
C H A P T E R

1
Defining What’s on Your Plate:

The Foundation of a
Test Project

Testing requires a tight focus. It’s easy to try to do too much. You could run an
infinite number of tests against any nontrivial piece of software or hardware.
Even if you try to focus on what you think might be ‘‘good enough’’ quality,
you can find that such testing is too expensive or that you have trouble figuring
out what ‘‘good enough’’ means for your customers and users. Before I start
to develop the test system — the testware, the test environment, and the test
process — and before I hire the test team, I figure out what I might test, then
what I should test, and finally what I can test. Determining the answers to these
questions helps me plan and focus my test efforts.

What I might test are all those untested areas that fall within the purview
of my test organization. On every project in which I’ve been involved, some
amount of the test effort fell to organizations outside my area of responsibility.
Testing an area that another group already covered adds little value, wastes
time and money, and can create political problems for you.

What I should test are those untested areas that directly affect the customers’
and users’ experience of quality. People often use buggy software and com-
puters and remain satisfied nevertheless. Either they never encounter the bugs
or the bugs don’t significantly hinder their work. Our test efforts should focus
on finding the critical defects that will limit people’s ability to get work done
with our products.

What I can test are those untested, critical areas on which my limited
resources are best spent. Can I test everything I should? Not likely, given the
schedule and budget I usually have available.1 On most projects, I must make

1You can find the first mention of this difficult test management problem in Glenford Myers’s
The Art of Software Testing.

1

CO
PYRIG

HTED
 M

ATERIA
L



2 Chapter 1 ■ Defining What’s on Your Plate

tough choices, using limited information, on a tight schedule. I also need to
sell the test project to my managers to get the resources and the time I need.

What You Might Test: The Extended Test Effort

On my favorite software and system projects, testing was pervasive. By this,
I mean that a lot of testing went on outside the independent test team.
In addition, testing started early. This arrangement not only made sense
technically, but also kept my team’s workload manageable. This section
uses two lenses to examine how groups outside the formal test organization
contribute to testing. The first lens is the level of focus — the granularity — of
a test. The second is the type of testing performed within various test phases.
Perhaps other organizations within your company could be (or are) helping
you test.

From Microscope to Telescope: Test Granularity
Test granularity refers to the fineness or coarseness of a test’s focus. A
fine-grained test case allows the tester to check low-level details, often internal
to the system. A coarse-grained test case provides the tester with information
about general system behavior. You can think of test granularity as running
along a spectrum ranging from structural (white-box) to behavioral (black-box
and live) tests, as shown in Figure 1-1.

Programmers 
DB/Net/System Admins
Electrical/Mechanical Engineers

Ideal
Testers:

Test
Granularity:

Test Engineers
Test Technicians

(Some) Programmers

Tech Support/Help Desk
Sales/Marketing 

Business Analysts/Users

Live
(Alpha, Beta, or Acceptance)

Behavioral
(Black-Box)

Structural
(White-Box)

Figure 1-1 The test granularity spectrum and owners

Structural (White-Box) Tests
Structural tests (also known as white-box tests and glass-box tests) find bugs in
low-level structural elements such as lines of code, database schemas, chips,
subassemblies, and interfaces. The tester bases structural tests on how a system
operates. For example, a structural test might reveal that the database that
stores user preferences has space to store an 80-character username, but that
the field allows the user to enter only 40 characters.

Structural testing involves a detailed technical knowledge of the system.
For software, testers create structural tests by looking at the code and the data
structures themselves. For hardware, testers create structural tests to compare
chip specifications to readings on oscilloscopes or voltage meters. Structural
tests thus fit well in the development area. Testers in an independent test



Chapter 1 ■ Defining What’s on Your Plate 3

team — who often have little exposure to low-level details and might lack
programming or engineering skills — find it difficult to perform structural
testing.

Structural tests also involve knowledge of structural testing techniques. Not
all programmers learn these techniques as part of their initial education and
ongoing skills growth. In such cases, having a member of the test team work
with the programmers as a subject-matter expert can promote good structural
testing. This person can help train the programmers in the techniques needed
to find bugs at a structural level.

Behavioral (Black-Box) Tests
Testers use behavioral tests (also known as black-box tests) to find bugs
in high-level operations, such as major features, operational profiles, and
customer scenarios. Testers can create black-box functional tests based on what
a system should do. For example, if SpeedyWriter should include a feature
that saves files in XML format, then you should test whether it does so. Testers
can also create black-box non-functional tests based on how a system should do
what it does. For example, if DataRocket can achieve an effective throughput
of only 10 Mbps across two 1-gigabit Ethernet connections acting as a bridge,
a black-box network-performance test can find this bug.

Behavioral testing involves a detailed understanding of the application
domain, the business problem that the system solves, and the mission the sys-
tem serves. When testers understand the design of the system, at least at a high
level, they can augment their behavioral tests to effectively find bugs common
to that type of design. For example, programs implemented in languages like
C and C++ can — depending on the programmers’ diligence — suffer from
serious security bugs related to buffer overflows.

In addition to the application domain and some of the technological issues
surrounding the system under test, behavioral testers must understand the
special behavioral test techniques that are most effective at finding such
bugs. While some behavioral tests look at typical user scenarios, many tests
exercise extremes, interfaces, boundaries, and error conditions. Bugs thrive in
such boundaries, and behavioral testing involves searching for defects, just
as structural testing does. Good behavioral testers use scripts, requirements,
documentation, and testing skills to guide them to these bugs. Simply playing
around with the system or demonstrating that the system works under average
conditions are not effective techniques for behavioral testing, although many
test teams make the mistake of adopting these as the sole test techniques. Good
behavioral tests, like good structural tests, are structured, methodical, and often
repeatable sequences of tester-created conditions that probe suspected system
weaknesses and strive to find bugs, but through the external interfaces of the
system under test. Most independent test organizations perform primarily
behavioral testing.



4 Chapter 1 ■ Defining What’s on Your Plate

Live Tests

Live tests involve putting customers, content experts, early adopters, and
other end users in front of the system. In some cases, we encourage the
testers to try to break the system. Beta testing is a well-known form of
bug-driven live testing. For example, if the SpeedyWriter product has certain
configuration-specific bugs, live testing might be the best way to catch those
bugs specific to unusual or obscure configurations. In other cases, the testers
try to demonstrate conformance to requirements, as in acceptance testing,
another common form of live testing.

Live tests can follow general scripts or checklists, but live tests are often
ad hoc (worst case) or exploratory (best case). They don’t focus on system
weaknesses except for the ‘‘error guessing’’ that comes from experience. Live
testing is a perfect fit for technical support, marketing, and sales organizations
whose members don’t know formal test techniques but do know the appli-
cation domain and the product intimately. This understanding, along with
recollections of the nasty bugs that have bitten them before, allows them to
find bugs that developers and testers miss.

The Complementary and Continuous Nature of Test Granularity

The crew of a fishing boat uses a tight-mesh net to catch 18-inch salmon and
a loose-mesh net to catch six-foot tuna. They might be able to catch a tuna in
a salmon net or vice versa, but it would probably make them less efficient.
Likewise, structural, behavioral, and live tests each are most effective at finding
certain types of bugs. Many great test efforts include a mix of all three types.

While my test teams focus on behavioral testing typically, I don’t feel bound
to declare my test group ‘‘the black-box bunch.’’ I’ve frequently used structural
test tools and cases effectively as part of my system test efforts. I’ve also used
live production data in system testing. Both required advanced planning,
but paid off handsomely in terms of efficiency (saved time and effort) and
effectiveness (bugs found that we might have missed). Test granularity is a
spectrum, not an either/or categorization. Mixing these elements can be useful
in creating test conditions or assessing results. I also mix planned test scenarios
with exploratory live testing. I use whatever works.

A Stampede or a March? Test Phases
The period of test execution activity during development or maintenance is
sometimes an undifferentiated blob. Testing begins, testers run some (vaguely
defined) tests and identify some bugs, and then, at some point, project manage-
ment declares testing complete. As development and maintenance processes
mature, however, companies tend to adopt an approach of partitioning testing



Chapter 1 ■ Defining What’s on Your Plate 5

into a sequence of phases (sometimes called levels). Ownership of those various
phases can differ; it’s not always the test team. There are various commonly
encountered test phases, although these often go by different names.

Unit Testing

Unit testing focuses on an individual piece of code. What constitutes an
individual piece of code is somewhat ambiguous in practice. I usually explain
to our clients that unit testing should focus on the smallest construct that one
could meaningfully test in isolation. With procedural programming languages
such as C, unit testing should involve a single function. For object-oriented
languages such as Java, unit testing should involve a single class.

Unit testing is not usually a test phase in a project-wide sense of the term,
but rather the last step of writing a piece of code. The programmer can use
structural and behavioral test design techniques, depending on her preferences
and skills, and, possibly, an organizational standard.

Regardless of which test design technique is used, unit tests are white-box in
the sense that the programmer knows the internal structure of the unit under
test and is concerned with how the testing affects the internal operations.
Therefore, programmers usually do the unit testing. Sometimes they test their
own code. Sometimes they test other programmers’ code, often referred to as
buddy tests or code swaps. Sometimes two programmers collaborate on both
the writing and unit testing of code, such as the pair programming technique
advocated by practitioners of the agile development approach called Extreme
Programming.

Component or Subsystem Testing

During the component or subsystem testing, testers focus on the constituent
pieces of the system. Component testing applies to some collection of units
that provide some defined set of capabilities within the system.

Component test execution usually starts when the first component of
the product becomes functional, along with whatever scaffolding, stubs, or
drivers2 are needed to operate this component without the rest of the system.
In our SpeedyWriter product, for example, file manipulation is a component.
For DataRocket, the component test phase would focus on elements such as
the SCSI subsystem: the controller, the hard-disk drives, the CD/DVD drive,
and the tape backup unit.

Component testing should use both structural and behavioral techniques. In
addition, components often require hand-built, individualized test harnesses.
Because of the structural test aspects and the custom harnesses required,

2For a discussion on stubs, drivers, and other such frameworks for component testing, you can
refer to my book Pragmatic Software Testing.



6 Chapter 1 ■ Defining What’s on Your Plate

component testing often requires programmers and hardware engineers.
However, when components are standalone and have well-defined func-
tionality, behavioral testing conducted by independent test teams can work.
For example, I once worked on a Unix operating-system development project
in which the test organization used shell scripts to drive each Unix command
through its paces using the command-line interface — a typical black-box
technique. We later reused these component test scripts in system testing. In
this instance, component testing was a better fit for the test organization.

