prescribed value
for at least one point of B], the solution of the Neumann problem is not well
posed because otherwise the Neumann problem has a one-parameter infinity of
solutions.

The mixed problem overcomes the difficulty of the Neumann problem. Again,
let g(x, y) be a continuous function on B ′ of R and let h(x, y) be bounded and
continuous on B ′′ of R, where B = B ′ + B ′′ denotes the boundary of region R.
Then the mixed problem for the Laplace equation is that of determining a function
f (x, y) such that it

1. is defined and continuous on R + B,

2. is harmonic on R,

3. is identical with g(x, y), on B ′, and

4. has outwardly directed normal derivative ∂f/∂n = h(x, y) on B ′′.

It has been shown that certain mixed problems have unique solutions3

(Greenspan, 1965). Because, in general, the solutions of the Dirichlet and mixed
problems cannot be given in closed form, methods of approximate solutions of
these problems are presented in another book by the authors (Boresi et al., 2002).
More generally, these approximate methods may be applied to most boundary
value problems of elasticity.

PART II PRELIMINARY CONCEPTS

In Part II of this chapter we set down some concepts that are useful in following
the developments in the text proper and in the appendices.

3These remarks are restricted to simply connected regions.
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1-7 Brief Summary of Vector Algebra

In this text a boldface letter denotes a vector quantity unless an explicit statement
to the contrary is given; thus, A denotes a vector. Frequently, we denote a vector
by the set of its projections (Ax, Ay, Az) on rectangular Cartesian axes (x, y, z).
Thus,

A = (Ax, Ay, Az) (1-7.1)

The magnitude of a vector A is denoted by

|A| = A = (A2
x + A2

y + A2
z)

1/2 (1-7.2)

We may also express a vector in terms of its components with respect to (x, y, z)
axes. For example,

A = iAx + jAy + kAz (1-7.3)

where iAx, jAy, kAz are components of A with respect to axes (x, y, z), and i, j, k,
are unit vectors directed along positive (x, y, z) axes, respectively. In general, the
symbols i, j, k denote unit vectors.

Vector quantities obey the associative law of vector addition:

A + (B + C) = (A + B) + C = A + B + C (1-7.4)

and the commutative law of vector addition:

A + B = B + A A + B + C = B + A + C = B + C + A (1-7.5)

Symbolically, we may represent a vector quantity by an arrow (Fig. 1-7.1) with
the understanding that the addition of any two arrows (vectors) must obey the
commutative law [Eq. (1-7.5)].

The scalar product of two vectors A, B is defined to be

A · B = AxBx + AyBy + AzBz (1-7.6)

Figure 1-7.1
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where the symbol · is a conventional notation for the scalar product. By the above
definition, it follows that the scalar product of vectors is commutative; that is,

A · B = B · A (1-7.7)

A useful property of the scalar product of two vectors is

A · B = AB cos θ (1-7.8)

where A and B denote the magnitudes of vectors A and B, respectively, and the
angle θ denotes the angle formed by vectors A and B (Fig. 1-7.2).

If B is a unit vector in the x direction, Eqs. (1-7.3) and (1-7.8) yield Ax =
A cos α, where α is the direction angle between the vector A and the positive
x axis. Similarly, Ay = A cos β, Az = A cos γ , where β, γ denote direction angles
between the vector A and the y axis and the z axis, respectively. Substitution of
these expressions into Eq. (1-7.2) yields the relation

cos2 α + cos2 β + cos2 γ = 1 (1-7.9)

Thus, the direction cosines of vector A are not independent . They must satisfy
Eq. (1-7.9).

The scalar product law of vectors has other properties in common with the
product of numbers. For example,

A · (B + C) = A · B + A · C (1-7.10)

(A + B) · (C + D) = (A + B) · C + (A + B) · D

= A · C + B · C + A · D + B · D (1-7.11)

Figure 1-7.2
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The vector product of two vectors A and B is defined to be a third vector C
whose magnitude is given by the relation

C = AB sin θ (1-7.12)

The direction of vector C is perpendicular to the plane formed by vectors A
and B. The sense of C is such that the three vectors A, B, C form a right-handed
or left-handed system according to whether the coordinate system (x, y, z) is right
handed or left handed (see Fig. 1-7.3).

Symbolically, we denote the vector product of A and B in the form

C = A × B (1-7.13)

where × denotes vector product (or cross product). In determinant notation,
Eq. (1-7.13) may be written as

C =
∣∣∣∣∣∣

i j k
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣ (1-7.13a)

where (Ax, Ay, Az), (Bx, By, Bz) denotes (i, j, k) projections of vectors (A, B),
respectively.

The vector product of vectors has the following property:

A × B = −B × A (1-7.14)

Accordingly, the vector product of vectors is not commutative.
The vector product also has the following properties:

R × (A + B) = R × A + R × B

(A + B) × R = A × R + B × R (1-7.15)

(A + B) × (C + D) = (A + B) × C + (A + B) × D

= A × C + B × C + A × D + B × D (1-7.16)

The scalar triple product of three vectors A, B, C is defined by the relation

A · (B × C) = Ax(ByCz − BzCy) + Ay(BzCx − BxCz)

+ Az(BxCy − ByCx) (1-7.17)

In determinant notation, the scalar triple product is

A · (B × C) =

∣∣∣∣∣∣∣
Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣∣
(1-7.18)



F
ig

ur
e

1-
7.

3

15



16 INTRODUCTORY CONCEPTS AND MATHEMATICS

Because only the sign of a determinant changes when two rows are inter-
changed, two consecutive transpositions of rows leave a determinant unchanged.
Consequently,

A · (B × C) = C · (A × B) = B · (C × A) (1-7.19)

Another useful property is the relation

(A × B) · C = A · (B × C) (1-7.20)

The vector triple product of three vectors A, B, C is defined as

A × (B × C) = B(A · C) − C(A · B) (1-7.21)

Furthermore,

(A × B) · (C × D) = A · B × (C × D) = A · [C(B · D) − (B · C)D]

= (A · C)(B · D) − (A · D)(B · C) (1-7.22)

Equation (1-7.22) follows from Eqs. (1-7.20) and (1-7.21).

1-8 Scalar Point Functions

Any scalar function f (x, y, z) that is defined at all points in a region of space is
called a scalar point function . Conceivably, the function f may depend on time,
but if it does, attention can be confined to conditions at a particular instant. The
region of space in which f is defined is called a scalar field. It is assumed that f

is differentiable in this scalar field . Physical examples of scalar point functions are
the mass density of a compressible medium, the temperature in a body, the flux
density in a nuclear reactor, and the potential in an electrostatic field.

Consider the rate of change of the function f in various directions at some point
P : (x, y, z) in the scalar field for which f is defined. Let (x, y, z) take increments
(dx, dy, dz). Then the function f takes an increment:

df = ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz (1-8.1)

Consider the infinitesimal vector i dx + j dy + k dz, where (i, j, k) are unit vectors
in the (x, y, z) directions, respectively. Its magnitude is ds = (dx2 + dy2 + dz2)1/2,
and its direction cosines are

cos α = dx

ds
cos β = dy

ds
cos γ = dz

ds

The vector i (dx/ds) + j (dy/ds) + k (dz/ds) is a unit vector in the direction of
i dx + j dy + k dz, as division of a vector by a scalar alters only the magnitude of
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the vector. Dividing Eq. (1-8.1) by ds , we obtain

df

ds
= ∂f

∂x

dx

ds
+ ∂f

∂y

dy

ds
+ ∂f

∂z

dz

ds

or

df

ds
= ∂f

∂x
cos α + ∂f

∂y
cos β + ∂f

∂z
cos γ (1-8.2)

From Eq. (1-8.2) it is apparent that df/ds depends on the direction of ds; that
is, it depends on the direction (α, β, γ ). For this reason df/ds is known as the
directional derivative of f in the direction (α, β, γ ). It represents the rate of change
of f in the direction (α, β, γ ). For example, if α = 0, β = γ = π/2,

df

ds
= ∂f

∂x

This is the rate of change of f in the direction of the x axis.

Maximum Value of the Directional Derivative. Gradient. By definition of
the scalar product of two vectors, Eq. (1-8.2) may be written in the form

df

ds
= n · grad f (1-8.3)

where n = i cos α + j cos β + k cos γ is a unit vector in the direction (α, β, γ ), and

grad f = i
∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z
(1-8.4)

is a vector point function (see Section 1-10) of (x, y, z) called the gradient of the
scalar function f . Because n is a unit vector, Eq. (1-8.3) shows that |grad f | is the
maximum value of df/ds at the point P : (x, y, z) and that the direction of grad f

is the direction in which f (x, y, z) increases most rapidly. Equation (1-8.3) also
shows that the directional derivative of f in any direction is the component of the
vector grad f in that direction.

The equation f (x, y, z) = C defines a family of surfaces, one surface for each
value of the constant C. These are called level surfaces of the function f . If n
is tangent to a level surface, the directional derivative of f in the direction of n
is zero, as f is constant along a level surface. Consequently, by Eq. (1-8.3), the
vector n must be perpendicular to the vector grad f when n is tangent to a level
surface. Accordingly, the vector grad f at the point P : (x, y, z) is normal to the
level surface of f through the point P : (x, y, z).

A symbolic vector operator, called del or nabla , is defined as follows:

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(1-8.5)
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By Eqs. (1-8.3), (1-8.4), and (1-8.5),

grad f = ∇f

and
df

ds
= n · ∇f

By definition,

∇ · ∇ = ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(1-8.6)

Consequently, the Laplace equation may be written symbolically as

∇2f = ∂2f

∂x2
+ ∂2f

∂y2
+ ∂2f

∂z2
= 0 (1-8.7)

For this reason the symbolic operator ∇2 is called the Laplacian .

1-9 Vector Fields

Assume that for each point P : (x, y, z) in a region there exists a vector point
function q(x, y, z). This vector point function is called a vector field. It may be
represented at each point in the region by a vector with length equal to the mag-
nitude of q and drawn in the direction of q. For example, for each point in a
flowing fluid there corresponds a vector q that represents the velocity of the parti-
cle of fluid at that point. This vector point function is called the velocity field of
the fluid. Another example of a vector field is the displacement vector function for
the particles of a deformable body. Electric and magnetic field intensities are also
vector fields. A vector field is often simply called a “vector.”

In any continuous vector field there exists a system of curves such that the
vectors along a curve are everywhere tangent to the curve; that is, the vector field
consists exclusively of tangent vectors to the curves. These curves are called the
vector lines (or field lines) of the field. The vector lines of a velocity field are called
stream lines. The vector lines in an electrostatic or magnetostatic field are known
as lines of force. In general, the vector function q may depend on (x, y, z) and t ,
where t denotes time. If q depends on time, the field is said to be unsteady or
nonstationary ; that is, the field varies with time. For a steady field , q = q(x, y, z).
For example, if a velocity field changes with time (i.e., if the flow is unsteady),
the stream lines may change with time.

A vector field q = iu + jv + kw is defined by expressing the projections
(u, v, w) as functions of (x, y, z). If (dx, dy, dz) is an infinitesimal vector
in the direction of the vector q, the direction cosines of this vector are
dx/ds = u/q, dy/ds = v/q, and dz/ds = w/q. Consequently, the differential
equations of the system of vector lines of the field are

ds

q
= dx

u
= dy

v
= dz

w
(1-9.1)
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In Eq. (1-9.1) the components (u, v, w) are functions of (x, y, z). The finite
equations of the system of vector lines are obtained by integrating Eq. (1-9.1).
The theory of integration of differential equations of this type is explained in most
books on differential equations (Morris and Brown, 1964; Ince, 2009).

If a given vector field q is the gradient of a scalar field f (i.e., if q = grad f ),
the scalar function f is called a potential function for the vector field, and the
vector field is called a potential field. Because grad f is perpendicular to the level
surfaces of f , it follows that the vector lines of a potential field are everywhere
normal to the level surfaces of the potential function.

1-10 Differentiation of Vectors

An infinitesimal increment dR of a vector R need not be collinear with the vector R
(Fig. 1-10.1). Consequently, in general, the vector R + dR differs from the vector R
not only in magnitude but also in direction. It would be misleading to denote the
magnitude of the vector dR by dR, as dR denotes the increment of the magnitude
R. Accordingly, the magnitude of dR is denoted by |dR| or by another symbol,
such as ds. The magnitude of the vector R + dR is R + dR. Figure 1-10.1 shows
that |R + dR| ≤ R + |dR|. Hence, dR ≤ |dR|.

If the vector R is a function of a scalar t (where t may or may not denote time),
dR/dt is defined to be a vector in the direction of dR, with magnitude ds/dt

(where ds = |dR|).
Vectors obey the same rules of differentiation as scalars. This fact may be

demonstrated by the � method that is used for deriving differentiation formulas

Figure 1-10.1
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in scalar calculus. For example, consider the derivative of the vector function
Q = uR, where u is a scalar function of t and R is a vector function of t . If t takes
an increment �t , R and u takes increments �R and �u. Hence,

Q + �Q = (u + �u)(R + �R)

Subtracting Q = uR and dividing by �t , we obtain

�Q
�t

= R
�u

�t
+ u

�R
�t

+ �u
�R
�t

As �t → 0, �u → 0, �Q/�t → dQ/dt , �u/�t → du/dt , and �R/�t →
dR/dt . Hence,

dQ
dt

= R
du

dt
+ u

dR
dt

(1-10.1)

Equation (1-10.1) has the same form as the formula for the derivative of the product
of two scalars.