Integration or Product Testing

Integration or product testing focuses on the relationships and interfaces
between pairs of components and groups of components in the system under
test, often in a staged fashion. Integration testing must happen in coordination
with the project-level activity of integrating the entire system — putting all the
constituent components together, a few components at a time. The staging of
integration and integration testing must follow the same plan — sometimes
called the build plan — so that the right set of components comes together in
the right way and at the right time for the earliest possible discovery of the
most dangerous integration bugs. For SpeedyWriter, integration testing might
start when the developers integrate the file-manipulation component with
the graphical user interface (GUI) and continue as developers integrate more
components one, two, or three at a time, until the product is feature-complete.
For DataRocket, integration testing might begin when the engineers integrate
the motherboard with the power supply, continuing until all components are
in the case.3

Not every project needs a formal integration test phase. If your product is a
set of standalone utilities that don’t share data or invoke one another, you can
probably skip this. However, if the product uses application programming
interfaces (APIs) or a hardware bus to coordinate activities, share data, and
pass control, you have a tightly integrated set of components that can work
fine alone yet fail badly together.

The ownership of integration testing depends on a number of factors.
One is skill. Usually, testers will use structural techniques to perform inte-
gration testing; some independent test teams do not have sufficient internal
system expertise. Another is resources. Project plans sometimes neglect or

3Since this is a book on test management, not test design, I don’t want to diverge into a long
technical discussion of how to do this. Instead, I can recommend three books for your test
engineers to read. If they can find a copy, Boris Beizer’s Software System Testing and Quality
Assurance remains one of the best. If they can’t find that, my own book Pragmatic Software Testing
contains a chapter on integration testing that summarizes Beizer’s discussion as well as some
other useful ideas. Finally, Rick Craig and Stefan Jaskiel’s book, Systematic Software Testing, does
a good job of explaining this topic as well.



Chapter 1 ■ Defining What’s on Your Plate 7

undersize this important task, and neither the development manager nor the
test manager will have the resources (human or machine) required for inte-
gration testing. Finally, unit and component testing tends to happen at the
individual-programmer level when owned by the development team — each
programmer tests her own component or swaps testing tasks with her pro-
grammer peer — but this model won’t work for integration testing. In these
circumstances, unfortunately, I have seen the development manager assign
this critical responsibility to the most junior member of the programming
team. In such cases, it would be far better for the test team to add the necessary
resources — including appropriately skilled people — to handle the integra-
tion testing. When the product I’m testing needs integration testing, I plan to
spend some time with my development counterparts working out who should
do it.

String Testing

String testing focuses on problems in typical usage scripts and customer
operational strings. This phase is a rare bird. I have seen it used only once,
when it involved a strictly black-box variation on integration testing. In the
case of SpeedyWriter, string testing might involve cases such as encrypting
and decrypting a document, or creating, printing, and saving a document.

System Testing

System testing encompasses the entire system, fully integrated. Sometimes,
as in installation and usability testing, these tests look at the system from a
customer or end-user point of view. Other times, these tests stress particular
aspects of the system that users might not notice, but are critical to proper sys-
tem behavior. For SpeedyWriter, system testing would address such concerns
as installation, performance, and printer compatibility. For DataRocket, system
testing would cover issues such as performance and network compatibility.

System testing tends to be behavioral. When doing system testing, my
test teams apply structural techniques to force certain stressful conditions
that they can’t create through the user interface — especially load and error
conditions — but they usually evaluate the pass/fail criteria at an external
interface. Where independent test organizations exist, they often run the
system tests.

Acceptance or User-Acceptance Testing

From unit testing through to system testing, finding bugs is a typical test
objective. Before you start acceptance testing, though, you generally want
to have found all the bugs. The test objective is to demonstrate that the
system meets requirements. This phase of testing is common in contractual



8 Chapter 1 ■ Defining What’s on Your Plate

situations, when successful completion of acceptance tests obligates a buyer to
accept a system. For in-house IT development efforts, successful completion
of the acceptance tests triggers deployment of the software in a production
environment.

In commercial software and hardware development, acceptance tests are
sometimes called alpha tests (executed by in-house users) and beta tests (exe-
cuted by current and potential customers). Alpha and beta tests, when
performed, might be about demonstrating a product’s readiness for mar-
ket, although many organizations also use these tests to find bugs that can’t be
(or weren’t) detected in the system testing process.

Acceptance testing can involve live data, environments, and user scenar-
ios. The focus is usually on typical product-usage scenarios, not extreme
conditions. Therefore, marketing, sales, technical support, beta customers,
and even company executives are perfect candidates to run acceptance tests.
(Two of my clients — one a small software startup and the other a large PC
manufacturer — use their CEOs in acceptance testing; the product ships only
if the CEO likes it.) Test organizations often support the acceptance testing;
provide test tools, suites, and data that they developed during system testing;
and, with user ‘‘witnessing,’’ sometimes execute the acceptance tests.

Pilot Testing

Hardware development often involves pilot testing, either following or in
parallel with acceptance tests. Pilot testing checks the ability of the assembly
line to mass-produce the finished system. I have also seen this phase included
in in-house and custom software development, where it demonstrates that
the system will perform all the necessary operations in a live environment
with a limited set of real customers. Unless your test organization is involved
in production or operations, you probably won’t be responsible for pilot
testing.

Why Do I Prefer a Phased Test Approach?

As you’ve seen, a phased test approach marches methodically across the test
focus granularity spectrum, from structural tests to behavioral tests to live
tests. Such an approach can provide the following benefits:

Structural testing can build product stability. Some bugs are simple for
developers to fix but difficult for the test organization to live with. You
can’t do performance testing if SpeedyWriter corrupts the hard disk and
crashes the system after 10 minutes of use.



Chapter 1 ■ Defining What’s on Your Plate 9

Structural testing using scaffolding or stubs can start early. For example,
you might receive an engineering version of DataRocket that is merely a
motherboard, a SCSI subsystem, and a power supply on a foam pad. By
plugging in a cheap video card, an old monitor, and a DVD drive, you
can start testing basic I/O operations.

You can detect bugs earlier and more efficiently, as mentioned previously.

You can precisely and quantitatively manage the bug levels in your
system as you move through the project.

Phases provide real and psychological milestones against which the
project team can gauge the quality of the system and thus the project’s
proximity to completion.

I’ll explain the last two benefits in more detail in Chapters 4 and 9.

Test Phase Sequencing

Figure 1-2 shows a common sequence of the execution activities for various
test phases. On your projects, the execution activities in these phases might be
of different relative lengths. The degree of overlap between execution activities
in different phases varies considerably depending on entry and exit criteria for
each phase, which I’ll discuss in Chapter 2, and on the project life cycle, which
I’ll discuss in Chapter 12. Quite a few organizations omit the test phases that
I’ve shown with dotted lines in the figure. There’s no need to divide your test
effort exactly into the six test phases diagrammed in Figure 1-2. Start with the
approach that best fits your needs and let your process mature organically.

Component

System

Acceptance

Pilot

Unit

Integration or String

Project Test Execution Period

Figure 1-2 The test execution period for various test phases in a development project

When I plan test sequencing, I try to start each test phase as early as possible.
Software industry studies have shown that the cost of fixing a bug found just
one test phase earlier can be lower by an order of magnitude or more, and my
experience leads me to believe that the same argument applies to hardware



10 Chapter 1 ■ Defining What’s on Your Plate

development.4 In addition, finding more bugs earlier in testing increases the
total number of bugs you’ll find. On unique, leading-edge projects, I need to
test basic design assumptions. The more realistic I make this testing, the more
risk mitigation I achieve.

This rule of starting test phases as early as possible has some caveats. Since
the nasty, hard-to-fix problems often first rear their ugly heads in behavioral
testing, moving into integration or system testing early can buy the project
more time to fix them. However, you need to make sure that the earlier phases
of testing found and fixed enough bugs to adequately stabilize the product and
make it ready for such testing. Otherwise, you’ll enter a later phase of testing
before the product is ready, and spend a lot of time working inefficiently, with
many blocked tests and hard-to-isolate bugs.

This is complicated by another common project failing. One of the main
challenges with unit testing and other phases of testing typically owned by the
programmers relates to whether these tests actually get done. Rushed for time,
and knowing an independent test team will get the code somewhere down
the line, programmers sometimes are tempted to skip these tests. Even if such
tests do get done, as I mentioned before, not all programmers know how to
do them properly. So, it makes sense to have some amount of engagement
between your test team with the development team to help ensure that these
tests get done and get done properly.

The First Cut
At this point, you have some ideas about how other organizations attack the
division of the test roles. Now you can look at the testing that already goes
on in your organization and locate gaps. If you are establishing a new test
organization, you might find that folks who tested certain areas on previous
projects believe that they needn’t continue testing now that you’re here. (I touch
on this topic more in Chapter 9 when I discuss how development groups can
become ‘‘addicted’’ to the test team.) After identifying past test contributions, I
make sure to close the loop and get commitments from individual contributors
(and their managers) that they will continue to test in the future.

What You Should Test: Considering Quality

Once I’ve identified the areas of testing that might be appropriate for my test
organization, my next step is to figure out what I should test. To do this, I must
understand what quality means for the system, and the risks to system quality

4For example, see Stephen Kan’s Metrics and Models in Software Quality, Jack Campanella’s
Principles of Quality Costs, and Capers Jones’s Estimating Software Costs.



Chapter 1 ■ Defining What’s on Your Plate 11

that exist. While quality is sometimes seen as a complex and contentious topic,
I have found a pragmatic approach.

Three Blind Men and an Elephant: Can You Define
Quality?
There’s a management parable about three blind men who came across an
elephant. One touched the tail and declared it a snake. Another touched a
leg and insisted that it was a tree. The third touched the elephant’s side and
claimed that it was a wall.

Defining quality can be a similar process. Everyone knows what they mean
by quality, but disagreements abound. Have you debated with developers
over whether a particular test case failure was really a bug? If so, weren’t
these debates in fact about whether the observed behavior was a quality
issue? What, really, is quality? What factors determine its presence or absence?
Whose opinions matter most?

J. M. Juran, a respected figure in the field of quality management, defines
quality as ‘‘features [that] are decisive as to product performance and as to
‘product satisfaction’. . . . The word ‘quality’ also refers to freedom from
deficiencies . . . [that] result in complaints, claims, returns, rework and other
damage. Those collectively are forms of ‘product dissatisfaction.’’’5 Testing
should cover the decisive features, those that determine customer and user
satisfaction, and try to find as many as possible of the bugs that would result
in dissatisfaction.

As the project team develops or maintains a system, the project team is
exposed to various risks related to not implementing all of the satisfying
features and to implementing some of them improperly. These risks can
collectively be called quality risks, since these risks relate to the possibility of
a negative or undesirable outcome related to the quality of the system. As
we execute our tests, we might discover failures related to these risks. At the
most general level, the process of testing should allow the test organization to
assess the quality risks and to understand the failures that exist in the system
under test.