Let R = iu + jv + kw be a single vector (not a vector field) where (i, j, k)

are unit vectors and (u, v, w) are the (i, j, k) projections of R, respectively. Let
(u, v, w) take increments (du, dv, dw). Then because (i, j, k) are constants, R takes
the increment dR = i du + j dv + k dw where, in general, dR is not collinear with
R. If (u, v, w) are functions of the single variable t ,

dR
dt

= i
du

dt
+ j

dv

dt
+ k

dw

dt
(1-10.2)

Hence, dR/dt is a vector in the direction of dR, with magnitude [(du/dt)2 +
(dv/dt)2 + (dw/dt)2]1/2.

If R is the position of a moving particle P measured from a fixed point
O (Fig. 1-10.2), dR/dt is the velocity vector q of the particle. Likewise,

Figure 1-10.2
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dq/dt = d2R/dt2 is the acceleration vector of the particle. Hence, the vector form
of Newton’s second law is

F = m
d2R
dt2

(1-10.3)

1-11 Differentiation of a Scalar Field

Let Q(x, y, z; t) be a scalar point function in a flowing fluid (such as temperature,
density, a velocity projection, etc.). Then

dQ = ∂Q

∂x
dx + ∂Q

∂y
dy + ∂Q

∂z
dz + ∂Q

∂t
dt (1-11.1)

Here (dx, dy, dz, dt) are arbitrary increments of coordinates (x, y, z) and time t .
[In deformation theory, x, y, z are called spatial (Eulerian) coordinates ; see
Chapter 2.]

Let (dx, dy, dz) be the displacement that a particle of fluid experiences during
a time interval dt. Then dx/dt = u, dy/dt = v, and dz/dt = w, where (u, v, w) is
the velocity field. Hence, on dividing Eq. (1-11.1) by dt , we get

dQ

dt
= u

∂Q

∂x
+ v

∂Q

∂y
+ w

∂Q

∂z
+ ∂Q

∂t
(1-11.2)

or, in vector notation,
dQ

dt
= q · grad Q + ∂Q

dt
(1-11.3)

where q is the velocity field. Although Eq. (1-11.2) is derived for a scalar
point function in a flowing fluid, it remains valid for any scalar point function
Q(x, y, z; t).

The distinction between ∂Q/∂t and dQ/dt is very important. The partial deriva-
tive ∂Q/∂t denotes the rate of change of Q at a fixed point of space as the fluid
flows by. For steady flow, ∂Q/∂t = 0. In contrast, dQ/dt denotes the rate of change
of Q for a certain particle of fluid. For example, if Q is temperature, we deter-
mine ∂Q/∂t by holding the thermometer still. To determine dQ/dt , we must move
the thermometer so that it coincides continuously with the same particle of fluid.
This procedure, of course, is not feasible, but we do not need to make measure-
ments with moving instruments because Eq. (1-11.2) gives the relation between
the derivative dQ/dt and the derivative ∂Q/∂t .

1-12 Differentiation of a Vector Field

If Q(x, y, z, t) is a vector field, Eq. (1-11.2) remains valid; that is,

dQ
dt

= u
∂Q
∂x

+ v
∂Q
∂y

+ w
∂Q
∂z

+ ∂Q
∂t

(1-12.1)



22 INTRODUCTORY CONCEPTS AND MATHEMATICS

This follows from the fact that Eq. (1-11.2) is valid for each of the components of
the vector Q. Equation (1-12.1) may be written in the form

dQ
dt

= (q · ∇)Q + ∂Q
t

(1-12.2)

If Q = q, dQ/dt is the acceleration vector a. Consequently,

a = dq
dt

= u
∂q
∂x

+ v
∂q
∂y

+ w
∂q
∂z

+ ∂q
∂t

(1-12.3)

or
a = (q · ∇)q + ∂q

∂t
(1-12.4)

Thus, the acceleration field is derived from the velocity field.

1-13 Curl of a Vector Field

Let q = iu + jv + kw be a vector field. Then ∇ × q is a vector field that is denoted
by curl q. Hence, by Eq. (1-7.13),

curl q = ∇ × q =

∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z
u v w

∣∣∣∣∣∣∣∣
(1-13.1)

or

curl q = i
(

∂w

∂y
− ∂v

∂z

)
+ j

(
∂u

∂z
− ∂w

∂x

)
+ k

(
∂v

∂x
− ∂u

∂y

)
(1-13.2)

It can be shown that the vector field curl q is independent of the choice of
coordinates. A physical significance is later attributed to curl q if q denotes the
velocity of a fluid. Curl q may also be related to the rotation of a volume element
of a deformable body (see Chapter 2).

1-14 Eulerian Continuity Equation for Fluids

Let q = iu + jv + kw be an unsteady velocity field of a compressible fluid. Let us
consider the rate of mass flow out of a space cell dx dy dz = dV fixed with respect
to (x, y, z) axes (see Fig. 1-14.1). The mass that flows in through the face AB
during a time interval dt is ρu dy dz dt , where ρ is the mass density. The mass
that flows out through the face CD during dt is {ρu + [∂(ρu)/∂x] dx} dy dz dt .
Similar expressions are obtained for the mass flows out of the other pairs of faces.
Accordingly, the net mass that passes out of the cell dV during dt is

[
∂(ρu)

∂x
+ ∂(ρv)

∂y
+ ∂(ρw)

∂z

]
dV dt (a)
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Figure 1-14.1

With the differential operator ∇ [see Eq. (1-8.5)] this may be written as

∇ · (ρq) dV dt (b)

The product ρq is called current density.
If a(x, y, z; t) is any vector field, ∇ · a is called the divergence of the field.

Accordingly, the notation div a is sometimes used to denote ∇ · a. Note that div a
is a scalar. Accordingly, by Eq. (b), the mass that flows out of the volume element
dV during dt is

dV dt div(ρq) (c)

The name “divergence” originates in this physical idea.
Because mass is conserved in the velocity field of a fluid, the mass that passes

into the fixed cell dV during time dt equals the increase of mass in the cell during
dt. Now, the mass in the cell at the time t is ρ dV . Consequently, the increase of
mass during dt is

∂ρ

∂t
dV dt (d)

Because Eq. (d) must be the negative of Eq. (c), we obtain

∂ρ

∂t
+ div(ρq) = 0 (1-14.1)
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Equation (1-14.1) is known as the Eulerian4 continuity equation for fluids. Any
real velocity field must conform to this relation. For steady flow, the term ∂ρ/∂t

disappears.
For an incompressible fluid, ρ = constant. Consequently, the Eulerian form of

the continuity equation for an incompressible fluid takes the simpler form:

div q = 0 or
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (1-14.2)

This is valid even for unsteady flow of an incompressible fluid. Liquids may
usually be considered to be incompressible except in the study of compression
waves.

The case in which the velocity q is the gradient of a scalar function has great
theoretical importance, that is, the case where

q = −grad φ (1-14.3)

where φ(x, y, z; t) is a scalar function. The flow is then said to be irrotational or
derivable from a potential function φ. Then the velocity component in the direction
of a unit vector n is

qn = q · n = −n · grad φ (1-14.4)

Hence, by Eq. (1-8.3),

qn = −dφ

ds
(1-14.5)

That is, qn is equal to the negative of the directional derivative of φ in the direc-
tion n.

Equation (1-14.3) may be written

u = −∂φ

∂x
v = −∂φ

∂y
w = −∂φ

∂z

Accordingly, by Eq. (1-14.2) the continuity equation for irrotational flow of an
incompressible fluid is

∇2φ = 0 (1-14.6)

Thus, the continuity equation for irrotational flow of an incompressible fluid
reduces to the Laplace equation (see Section 1-8). A general expression for the
Laplace equation in orthogonal curvilinear coordinates in three-dimensional space
is derived in Section 1-22.

4This form of the equation of continuity is referred to as the spatial form in modern continuum
mechanics (see Chapter 2).
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1-15 Divergence Theorem

Let a(x, y, z) be any continuous and differentiable vector field. We may regard
a as current density in a hypothetical fluid. Then, by Eq. (c) of Section 1-14,
div a dx dy dz is the net rate at which fluid flows out of the fixed space element
dx dy dz. Hence, if R is a given fixed region of space that is bounded by a surface S,
the net rate at which fluid passes out of R is

∫∫∫
R

div a dx dy dz

This must also be the rate at which fluid passes through the surface S. If dS is
an element of area of this surface with outward-directed unit normal n, the rate of
flow through dS is a · n dS. Hence,

∫∫∫
R

div a dx dy dz =
∫∫
S

a · n dS (1-15.1)

Thus, a volume integral is transformed into a surface integral.
Equation (1-15.1) is known as the divergence theorem (also Gauss’s theorem).

It is purely mathematical; the reference to flow is simply an artifice to facilitate the
derivation. Rigorous mathematical derivations of the theorem are given in books
on advanced calculus (Goursat, 2005).

If (U, V, W ) are the components of the vector a, Eq. (1-15.1) may be expressed
in scalar form:

∫∫∫
R

(
∂U

∂x
+ ∂V

∂y
+ ∂W

∂z

)
dx dy dz =

∫∫
S

(Un1 + V n2 + Wn3) dS =
∫∫
S

an dS

(1-15.2)

where an denotes the projection of a in the direction of n, and (n1, n2, n3) are
the direction cosines of the unit vector n; the functions (U, V, W ) are unrestricted,
aside from the requirements of continuity and differentiability. The surface S may
consist of a finite number of smooth parts that are joined together along edges. If
the vector n is directed inward, the sign of the right side of Eq. (1-15.2) is reversed.

Many useful results can be obtained by giving special forms to the functions
(U, V, W ). For example, if U = AB , V = W = 0, we obtain

∫∫∫
R

A
∂B

∂x
dx dy dz = −

∫∫∫
R

B
∂A

∂x
dx dy dz +

∫∫
S

ABn1 dS (1-15.3)

Corresponding results for y and z are obtained by setting V = AB , U = W = 0,
and so on. These equations are similar in form to the formula for integration by
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parts of a single integral. Alternatively, if we take V = W = 0, Eq. (1-15.2) yields
∫∫∫

R

∂U

∂x
dx dy dz =

∫∫
R

Un1 dS (1-15.3a)

Similar results are obtained for U = W = 0 and U = V = 0. Equation (1.15.3a)
is called Gauss’s theorem. More generally, Gauss’s theorem may be written in
the form ∫

V

∂Fi

∂xi

dV =
∫

S

Fini dS i = 1, 2, 3 (1-15.3b)

where Fi = Fi(x1, x2, x3), V denotes volume, S denotes surface of volume V with
unit normal vector n : (n1, n2, n3), and x1 ≡ x, x2 ≡ y, and x3 ≡ z.

Another useful relation may be obtained as follows: Let a be the product of a
scalar φ and a vector A; that is,

a = φA

Then
div a = φ div A + ∂φ

∂x
Ax + ∂φ

∂y
Ay + ∂φ

∂z
Az (1-15.4)

or
div a = φ div A + (grad φ) · A

Accordingly, Eq. (1-15.1) yields
∫∫
S

φAn dS =
∫∫∫

R

[φ div A + (grad φ) · A] dV (1-15.5)

If, furthermore, the vector A is representable as the gradient of a scalar function
ψ(A = grad ψ), then by Eq. (1-14.5), An = dψ/dn and

div A = ∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
= ∇2ψ

Hence, for A = grad ψ , Eq. (1-15.5) becomes
∫∫
S

φ
∂ψ

∂n
dS =

∫∫∫
R

[
φ∇2ψ + (grad φ) · (grad ψ)

]
dV (1-15.6)

Equation (1-15.6) holds for any two functions φ and ψ that are finite, continuous,
and twice differentiable in R.

If we subtract from Eq. (1-15.6) the equation obtained by interchanging φ and
ψ , we obtain∫∫

S

(
φ

∂ψ

∂n
− ψ

∂φ

∂n

)
dS =

∫∫∫
R

(
φ∇2ψ − ψ∇2φ

)
dV (1-15.7)



1-16 DIVERGENCE THEOREM IN TWO DIMENSIONS 27

Both Eqs. (1-15.6) and (1-15.7) are referred to as Green’s theorem. They find
extensive use in mathematical physics.

The above results are useful in transformations from volume to surface integrals
and vice versa.

1-16 Divergence Theorem in Two Dimensions

The two-dimensional analog of Eq. (1-15.2) is

∫∫
R

(
∂U

∂x
+ ∂V

∂y

)
dx dy =

∮
C

(Un1 + V n2) ds (1-16.1)

where U and V are any continuous and differentiable functions of (x, y). Here R

denotes a region of the (x, y) plane, and C is the curve that bounds the region R

(Fig. 1-16.1). The unit normal vector (n1, n2) is directed outward. The element of
arc length of the curve C is denoted by ds. The circle on the integral sign shows
that the integration extends completely around the curve C, in the counterclockwise
sense.