After a system is released, customers or users who encounter bugs might
experience dissatisfaction and then make complaints, return merchandise, or
call technical support. This makes the users and customers the arbiters of
quality. Who are these people, and what do they intend to do with the system?
For our purposes, let’s assume that customers are people who have paid or will
pay money to use your system and that they expect your system to do what a

5This is from Juran’s book Juran on Planning for Quality. In his book Quality Is Free, Phillip Crosby
argues that quality is conformance to requirements — nothing more and nothing less. But when
was the last time you worked on a project with complete, unambiguous requirements?



12 Chapter 1 ■ Defining What’s on Your Plate

similar system, in the same class and of the same type, should reasonably do.
The users might also be customers, or they might be people who did not pay
for the product or its development, but use it or its output to get work done.

Testing looks for situations in which a product fails to meet customers’ or
users’ reasonable expectations in specific areas. For example, IBM evaluates
customer satisfaction in terms of capability (functions), usability, performance,
reliability, installability, maintainability, documentation/information, service,
and overall fitness for use. Hewlett-Packard uses the categories of functionality,
usability, reliability, performance, and serviceability.

The Perils of Divergent Experiences of Quality
As people use a product — a car, an espresso machine, a bar of soap — they
form opinions about how well that product fulfills their expectations. These
impressions, good or bad, become their experience of quality for that product.
Test teams try to assess quality during test execution. In other words, you and
your test team use the test system — the testware, the test environment, and
the test process as discussed in Chapter 3 — to gauge, in advance, customers’
experiences of quality. I refer to the extent to which the test system allows
testers to do this as the fidelity of the test system.

Figures 1-3 and 1-4 provide visual representations of two test systems. In
both figures, the circles represent the sets of quality risks for a product. In
Figure 1-3, test system A allows the tester to cover a majority of the product’s
quality risks and also to cover those areas that affect user A’s experience of
quality.

User experience of
product quality

Tester experience of
product quality

User A Product

Tester A Product

Test system A allows
tester A to understand
user A’s—and other
users’—experiences
of quality, because the
test system covers the
important quality
risks, including those
affecting user A.

Test System A

Figure 1-3 A high-fidelity test system

Test system B, shown in Figure 1-4, fails in both respects. It covers a smaller
portion of the product’s quality risks. Worse yet, the portion tested does not
cover user B’s experience of quality.



Chapter 1 ■ Defining What’s on Your Plate 13

User experience of
product quality

Tester experience of
product quality

User B Product

Tester B

Product

Test system B 
doesn’t allow tester B 
to understand user B’s 
experience of quality.
Test coverage doesn’t 
align with user B’s 
key concerns. Quality
risks are poorly
addressed.

Test System B

Figure 1-4 A low-fidelity test system

Two other scenarios are possible. First, suppose that you have a test system
with the same degree of coverage as test system B, but that the coverage area
aligns with user B’s use of the product. In this case, your test team will do a fine
job of catching critical defects — at least from user B’s perspective. You’ll also
be able to explain how those defects will affect the users, which is important
in terms of establishing priority. If most users, including your most important
ones, use the product the same way user B does, then test system B, coverage
limitations notwithstanding, is a good test system.

Second, suppose that you have a test system with the same degree of
coverage as test system A, but that the coverage area does not align with
user A’s usage of the product. In this case, you fail to test the quality risks
that user A cares about. In addition, you can’t relate the results of the testing
you do perform to real-world usage scenarios, which reduces the apparent
priority of any defects you find. Since these features will probably reach
the field buggy, user A will be dissatisfied. If user A is typical of your
customer base — especially your important customers — you have a serious
test coverage problem, even though the test system covers most of the product’s
quality risks.

Figure 1-5 represents these scenarios. Of course, you can’t test all of the
quality risks and none of the customer uses, or vice versa. In Figure 1-5, these
unlikely or unreachable zones are shown in the dotted-line-enclosed areas in
the upper left and lower right. The best test systems score on the right-hand
side of the chart (covering customer usage), and the farther up the right-hand
side you get (the more quality risks you cover), the better your test system.
Those quality risks that relate most closely to actual customer usage are the
critical quality risks.



14 Chapter 1 ■ Defining What’s on Your Plate

100%

100%

GoodWorst

Customer Use Coverage

Qu
al

ity
 R

is
k 

Co
ve

ra
ge

Poor Excellent

Figure 1-5 Test system coverage and its ability to assess quality

So, how do you determine the customer-critical quality risks? You want to
address as many of these quality risks as possible, developing and executing
tests consistent with customer priorities in both order and emphasis. Various
quality risk analysis techniques will allow you to do so, so let’s look at them
now.

What to Worry About: How to Analyze Quality Risks
The next few pages discuss risk-based testing. Let me start by clarifying some
terms and concepts. First, risk generally means the possibility of a negative or
undesirable outcome or event. Specific to our area of concern, testing, we can
say that a risk is any possible problem that would decrease customer, user,
participant, or stakeholder perceptions of product quality or project success.

When the primary effect of a potential problem is to impact project success,
we can call it a project risk. For example, a possible test environment problem
that could delay completion of a project is a project risk. When the primary
effect of a potential problem is on the quality of the product itself, we can call
it a quality risk. For example, a possible performance defect that could cause a
system to respond slowly during normal operation is a quality risk. I’ll cover
how testing should deal with project risks in the next chapter. In this chapter,
I focus on quality risks.

Risks differ in terms of importance, which I refer to as the level of risk. Later
in this section, we’ll look at some intricate ways to determine the level of risk,
but we’ll start with a simple approach that considers two factors:

The likelihood of the problem occurring

The impact of the problem should it occur

To determine likelihood, you generally focus on technical considerations,
such as the programming language, network throughput, and so forth. To
determine impact, you generally focus on business considerations, such as the
potential financial impact of a problem, the frequency with which users or
customers will encounter a problem, and so forth. While I refer to this as a



Chapter 1 ■ Defining What’s on Your Plate 15

simple approach to determine the level of risk, it is often sufficient for many
organizations.

Analytical risk-based testing strategies start with quality risk analysis to
identify risk items and determine the level of risk for each risk item. You then
address the quality risks in four ways:

Allocation of effort. During planning, preparation, and execution of
testing, you allocate effort for each quality risk item based on the level of
risk. Individual testers should match the rigor and extensiveness of the
test techniques to the level of risk.

Test sequencing. During planning, preparation, and execution of testing,
test managers and testers attack the risks in risk priority order, starting
with the most important quality risks first and working their way down
to the less important ones.

Test triage. If needed during test execution, should management reduce
the time or resources available for testing, you can delete tests from the
test plan in reverse-risk priority order, starting with the least important
tests.

Reporting test results. Test managers should report test results in terms
of risk. You’ll look at this more closely in Chapters 4 and 5.

With these preliminaries out of the way, let’s get into the details. First I’ll
review some of the properties and benefits of analytical risk-based testing
strategies. Next I’ll show you a couple of checklists you can use as frameworks
and mental aids for quality risk identification. I’ll then discuss processes,
techniques, and templates that you can use for quality risk analysis. Finally,
I’ll cover some tips and challenges associated with quality risk analysis.

Properties and Benefits of Analytical Risk-Based Testing

Analytical risk-based testing has six interesting and useful properties, two of
which are fundamental, and four of which are incidental.

First and fundamentally, the testing effort is proportional to the level of risk.
The higher the level of risk for any risk item, the more test effort you expend
to develop and to execute test cases for that risk item.

Second and also fundamentally, test tasks are sequenced based on risk. The
higher the level of risk for any risk item, the earlier you develop the test
cases for that risk item. The test case inherits the level of risk belonging to the
risk item from which you derive the test case. By using the level risk of risk
associated with the test case to sequence the test cases, you can run the test
cases in risk order.

The third property, an incidental one, has to do with the way test execution
reduces the residual level of risk. This incidental property arises from the way



16 Chapter 1 ■ Defining What’s on Your Plate

the first two fundamental properties of risk-based testing influence the overall
level of risk during the project. Because the test cases relate to risks items, and
because you run them in risk order, the overall level of residual quality risk
goes down as test execution continues, and the drop in the overall level of
residual quality risk is most significant in the first quarter of the test execution
period, when you’re running the highest-risk test cases.

The fourth property, also incidental, enables risk-based test results reporting.
Because the test cases relate to risk items, if you preserve traceability between
test cases, bugs found by those test cases, and the risk items from which you
derived those test cases, you can do risk-based test results reporting. This
means that you report your test results not only in terms of bugs (found and
fixed) and test cases (run, passed, and failed), but also in terms of the overall
level of residual quality risk and in terms of specific risk items that have known
failed test cases or known bugs. (You’ll look at traceability in Chapter 3, and
results reporting in Chapters 4 and 5.)

The fifth property, incidental as well, allows intelligent test triage. Since
each test case inherits the level of quality risk from its parent risk item, if you
find yourself forced to reduce the overall test execution effort due to schedule
pressure, you can eliminate the cases in reverse risk order. You will run the
most important tests (and will run them first) and will drop less important tests
(which you would run later in any case) only if you find yourself squeezed at
the end.

The sixth property, and the final incidental one, allows for self-correction
of errors in the risk analysis. This property relates to a weakness inherent in
all analytical test strategies. In any analytical test strategy, you perform an
analysis early in a project and use that analysis to determine the test work
you will do. However, any early analysis will often be based on incorrect
assumptions and information, to some extent, and those invalid concepts
become embedded in the testing. By blending reactive test strategies such as
bug hunting, software attacks, and exploratory testing (discussed in Chapter
3), you introduce a self-correcting element into the test execution process, since
these reactive strategies will tend to identify the holes and mistakes in your
test set that arose due to problems with the analysis. In iterative life cycle
models (which I’ll discuss in Chapter 12), including agile models, you will do
the analysis iteratively, which helps to address this problem as well.

Because of some of these properties, analytical risk-based testing strategies
provide a number of benefits to you as a test manager and to the project team.

First, due to the ability to allocate effort, prioritize test cases, and, if necessary,
to triage test cases, risk-based testing allows you to deal with the common
situation of insufficient time, including the situation where you must make
intelligent test case deletion decisions when management reduces the test
execution period.



Chapter 1 ■ Defining What’s on Your Plate 17

Second, due to the same priorities, risk-based testing helps you make smart
coverage decisions. Remember that, at the outset of this chapter, I said that
an infinite number of tests could be run against any system. So, test coverage,
measured as a percentage of what could be tested, is always 0% because you
must select a finite number of actual test cases from this infinite cloud of
possible test cases. So, how do you choose a smart subset? Risk-based testing
gives you a defensible method for doing this.

A third benefit arises from the process for risk analysis rather than from the
properties of risk-based testing. Best practices for quality risk analysis involve
a broad cross-section of business and technical stakeholders in the risk-analysis
process. Due to this broad stakeholder involvement, even if you receive poor
specifications documents, you can fill in the gaps in those documents based
on what the stakeholders tell you.

A fourth benefit is one offered primarily to the project team, though you
are the bearer of the benefit. Because you can report test results in terms of
residual risk, rather than only bug and test counts, this allows you to give the
project team a solid understanding of the risks associated with releasing the
system at any point in time after test execution begins.