Referring to the figure, we have n1 = cos α, and n2 = sin α. Hence, n1 ds = dy,
and n2 ds = −dx, where (dx, dy) is the displacement along the curve C, corre-
sponding to the increment ds. Hence, by Eq. (1-16.1),

∫∫
R

(
∂U

∂x
+ ∂V

∂y

)
dx dy =

∮
C

(U dy − V dx) (1-16.2)

Figure 1-16.1
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This relation is sometimes called Green’s theorem of the plane. Another form
of Green’s theorem is obtained by the substitution U = v, V = −u. Then

∫∫
R

(
∂v

∂x
− ∂u

∂y

)
dx dy =

∮
C

(u dx + v dy) (1-16.3)

With U = AB, V = 0, Eq. (1-16.2) yields
∫∫
R

A
∂B

∂x
dx dy = −

∫∫
R

B
∂A

∂x
dx dy +

∮
C

AB dy (1-16.4)

Furthermore, analogous to the three-dimensional development of Eqs. (1-15.6) and
(1-15.7), we have

∮
C

φ
∂ψ

∂n
ds =

∫∫
R

[
φ∇2ψ + (grad φ) · (grad ψ)

]
dx dy (1-16.5)

∮
C

(
φ

∂ψ

∂n
− ψ

∂φ

∂n

)
ds =

∫∫
R

(
φ∇2ψ − ψ∇2φ

)
dx dy (1-16.6)

where (φ, ψ) are functions of (x, y) only.

1-17 Line and Surface Integrals (Application of Scalar Product)

Line Integral. Consider a vector F defined at each point on a curve C

(Fig. 1-17.1). The vector F forms an angle α with the tangent to the curve C

at point P . In general, the vector F may vary in magnitude and direction along
the curve. Let s be an arc length measured along the curve. The length of an
infinitesimal element of the curve at point P is ds. The vector ds with magnitude
ds is directed along the tangent line to the curve at point P (Fig. 1-17.1).

By Eq. (1-7.8), the projection of the vector F along the tangent to the curve is
F · ds = F(cos α) ds. The integral

∫
C

F · ds =
∫

C

F(cos α) ds (1-17.1)

Figure 1-17.1
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is called the line integral of the vector F along the curve C. The C in Eq. (1-17.1)
denotes integration along the curve C. By Eq. (1-17.1) it is apparent that the line
integral of a vector is the integral of the tangential component of the vector taken
along a path.

The line integral Eq. (1-17.1) finds numerous applications in physical problems.
For example, if F denotes a force that acts on a particle P that travels along curve
C, the line integral of the tangential component of F from point O to point A

represents the work performed by the force F as the particle travels from O to A.
If F denotes the electric field intensity, that is, the force that acts on a unit charge
in an electric field, the line integral between any two points represents the potential
difference between the two points. If F denotes the velocity at any point in a fluid,
the line integral taken around a closed path in the fluid represents the circulation
of the fluid.

Surface Integral. In Section 1-15 it was shown that the volume of fluid that
passes through a surface S in a unit time is

∫∫
S

q · n dS =
∫∫
S

qn dS (1-17.2)

where q is the velocity field and n is the unit normal to the surface. This integral
is called the surface integral of the vector q. Accordingly, the expression surface
integral of a vector denotes the integral of the normal component of the vector
over a surface.

1-18 Stokes’s Theorem

Equation (1-16.3) may be written as
∮

C

q · dr =
∫∫
R

n · curl q dS (1-18.1)

where dr = (dx, dy), q denotes the vector (u, v, w), and n now denotes the unit
normal to the plane area R [directed in the positive z direction, if the coordinates
(x, y, z) are right handed]. Although Eq. (1-18.1) has been proven only if R is a
region in the (x, y) plane, it remains valid if R is any plane area in space with any
orientation, for Eq. (1-18.1) is invariant under a coordinate transformation; that is,
Eq. (1-18.1) does not depend on the choice of coordinates.

Our result may be generalized still further. The curve C need not be a plane
curve; it may be any closed space curve, and R may be any surface S that caps
this curve. Any capping surface of the curve C may be divided into infinitesimal
cells. Each cell is a plane element of area. Consequently, Eq. (1-18.1) applies for
any one of the cells. We may then sum Eq. (1-18.1) over all cells. Then the right
side of the equation simply becomes the surface integral of curl q over the entire
capping surface S of curve C. On the left side we have the sum of line integrals of



30 INTRODUCTORY CONCEPTS AND MATHEMATICS

q about the boundaries of the cells. However, the line integrals over the boundaries
of contiguous cells cancel, as any inner boundary of a cell is described twice, only
in the positive sense and once in the negative sense. Consequently, only the line
integral on the outer boundary C remains.

Accordingly, we have Stokes’s theorem: The line integral of a vector field about
any closed curve equals the surface integral of the normal component of the curl of
the vector over any capping surface.

If q is a velocity field, then curl q is called the vorticity vector. Consequently,
in the terminology of fluid mechanics Stokes’s theorem is expressed as follows:
The circulation on any closed curve equals the flux of vorticity through the loop.

1-19 Exact Differential

Let M(x, y) and N(x, y) be two functions of x and y such that M, N, ∂M/∂y,
and ∂N/∂x are continuous and single valued at every point of a simply connected5

region. The differential expression M dx + N dy is said to be exact if there exists
a function f (x, y) such that df = M dx + N dy. Now, by definition,

df = ∂f

∂x
dx + ∂f

∂y
dy (1-19.1)

Consequently, if M dx + N dy is exact, M = ∂f/∂x, and N = ∂f/∂y. Therefore,

∂M

∂y
= ∂N

∂x
or

∂N

∂x
− ∂M

∂y
= 0 (1-19.2)

Accordingly, Eq. (1-19.2) is a necessary condition for M dx + N dy to be an exact
differential.

Equation (1-19.2) is also a sufficient condition. Assume that Eq. (1-19.2) is
satisfied. Set

F(x, y) =
∫

M dx

where integration is performed with respect to x. Then ∂F/∂x = M and

∂2F

∂x∂y
= ∂M

∂y
= ∂N

∂x

Therefore,
∂

∂x

(
N − ∂F

∂y

)
= 0 or N = ∂F

∂y
+ g(y)

Set f (x, y) = F(x, y) + ∫ g(y) dy. Then N = ∂f/∂y and M = ∂F/∂x = ∂f/∂x.
Hence, M dx + N dy = df ; that is, M dx + N dy is an exact differential.

5A simply connected region has the property that any closed curve drawn on it can, by continuous
deformation, be shrunk to a point without crossing the boundary of the region. For the significance
of simple connectivity, see Courant (1992), Vol. II.
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If f = f (x, y, z), df = P (x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz where
P = ∂f/∂x, Q = ∂f/∂y, and R = ∂f/∂z, an argument analogous to the two-
dimensional case leads to the necessary and sufficient conditions that df be an
exact differential in the form

∂Q

∂x
− ∂P

∂y
= 0

∂R

∂y
− ∂Q

∂z
= 0

∂P

∂z
− ∂R

∂x
= 0 (1-19.3)

1-20 Orthogonal Curvilinear Coordiantes
in Three-Dimensional Space

Let three independent scalar functions (u, v, w) be defined in terms of three inde-
pendent variables (x, y, z) as follows:

u = U(x, y, z) v = V (x, y, z) w = W(x, y, z) (1-20.1)

By independent functions, we mean that Eqs. (1-20.1) yield unique solutions for
(x, y, z):

x = X(u, v, w), y = Y(u, v, w), z = Z(u, v, w) (1-20.2)

For example, if (x, y, z) represents rectangular Cartesian coordinates, and (u, v, w)
represents cylindrical coordinates, Eq. (1-20.2) is of the form

x = u cos v y = u sin v z = w (1-20.3)

If (u, v, w) represents spherical coordinates, Eq. (1-20.2) is of the form

x = u sin v cos w y = u sin v sin w z = u cos v (1-20.4)

If (u, v, w) are assigned constant values, Eq. (1-20.1) becomes

U0(x, y, z) = const = u0

V0(x, y, z) = const = v0

W0(x, y, z) = const = w0

(1-20.5)

Equations (1-20.5) represent three surfaces in space, called coordinate surfaces.
The intersection of any two of these surfaces (say, U0 = u0 and V0 = v0) deter-
mines a curve in space, the w curvilinear coordinate line. The u and v curvilinear
coordinate lines are defined similarly. The three surface U0 = u0, V0 = v0, and
W0 = w0 intersect at a point in space. Hence, a point in space is associated with
each triplet (ui, vi, wi).

If the three systems of surfaces defined by triplets (ui, vi, wi) are mutually
perpendicular (i.e., if the curvilinear coordinate lines through any point are mutually
perpendicular), the curvilinear coordinate system is said to be orthogonal.
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A very special case of an orthogonal curvilinear coordinate system is the rect-
angular Cartesian coordinate system. For rectangular coordinates,

x = u y = v z = w

Hence, three coordinate surfaces are the mutually perpendicular planes:

x = u0 y = v0 z = w0

The intersection of any two of these planes is a coordinate line; for example,
the intersection of planes x = u0, y = v0 determines a z coordinate line. Cylin-
drical coordinates [Eq. (1-20.3)] and spherical coordinate [Eq. (1-20.4)] are also
examples of orthogonal curvilinear coordinate systems. Another example is elliptic
coordinates.

1-21 Expression for Differential Length in Orthogonal
Curvilinear Coordinates

Let (i, j, k) be unit vectors along (x, y, z) axes, respectively. Let (u, v, w) be a
system of orthogonal curvilinear coordinates. Let v and w be constant. Then at any
point the tangent vector to the u coordinate line is

U = xui + yuj + zuk (1-21.1)

where the u subscript denotes partial differentiation. Similarly, tangent vectors to
the v and w coordinate lines are

V = xvi + yvj + zvk W = xwi + ywj + zwk (1-21.2)

Vectors U, V, W are mutually perpendicular. Hence, by the scalar product defini-
tion of two vectors,

U · V = V · W = W · U = 0 (1-21.3)

Also, if (h1, h2, h3) are the magnitudes of the lengths of vectors (U, V, W),
respectively, the scalar product definition yields

h2
1 = U · U h2

2 = V · V h2
3 = W · W (1-21.4)

Hence, by Eqs. (1-20.2), (1-21.1), (1-21.2), and (1-21.4), h1 = h1(u, v, w),

h2 = h2(u, v, w), and h3 = h3(u, v, w).
Consider a line element PQ , where P = P (x, y, z) and Q = Q(x + dx,

y + dy, z + dz). The differential length ds of the line element PQ is given by the
relation

ds2 = dx2 + dy2 + dz2 (1-21.5)
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By Eq. (1-20.2),
dx = xu du + xv dv + xw dw

dy = yu du + yv dv + yw dw (1-21.6)

dz = zu du + zv dv + zw dw

Substituting Eqs. (1-21.6) into Eq. (1-21.5) and utilizing Eqs. (1-21.2), (1-21.3),
and (1-21.4), we obtain

ds2 = h2
1 du2 + h2

2 dv2 + h2
3 dw2 (1-21.7)

Equation (1-21.7) expresses the differential length ds in terms of the orthogo-
nal curvilinear coordinates (u, v, w). The coefficients (h1, h2, h3) are called Lamé
coefficients. The Lamé coefficients are equal in magnitude to the lengths of the
vectors (U, V, W) tangent to (u, v, w) coordinate lines, respectively. The quanti-
ties (h2

1, h2
2, h2

3) are known as the components of the metric tensor of space (Synge
and Schild, 1978).

1-22 Gradient and Laplacian in Orthogonal Curvilinear Coordinates

Consider the infinitesimal parallelepiped whose diagonal is the line element ds. The
faces of the parallelepiped coincide with the planes u = constant, v = constant,
w = constant (Fig. 1-22.1).

The gradient u, (∇u) has the direction normal to the surface u = constant;
that is, the direction of U or the direction of the unit vector U/|U| = U/h1 [see

Figure 1-22.1
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Eq. (1-21.4)]. The magnitude of ∇u is equal to the derivative of u in this direction.
Hence, by Eq. (1-21.7), with v and w constant, the magnitude of ∇u is

du

ds
= 1

h1
(1-22.1)

Hence, the gradient vector is

∇u = 1

h2
1

U (1-22.2)

Similarly, the gradient of v and w are

∇v = 1

h2
2

V ∇w = 1

h2
3

W (1-22.3)

By the definition of ∇ and by the rule for partial differentiation, that is,

∂f

∂x
= ∂f

∂u

∂u

∂x
+ ∂f

∂v

∂v

∂x
+ ∂f

∂w

∂w

∂x

if f (u, v, w) is any scalar point function, then the gradient of f is

∇f = ∂f

∂u
∇u + ∂f

∂v
∇v + ∂f

∂w
∇w (1-22.4)

Substituting Eqs. (1-22.2) and (1-22.3) into Eq. (1-22.4), we obtain

∇f = 1

h1

∂f

∂u
u + 1

h2

∂f

∂v
v + 1

h3

∂f

∂w
w (1-22.5)

where (u, v, w) are unit vectors in the directions of (U, V, W), respectively; that is,

u = U
h1

v = V
h2

w = W
h3

(1-22.6)

Equation (1-22.5) represents the gradient of a scalar in orthogonal curvilinear
coordinates. Consequently, by Eq. (1-22.5), the expression for the operator ∇ in
orthogonal curvilinear coordinates is

∇ = 1

h1
u

∂

∂u
+ 1

h2
v

∂

∂v
+ 1

h3
w

∂

∂w
(1-22.7)

To derive the expression for the Laplacian ∇2, we first derive the expression for
the divergence of a vector field, Q = (Q1, Q2, Q3), that is, ∇ · Q, in orthogonal
curvilinear coordinates.

Consider again the infinitesimal parallelepiped of Fig. 1-22.1. The lengths of its
edges are h1 du, h2 dv, and h3 dw, and its volume is h1h2h3 du dv dw. To facilitate
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the calculation of the divergence of Q, we use Green’s theorem for transforming
volume integrals into surface integrals:∫∫∫

through
volume

(∇ · Q) dV =
∫∫

over
bounding
surface

Q · n dS (1-22.8)

The contribution of the surface OABC , Fig. (1-22.1), to the integral over the
surface of the parallelepiped taken in the direction of the outward normal is
−Q1h2 dv h3 dw. The contribution of the surface DEFG is

Q1h2h3 dv dw + ∂

∂u
(Q1h2h3) du dv dw

Hence, the net contribution of the coordinate surfaces perpendicular to u coordinate
lines is

∂

∂u
(Q1h2h3) du dv dw (1-22.9)

Similarly, the contributions of the coordinate surfaces perpendicular to v and w

coordinate lines, respectively, are

∂

∂v
(Q2h1h3) du dv dw

∂

∂w
(Q3h1h2) du dv dw (1-22.10)

Because the volume of the infinitesimal parallelepiped, Fig. 1-22.1, is infinites-
imal,

lim
v→0

∫∫∫
(∇ · Q) dV → ∇ · Q h1h2h3 du dv dw (1-22.11)

Consequently, by Eqs. (1-22.8) to (1-22.11),

∇ · Q = 1

h1h2h3

[
∂

∂u
(Q1h2h3) + ∂

∂v
(Q2h1h3) + ∂

∂w
(Q3h1h2)

]
= div Q

(1-22.12)

Equation (1-22.12) represents the formula for the divergence of a vector field
Q in terms of general three-dimensional orthogonal curvilinear coordinates.

Setting ∇f = Q and noting by Eq. (1-22.5) that Q1 = (1/h1)(∂f/∂u),
Q2 = (1/h2)(∂f/∂v), and Q3 = (1/h3)(∂f/∂w), we obtain, by Eqs. (1-22.6) and
(1-22.12),

∇2f = ∇ · ∇f = 1

h1h2h3

[
∂

∂u

(
h2h3

h1

∂f

∂u

)
+ ∂

∂v

(
h1h3

h2

∂f

∂v

)
+ ∂

∂w

(
h1h2

h3

∂f

∂w

)]

(1-22.13)
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Equation (1-22.13) represents the Laplacian of a scalar function f (u, v, w) in
general three-dimensional orthogonal curvilinear coordinates. Hence, the Laplace
equation ∇2f = 0 in general three-dimensional orthogonal curvilinear coordinates
is obtained by setting the right-hand side of Eq. (1-22.13) equal to zero.

For plane (two-dimensional) orthogonal curvilinear coordinates, h3 = 1 and
∂/∂w = 0.

PART III ELEMENTS OF TENSOR ALGEBRA

1-23 Index Notation: Summation Convention

Gibbs vector notation may be considered to replace and extend conventional scalar
notation. For example, the scalar representation (Fx, Fy, Fz) of a force with respect
to rectangular Cartesian axes is fully replaced by the vector notation F. Likewise,
index notation may be considered to replace and extend Gibbs vector notation.
Thus, the vector F may be represented by the symbol Fi , where the subscript
(index) i is understood to take values 1, 2, 3 (or the values x, y, z). Hence, the
notation Fi is equivalent to (F1, F2, F3) or to (Fx, Fy, Fz), where subscripts (1, 2, 3)
or subscripts (x, y, z) denote projections of the force along rectangular Cartesian
coordinate axes (1, 2, 3) or (x, y, z).

Restricting ourselves to rectangular Cartesian coordinates, we indicate coordi-
nates by indices (1, 2, 3) instead of letters (x, y, z). For example, the coordinate of
a general point X in (x, y, z) space are denoted by xi = (x1, x2, x3) or more briefly
by xi , with the understanding that i takes the values (1, 2, 3). The coordinates of
a specific point P are denoted by pi , the letter p identifying the point and the
index i, the separate coordinates (see Fig. 1-23.1). Similarly, axes (x, y, z) may
be denoted by (x1, x2, x3), or simply by xi . Axes xi may also be denoted by the
notations (01, 02, 03) or (1, 2, 3).

The direction cosines of a line L with respect to axes xi are denoted by α1, α2, α3

or briefly by αi . Any other letter may replace α. For example, the direction cosines
of line L may also be denoted by βi , by mi , by ni , and so on.

The sum of two vectors qi, ri is qi + ri . The scalar product of two vectors
uα, vα is [see Eq. (1-7.6)]

u · v = u1v1 + u2v2 + u3v3 =
3∑

α=1

uαvα (1-23.1)

Equation (1-23.1) may be simplified by the use of conventional summation
notation. For example, we may write Eq. (1-23.1) in the form

u · v = uαvα (1-23.2)

with the understanding that the repeated Greek index α implies summation over
the values (1, 2, 3). Accordingly, if mα and nα denote the direction cosines of two
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Figure 1-23.1

unit vectors directed along two lines M and N in (x, y, z) space, by the scalar
product of vectors, the angle θ between lines M and N is given by the relation
[see Eq. (1-7.8) and the discussion following it]

cos θ = mαnα (1-23.3)

If lines M and N coincide, θ = 0. Then Eq. (1-23.3) yields (with mα = nα)

m2
1 + m2

2 + m3
3 = 1 (1-23.4)

Accordingly, the sum of the squares of the direction cosines of a directed line in
(x, y, z) space is equal to 1 [see Eq. (1-7.9)].

In general, a repeated index that is to be summed will be denoted by a Greek
letter. We thus avoid the necessity of using some special notation for a repeated
index that is not summed. Because the operation of summing is independent of the
Greek index used to denote the summation process, the following representations
of cos θ are equivalent [see Eq. (1-23.3)]:

cos θ = mαnα = mβnβ = mγ nγ = · · ·

as each of the representations denotes m1n1 + m2n2 + m3n3. Accordingly, a
repeated Greek index is called a summing index or a dummy index. An index
that appears only once in a general term is called a free index. Thus, in the term



38 INTRODUCTORY CONCEPTS AND MATHEMATICS

Aαββ , the index β is a dummy index and the index α is a free index, the value of
α being independent of the values of β. For example, if we assign the value 1 to
α, the term Aαββ represents the sum A111 + A122 + A133.

If a repeated index is not to be summed, we denote it by a Latin letter
(a, b, c, . . . , z). Thus, mini denotes any element of the set (m1n1, m2n2, m3n3),
depending on the values assigned to i. For example, if i = 2, then mini denotes
the element m2n2.

If several dummy indexes occur in a general term, summation is implied for
each index separately. For example,

xiαβyαβ = xi1βy1β + xi2βy2β + xi3βy3β

= xi11y11 + xi12y12 + xi13y13

+ xi21y21 + xi22y22 + xi23y23

+ xi31y31 + xi32y32 + xi33y33

Thus, for every value of the free index i, there are nine terms in the sum xiαβyαβ .
In modern algebra, the range of the index is often extended from (1, 2, 3) to

(1, 2, 3, . . . , n). Thus, we may write

Aiαxα = Ai1x1 + Ai2x2 + · · · + Ainxn

where the summing index α takes values (1, 2, 3, . . . , n).
To avoid confusion, an index already appearing in a general term as a free index

should not be used as a dummy index, as no meaning is given indexes that appear
more than twice. Thus, notations such as Aββxβ should be avoided. For example,
if x = Aαyα and yi = Biαzα , the expression for x in terms of (z1, z2, z3) is written

x = AαBαβzβ

not in the meaningless form
x = AαBααzα

Rectangular Arrays. A set of numbers arranged in the following form is called
a rectangular array : ⎡

⎢⎢⎢⎣
a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

...
...

...
. . .

...

am1 am2 am3 · · · amn

⎤
⎥⎥⎥⎦ (1-23.5)

where, in general, m 	= n.
More generally, such an array of numbers is called a matrix. In the study

of matrix theory, extensive rules are laid down for the multiplication of matri-
ces (Section 1-28). However, the role of products in matrix theory is to a large
extent replaced by summation convention. A typical element of an array is denoted
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by aij, the index i referring to the ith row of the array and the index j to the j th
column. For brevity, the entire array [Eq. (1-23.5)] is denoted by

[aij] (1-23.6)

If m = n, the array is called a square array. In the theory of continuous media,
we are concerned primarily with square arrays.

If the arrays [aij], [bij], [cij], . . . all have the same number of rows and the same
number of columns, a linear combination [hij], of [aij], [bij], [cij], . . . is defined by
the elements

hij = Aaij + Bbij + Ccij + · · · (1-23.7)

where A, B, C, . . . are arbitrary constants independent of i and j. In particular, the
sum [aij + bij + cij] of the three arrays [aij], [bij], and [cij] has the typical element
aij + bij + cij.

A square array [aij] is said to be symmetric if
aij = aji (1-23.8)

for all pairs of values of i, j ; a square array is said to be skew symmetric or
antisymmetric if

aij = −aji (1-23.9)

for all pairs of i, j . For an antisymmetric array, it follows, by Eq. (1-23.9), that
aii = ajj = 0.

An arbitrary square array (neither symmetric nor antisymmetric) may be repre-
sented as the sum of a symmetric array and an antisymmetric array. For example,
any two numbers r and s can always be written in the form

r = 1
2 (x + y) s = 1

2 (x − y)

by letting
x = r + s y = r − s

Hence, we may express a typical element of the arbitrary square array [aij] in
the form

aij = 1
2 (aij + aij) + 1

2 (aji − aji)

= 1
2 (aij + aji) + 1

2 (aij − aji)

or
aij = cij + dij (1-23.10)

where
cij = 1

2 (aij + aji) = cji
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denotes the elements of a symmetric square array, and

dij = 1
2 (aij − aji) = −dji

denotes the elements of an antisymmetric square array.

1-24 Transformation of Tensors under Rotation of Rectangular
Cartesian Coordinate System

In this section we consider briefly some tensor transformations and properties that
are important in the theory of deformable media. For simplicity, we restrict our
discussion to rectangular Cartesian coordinates. Accordingly, the results presented
here are special cases of more general tensor transformations (Synge and Schild,
1978; Spain, 2003).

Let (x, y, z) and (X, Y, Z) denote two right-handed rectangular Cartesian coordi-
nate systems with common origin (Fig. 1-24.1). The cosines of the angles between
the six coordinate axes may be represented in tabular form (Table 1-24.1). Each
entry in Table 1-24.1 is the cosine of the angle between the two coordinate axes

Figure 1-24.1
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TABLE 1-24.1

x y z

X a11 a12 a13

Y a21 a22 a23

Z a31 a32 a33

designated at the top of its column and left of its row. For example, a23 denotes
the cosine of the angle between the Y axis and the z axis; that is, aαβ represents
the direction cosines of the angle between the axes designated by the row α and
the column β of Table 1-24.1. Because the elements of Table 1-24.1 are direction
cosines, they satisfy the following relations (Eisenhart, 2005):

a2
1β + a2

2β + a2
3β = 1 β = 1, 2, 3

a2
α1 + a2

α2 + a2
α3 = 1 α = 1, 2, 3

(1-24.1)

Equation (1-24.1) signifies that the sum of the squares of the elements of any
row or column of Table 1-24.1 is 1. Furthermore, because the axes (X, Y, Z) are
mutually perpendicular, we have

aα1aβ1 + aα2aβ2 + aα3aβ3 = 0 α, β = 1, 2, 3 α 	= β (1-24.2)

Similarly, because (x, y, z) are mutually perpendicular, we have further

a1βa1α + a2βa2α + a3βa3α = 0 α, β = 1, 2, 3 α 	= β (1-24.3)

Equations (1-24.2) and (1-24.3) signify that the sum of the products of correspond-
ing elements in any two rows or any two columns in Table 1-24.1 is zero. In other
words, they express the orthogonality of axes (X, Y, Z) and the orthogonality of
axes (x, y, z). For this reason, they are called orthogonality relations.

Another important relation between the coefficients of Table 1-24.1 may be
obtained as follows. Noting that the direction cosines of a unit vector with respect
to (x, y, z) axes are identical to the projections of the unit vector on the coordinate
axes, we regard the direction cosines (a11, a12, a13) as the components on (x, y, z)
axes of a unit vector in the X direction. Similarly, (a21, a22, a23) and (a31, a32, a33)
represent unit vectors in the Y direction and the Z direction, respectively. Hence,
by the vector product of vectors [see Eq. (1-7.13)], if the two coordinate systems
(x, y, z) and (X, Y, Z) are both right handed (or both left handed), we obtain the
vector relation

(a11, a12, a13) = (a21, a22, a23) × (a31, a32, a33)

or, in scalar notation,
a11 = a22a33 − a23a32

a12 = a31a23 − a21a33

a13 = a21a32 − a22a31

(1-24.4)
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Similar relations hold for (a21, a22, a23), . . . , (a13, a23, a33). In index notation, the
entire set of relations may be written

akr = aipajq − aiqajp (1-24.5)

where (i, j, k), the first indexes of each direction cosine, may take any cyclic order
of 1, 2, 3, 1, 2, . . . , and where (p, q, r), the second indexes of each direction cosine,
take independently any cyclic order of 1, 2, 3, 1, 2, . . . . For example, let (i, j, k)
be (2, 3, 1) and let (p, q, r) be (2, 3, 1). Then Eq. (1-24.5) yields

a11 = a22a33 − a23a32

Similarly, (i, j, k) = (1, 2, 3), (p, q, r) = (3, 1, 2) yields

a32 = a13a21 − a11a23

Equations (1-24.5) are also referred to as orthogonality relations, as they express
the orthogonality of axes (x, y, z) and of axes (X, Y, Z).