Kick-Starting Quality Risk Analysis with Checklists

In the next section, I describe processes you can use for quality risk analysis.
These processes involve starting with a checklist and developing the list of
quality risk items using that checklist as a framework. So, in this section, let’s
look at two checklists you can use.

The Usual Suspects

To develop the list of major quality risk categories, I start by breaking down
the test process into the phases of component testing, integration testing, and
system testing. Using the guidelines presented earlier in this chapter, you will
have already determined which of these test phases you will run and which
you can skip because other colleagues are covering them.

During unit and component testing, the following major quality risk cate-
gories apply:

States. In some computer systems, especially telephony systems and
embedded software of various types, the components or some set of
components implement what is called a state machine. Incoming events
cause a state machine to transition through clearly defined states, while
the response (the associated output and the subsequent state) to an event
depends on the current state, the event, and any conditions that might
exist. State machines present a variety of quality risks related both to the



18 Chapter 1 ■ Defining What’s on Your Plate

state machine as a whole and to the individual states. Do the transitions
from one state to another occur under the proper conditions? Does the
system generate the correct outputs? Does the system accept and properly
handle both legal and illegal event/condition combinations? Consider an
alarm card in the DataRocket server that sends SNMP information over
the network if problems arise. This component spends most of its time
in a quiescent state, but if it senses that the CPU is overheating, it
transitions to a CPU Overtemp Warn state, during which it sends out
alerts at regular intervals. If the problem does not clear up, the component
transitions to a CPU Overtemp Critical state, at which point it initiates a
system shutdown. You will need to verify that the transitions occur at the
right points and that the component can’t get stuck in a given state. For
example, if the CPU returns to a normal temperature but the alarm card
remains in a CPU Overtemp Warn state, the alarm card will continue to
send (now spurious) alerts over the network and might do something
dangerous, such as transitioning incorrectly to the CPU Overtemp Critical
state.

Transactions. Components that have transactions with the user or with
other components present various risks. For example, creating a new file
is a transaction in SpeedyWriter. Can the user select the appropriate file
template? How does the product respond to illegal file names?

Code coverage. Untested code in a component presents unknown struc-
tural risks. These untested areas often handle unusual or hard-to-create
conditions, which make it tempting to skip them. For example, simulating
the CPU Overtemp Critical condition described earlier might result in
damage to the test configuration. However, how else can you verify that
the system shutdown will actually occur? If it is impractical — because of
CPU placement, for example — to simulate the overheating using a hair
dryer or a soldering iron, you might be forced to sacrifice one CPU to
find out.

Data-flow coverage. A data flow is the transfer of information — either
through parameters, shared (global) data space, or a stored database —
from one component of the system to another. The risks associated with
data flows don’t receive nearly the attention they deserve Programs
allow you to import, export, and link data from other programs, creating
complex data flows. Users sometimes report strange and counterintuitive
failures while using these features. If SpeedyWriter, for example, includes
a component that reads and writes Microsoft Word files, testers must
evaluate this feature across multiple Word versions and with files that
include more than just text. In the hardware world, signal quality testing
is a form of component-level data-flow testing.



Chapter 1 ■ Defining What’s on Your Plate 19

Functionality. Each component exists to implement some set of functions,
which are internal operations such as calculations and formatting. Func-
tional quality risks are generally of two types: either the function behaves
improperly, or the function behaves properly but has undesirable side
effects.

User interface. The quality risks in this area are similar to those encoun-
tered for functionality, but they also include questions of usability such as
understandable prompts and messages, clear control flows, and appropri-
ate color schemes and graphics. User interface testing during component
testing often involves prototypes of the interface.6

Mechanical life. Any object that can be flexed or moved has a limit to
the number of motions it can endure: keys on a keyboard break, hinges
fatigue, buttons snap off, latches crack, and contacts fail.

Signal quality. Any circuit that processes data, whether digital or analog,
is subject to the constraints imposed by signal quality. Lead times, lag
times, rise times, fall times, noise, spikes, transients, and the like can be
out of spec, causing a component to fail.

During integration testing, the following major quality risk categories apply:

Component or subsystem interfaces. Every API, every method, every
function, every bus, every connector represents an opportunity for mis-
understandings between the two (or more) component development
engineers. These misunderstandings manifest themselves when two
otherwise-correct components fail to work together. Shared data files
and especially dynamic data such as configuration files and multi-user
databases are interfaces as well. Any place where one component trans-
fers data or control to one or more components, whether immediately or
in a delayed fashion, an interface exists that can cause trouble.

Functionality. In integration tests, you again have risks related to the
possibility of the wrong action, or the right action with the wrong side
effect. Here you focus on functionality that requires the correct operation
of two or more components or a flow of data between them.

Capacity and volume. Think of software, a computer, or a network of
computers as a system of pipes for bringing in information, operating
on it, storing it, and sending it out. The capacities (static) and volumes
(dynamic) of these pipes must match the requirements of the application
and the expectations of the user. From a structural test perspective,
every buffer, queue, storage resource, processor, bus, and I/O channel

6As Steve McConnell points out in the Software Project Survival Guide, these mock-ups are an
excellent opportunity to get real users in front of the interface, and should actually be created
during the requirements, design, or detailed design phase.



20 Chapter 1 ■ Defining What’s on Your Plate

in the system has a theoretical limit and a (lower) practical limit. For a
single-user program on a PC, this might be a simple, well-bounded set
of risks. For SpeedyWriter, the effects of network traffic and the speed
of the typist might be the only issues. For a network server such as
DataRocket, however, a variety of risks can apply. Can the network card
handle realistic traffic levels? Can the disk subsystem deal with realistic
loads? Is the data-storage capability sufficient? In integration testing, you
can begin to evaluate these risks.

Error/disaster handling and recovery. Undesirable events happen. PCs
lock up. Servers crash. Networks drop packets. Hard drives die. Building
air conditioners and heaters go out. Electrical grids have power surges,
brownouts, and failures. It might be depressing, but you should con-
struct a list of such situations and how they can affect your system.
Increasingly, people choose to use common PC-based office applications
and operating systems in critical infrastructure. This implies a need for
true disaster-recovery capability. Mostly, though, there are the mundane
mini-catastrophes that will eventually afflict the system. You can start
looking at these quality risks early in the integration test phase.

Data quality. If your product stores, retrieves, and shares significant
amounts of data — especially data that has delicate links, relationships,
and integrity constraints — you should consider testing whether the
product can handle that data reliably. For example, I once used an
expense-reporting program that had a serious data quality bug in the
way it handled the expense-report data file that it managed. Because I
needed to analyze data across multiple reports, all reports had to reside
in the same file. If the PC operating system crashed while the application
had the expense-report file open, the application corrupted the file. The
corruption was subtle; I could continue to use the file for quite a while
afterward, but in the meantime, the corruption compounded itself. At
some point, any attempt to add a new transaction caused the application
to crash. The application did not include a file-repair utility. Because
data storage and retrieval tend to be clustered in certain components
or subsystems, you should start testing these areas as soon as these
components are integrated.

Performance. As with capacity and volume, performance concerns apply
to most subsystems or components in a product. For real-time and
mission-critical applications, performance can be the most important qual-
ity risk. Even for systems that are not real-time, important performance
issues exist. Most product reviews address performance. Performance is
not only ‘‘how many per second,’’ but also ‘‘how long.’’ Consider the
battery life of a laptop. As the system is integrated, you can begin to
measure performance.



Chapter 1 ■ Defining What’s on Your Plate 21

User interface. As more pieces of real functionality are integrated into
the system, you can start to test these through the user interface. (If the
user interface is a true throw-away prototype, then you might not have
this option.)

During system and acceptance tests, the following major quality risk cate-
gories apply:

Functionality. During system testing, you should consider functional-
ity in terms of whole sequences of end-user operations (broad) or an
entire area of functionality (deep). For example, with SpeedyWriter you
might look at creating, editing, and printing a file, or at all the possi-
ble ways of creating a file, all the editing options, and all the printing
options.

User interface. If you or the programmers have a chance to work with
a prototype in earlier test phases, the remaining usability quality risks
during system testing are the irritating behaviors that crop up when
everything is connected to the interface. Regrettably, though, the system
test phase is often the first point of testing for the complete user inter-
face with all the commands and actions available. (The prototyping I
advocated earlier happens on the best projects, but not on all projects.) If
you have the opportunity, you must address all usability quality risks at
this stage.

States. State machines can exist at the system level as well as at
the component level. For example, a voice-mail system is a complex
computer-telephony state machine.

Transactions. Transaction handling can also occur at the system level.
DataRocket, for example, handles transactions: printing a file, delivering
a file (one chunk at a time), and so forth.

Data quality. During the system test phase, I revisit the data quality
risks initially covered in integration testing, since the complexity of the
data often increases once the entire product is integrated. For example,
if SpeedyWriter supports embedded pictures and other nontext objects,
this feature might not be dropped in until the end of the integration test.
Working with such complex data makes problems more likely.

Operations. Complex systems often require administrators; databases,
networks, and servers come to mind. These operators perform essential
maintenance tasks that sometimes take the system offline. For DataRocket,
consider the following quality risks: Can you back up and restore files?
Can you migrate the system from a Windows server to a Linux server?
Can you add an external RAID array? Can you add memory? Can you
add a second LAN card?



22 Chapter 1 ■ Defining What’s on Your Plate

Capacity and volume. During a system test, you have the same kinds of
quality risks related to capacity and volume risks covered in integration
testing.

Reliability, availability, and stability. Quality risks in this area include
unacceptable failure rates (mean time between failures, or MTBF), unac-
ceptable recovery times (mean time to repair, or MTTR), and the inability
of the system to function under legitimate conditions without failure.

Error/disaster handling and recovery. As in the case of capacity and
volume, I revisit error/disaster handling and recovery from a behavioral
perspective. I focus on the external failures.

Stress. This risk category is often an amalgam of capacity, volume,
reliability, stability, and error/disaster handling and recovery.

Performance. First broached during integration testing, performance is
another risk category that I revisit during the system test phase.

Date and time handling. A decade ago, concerns about the year 2000
raised the level of awareness about these types of quality risks, but many
programmers of today were not yet even in college at that point. You
might also need to take account of the fact that some countries — for
example, Taiwan — base their calendars on events other than the birth of
Jesus. Additionally, your product might not work properly in different
time zones, or even multiple time zones if it is a distributed system.

Localization. Localization typically refers to problems associated with dif-
ferent languages. Even Romance languages, which use the Latin alphabet,
often include special letters, such as the ñ in Spanish, that can generate
quality risks if your product includes sorting or searching capabilities.
Languages such as Chinese, Japanese, Russian, and Greek create bigger
difficulties. Besides the software considerations, computers in these envi-
ronments use different keyboards and different printer drivers. Moreover,
language is not the only thing that changes at the border and can affect
your system. Can your product handle 220 volts and 110 volts, 50 hertz
and 60 hertz? How about the unique dial tones and ring signals found in
Europe and Asia? Beyond the technical considerations, there are cultural
issues and taboos. What is considered an acceptable way of indicating
something in one culture might be a rude or obscene gesture in another.