In view of Eqs. (1-24.4), the second equation of Eqs. (1-24.1), with α = 1, may
be written

a11(a22a33 − a23a32) + a12(a31a23 − a21a33) + a13(a21a32 − a22a31) = 1

Similar expressions hold for α = 2, 3; β = 1, 2, 3.
In determinant notation, the above equation may be written in the form

det aαβ =
∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = 1 (1-24.6)

where det denotes determinant. If the coordinate system is left handed, it may be
shown that det aαβ = −1. Consequently, we have the following theorem:

Theorem 1-24.1. Any one of the direction cosines of a set of right-handed
(left-handed) rectangular Cartesian axes measured with respect to a second set
of right-handed (left-handed) rectangular Cartesian axes is equal to its cofactor
(the negative of its cofactor) in the determinant formed from the square array of
direction cosines [see Eqs. (1-24.4) and (1-24.6)]. Furthermore, the numerical
value of the determinant is 1( −1).

In the following, we consider right-handed coordinate systems only.
Let the coordinates of a point P be (x, y, z) with respect to axes (x, y, z). Then,

with respect to (X, Y, Z) axes, the coordinates of P may be expressed in terms of
coordinates (x, y, z) by the equations

X = a11x + a12y + a13z

Y = a21x + a22y + a23z

Z = a31x + a32y + a33z

(1-24.7)
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For (X, Y, Z) axes with origin at (a10, a20, a30), Eqs. (1-24.7) may be generalized
by the substitution X = X − a10, Y = Y − a20, and Z = Z − a30.

Conversely, with respect to (x, y, z) axes, the coordinates of P expressed in
terms of (X, Y, Z) are given by the relations (because det aαβ = 1)

x = a11X + a21Y + a31Z

y = a12X + a22Y + a32Z

z = a13X + a23Y + a33Z

(1-24.8)

With the summation notation introduced in Section 1-23, Eq. (1-24.7) becomes

Xα = aα1x1 + aα2x2 + aα3x3 α = 1, 2, 3 (1-24.9)

or
Xα = aαβxβ α, β = 1, 2, 3

Similarly, Eq. (1-24.8) may be written

xβ = a1βX1 + a2βX2 + a3βX3 β = 1, 2, 3

xβ = aαβXα α, β = 1, 2, 3 (1-24.10)

For given values of α and β, the value of ααβ in Eq. (1-24.9) is identical to the
value of aαβ in Eq. (1-24.10). This follows from the definition of the entries in
Table 1-24.1.

With the understanding that α, β take values 1, 2, 3, Eqs. (1-24.9) and (1-24.10)
are written

Xα = aαβxβ (1-24.11)

and

xβ = aαβXα (1-24.12)

Because a repeated Greek index is always summed, it may be replaced by any
convenient letter, as noted in Section 1-23. Accordingly, the following forms for
Eq. (1-24.11) are all equivalent:

Xα = aαβxβ = aαγ xγ = aαζ xζ

Scalars. Quantities such as temperature and density that may be represented by
a single number—for example, 10◦C or 30 g/cm3 —are called scalars. Under a
transformation of coordinate axes, scalars remain unchanged; that is, scalars are
invariant under coordinate transformations. For this reason, scalars are often called
invariants. In tensor theory, scalars are called tensors of zero order.

Vectors. In summation notation a vector is represented by the symbol ui

(Section 1-23). Suppose the arrow OP representing the vector ui is attached
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Figure 1-24.2

to a rectangular Cartesian coordinate system (x, y, z), as in Fig. 1-24.2. Then
the coordinates of P correspond to the components (u1, u2, u3) of vector ui .
Consequently, under a transformation from one rectangular Cartesian coordinate
system to another, the components of a three-dimensional vector transform
according to the relationship [see Eq. (1-24.11)]

Uα = aαβuβ (1-24.13)

The vector ui remains fixed in space. Such sets of three components (i.e., vectors)
are called tensors of first order. Tensors of first order require only one index for
their representation. Multiplication of a first-order tensor by a zero-order tensor
(i.e., multiplication of a vector by a scalar) yields another first-order tensor. For
example, multiplications of ui by a constant c yields cu i . Hence, by Eq. (1-24.13),
aαβ(cuβ) = c(aαβuβ) = cUα. Thus, cu i is a tensor of first order, as it obeys the
rules of transformation of a tensor of first order. Furthermore, the addition of two
tensors of first order (two vectors) yields a tensor of first order (a vector). For
example, if up, vP are two tensors of first order, by Eq. (1-24.13) we have

Uα = aαβuβ Vα = aαβvβ

Addition of these equations yields

Uα + Vα = aαβuβ + aαβvβ = ααβ(uβ + vβ)

Hence, uβ + vβ is a tensor of first order, as it transforms according to Eq. (1-24.13).
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Tensors of Higher Order. Multiplication of tensors of first order leads to quan-
tities that are not tensors of zero or first order. For example, let uζ and vη be
two first-order tensors in the rectangular Cartesian coordinate system (x, y, z). Let
Uα, Vβ denote the corresponding tensors in the rectangular Cartesian coordinate
system (X, Y, Z). Then, by Eq. (1-24.13),

UαVβ = (aαζ uζ )(aβηvη) = aαζ aβηuζ vη (1-24.14)

or
Wαβ = aαζ aβηwζη

where Wαβ = UαVβ and wζη = uζ vη represent the products of the vectors Uα, Vβ

in the (X, Y, Z) system and uζ , vη in the (x, y, z) system, respectively.
Because both ζ and η are dummy indexes, for given values of α, β the right-

hand side of Eq. (1-24.14) contains nine terms. Accordingly, Eq. (1-24.14) repre-
sents nine equations, each with nine terms. Quantities that transform according to
Eq. (1-24.14) are called tensors of second order. In the symbolical representation
of tensors of second order, two indexes are required. Many quantities other than
the product of two vectors transform according to Eq. (1-24.14). For example,
components of stress and of strain transform according to Eq. (1-24.14) under a
change of rectangular coordinate systems (see Chapters 2 and 3). Accordingly, the
components of stress and of strain form second-order tensors.

In a similar fashion, a tensor of third order is formed by multiplying together
three first-order tensors, and so on. Thus, an nth-order tensor may be formed by
multiplying together n first-order tensors. Essentially, this means that we have
available means of specifying components of nth-order tensors with respect to any
set of rectangular Cartesian axes and rules for transforming these components to
any other set of rectangular Cartesian axes. Hence, the statement that a quantity is
a tensor quantity may be proved by comparison with these known tensor transfor-
mations. For example, this technique was employed in the proof that the sum of
two first-order tensors yields a first-order tensor.

In summary, a tensor of zero order (scalar) is a single quantity that depends on
position in space but not on the coordinate system. A tensor of first order (vector)
is a quantity whose components transform according to Eq. (1-24.13). Hence, with
respect to a rectangular Cartesian coordinate system in three-dimensional space, a
tensor of first order contains 31 = 3 elements of components. A tensor of second
order is a quantity that transforms according to Eq. (1-24.14). With respect to
rectangular Cartesian coordinate systems in three-dimensional space, a second-order
tensor has 32 = 9 elements.

A tensor of nth order is a quantity whose components transform according to
the rule6

Tp1p2...pn = ap1q1ap2q2 · · · apnqn tq1q2...qn (1-24.15)

6See Synge and Schild (1978). Here we let dummy indexes be denoted by q1, q2, . . . , qn.
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With respect to rectangular Cartesian coordinate axes in three-dimensional space,
an nth-order tensor has 3n elements. Thus, a fourth-order tensor has 81 elements, a
fifth-order tensor has 243 elements, and a tenth-order tensor has 59,049 elements.

In general developments of continuous-media mechanics, fourth-order tensors
play a prominent role (Green and Zerna, 2002).

1-25 Symmetric and Antisymmetric Parts of a Tensor

If we interchange α and β in Eq. (1-24.14), we obtain

Wβα = aβζ aαηwζη (1-25.1)

Because ζ and η are dummy indexes, we may interchange them. Thus, Eq. (1-25.1)
may be written

Wβα = aβηaαζwηζ = aαζ aβηwηζ (1-25.2)

Hence, comparing Eqs. (1-24.14) and (1-25.2), we see that wηζ transforms accord-
ing to the same rule as wζη. The tensor wζη is said to be conjugate to wηζ . Thus, if
wζn is a tensor of second order, another tensor of second order is obtained by inter-
changing η and ζ . Consequently, wζη + wηζ and wζη − wηζ are tensors of second
order. Symbolically, we may represent the tensors wζη and wηζ as follows:

wζη =
⎛
⎝w11 w12 w13

w21 w22 w23

w31 w32 w33

⎞
⎠

and

wηζ =
⎛
⎝w11 w21 w31

w12 w22 w32

w13 w23 w33

⎞
⎠

Then

wζη + wηζ =
⎛
⎝ 2 w11 w12 + w21 w13 + w31

w21 + w12 2 w22 w23 + w32

w31 + w13 w32 + w23 2 w33

⎞
⎠

= wηζ + wζη (1-25.3)

and

wζη − wηζ =
⎛
⎝ 0 w12 − w21 w13 − w31

w21 − w12 0 w23 − w32

w31 − w13 w32 − w23 0

⎞
⎠

= −(wηζ − wζη) (1-25.4)

Because wζη + wηζ is unaltered by interchanging ζ and η, it is called a symmetrical
tensor of second order. However, when ζ and η are interchanged in wζη − wηζ ,
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each element changes in sign. Hence, wζη − wηζ is called an antisymmetrical tensor
of second order. Also, by Eqs. (1-25.3) and (1-25.4),

wζη = 1
2 (wζη + wηζ ) + 1

2 (wζη − wηζ ) = Sζη + Aζη (1-25.5)

where Sζη is a symmetric second-order tensor and Aζη is antisymmetric. Conse-
quently, a second-order tensor may be resolved into symmetric and antisymmetric
parts. Furthermore, because the antisymmetric part contains only three compo-
nents, w12 − w21, w13 − w31, w23 − w32, it may be associated with a vector ui .
Equation (1-25.5) is analogous to Eq. (1-23.10).

Problem. Let wζη + wηζ = 2Sζη = 2Sηζ and wζη − wηζ = Aζη = −(wηζ −
wζη) = −Aηζ , where wζη is a tensor of second order. Show that the product of
the symmetric tensor Sζη and the antisymmetric tensor Aζη vanishes; that is, show
that SζηAζη = 0.

1-26 Symbols δij and εijk (the Kronecker Delta
and the Alternating Tensor)

The use of the following notation often simplifies the writing of equations:

δij =
{

1 for i = j

0 for i 	= j
(1-26.1)

The symbol δij is called the Kronecker delta.
Using the notation δij with respect to axes (x, y, z), we may write the second of

Eqs. (1-24.1) and Eqs. (1-24.2) collectively as

aαγ aβγ = δαβ (1-26.2)

Similarly, with respect to axes (X, Y, Z) we may express the first of Eqs. (1-24.1)
and Eqs. (1-24.3) in the form

aγβaγα = δβα (1-26.3)

The Kronecker delta has the following important properties:

1. δλλ = δ11 + δ22 + δ33 = 3

2. δiλδjλ = δij

3. piλδjλ = pij

Property 3 is a generalization of 2. It is called the rule of substitution of indexes ,
as the multiplication of δjλ substitutes the index j for the index λ.

The set of quantities δij, i, j = 1, 2, 3 constitutes a tensor of the second order.
To prove this, we must show that δij transforms according to Eq. (1-24.14) under a
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transformation of rectangular Cartesian axes. The array δij consists of the elements
δ11 = 1, δ22 = 1, δ33 = 1, δ12 = 0, δ23 = 0, and δ13 = 0. Accordingly, if we set
δσγ = wσγ and substitute in Eq. (1-24.14), we get

Wαβ = δ′
αβ = aασ aβγ δσγ = aα1aβ1 + aα2aβ2 + aα3aβ3

Hence, by Eqs. (1-26.1) and (1-26.2),

δ′
αβ =

{
1 for α = β

0 for α 	= β

Thus, it follows that the array (δ11 = δ22 = δ33 = 1, δ12 = δ13 = δ23 = 0) is trans-
formed into itself by the tensor transformation Eq. (1-24.14). This transformation
is in accord with the definition of Eq. (1-26.1). Hence, δαβ is a second-order tensor.
A tensor whose respective components (elements) are the same with respect to all
sets of coordinate systems is called an isotropic tensor. In view of the fact that
δij is a tensor and in view of the substitution property 3 above, δij is sometimes
referred to as the substitution tensor.

Symbol εijk. The symbol εijk is defined as follows:

εijk

⎧⎨
⎩

1 if i, j, k are in cyclic order 1, 2, 3, 1, 2, . . .

0 if any two of i, j, k are equal
−1 if i, j, k are in anticyclic order 3, 2, 1, 2, 3, . . .

(1-26.4)

For example,

ε123 = ε312 = ε231 = 1

ε112 = ε121 = ε322 = · · · = 0 (1-26.5)

ε321 = ε213 = ε132 = −1

By definition of δij and εijk, it follows that

εijkδij = εiik = 0 no summation (1-26.6)

Furthermore, it follows by Eqs. (1-26.5) and (1-26.6) that

εαβkδαβ = 0 summed (1-26.7)

In terms of εijk, the orthogonality relations [Eq. (1-24.5)] may be written

εijαaαn = εαβnaiαajβ (1-26.8)

where i, j, n take independently any value 1, 2, 3. The proof of Eq. (1-26.8) is left
for the problems.

The array εijk transforms according to the rules of transformation of a third-
order isotropic tensor. To show this, we note that a third-order tensor transforms
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according to the rule [see Eq. (1-24.15)]

Tijk = aiαajβakγ tαβγ (1-26.9)

Hence, we must show that εαβγ transforms according to the rule

εijk = aiαajβakγ εαβγ (1-26.10)

Substituting Eq. (1-26.8) into the right side of Eq. (1-26.10), we obtain

akγ aαγ εijα

But αkγ aαγ = δkα , by Eq. (1-26.2). Hence,

akγ aαγ εijα = δkαεijα = εijk

Accordingly, Eq. (1-26.10) is verified. In view of the properties noted in
Eqs. (1-26.4) and (1-26.10), the symbol εijk is called the alternating tensor.

1-27 Homogeneous Quadratic Forms

The most general homogeneous quadratic form in the variables Xi, i = 1, 2, 3,
may be written in index notation as

Q = aαβXαXβ α, β = 1, 2, 3 (1-27.1)

where aij denotes the following square array of real elements:

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ (1-27.2)

The quadratic form Q written in expanded form is

Q = a11X
2
1 + a22X

2
2 + a33X

2
3 + (a12 + a21)X1X2

+ (a13 + a31)X1X3 + (a23 + a32)X2X3 (1-27.3)

The determinant det aij is called the determinant of the array [Eq. (1-27.2)]. The
expression (1-27.1) [or Eq. (1-27.3)] is called the quadratic form associated with
the array [aij]. Without loss of generality, the array may be assumed symmetrical;
that is, we may set aij = aji. Then Eq. (1-27.3) becomes

Q = a11X
2
1 + a22X

2
2 + a33X

2
3 + 2a12X1X2 + 2a13X1X3 + 2a23X2X3 (1-27.4)

where we have simply replaced the notation (a12 + a21) in Eq. (1-27.3) by 2a12 in
Eq. (1-27.4), and so on.
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The equation ∣∣∣∣∣∣
a11 − r a12 a13

a21 a22 − r a23

a31 a32 a33 − r

∣∣∣∣∣∣ = 0

or, in the index notation,

|aij − rδij| = 0 (1-27.5)

is called the characteristic equation of the array [aij]. The three roots (r1, r2, r3) of
Eq. (1-27.5) are called the characteristic roots , or latent roots , or eigenvalues of
the array [aij] (Eisenhart, 2005; Hildebrand, 1992). In general, the ri are distinct.
However, special cases may occur in which two or all of the ri are equal.

A necessary and sufficient condition that a set of linear algebraic equations

ciαXα = 0 i = 1, 2, 3 (1-27.6)

possess a solution other than the trivial solution X1 = X2 = X3 = 0 is that
the determinant of the coefficients ciα of Eq. (1-27.6) vanishes (Pipes, 1959;
Hildebrand, 1992). Accordingly,

|ciα| = 0 (1-27.7)

represents a necessary and sufficient condition that Eq. (1-27.6) possess a solution
Xi(Xi 	= 0). Accordingly, by Eqs. (1-27.5), (1-27.6), and (1-27.7), it follows that
for every r such that |aij − rδij| = 0, an array (Xi) exists such that

(aiα − rδiα)Xα = 0

Rewriting, we have

aiαXα = rδiαXα = rXi (1-27.8)

In other words, Eq. (1-27.5) expresses the necessary and sufficient condition that
Eq. (1-27.8) possesses nontrivial solutions of Xi . The nontrivial solutions of
Eq. (1-27.8) are called the eigenvectors of the array [aij].

Let yi denote any arbitrary array (y1, y2, y3). Then, by Eq. (1-27.8), we obtain
the bilinear form

aαβXβyα = rXαyα (1-27.9)

If yi = Xi , we obtain the quadratic form (Hildebrand, 1992)

aαβXαXβ = rXαXα (1-27.10)

Orthogonality of Eigenvectors. Consider the case where the array Xi cor-
responds to the array mi of direction cosines [Eq. (1-23.4)]. Assume that there
exist two nonequal characteristic roots r(1), r(2) of Eq. (1-27.5). Then the corre-
sponding solutions (eigenvectors) of Eq. (1-27.8) may be denoted by mi

(1), mi
(2).
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Accordingly, Eq. (1-27.8) becomes

aiαm(1)
α = r(1)m

(1)
i for r = r(1)

aiαm(2)
α = r(2)m

(2)
i for r = r(2)

(1-27.11)

Multiplying the first of Eqs. (1-27.11) by m
(2)
i and the second by m

(1)
i and

subtracting, we obtain (because aij = aji)

[
r(2) − r(1)

]
m

(1)
β m

(2)
β = 0

However, because by hypothesis r(2) 	= r(1), it follows that

m
(1)
β m

(2)
β = 0 (1-27.12)

Accordingly, the directions (eigenvectors) m
(1)
β , m

(2)
β that correspond to the char-

acteristic roots r(1) and r(2) are orthogonal. Furthermore, if r(1) and r(2) are two
distinct characteristic roots and m

(1)
β and m

(2)
β are the corresponding direction

cosines, by Eq. (1-27.10) we have

aαβm(1)
α m

(2)
β = r(2)m

(1)
β m

(2)
β = r(1)m

(1)
β m

(2)
β = 0

Hence
aαβm(1)

α m
(2)
β = 0 (1-27.13)

This result is equivalent to the vanishing of shearing stress (or strain) components
relative to principal axes (see Chapters 2 and 3).

Finally, note that the characteristic roots r(1), r(2) are real. We prove this by
contradiction as follows: Assume that r(1) is complex. Denote its complex conjugate
by r(1). Then, taking the complex conjugate of the first of Eqs. (1-27.11), we obtain

aαβm
(1)
β = r(1)m(1)

α (1-27.14)

Multiplying (1-27.14) by m(1)
α , we get

aαβm(1)
α m

(1)
β = r(1)m(1)

α m(1)
α (1-27.15)

Multiplying the first of Eqs. (1-27.11) by m(1)
α , we get

aαβm(1)
α m

(1)
β = r(1)m(1)

α m(1)
α (1-27.16)

Comparison of Eqs. (1-27.15) and (1-27.16) yields

[
r(1) − r(1)

]
m(1)

α m(1)
α = 0
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Because m(1)
α m(1)

α is the sum of squares of real numbers, it cannot be zero unless
m1 = m2 = m3 = 0. However, this is not possible because, by Eq. (1-23.4),

m2
1 + m2

2 + m2
3 = 1

Hence
r(1) = r(1)

That is, r(1) is equal to its conjugate r(1). Accordingly, r(1) must be real.

1-28 Elementary Matrix Algebra

The matrix algebra outlined in this section plays an important role in modern
structural analysis and in numerical methods of continuum mechanics such as finite
element methods.

In Section 1-23 we noted that the rectangular array of m rows and n columns
of numbers aij is called a matrix (more explicitly, an m by n matrix or a matrix
of order m by n). The elements aij may be real or complex numbers or, more
generally, may be matrices themselves. However, unless we state otherwise, we
take the numbers aij to be real. In Section 1-23 we denoted the array by [aij] and
considered several properties of the array in terms of the individual elements amn.
However, it is frequently more economical to treat a matrix as a single entity,
particularly in algebraic operations involving addition, subtraction, multiplication,
and division of several arrays. Accordingly, we employ the notation

A = [aij] 1 ≤ i ≤ m 1 ≤ j ≤ n (1-28.1)

where A denotes the m by n matrix [Eq. (1-23.5)] of the m by n elements aij.
If m = 1,

A = [a11, a12, . . . , a1n] = (a11, a12, . . . , a1n) (1-28.2)

contains one row. Hence it is called a row matrix , where we use parentheses ( ) to
denote a row matrix.

Alternatively, if n = 1,

A =

⎡
⎢⎢⎢⎣

a11

a21
...

am1

⎤
⎥⎥⎥⎦ = {a11, a21, . . . , am1} (1-28.3)

contains one column. Hence it is called a column matrix , where, for economy
of space, we use braces { } to denote a column matrix. Because the numbers
a11, a12, . . . , a1n (or the numbers a11, a21, . . . , am1) may be taken as the com-
ponents of a vector in n-dimensional space, it follows that a row matrix and a
column matrix are sometimes called vectors of the first kind and of the second
kind, respectively.
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If all aij = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, then the matrix A = [aij ] = [0] is called
the null matrix.

The algebraic operations of addition, subtraction, multiplication, division, and
so on of matrices are defined in terms of equivalent operations on the elements of
the matrices. These operations are discussed next.

Matrix Addition. Let A = [aij], B = [bij], 1 ≤ i ≤ m, 1 ≤ j ≤ n. Then the oper-
ation of addition, denoted by A + B, is defined by

A + B = [aij + bij] =

⎡
⎢⎢⎢⎣

a11 + b11 a12 + b12 . . . a1n + b1n

a21 + b21 a22 + b22 . . . a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 . . . amn + bmn

⎤
⎥⎥⎥⎦ (1-28.4)

Matrix Subtraction. The subtraction of matrices A, B, denoted by A − B, as
in addition, requires that A, B be of the same order. By definition,

A − B = [aij − bij] (1-28.5)

If A = B, that is, if aij = bij, A − B = [0], the null matrix. In other words, two
matrices A, B are said to be equal if they are of the same order and their difference
is the null matrix.

Multiplication of a Matrix by a Scalar. Multiplication of a matrix A by a
scalar s multiplies every element aij of A by s. Thus, sA = s[aij] = [saij]. Anal-
ogously, division of a matrix A by a scalar s is defined by (1/s)A = (1/s)[aij] =
[(1/s)aij].

Multiplication of a Matrix by a Matrix. The operation of a matrix multiplica-
tion occurs in a number of situations. For example, in Section 1-24 we found that
a rotation from one set of Cartesian axes xα to another set Xα led to the result
[Eq. (1-24.11)]

Xα = aαβxβ α, β = 1, 2, 3 (1-28.6)

Similarly, a rotation from axes Xα to axes Yα yields

Yα = bαβXβ (1-28.7)

where bαβ are direction cosines between axes Yα and Xβ . Hence, substitution of
Eqs. (1-28.6) into Eq. (1-28.7) yields a transformation from axes xα directly to
axes Yα . Thus,

Yα = bαβaβγ xγ = cαγ xγ (1-28.8)

where
cαγ = bαβaβγ (1-28.9)
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In matrix notation, we may write

X = Ax

Y = BX = BAx = Cx (1-28.10)

where
A = [aβγ ] B = [bαβ ] C = [cαγ ] (1-28.11)

and where summation convention holds (Section 1-23).
Generalization of Eq. (1-28.10) leads to the following definition: Given

A = [aij], 1 ≤ i ≤ m, 1 ≤ j ≤ n; B = [bij], 1 ≤ i ≤ p, 1 ≤ j ≤ q. The product
AB is defined if and only if p = n. When p = n, matrices A and B are said to be
conformable or to conform. The product of two conformable matrices A (of order
m by n) and B (of order n by q) is a matrix C (of order m by q), with elements
cij given by the rule

cij = biαaαj = bi1a1j + bi2a2j + · · · + binanj (1-28.12)

This rule is summarized by the following statement: The matrix C, with elements
cij, is obtained by multiplication of the elements of the ith row of matrix B into
the elements of the j th column of matrix A.

In general, we note that the premultiplication BA of A by B is not equal to the
postmultiplication AB of A by B. Thus, in general, BA 	= AB. In particular, BA
and AB are both defined if and only if m = q and p = n.

More generally, the product P of p matrices (extended product) A1, A2,

A3, . . . , Ap is defined by P = A1A2A3 · · · Ap, provided that in the order
A1, A2, A3, . . . , Ap two adjacent matrices conform. If A1 = A2 = A3 = · · · =
Ap = A, we obtain P = AP , the pth product of A.

Square Matrices. A matrix A = [aij], 1 ≤ i ≤ m, 1 ≤ j ≤ n is said to be square
if and only if m = n. A square matrix is said to be symmetric if and only if aij = aji.
If aij = 0, for i 	= j , the matrix A = [aij] is said to be a diagonal matrix and is
denoted by A = diag(a11, a22, . . . , ann). If A is a diagonal matrix and aii = s for
all i, A is called a scalar matrix. If, in addition, s = 1, the matrix A consists of
diagonal elements all equal to 1. Then A is called the unit matrix and is denoted
by the symbol I ; that is, A = I . For any matrix B, we have IB = BI = B. Hence,
I commutes with any matrix. Thus, the unit matrix operates on matrices in the
same manner that the number 1 operates on real numbers.