Networked and distributed environments. If your product works in a
networked or distributed environment, you have some special quality
risks to consider. For example, what if your system spans time zones? Can
the constituent systems talk to each other without getting confused about
Central Standard Time and Pacific Standard Time? If your systems must
communicate internationally, will the telephone standards affect them?



Chapter 1 ■ Defining What’s on Your Plate 23

Configuration options and compatibility. Most PC software these days
supports various configuration options. SpeedyWriter, for example,
might need to remember a customer’s name, address, and company
to generate letter outlines. DataRocket might allow various CPU speeds
and multiprocessor settings. In addition, many configuration options are
dynamic. On-demand loading and unloading of drivers, libraries, and
software; cold and hot swapping of devices; and power management can
dynamically change the configuration of software and hardware. More-
over, when you look out past the internal variables, the PC world includes
a bewildering variety of software, hardware, and network environments
that can create problems for your system. Will the system talk to all the
printers your customers own? Do network drivers cause your system to
fail? Can your software coexist with leading applications?

Standards compliance. In the hardware world, you might need to con-
sider legal and market standards such as UL, FCC, CE, and others that
might be required for your target market. In the software and hard-
ware worlds, customers sometimes require compatibility logos such as
Microsoft’s ‘‘Designed for Windows.’’ Innocuous bugs related to stan-
dards can have serious repercussions: your company might even find the
product legally or effectively barred from the market.

Security. Given your dog’s name, your spouse’s name, your children’s
names, and your birthday, I might be able to crack your computer
accounts. On a larger scale, if your company has a web site, right now
criminals might be trying to break into your network. If security is a
feature of or concern for your product, you will need to think about the
quality risks that exist.

Environment. Because hardware products must live in the real world,
they are subject to environmental risks. How do the shaking and bumping
encountered during shipping affect a server? Can power sags and surges
cause your system to crash and fail? What about the effects of temperature
and humidity?

Power input, consumption, and output. All computers take in electrical
current, convert some of it to heat and some to electromagnetic radiation,
and send the rest of it to attached devices. Systems with rechargeable
batteries, such as laptops, might add some conversion and storage steps
to this process, and some systems might use power in unusual modes
such as 48 VDC, but ultimately the process is the same. This orchestration
of electrical power can fail; insufficient battery life for laptops is a good
example.

Shock, vibration, and drop. All computers will at some point be moved.
I have never worked with a system that was assembled on the floor



24 Chapter 1 ■ Defining What’s on Your Plate

on which it would operate. In the course of this movement, the com-
puter will experience shocks, vibrations, and, occasionally, drops. Some
computers are subject to motion while on, others only while packaged.
The system test phase is the right time to find out whether the sys-
tem misbehaves after typical encounters with the laws of Newtonian
physics.

Installation, cut-over, setup, and initial configuration. Every instance of
a product has an initial use. Does the installation process work? Can you
migrate data from an old system? Are there unusual load profiles during
the first few weeks of use? These loads can include many user errors as
people learn the system. In a multi-user situation, configuration will also
include the creation of the initial accounts. Think about the entire process,
end to end. Individual actions might work, but the process as a whole
could be unworkable. In addition, consider the possibility that someone
might want to uninstall the product. Finally, don’t forget quality risks
related to the licensing and registration processes.

Documentation and packaging. If your product includes documentation,
you have risks ranging from the possibly dangerous to the simply embar-
rassing. Consider instructions in DataRocket’s manual, accompanied by
an illustration, that led a user to set the input voltage selector for 110
volts in a 220-volt environment. On the less serious side, think of some
of the humorous quotations from technical documentation that circulate
on the Internet. Do you want your company singled out for such honors?
Packaging, likewise, should be appropriately marked.

Maintainability. Even if your system is too simple to require an operator,
you might still have maintainability risks. Can you upgrade software to
a current version? Can you add memory to your PC? If your software
works in a networked environment, does it support remote (possibly
automated) software distribution?

Alpha, beta, and other live tests. For general-purpose software and
hardware, no amount of artificial testing can cover all the uses and
environments to which your customers will subject your product. To
address these risks, I like to use a beta or early-release program of some
sort.

As long as this list is, it is not complete. I could add other categories of
quality risks. However, this list should serve as a good starting point for your
quality risk analysis process.

Using the ISO 9126 Standard as a Checklist

If you work in an organization that tends to follow standards, you might
want to consider the ISO 9126 standard’s quality model as a checklist and



Chapter 1 ■ Defining What’s on Your Plate 25

framework for your quality risk analysis. The ISO 9126 quality model consists
of six quality characteristics for systems, each of which has three or more
subcharacteristics:

Functionality: Attributes that bear on the existence of a set of func-
tions and their specified properties. The functions are those that satisfy
stated or implied needs. Its subcharacteristics are suitability, accuracy,
interoperability, security, and compliance.

Reliability: Attributes that bear on the capability of software to maintain
its level of performance under stated conditions for a stated period of
time. Its subcharacteristics are maturity, recoverability, fault tolerance,
and compliance.

Usability: Attributes that bear on the effort needed for use, and on the
individual assessment of such use, by a stated or implied set of users.
Its subcharacteristics are learnability, understandability, operability, and
compliance.

Efficiency: Attributes that bear on the relationship between the level of
performance of the software and the amount of resources used, under
stated conditions. Its subcharacteristics are time behavior, resource behav-
ior, and compliance.

Maintainability: Attributes that bear on the effort needed to make
specified modifications. Its subcharacteristics are stability, analyzability,
changeability, testability, and compliance.

Portability: Attributes that bear on the ability of software to be transferred
from one environment to another. Its subcharacteristics are installability,
replaceability, adaptability, and compliance.

To use this as a checklist, you will identify one or more quality risks for each
quality subcharacteristic. If you cannot identify one or more quality risks for a
subcharacteristic, then you can delete it from your framework in the quality
risks analysis document or, for auditability, make a notation that you could
not identify any quality risks related to this subcharacteristic.

Identify and Assess: Process Options for quality risk Analysis

At a high level, the process for carrying out a quality risk analysis is straight-
forward:

1. Select a technique for identifying and assessing quality risks and the
associated template to capture the information generated.

2. Assemble a cross-functional team to perform the quality risk analysis.

3. Perform the quality risk analysis, documenting the results in the template.



26 Chapter 1 ■ Defining What’s on Your Plate

4. Verify the distribution of the risk-level ratings to ensure adequate
dispersal, and adjust the ratings if necessary.

5. If specifications documents related to requirements, design, or use cases
exist, establish traceability between the elements of these documents and
the quality risk items.

6. If a set of test cases already exists, for example, in the case of an existing
product for which a new version is being prepared, establish traceability
between the existing test cases and the quality risk items.

7. Check the document into whatever repository you use for test system
documents.

Let’s take a closer look at each of these steps.

1. Select a technique for identifying and assessing quality risks and the
associated template to capture the information generated. In the next
section, I’ll cover the various techniques you and your team can use
to identify and assess quality risks. They vary in terms of the level
of formality involved and in the amount of documentation they tend
to produce, so you’ll want to be careful here. Typically, I recommend
that people start with an informal approach the first time. It’s hard
enough to institute quality risk analysis in its simplest form without
adding additional difficulties related to large, complex documents and
highly rigorous and formalized techniques. The selected technique will
determine the template you need.

2. Assemble a cross-functional team to perform the quality risk anal-
ysis. A critical success factor for quality risk analysis is selecting the
proper set of participants. You need a cross-functional team that includes
technical stakeholders and business stakeholders. Technical stakeholders
can include senior development team members, hardware engineers,
network and database experts, help-desk or technical-support staff, and
senior test staff, among others. Anyone who understands what is likely to
go wrong with the system is a good candidate as a technical stakeholder.

Business stakeholders can include sales people, marketing staff, business
analysts, and product managers, among others. Anyone who understands
the impact of potential problems in the system is a good candidate as a
technical stakeholder. I must stress the importance of the cross-functional
team. Having the right mix of participants will minimize the chances that
your quality risk analysis will miss important quality risk items or assign
improper risk levels to those items. In addition, keep in mind the human
aspect of this process. Risk-based testing uses quality risk analysis to
decide what to test, in what order, and how much. To put it another way,
we are also deciding what not to test, what to test late in the project, and



Chapter 1 ■ Defining What’s on Your Plate 27

what to test very little if at all. If you successfully use the cross-functional
team to build a cross-functional consensus around these decisions, you
not only have the most accurate quality risk analysis possible, but also
have support across the organization for these decisions.

The team should include the project manager and the development
managers. By including them in the process, you’ll build a level of
comfort between these managers and you about what tests you plan to
run. This mutual understanding prevents surprises and confrontations
down the road, and assures the managers that you won’t pull any
‘‘gotcha’’ maneuvers on them by running mysterious tests late in the
game.

Finally, if your list of risk items somehow gets contaminated with any
gross misunderstandings about what the product should do, the project
manager and the development managers can help you clear up the
misunderstandings at this early stage. This avoids the lost time and
the potential embarrassment of developing new tests for — and even
reporting bugs against — broken features that don’t exist.

3. Perform the quality risk analysis, documenting the results in the
template. With the team in place, you can now carry out the quality
risk analysis. There are two general approaches to this. One approach
is to hold a brainstorming session with the entire team. In this session,
you use one or both of the checklists introduced earlier to facilitate the
identification of quality risk items. Once the team has identified the
quality risk items, you then assess each quality risk item to determine its
level of risk, according to the rules of the technique you selected. This
approach can work well, but the brainstorming session can consume the
better part of day or even more than one day for a large product. You
might not want — or be able — to hold such a session.

The other approach is to hold a sequence of one-on-one or small-group
interviews with distinct stakeholder groups. In each interview, you
identify quality risk items, again using one or both of the checklists to
structure the interview. After the interviews, you organize a smaller focus
group of stakeholders to review the list and, during that review, to assess
the level of risk for each risk item. This approach can also work well, but
you must remember to hold a final review with the whole team to achieve
the consensus-building aspect of the process, since not all the participants
will have seen the entire list of quality risk items or their assessed risk
levels.

Whichever of these two approaches you use, you’ll need to capture the
results in the template associated with the selected technique. I usually
save this information in a spreadsheet. I call the worksheet with the initial



28 Chapter 1 ■ Defining What’s on Your Plate

results something like ‘‘Initial Risk Analysis.’’ As I update the analysis in
the subsequent steps of the process or at later points in the project, I’ll use
a different worksheet with a different name, preserving the initial results
for reference.