Transpose of a Matrix. In operations with arrays [aij], we must consider arrays
[aji]. The matrix [aji] = AT is called the transpose of the matrix A = [aij], and the
operation of forming the transpose AT from matrix A is called transposition. In
particular, the transpose P T of a product P = AB of matrices A, B is P T = BTAT,
and, in like manner, the transpose of the extended product P = A1A2 · · · Aq is
P T = AT

qAT
q−1A

T
q−2 · · · AT

1 .
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Division of a Matrix by a Matrix. The operation of division is restricted
to square matrices. Several preliminary notions are required: the concepts of the
determinant |a| of a square matrix [aij], the cofactor Aij of the elements aij in
the determinant |a|, the adjoint matrix A = [Aji] of a matrix, and the inverse of a
matrix, denoted by A−1.

We assume that the concept of determinant is familiar from elementary algebra.
Then, for a square n by n matrix A = [aij], 1 ≤ i ≤ n, 1 ≤ j ≤ n, we have the
associated determinant |a| of the matrix [aij], where the number |a| is defined
(Birkhoff and MacLane, 2008; Lancaster and Tismenetsky, 1985; Gilbert, 2008) by

a =

∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · anm

∣∣∣∣∣∣∣∣∣
(1-28.13)

If a 	= 0, A = [aij] is said to be nonsingular and possesses a reciprocal or inverse
matrix A−1 such that

[aij]A
−1 = AA−1 = I (1-28.14)

where I is the unit matrix of the same order as A. Accordingly, the operation of
matrix multiplication of a matrix by its inverse matrix is analogous to dividing a
real number by itself. More generally, if B is any matrix conformable with the
nonsingular inverse matrix A−1,

BA−1 = C (1-28.15)

where C is a matrix. Equation (1-28.15) is sometimes referred to as the division of
matrix B by matrix A. Accordingly, to divide matrix B by a conformable matrix A,
we must first compute the inverse matrix A−1. To compute A−1, we first introduce
the adjoint matrix A of A. The adjoint matrix A is defined by

A = [Aji] (1-28.16)

where the element Aij denotes the cofactor of the element aij in the determinant |a|
of the matrix A = [aij], and [Aij] is the transpose of the matrix [Aij]. The adjoint
matrix A exists whether or not A is singular.

By definition of matrix multiplication and the theory of determinants, we have
[Eq. (1-28.12)]

[aij][Aji] = |a|I = S (1-28.17)

where S is a diagonal (scalar) matrix, with sii = |a|, and sij = 0 for i 	= j . Dividing
Eq. (1-28.17) by the determinant |a| (assumed nonsingular), we obtain

I = [aij][Aji]

|a| = AA

|a| (1-28.18)
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Accordingly, comparison of Eqs. (1-28.14) and (1-28.18) yields

A−1 = [Aji]

|a| = A

|a| (1-28.19)

The matrix A−1 is called the inverse or reciprocal matrix because of the property
AA−1 = I . It plays the same role in matrix algebra as does division in ordinary
algebra. Thus, if AB = CD where A, B, C, D are appropriate matrices, premulti-
plication by A−1, the inverse of A, yields A−1AB = IB = B = A−1CD.

1-29 Some Topics in the Calculus of Variations

Maxima, Minima, and Lagrange Multipliers. The problem of seeking max-
ima and minima of functions of several variables plays an important role in
engineering. A generalization of the elementary theory of maxima and minima
(or extrema) leads to the calculus of variations. For example, in the theory of
extrema, consider the problem of determining for a given continuous function
f (x1, x2, . . . , xn) of the n variables (x1, x2, . . . , xn) in a given region R, a point
(xp1, xp2, xp3, . . . , xpn) at which the function f attains maximum or minimum val-
ues (i.e., extreme values or simply extrema) with respect to all points of R in a
neighborhood (vicinity) of the point (xp1, xp2, . . . , xpn). This problem always has
a solution (point for which f is an extremum), because according to a theorem of
Weierstrass, every function f (x1, x2, . . . , xn) that is continuous in a closed bounded
region R of the variables (x1, x2, . . . , xn) possesses a maximum value and a mini-
mum value in the interior of R or on the boundary of R. Analogous to the theory
of a single variable, if the function f (x1, x2, . . . , xn) is differentiable in R and
if an extreme value is attained at an interior point P : (xp1, xp2, . . . , xpn), then
the derivatives of f with respect to each of the x’s vanish at P . The vanishing
of the derivatives of f is a necessary condition for extrema. It is not sufficient,
however, as an examination of the function f (x) = x3 at the point x = 0 shows.
More generally, we define a point at which all first-order derivatives of f vanish,
hence at which df = 0, as a stationary point S. In turn, a stationary point S that
furnishes a maximum value or a minimum value (an extreme value) in an allowable
neighborhood of S is called an extremum.

In some problems the choice of points (x1, x2, . . . , xn) is restricted to subre-
gions of R by certain equations of constraint (or simply constraints). For example,
consider the stationary values of the function f (x1, x2, . . . , xn) of the n variables
(x1, x2, . . . , xn), continuous with continuous first partial derivatives, subject to the
restrictions that the x’s must satisfy m equations of constraint (m < n)

gi(x1, x2, . . . , xn) = 0 i = 1, 2, . . . , m (1-29.1)

The direct approach to this problem is to eliminate m of the variables from f

by means of Eq. (1-29.1). Then seek the stationary values of f (y1, y2, . . . , yn−m),
where y1, y2, . . . , yn−m denote the remaining n − m variables. However, because
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the elimination of any m of the variables is arbitrary and the process of elimination
from Eq. (1-29.1) may be nontrivial, an alternative approach attributed to Lagrange
is often employed (the Lagrange multiplier method ). This method has the advantage
of retaining symmetry in the calculations (arbitrary elimination of m variables is
avoided) and of routine elegance.

Lagrange’s method of multipliers consists of forming a new function F such
that

F(x1, x2, . . . , xn; λ0, λ1, . . . , λm) = λ0f (x1, x2, . . . , xn)

+
m∑

i=1

λigi(x1, x2, . . . , xn) (1-29.2)

where the λi, i = 0, 1, 2, . . . , m, are called the Lagrange multipliers. Then
stationary values of F are sought over the unrestricted range of the variables
(x1, x2, . . . , xn) by the requirements

∂F

∂x1
= 0

∂F

∂x2
= 0, . . . ,

∂F

∂xn

= 0

∂F

∂λ1
= g1 = 0

∂F

∂λ2
= g2 = 0, . . . ,

∂F

∂λm

= gm = 0

(1-29.3)

These equations suffice to determine the stationary points (xp1, xp2, . . . , xpn) and
the Lagrange multipliers λ1, λ2, . . . , λm. Because F is homogeneous in the λ’s
[Eq. (1-29.2)], we may take λ0 = 1.

Equations (1-29.3) show that the stationary points for F are the same as the
stationary values of f subject to the constraints of Eq. (1-29.1). The Lagrange
multiplier method is useful in the theory of principal values of stress and strain
(Chapters 2 and 3).

More generally, the above results may be summarized as follows7:
Given a function f (x1, x2, . . . , xn) of n variables (x1, x2, . . . , xn) subject to m

constraints gi(x1, x2, . . . , xn) = 0, i = 1, 2, . . . , m. Let f and gi possess contin-
uous first partial derivatives in a region R of the x space. Furthermore, let the
Jacobian J be nonzero; that is,

J = ∂(g1, g2, . . . , gm)

∂(a1, a2, . . . , am)
	= 0 (1-29.4)

where the set of variables (a1, a2, . . . , am) is some selection of m variables from
the extremum (xp1, xp2, . . . , xpn). Then the stationary values of f subjected to

7For an analytical proof of the Lagrange multiplier method, see Courant (1992), pp. 192–199 (foot-
note 5).
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the constraints gi = 0, i = 1, 2, . . . , m are identical to the stationary values of the
function

F(x1, x2, . . . , xn; λ1, λ2, . . . , λm) = f (x1, x2, . . . , xn)

+
m∑

i=1

λigi(x1, x2, . . . , xn) (1-29.5)

In cases where the constraints gi = 0 are algebraic relations, the Lagrange mul-
tipliers are constant parameters. However, more generally (Langhaar, 1989), when
the equations of constraint require the xi to be solutions of differential equations,
the Lagrange multipliers may be functions of one or more of the variables xi .

Variation of a Function. First Variation of an Integral. Stationary Value
of an Integral. As in the theory of ordinary maxima and minima, the calculus
of variations is concerned with the problem of extreme values (stationary values).
However, in contrast to the ordinary extremum problem of a function of a finite
number of independent variables, the calculus of variations deals with functions of
functions, or simply functionals (Courant and Hilbert, 1989).

The simplest type of problem in the calculus of variations may be outlined as
follows: Let F(x, y, y ′) be a given function of the three arguments x, y, y ′ that
is continuous and has continuous first and second derivatives in the region of the
arguments. Because F is a function of x, an integral

I (y) =
∫ x1

x0

F(x, y, y ′) dx

becomes a definite number depending upon the behavior of the function y = y(x),
the argument function. That is, the integral I (y) becomes a function of the argument
function y(x) or, in other words, a functional. The fundamental problem of the
calculus of variations may be stated in this form: Among all functions y = y(x)

that are defined and continuous and possess continuous first and second derivatives
in the interval x0 ≤ x ≤ x1 and for which boundary values y0 = y(x0), y1 = y(x1)

are given, determine that function y = u(x) for which the integral I (y) has the
smallest possible value (or the largest possible value). The conditions imposed upon
the argument function y(x) are called conditions of admissibility , and we speak
of argument functions that satisfy the conditions of admissibility as admissible
functions. The admissible functions y(x) form a class C. In the above formulations
we required that y(x) be continuous with its first and second derivatives. Actually,
the existence of I (y) requires only that F , hence y ′(x), be sectionally continuous.
The more restricted admissible conditions limit the class C in which functions y(x)

are sought. However, it may be shown that the function y = f (x), which minimizes
I when the broader class of admissible conditions is allowed, always lies in the
more restricted class of admissible functions (Courant and Hilbert, 1989).

Accordingly, our objective is to determine necessary conditions that an admissi-
ble function y = u(x) gives a maximum or minimum value (extreme value) to the



1-29 SOME TOPICS IN THE CALCULUS OF VARIATIONS 59

integral I (y). The method employed is analogous to that of the extreme problem of
determining the extreme value of a function of a single variable. Thus, we assume
that y = u(x) is the solution, say, a minimum. [The problem of determining a max-
imum may be dispensed with, as the method of seeking a maximum is the same
as that for seeking a minimum with F replaced by −F in I (y).] Then for any
other admissible function the value of I must increase. Because we seek necessary
conditions, it suffices to consider admissible functions that lie infinitesimally close
to the solution y = u(x). Hence, we consider the class of admissible functions

y = y(x) + εη(x) = y(x) + δy

where ε is a parameter and η(x) is a function in the class of admissible functions
(i.e., has continuous first and second derivatives in x0 ≤ x ≤ x1 and vanishes at
x = x0 and x = x1). The quantity δy = εη(x) is called the variation of the function
y(x). Then if ε is sufficiently small, the admissible functions y lie in an arbitrarily
small neighborhood of the extremum y = u(x). Hence, the integral J = I (y + εη)

may be regarded as a function of ε, which must attain a minimum at ε = 0 relative
to all values of ε in a sufficiently small neighborhood of ε = 0. Consequently,
dJ/dε|ε=0 = J ′(0) = 0 is a necessary condition that I (y) attain a minimum for
y = u(x). More generally, without regard to maximum or minimum, we say that the
integral I is stationary for y = u(x). Thus, with J (ε) = I (y + εη) = ∫x1

x0
F(x, y +

εη, y ′ + εη′)/dx, differentiation yields the necessary condition

J ′(0) =
∫ x1

x0

(Fyη + Fy′η′) dx = 0

that I (y) be stationary for all admissible η(x). Integration by parts and use of the
conditions η(x0) = η(x1) = 0 yield

J ′(0) =
∫ x1

x0

η

(
Fy − d

dx
Fy′

)
dx = 0

which must hold for arbitrary admissible functions η. Hence, by the fundamental
theorem of the calculus of variations,8

Fy − dFy′

dx
= 0 (1-29.6)

Equation (1-29.6) is the Euler differential equation for the intetgral I (y). It is a
necessary condition that I (y) possess a stationary value.

Recalling the definition δy = εη(x), and noting that η(x) = dy/dε, we may
interpret the symbol δ to denote the differential obtained when ε is regarded as the

8See Langhaar (1989). Langhaar gives an elegant approach to the derivation of the Euler equation
in Section 3-2.
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independent variable. Then the equation

δI = η
dJ

dε

∣∣∣∣
ε=0

=
∫ x1

x0

(ηFy + η′Fy′) dx (1-29.7)

is called the first variation of the integral I . Hence, the terminology stationary
character of an integral means the same thing as vanishing of the first variation of
the integral.

REFERENCES

Abraham, F., Walkup, R., Gao, H., Duchaineau, M., La Rubia, T. D., and Seager, M.
2002. Simulating Materials Failure by Using up to One Billion Atoms and the World’s
Fastest Computer: Work-hardening, Proc. Natl. Acad. Sci. USA, 99(9): 5783–5787.

Arroyo, M., and Belytshko, T. 2005. Continuum Mechanics Modeling and Simulation of
Carbon Nanotubes, Mechanica , 40: 455–469.

Atrek, E., Gallagher, R. H., Ragsdell, K. M., and Zienkiewicz, O. C. (eds.) 1984. New
Directions in Optimal Structural Design . New York: John Wiley & Sons.

Belytschko, T., and Xiao, S. P. 2003. Coupling Methods for Continuum Model with
Molecular Model, Intl. J. Multiscale Comput. Engr., 1(1): 115–126.

Belytschko, T., Xiao, S. P., Schatz, G. C., and Ruoff, R. S. 2002. Atomistic Simulations
of Nanotubes Fracture, Phys. Rev. B , 65: 235–430.

Birkhoff, G., and MacLane, S. 2008. A Survey of Modern Algebra , Natick, MA: A.K.
Peters Ltd.

Boresi, A. P., Chong, K. P., and Saigal, S. 2002. Approximate Solution Methods in Engi-
neering Mechanics . New York: John Wiley & Sons.

Brebbia, C. A. 1988. The Boundary Element Method for Engineers . New York: John Wiley
& Sons.

Cheung, Y. K., and Tham, L. G. 1997. Finite Strip Method . Boca Raton, FL: CRC Press.

Chong, K. P. 2004. Nanoscience and Engineering in Mechanics and Materials, J. Phys.
Chem. Solids , 65: 1501–1506.

Chong, K. P. 2010. Translational Research in Nano, Bio Science and Engineering, 1st
Global Congress on Nanoengineering for Medicine & Biology, ASME Proc. NEMB
2010–13384, Houston, TX.

Chong, K. P., and Davis, D. C. 2000. Engineering System Research in the Information
Technology Age, ASCE J. Infrastruct. Syst., March: 1–3.

Chong, K. P., and Smith, J. W. 1984. Mechanical Characterization, in Chong, K. P., and
Smith, J. W. (eds.), Mechanics of Oil Shale, Chapter 5. London: Elsevier Applied
Science Publishing Company.

Chong, K. P., Liu, S. C., and Li, J. C. (eds.) 1990. Intelligent Structures . London: Elsevier
Applied Science Publishing Company.

Chong, K. P., Dillon, O. W., Scalzi, J. B., and Spitzig, W. A. 1994. Engineering Research
in Composite and Smart Structures, Compos. Engr., 4(8): 829–852.

Courant, R. 1992. Differential and Integral Calculus , Vols. I and II. New York: John
Wiley & Sons.



REFERENCES 61

Courant, R., and Hilbert, D. 1989. Methods of Mathematical Physics , Vols. I and II.
New York: John Wiley & Sons.

Dally, J. W., and Riley, W. F. 2005. Experimental Stress Analysis , Knoxville, TN: College
House Enterprises.

Dove, R. C., and Adams, P. H. 1964. Experimental Stress Analysis and Motion Measure-
ment . Columbus, OH: Charles E. Merrill Publishing Company.

Dvorak, G. J. (ed.) 1999. Research Trends in Solid Mechanics, Intl. J. Solids Struct.,
37(1&2): Special Issues.

Eisenhart, L. P. 2005. Coordinate Geometry . New York: Dover Publishing.

Ellis, T. M. R., and Semenkov, O. I. (eds.) 1983. Advances in CAD/CAM . Amsterdam:
North-Holland Publishing Company.

Eringen, A. C. 1980. Mechanics of Continua . Melbourne, FL: Krieger Publishing
Company.

Fosdick, L. D. (ed.) 1996. An Introduction to High-Performance Scientific Computing .
Boston: MIT Press.

Fung, Y. C. 1967. Elasticity of Soft Tissues in Simple Elongation, Am. J. Physiol., 28:
1532–1544.

Fung, Y. C. 1983. On the Foundations of Biomechanics, ASME J. Appl. Mech., 50:
1003–1009.

Fung, Y. C. 1990. Biomechanics: Motion, Flow, Stress, and Growth . New York: Springer.

Fung, Y. C. 1993. Biomechanics: Material Properties of Living Tissues . New York:
Springer.

Fung, Y. C. 1995. Stress, Strain, Growth, and Remodeling of Living Organisms, Z. Angew.
Math. Phys., 46: S469–482.

Gilbert, L. 2008. Elements of Modern Algebra . Belmont, CA: Brooks/Cole Publishing.

Goursat, E. 2005. A Course in Mathematical Analysis , Vol. I, Section 149. Ann Arbor,
MI: Scholarly Publishing Office, University of Michigan Library.

Green, A. E., and Adkins, J. E. 1970. Large Elastic Deformations , 2nd ed. London: Oxford
University Press.

Green, A. E., and Zerna, W. 2002. Theoretical Elasticity . New York: Dover Publications.

Greenspan, D. 1965. Introductory Numerical Analysis of Elliptic Boundary Value Prob-
lems . New York: Harper & Row.

Hildebrand, F. B. 1992. Methods of Applied Mathematics . New York: Dover Publications.

Humphrey, J. D. 2002. Continuum Biomechanics of Soft Biological Tissues, Proc. R. Soc.
Lond. A, 459: 3–46.

Ince, E. L. 2009. Ordinary Differential Equations . New York: Dover Publications.

Khang, D.-Y., Jiang, H., Huang, Y., and Rogers, J. A. 2006. A Stretchable Form of Single-
Crystal Silicon for High-Performance Electronics on Rubber Substrates, Science, 311:
208–212.

Kirsch, U. 1993. Structural Optimization . New York: Springer.

Knops, R. J., and Payne, L. E. 1971. Uniqueness Theorems in Linear Elasticity .
New York: Springer.

Lamit, L. 2007. Moving from 2D to 3D for Engineering Design: Challenges and Oppor-
tunities . BookSurge, LLC; www.booksurge.com.



62 INTRODUCTORY CONCEPTS AND MATHEMATICS

Lancaster, P., and Tismenetsky, M. 1985. The Theory of Matrices , 2nd ed. New York:
Academic Press.

Langhaar, H. L. 1989. Energy Methods in Applied Mechanics . Melbourne, FL: Krieger
Publishing Company.

Liu, W. K., Karpov, E. G., Zhang, S., and Park, H. S. 2004. An Introduction to Com-
putational Nanomechanics and Materials, Comput. Methods Appl. Mech. Engr., 193:
1529–1578.

Londer, R. 1985. Access to Supercomputers. Mosaic 16(3): 26–32.

Love, A. E. H. 2009. A Treatise on the Mathematical Theory of Elasticity . Bel Air, CA:
BiblioBazaar Publishing.

Masud, A., and Kannan, R. 2009. A Multiscale Framework for Computational Nanome-
chanics: Application to the Modeling of Carbon Nanotubes, Intl. J. Numer. Meth. Engr.,
78(7): 863–882.

Mendelson, A. 1983. Plasticity: Theory and Applications . Melbourne, FL: Krieger Pub-
lishing Company.

Meyers, M. A., Chen, P., Lin, A. Y., and Seki, Y. 2008. Biological Materials: Structure
and Mechanical Properties, Prog. Mat. Sci., 53: 1–206.

Moon, F. C., et al. 2003. Future Research Directions in Solid Mechanics. Final Report
of the American Academy of Mechanics (AAM), Submitted to the National Science
Foundation (Program Director: K. P. Chong); AAM Mechanics , Vol. 32, Nos. 7–8.

Morris, M., and Brown, O. E. 1964. Differential Equations , 4th ed. Englewood Cliffs,
NJ: Prentice-Hall.

Muskhelishvili, N. I. 1975. Some Basic Problems of the Mathematical Theory of Elasticity .
Leyden, The Netherlands: Noordhoff International Publishing Company.

Naghdi, P. M., and Hsu, C. S. 1961. On a Representation of Displacements in Linear
Elasticity in Terms of Three Stress Functions. J. Math. Mech., 10(2): 233–246.

Oden, J. T. (ed.) 2000. Research Directions in Computational Mechanics , sponsored by
the United States Committee in Theoretical and Applied Mechanics, NRC Publ.

Oden, J. T (Chair), 2006. Simulation-Based Engineering Science: Revolutionizing
Engineering Science Through Simulation. Report of the National Science Foun-
dation Blue Ribbon Panel on Simulation-Based Engineering Science, available at
http://www.nsf.gov/publications/pub_summ.jsp?ods_key = sbes0506.

Pipes, L. 1959. Applied Mathematics for Engineers and Physicists , 2nd ed. New York:
McGraw-Hill Book Company.

Reed, M. A., and Kirk, W. P. (eds.). 1989. Nanostructure Physics and Fabrication .
New York: Academic Press.

Ritchie, R. O., Buehler, M. J., and Hansma, P. 2009. Plasticity and Toughness in Bone,
Phys. Today , June: 41–47.

Rogers, C. A., and Rogers, R. C. (eds.) 1992. Recent Advances in Adaptive and Sensory
Materials . Lancaster, PA: Technomic Publishing.

Ruud, C. O., and Green, R. E., Jr. 1984. Nondestructive Methods for Material Property
Determination . New York: Plenum Press.

Schreiber, E., Orson, L. A., and Soga, N. 1973. Elastic Constants and Their Measurements .
New York: McGraw-Hill Book Company.

Spain, B. 2003. Tensor Calculus . New York: Dover Publishing.



BIBLIOGRAPHY 63

Srivastava, D., Makeev, M. A., Menon, M., and Osman, M. 2007. Computational Nanome-
chanics and Thermal Transport in Nanotubes and Nanowires, J. Nanosci. Nanotech.,
8(1): 1–23.

Sternberg, E. 1960. On Some Recent Developments in the Linear Theory of Elasticity, in
Structural Mechanics . Elmsford, NY: Pergamon Press.

Stippes, M. 1967. A Note on Stress Functions, Intl. J. Solids Struct., 3: 705–711.

Synge, J. L., and Schild, A. 1978. Tensor Calculus . New York: Dover Publications.

Thoft-Christensen, P., and Baker, M. J. 1982. Structural Reliability Theory and Its Appli-
cations . Berlin: Springer.

Timp, G. (ed.). 1999. Nanotechnology . New York: Springer.

Trimmer, W. (ed.) 1990. Micromechanics and MEMS . Piscataway, NJ: IEEE Press.

Tsompanakis, Y., Lagaros, N. D., and Papadrakakis, M. (eds.) 2008. Structural Design
Optimization Considering Uncertainties . London: Taylor & Francis.

Udd, E. (ed.). 1995. Fibre Optic Smart Structures , New York: John Wiley & Sons.

Wagner, G. J., Jones, R. E., Templeton, J. A., and Parks, M. L. 2008. An Atomistic-
to-Continuum Coupling Method for Heat Transfer in Solids, Comput. Methods Appl.
Mech. Engr., 197: 3351–3365.

Wen, Y.-K. (ed.) 1984. Probabilistic Mechanics and Structural Reliability . New York:
American Society of Civil Engineers.

Yang, H. Y., and Chong, K. P. 1984. Finite Strip Method with X-Spline Functions.
Comput. Struct., 18(1): 127–132.

Yang, L. T., and Pan, Y., (eds.) 2004. High Performance Scientific and Engineering Com-
puting: Hardware and Software Support . Norwell, MA: Kluwer Academic Publisher.

Yao, J. T. P. 1985. Safety and Reliability of Existing Structures . Boston: Pitman Advanced
Publishing Program.

Zienkiewicz, O. C., and Taylor, R. L. 2005. The Finite Element Method , 6th ed., London:
Elsevier Butterworth-Heinemann Publishing.

BIBLIOGRAPHY

Boresi, A. P., and Schmidt, R. J. 2000. Engineering Mechanics: Dynamics , Pacific Groove,
CA: Brooks/Cole Publishing.

Brand, L. Vector and Tensor Analysis . New York: John Wiley & Sons, 1962.

Chong, K. P., Dewey, B. R., and Pell, K. M. University Programs in Computer-Aided
Engineering, Design, and Manufacturing . Reston, VA: ASCE, 1989.

Danielson, D. A. Vectors and Tensors in Engineering and Physics . Boulder, CO: Westview
Press, 2003.

Dym, C. L., and Shames, I. H. Solid Mechanics: A Variation Approach . New York:
McGraw-Hill Book Company, 1973.

Edelen, D. G. B., and Kydoniefs, A. D. An Introduction to Linear Algebra for Science
and Engineering , 2nd ed. New York: Elsevier Science Publishing Company, 1980.

Eisele, J. A., and Mason, R. M. Applied Matrix and Tensor Analysis . New York: Wiley-
Interscience Publishers, 1970.

Eisberg, R., and Resnick, R. Quantum Physics , New York: John Wiley & Sons, 1985.



64 INTRODUCTORY CONCEPTS AND MATHEMATICS

Gere, J. M., and Weaver, W. Matrix Algebra for Engineers , 2nd ed. Boston: Pringle,
Weber, and Scott Publishers, 1984.

Jeffreys, H. Cartesian Tensors . New York: Cambridge University Press, 1987.

Kemmer, N. Vector Analysis . London: Cambridge University Press, 1977.
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