4. Verify the distribution of the risk-level ratings to ensure adequate
dispersal, and adjust the ratings if necessary. One of the challenges
of quality risk analysis, which I’ll discuss in a subsequent section, is the
tendency for the risk-analysis team to turn in initial risk-level assessments
that do not do a good job of differentiating the levels of risk associated
with risk items. In other words, the risk ratings are clumpy or skewed.
Therefore, you should plan to check the distribution of the risk-level
ratings. If you use Excel to capture the results, this is easy, because you
can create a histogram that shows the distribution. You want to see
an approximately normal or bell-curve type of distribution. If not, you
should validate the ratings and adjust them.

5. If specifications documents related to requirements, design, or use
cases exist, establish traceability between the elements of these doc-
uments and the quality risk items. At this point, you should evaluate
specifications documents, if you have them. These documents could
include requirements specifications, design specifications, or use cases.
You should establish traceability between the elements of these docu-
ments and the quality risk items. This process might result in the discovery
of additional risk items. With this traceability, should the specifications
change during the project, rather than having to evaluate the effect of
the changes on all of the quality risks, you can focus on those risk items
related to the changed specification elements.

6. If a set of test cases already exists, for example, in the case of an
existing product for which a new version is being prepared, establish
traceability between the existing test cases and the quality risk items.
You (or perhaps senior test engineers on your test team) should also
evaluate any existing test cases. For example, with an existing product for
which a new version is being created, you are likely to have a significant
set of test cases inherited from the previous versions. You should establish
traceability between the existing test cases and the quality risk items. This
process also might result in the discovery of additional risk items. In
addition, this process might result in the discovery of significant areas of
under-testing and over-testing, relative to the level of risk associated with
various quality risk items. You should plan to address those problems
during development of the test system, which I’ll discuss in Chapter 3.

7. Check the document into whatever repository you use for test system
documents. At this point, you should finalize the document for the time



Chapter 1 ■ Defining What’s on Your Plate 29

being. You’ll need to adjust it later at major project milestones, but for the
time being you have a solid foundation for your test estimate, your test
plan, and your test system development. You should at least e-mail the
final document around to the various project stakeholders, including the
participants in the quality risk analysis. You should certainly make sure
everyone on the test team has it, and understands how it will affect their
work. You should check the document into whatever repository you use
for test system documents.

quality risk analysis Techniques and Templates

You might select from any number of techniques for quality risk analysis. I’ve
identified several major types of quality risk analysis techniques, each with
significant variations, in use by project teams around the world.7 These include
the following:

Informal

ISO 9126

Cost of exposure

Hazard analysis

Failure mode and effect analysis

I’m sure there are one or two more out there that I haven’t encountered yet.
The two most commonly used techniques, though, are the informal tech-

nique and failure mode and effect analysis (FMEA). I have used these and
seen them used more often than any other set of techniques. Because they
are the most commonly used, I’m going to focus on these techniques in this
chapter.

I’ll start with the informal technique. I use this one most frequently. If you
are new to risk-based testing, you should start with this one. As I mentioned
previously, it’s hard enough to institute quality risk analysis in its simplest
form. If you add all the difficulties related to the large, complex documents
and the highly rigorous and formalized technique associated with failure
mode and effect analysis, you are making this process much harder. Why do
something the hard way, unless you are required to do so by some regulatory
agency or company standard?

I’ll illustrate this technique and the template by example. Figure 1-6 shows
an example of a portion of the quality risk analysis for SpeedyWriter. I’ll
explain each column.

7For a survey of these five techniques, see my article ‘‘Quality Risk Analysis,’’ available in the
Basic Library at www.rbcs-us.com. You can also find this article in Fundamental Concepts for
the Software Quality Engineer, Volume 2, edited by Taz Daughtry.



30 Chapter 1 ■ Defining What’s on Your Plate

Figure 1-6 Example of informal quality risk analysis for SpeedyWriter

The leftmost column is a unique identifier for each row. Each quality risk
category appears at the top of a list of one or more quality risk items. Each
quality risk category has a sequential number (1, 2, 3, and so forth). Each quality
risk item listed for each quality risk category has a sequential number (1.001,
1.002, 1.003, and so forth). This number is useful in capturing traceability from
test cases back to the risks.

The Quality Risk column shows the quality risk categories, and, within each
category, the specific quality risk items. The quality risk categories thus serve
as a framework for the quality risk items associated with them.

The Likelihood column captures the likelihood for each quality risk item.
This is the quality risk analysis team’s assessment of the likelihood of the risk
item becoming an actual problem. In other words, how likely does the team feel
it is that one or more bugs will exist for this item? The team should determine
likelihood based primarily on technical considerations. In this example, the
team rated the likelihood on a 1–5 scale as follows:

1: Very high. Such bugs are almost certain to occur.

2: High. Such bugs are more likely to occur than not to occur.

3: Medium. Such bugs have about an even chance of occurring as not
occurring.

4: Low. Such bugs are less likely to occur than not to occur.

5: Very low. Such bugs are almost certain not to occur.

Of course, you can use another scale if you’d like. I have found this five-point
scale to work quite well, though.

The Impact column captures the impact for each quality risk item. This is
the quality risk analysis team’s assessment of the business impact that would
result if the system had bugs related to this risk item that escaped. In other
words, how bad would it be if we delivered one or more bugs for this item



Chapter 1 ■ Defining What’s on Your Plate 31

to the customers and users? (Remember, the focus here is on the quality risk
analysis team’s perception of business impact, not the test team’s perception
of impact.) The team should determine impact based primarily on business
considerations. In this example, the team rated the likelihood on a 1–5 scale as
follows:

1: Very high. Such bugs would render the system unsalable.

2: High. Such bugs would seriously impair users and significantly reduce
sales.

3: Medium. Such bugs would inconvenience some users and marginally
reduce sales.

4: Low. Such bugs would inconvenience a few users and might reduce
sales.

5: Very low. Such bugs would only rarely affect users and would not
reduce sales.

As before, you can use another scale, but this five-point scale works quite
well in practice.

The Risk Priority Number column shows the aggregate level of risk for each
risk item. In this example, the spreadsheet calculates the number by multi-
plying likelihood and impact. You can adopt another formula for calculating
the risk priority number if you like, including weighting likelihood or impact
to emphasize technical or business considerations, respectively. When the test
team develops test cases from the quality risk analysis, each test case inherits
the risk priority number from its parent risk item. The test team can then run
the test cases in risk-priority order, starting with the tests that have a risk
priority number of one. If the testers must delete test cases due to schedule
pressure, they can do so in reverse risk-priority-number order.

While the risk priority number allows you to sequence and, if necessary,
triage test cases based on risk, you still need some way to determine the
amount of effort to expend on testing a particular risk item. In other words,
based on the risk priority number, what relative amount of test effort should
we put into developing and executing tests against this risk item? The Extent
of Testing column shows this determination. In this example, the team has
used the following breakdown for the extent of testing, based on the range of
the risk priority number:

1–5. Extensive. Run a large number of tests that exercise many combina-
tions and variations of interesting conditions.

6–10. Broad. Run a medium number of tests that exercise many different
interesting conditions for the risk item.

11–15. Cursory. Run a small number of tests that sample the most
interesting conditions for the risk item.



32 Chapter 1 ■ Defining What’s on Your Plate

16–20. Opportunity. Leverage other tests to explore the risk item with
minimal effort and only if the opportunity presents itself.

21–25. Report bugs. Only report bugs observed for this risk item if
discovered during other tests.

As with the Likelihood and Impact columns, feel free to use some other
breakdown if it makes more sense for you. Unlike with the Likelihood and
Impact columns, I have quite frequently found it necessary to fine-tune
this heuristic for allocation of effort. Of course, if you adjust the risk-
priority-number calculation, you’ll need to adjust this heuristic, too.

Finally, the Tracing column captures the relationship between the require-
ments specification elements and the quality risk item. The numbers given in
the column in Figure 1-6 correspond to the section numbers in the require-
ments document. I have not shown tracing for test cases, because I’m assuming
this is a new project. Tracing for existing tests, if they exist, would typically
involve another column.

Having discussed the informal technique, let’s move on to a formal technique
for defining quality risks using an approach called failure mode and effect analysis
(FMEA).

Fundamentally, FMEA is a technique for understanding and prioritiz-
ing possible failure modes (or quality risks) in system functions, features,
attributes, behaviors, components, and interfaces. It also provides a means of
preventive defect reduction and tracking process improvements. Preventive
defect reduction arises because the technique is ideal applied not only to
testing decisions, but to product design and implementation decisions. As
these design and implementation decisions reduce the level of risk, iterative
application of the technique shows the risk reduction, which allows us to
re-focus our testing on the remaining higher risks.

Figure 1-7 shows the top page of a sample FMEA chart for DataRocket. Let’s
go through each of the columns in detail.

The System Function or Feature column is the starting point for the analysis.
In most rows, you enter a concise description of a system function. If the entry
represents a category, you must break it down into more specific functions
or features in subsequent rows. Getting the level of detail right is a bit tricky.
With too much detail, you can create an overly long, hard-to-read chart; with
too little detail, you will have too many failure modes associated with each
function.

In the Potential Failure Mode(s)-Quality Risk(s) column, for each specific
function or feature (but not for the category itself), you identify the ways you
might encounter a failure. These are quality risks associated with the loss of
a specific system function. Each specific function or feature can have multiple
failure modes.



Chapter 1 ■ Defining What’s on Your Plate 33

1

3

A

System Name: DataRocket

Failure Mode and Effects Analysis (Quality Risks Analysis) Form
B C D E

4 System Responsibility: Jim Johnson
5 Person Responsibility: Bob Chen

Involvement of Others:

Supplier Involvement: Seven Lucky
Model/Product: DataRocket

FMEA Date: 5/20/2002
FMEA Rev Date: 5/28/2002

Target Release Date:
Prepared By: Lin-Tsu Wei

Video
Controller

Linux Video
Drivers

Video Card
Ref Guide,
Pg 10

Video Card
Ref Guide,
Pg 12 
MB Ref
Guide, Pg 15

Video Card
Ref Guide,
Pg 10

Video Card
Ref Guide,
Pg 11

Unreliable
card,
MB/card
incompat

Installation Y 1 1 11PCI Slot
Layout

Case/MB
Design

Function
Test

Test/
Product

Test

Test/
System

Test

Video Card
Ref Guide,
Pg 15

Bad fit,
blocked
access to
other cards,
etc.

Palette Limit N 5 5 1255Memory size Vendor HW
Test

NoneLimited
displays.

Performance N 4 5 1005Memory
speed

Vendor HW
Test

NoneSlow screen
displays.

Reliability Y 1 3 31 Vendor MTBF
Test

MTBF DemoLoss of
functionality.

Novell/Video
chipset

Test/
Product

Test

Incompatiblity Y 1 3 62 Vendor driver
Test

Compat TestLoss of
functionality.

Video Subsystem

6

8

16

17

9

11

12

13

14

15

Potential
Failure
Mode(s)-
Quality
Risk(s)

System
Function or
Feature

Potential
Effect(s) of
Failure

Potential
Cause(s) of
Failure

Detection
Method(s)

Recom-
mended
Action ReferencesCr

iti
ca

l ?

Se
ve

rit
y

Pr
io

rit
y

Li
ke

lih
oo

d

Ri
sk

 P
ri 

No

Se
ve

rit
y

Pr
io

rit
y

De
te

ct
io

n

Ri
sk

 P
ri 

No

Action Taken

Who/
When?

F G IH J K PM NL O Q R S

Action Results

Figure 1-7 A portion of the FMEA for DataRocket

In the Potential Effect(s) of Failure column, you list how each failure mode
can affect the user, in one or more ways. I keep these entries general rather
than trying to anticipate every possible unpleasant outcome.

In the Critical? column you indicate whether the potential effect has critical
consequences for the user. Is the product feature or function completely
unusable if this failure mode occurs?

In the Severity column, you capture the effect of the failure (immediate or
delayed) on the system. This example uses a scale from 1 to 5 as follows:

1. Loss of data, hardware damage, or a safety issue

2. Loss of functionality with no workaround

3. Loss of functionality with a workaround

4. Partial loss of functionality

5. Cosmetic or trivial

Some books on FMEA show the use of a reverse scale, in which larger
numbers denote greater severity. However, I prefer to use the scale shown
here, which is more in line with the typical use of the term severity as I’ve
encountered it.

In the Potential Cause(s) of Failure column, you list possible factors that
might trigger the failure — for example, operating-system error, user error, or
normal use. In my experience, this column is not as important as others when
you are using an FMEA strictly as a test design tool.



34 Chapter 1 ■ Defining What’s on Your Plate

In the Priority column, you rate the effect of failure on users, customers, or
operators. This example uses a scale from 1 to 5, as follows:

1. Complete loss of system value

2. Unacceptable loss of system value

3. Possibly acceptable reduction in system value

4. Acceptable reduction in system value

5. Negligible reduction in system value

Because these are subjective ratings highly dependent on an understanding
of the business, you should rely on input from sales, marketing, technical
support, and business analysts.

In the Detection Method(s) column, you list a currently existing method or
procedure, such as development activities or vendor testing, that can find the
problem before it affects users, excluding any future actions (such as creating
and executing test suites) you might perform to catch it. (If you do not exclude
the tests you might create, the next column will be skewed.)

In the Likelihood column, you have a number that represents the vulner-
ability of the system, in terms of: a) existence in the product (e.g., based on
technical risk factors such as complexity and defect history); b) escape from
the current development process; and c) intrusion on user operations. This
example uses the following 1-to-5 scale:

1. Certain to affect all users

2. Likely to impact some users

3. Possible impact on some users

4. Limited impact to few users

5. Unimaginable in actual usage

This number requires both technical judgment and an understanding of
the user community, which makes participation by programmers and other
engineers along with business analysts, technical support, marketing and sales
important.

As with the informal technique, the RPN (Risk Priority Number) column
tells you how important it is to test this particular failure mode. The risk
priority number (RPN) is the product of the severity, the priority, and the
likelihood. Because this example used values from 1 to 5 for all three of these
parameters, the RPN ranges from 1 to 125.

The Recommended Action column contains one or more simple action
items for each potential effect to reduce the related risk (which pushes the risk
priority number toward 125). For the test team, most recommended actions
involve creating a test case that influences the likelihood rating.



Chapter 1 ■ Defining What’s on Your Plate 35

The Who/When? column indicates who is responsible for each recom-
mended action and when they are responsible for it (for example, in which
test phase).

The References column provides references for more information about
the quality risk. Usually this involves product specifications, a requirements
document, and the like.

The Action Results columns allow you to record the influence of the actions
taken on the priority, severity, likelihood, and RPN values. You will use these
columns after you have implemented your tests, not during the initial FMEA.

As with the informal technique, you can use a cross-functional brainstorming
session to populate your FMEA chart. To do so, you gather senior represen-
tatives from each team — development, testing, marketing, sales, technical
support, business analysts, and so forth — and fill in the chart row by row.
This is certainly the best way, but it requires a commitment from each group to
send a participant to a meeting that could consume a day or more. If you can’t
get people to attend a cross-functional brainstorming session like this, you can
proceed with the interview approach discussed for the informal technique,
too.

I have encountered a few pitfalls in using the FMEA method. In some
cases, I have become distracted by quality risks that lie outside the scope of
the test project. If I am working on SpeedyWriter, for example, I don’t need
to worry about operating-system bugs or underlying hardware failures. For
DataRocket, I needn’t analyze possible low-level failures in drives or chips. If
I find a bug related to a given failure mode, will the development team — or
some other group — address it? If not, it’s out of scope.

The resulting FMEA document will be large. Be sure that you are ready to
maintain this document after you create it. Otherwise, you won’t be able to
use it to focus test development and execution, which defeats the purpose.

Tips and Challenges of quality risk Analysis

I’ll finish up this discussion on quality risk analysis by offering a few tips on
how to best handle quality risk analysis. I’ll also list some challenges you need
to take into account.

The first tip relates to keeping the proper degree of detail. How precise
should you be with your quality risk items? Sometimes you might feel a risk
item covers too much ground. Should you separate it? The rule of thumb is
to only separate one risk item into two or more risk items when necessary
to distinguish between different levels of risk. Too much detail makes the
documents hard to manage. Too little detail makes it impossible to prioritize
test cases accurately.

The second tip relates to respecting your quality risk analysis team and their
precious time. The quality risk analysis brainstorming sessions can require one



36 Chapter 1 ■ Defining What’s on Your Plate

or more entire days. Even the interviews can take up to two hours. Make sure
people know what they are committing to when you ask them to participate.

My final tip relates to the type of quality risk analysis and thus quality risk
management you are doing. It looks quantitative, since you have numbers.
However, the numbers are just shorthand for classifications, used to allow you
to calculate the risk priority number by using a mathematical equation rather
than a table. You must understand that what you are doing is qualitative risk
management. Based on the subjective opinions and collective wisdom of the
participants, the process assigns relative priorities to risk items. Quantitative
risk management is something that insurance companies and banks, armed
with statistically valid data, can do. You don’t have such data.

Let’s look at some challenges. The first is building consensus on risk.
Sometimes participants disagree about likelihood or priority ratings. You can
try to use some of your political influence to broker a compromise. You can
also see if the various participants can educate each other on how they should
rate the risks. However, if you can’t reach consensus, you need to escalate
to some decision-maker who is ultimately responsible for the quality of the
delivered system.

Another challenge is to avoid priority inflation. Sure, in the absence of
constraints, everyone would want to test everything extensively. That’s not
connected to reality. If you see that priority inflation is happening, ask people
what they would give up for additional test coverage. Is a week or a month
of schedule delay acceptable? Is an extra $10,000 or $100,000 in test budget
acceptable? Is dropping features that were not extensively tested acceptable?
If the answers to these questions are no, no, and absolutely not, then perhaps
you can apply a reality check to people’s gold-plated test coverage aspiration.

The final challenge is getting the participants to make rational decisions
about risk. Consider this example: Which is safer, air travel or driving? Most
people know, rationally, that air travel is safer. In fact, on a distance-traveled
basis, air travel is about 100 times safer. However, more people have a fear of
flying than of driving. This same kind of irrationality can afflict the quality risk
analysis process. If you think people are overstating or understating likelihood
or impact during the process, you should try to question the reasons for a
particular rating to see if you can get people to be more rational in their
assessment.

What You Can Test: Schedule, Resources, and
Budget

Whether you’ve used an informal approach or the more formal FMEA tech-
nique, you now have a prioritized outline of quality risks. This is analogous



Chapter 1 ■ Defining What’s on Your Plate 37

to the requirements for the overall project; the list of critical quality risks
documents the essential requirements for my test effort. Now I need to figure
out a test schedule and a budget that will allow me to test the scariest risks.

One of my first managers was fond of this saying: ‘‘Schedule, cost, and
quality — pick two.’’ This pithy remark means that while for a given feature
set you can freely select any two of these variables, doing so determines the
third variable. I call this rule, which is illustrated in Figure 1-8, the ‘‘Iron Box and
Triangle’’ of system development. The clockwise arrow indicates refinement
during the planning stage. These refinements balance features, schedule,
cost, and quality. Once implementation begins, the feature set becomes more
rigid, the schedule more painful to change, and budget increases less likely.
Within the fixed box representing the feature set in Figure 1-8, the two lines
that show the schedule and the cost determine the third line, quality, that
completes the triangle.

Accept Quality? Select Cost

Define Features Select Schedule

Iterate to
refine
results

Figure 1-8 The feature, schedule, budget, and quality trade-offs

This creates a planning conundrum in that you have only a rough idea of
what your test project is about, but the window of opportunity that might allow
a realistic schedule and an adequate budget is closing. And even this scenario
assumes that you are on the project team during the planning phase. The
situation is worse if you have joined the team later, during implementation, as
you might have a fixed budget and schedule. There’s no perfect solution, but
some project management techniques exist to help.

Shoehorning: Fitting a Test Schedule into the Project
Often, software and hardware project schedules don’t evolve according to any
textbook approach. You might have to start with a ship date and a list of
product features — the negotiability of both varies — and build the schedule



38 Chapter 1 ■ Defining What’s on Your Plate

from there. How can you construct a workable test schedule within these
constraints?

I use a work-breakdown structure, which is a top-down approach.8 I find it
intuitive to start with big categories of work and iteratively decompose them
into discrete tasks, especially at the early stages when I don’t have a lot of
details. I start by breaking the test effort into major phases such as these:

Planning (the work discussed in this chapter and the next)

Configuration (getting the necessary hardware and other resources and
setting up the test lab)

Staffing (if applicable)

Test development (building or deploying the test tools, creating the test
suites and the test case library, putting the reporting tools in place, and
documenting how the test process is to put these testware items into
action)

Test execution (running the tests, recording test status, and reporting
results)

Next, I divide each phase into activities. Within the planning category, for
example, I set up activities such as defining quality risks, creating the schedule
and the budget, writing test plans, and selecting test tools. Other activities
might include getting bids from third parties for their help, or hiring test
technicians, test engineers, and system administrators.

After that, I decompose each activity into tasks, and then subtasks if
necessary. This decomposition continues until I have constituent tasks that
are one or two days long and are the responsibility of one person. (I don’t
decompose the work-breakdown structure this way for test execution; instead
I use the test case estimating and tracking method illustrated in Chapter 5.)
These small task definitions allow me to ascertain whether I’m on track during
the project. Big tasks can get dangerously out of control, and I won’t discover
such problems until a long period (a week or more) has slipped past me.

The activities in the configuration phase depend on the test environment I
need. Even though I probably don’t know all the details at this point, my list
of quality risks usually has given me some ideas. Once I think through the
quality risks, I have a high-level perspective on the test suites I must create,
which gives me a good idea of my test environment needs.

For development, you must deploy your test tools and then develop the
test suites themselves. I often list separate major tasks for each test phase and
then enter the test suites as individual tasks within each phase. Test suite
development should proceed in priority order. Developing test suites is a

8If you aren’t familiar with work-breakdown structures, I recommend Effective Project Management
by Robert Wysocki, et al., as a good introduction to the topic.



Chapter 1 ■ Defining What’s on Your Plate 39

full-time job, so I’m careful not to set up work on various suites as parallel
tasks unless I have multiple test engineers or can give a single engineer twice
as long to finish. In addition, I take care to add a task for the test engineers
to document how the test system works, both in terms of the design and
functionality of the testware and the way the test process uses that testware to
find bugs.

For test execution, there are two important questions to answer in coming
up with a good estimate. First, how long will it take to run all the tests once
(which I often refer to as a single test pass)? Second, how many times will I
need to run the tests against successive test releases to find all the important
bugs and subsequently confirm the fixing of those bugs (which I refer to as the
number of test cycles)? Suppose I have six person-weeks of testing work defined
for the system test phase and three testers allocated to run the tests. Then,
each pass takes my test team two weeks. If I have found, on previous projects
with the same project team, that we need to run six cycles to find and fix the
important bugs, then I have six cycles, say one week each, with three passes in
those cycles (see Figure 1-9).

Confirmation Tests

Legend

Programming Teams

Release Engineering

Fe
at

ur
e 

Co
m

pl
et

e
Bu

g 
Fi

xe
s

Bu
g 

Fi
xe

s
Bu

g 
Fi

xe
s

Bu
g 

Fi
xe

s
Bu

g 
Fi

xe
s

Bu
g 

Fi
xe

s
Bu

g 
Fi

xe
s

Bu
g 

Fi
xe

s
Bu

g 
Fi

xe
s

Bu
g 

Fi
xe

s
Bu

g 
Fi

xe
s

Bu
g 

Fi
xe

s
Bu

g 
Fi

xe
s

Bu
g 

Fi
xe

s
Bu

g 
Fi

xe
s

Bu
g 

Fi
xe

s
Bu

g 
Fi

xe
s

Bu
g 

Fi
xe

s
Bu

g 
Fi

xe
s

Bu
g 

Fi
xe

s

C S E C S E

Cycle
Two

Cycle
One

Pass One

C S E C

C

S E

Cycle
Four

Cycle
Three

Pass Two

C S E C S E

Cycle
Six

Cycle
Five

Pass Three

Re
le

as
e

On
e

Re
le

as
e

Tw
o

Re
le

as
e

Th
re

e

Re
le

as
e

Fo
ur

Re
le

as
e

Fi
ve

Go
ld

en
 C

an
di

da
te

Te
st

 R
el

ea
se

Scheduled Tests (Manual, Automated)S

Exploratory TestsE

Figure 1-9 System test passes, releases, and cycles



40 Chapter 1 ■ Defining What’s on Your Plate

The time required to run the tests is something a test manager can control
and measure. As long as I can come up with solid estimates of how long and
how much effort each test case requires, I can add up those numbers across
the entire test set and use simple math to predict test pass duration. However,
the number of cycles is dependent on many factors outside my control as a
test manager. If the quality of the software is poor, then more cycles will be
required. If the programmers are slow to fix bugs, then more cycles will be
required. If bug fixes tend to break other areas of the product (i.e., to introduce
regression bugs), then more cycles will be required.

If I have no historical data with the project team, I have to take a guess on
the number of cycles. I’ve successfully used six one-week cycles as a rule of
thumb on a number of projects, although you’ll need to consider your project’s
size and complexity carefully before adopting it. If the set of test cases is small
enough, you can run a full pass in each cycle, which has benefits in terms of
regression risk. (I’ll talk more about test sets, suites, cycles, passes, phases,
regression risks, and confirmation testing in Chapter 3.) More commonly, I
estimate one week per test cycle, two or three cycles per pass, and three passes
per phase. One of my clients, though, has a test set that requires about two
person-decades of effort. The whole team runs each test case once as part of a
year-long test pass.

However the passes and cycles work out, I break the rules a bit on the
work-breakdown structure in the area of test execution, and assign the entire
team to test tasks at the test cycle level of detail. I’ve found that trying to assign
a single tester to a single test case in a work-breakdown structure doesn’t
work well. For one thing, I generally don’t know all the tests I’m going to run
during this early planning stage, so if I account only for the tests I know, I’ll
underestimate. Moreover, the project management tools I’ve worked with do a
poor job of managing test cases as tasks. My usual rule of thumb is to estimate
the test effort, increase it by 50 percent for the tests I don’t know about yet,
plan on between 20 and 30 hours of testing per tester per week, and just do the
math.

In this first cut, I try to capture the basic dependencies. For example, I must
develop a test suite before I can run it, and I can’t start a test cycle until I
receive something to test. Although some dependencies that loom far in the
future won’t jump out at me, my best effort will probably suffice. I try to build
some slack and extra time into my schedule for the inevitable discoveries.
Good project management process dictates that I track against and revise this
schedule throughout my project, so I can add dependencies as they become
apparent, but increases in schedule and budget numbers after the initial plan
are often difficult to negotiate.

As I create the tasks, I also assign resources, even if I can’t be complete at this
point. I don’t worry about staples such as desks, workstations, or telephones



Chapter 1 ■ Defining What’s on Your Plate 41

unless I have genuine concerns about getting an adequate budget for them. I
focus on items such as these:

Expensive resources such as networks, environmental test equipment,
and test tools

Resources that require long lead times, such as lab space that must be
rented and set up, or ISDN and T1 lines

Missing resources such as people I need to hire

External resources such as third-party labs

Scarce resources such as my test engineers and technicians

I’m careful not to over-utilize resources that have limited bandwidth or
availability. People, for example, can do only one thing at a time, and you
can easily overtax shared resources such as servers, printers, networking
infrastructure, and the like if you’re not careful. Certain types of tests, such as
performance and reliability, require a dedicated set of resources for accurate
results.

Accurate scheduling requires the participation of the actual contributors
wherever possible. For example, it’s better for the test engineer who’ll design
and implement an automated test suite to tell me how long it will take
her than for me to guess myself, especially if she has experience doing test
automation and I don’t! The more experience the contributor has with the task
in question and the tool to be used, the more accurate her estimate will be.
There are also so-called Delphic oracle approaches where you poll multiple
people on the team for best-case, worst-case, and expected-case task durations,
then take the averages of those to come up with best-case, worst-case, and
expected-case schedules. You might want to apply these types of approaches
on long, complex projects where the consequences of error in the schedule are
severe. No matter how careful you are, though, some studies have shown that
initial estimates are off by 50 to 200 percent.9

One thing I do to improve the accuracy of my schedules is to refer to
published rules of thumb to sanity-check my estimates.10 Capers Jones, in
Estimating Software Costs, includes an entire chapter of such rules. Various
presentations and articles on test estimation, including rules of thumb, appear
from time to time at conferences and in testing journals. You might want
to accumulate a collection of estimation rules that you use to check your
work-breakdown structure.

9See Rita Hadden’s ‘‘Credible Estimation for Small Projects,’’ published in Software Quality
Professional.
10For example, see my article, ‘‘Software Test Estimation,’’ originally in Software Testing and
Quality Engineering magazine, now on the Basic Library page of our company web site,
www.rbcs-us.com.



42 Chapter 1 ■ Defining What’s on Your Plate

Test estimation is hard to do perfectly, but not terribly hard to do well. If you
follow good project management practices in preparing your work-breakdown
structure, don’t forget key tasks, estimate conservatively, don’t overload
people and resources, involve your entire team in estimation, and focus on
key dependencies and deliverables, you can construct a draft schedule for
your test project that should prove relatively accurate. I also make sure that
my milestone dates fit within the constraints of the project. As the project
proceeds, I track progress against the schedule, adding details, adjusting
durations, resolving resource conflicts, including more dependencies, and so
on. Figures 1-10 and 1-11 show an example of this approach, applied to testing
for SpeedyWriter.

ID Task Name Duration
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
22
21
23
24
25
26 
27 
28 
29

Planning
 Define Quality Risks 
 Schedue/Budget
 Write Comp Test Plan
 Write Int. Test Plan
 Write Sys. Test Plan
 Select Tools 

Configuration
 Acquire Hardware
 Setup Client
 Setup Networks

Development
 Deploy GUI Tool
 Document Architecture
 Develop Comp. Tests 
  Functionality
  Code Coverage
  Data Flow Coverage
  User Interface
  Peer Review/Wrap
 Develop Int. Tests
  Comp. Interfaces
  Enhance Fact
  Peer Review/Wrap
 Develop Sys. Tests
  Enhance Fact
  Localization

30 days 
1 wk 
1 wk

2 wks 
2 wks 
2 wks 
1 wk

25 days
2 wks 
1 wk

4 wks

52 days
2 days
10 wks

18 days
3 days

1 wk
3 days
2 days

1 wk
9 days
2 days
2 days

1 wk
25 days
2 days
2 wks

5/20 
5/20 
5/27 
6/3 

6/10 
6/17 
6/24 

5/20 
5/20 
5/27 
5/27 

6/3 
6/3 
6/5 

6/10 
6/10 
6/13 
6/20 
6/25 
6/27 
6/24 
6/24 
6/26 
6/28 
7/1 
7/1 
7/1

6/28 
5/24 
5/31 
6/14 
6/21 
6/28 
6/28 

6/21 
5/31 
5/31 
6/21 

8/13 
6/4 

8/13 
7/3 

6/12 
6/19 
6/24 
6/26 
7/3 
7/4 

6/25 
6/27 
7/4 
8/2 
7/2 

7/12

Start Finish
June

Jake

Jake
Jake [50%]

Jake [50%]

Jake [50%]

Team

Lin-Teu [25%]

Lin-Teu [25%], Sol sev, NT Srv, Nvl Srv

Team

New Hire

New Hire

New Hire

New Hire

New Hire [50%]

Hi tech

Hi tech

Hi tech [50%]

Maria

Fst Test Lab

Lin-Teu [25%], Sol Clnt, WMe Clnt, W98 Clnt, Mac Clnt WNT Clnt

July August SeptemberMay
5/12 5/19 5/26 6/2 6/9 6/16 6/23 6/30 7/7 7/14 7/21 7/28 8/4 8/11 8/18 8/25 9/1 9/8 9/15 9/22

Page 1

Figure 1-10 The first page of a Gantt-chart view of the work-breakdown structure for
SpeedyWriter

If you’re new to management, you might feel a bit daunted by the prospect
of doing a work-breakdown structure. I encourage you to jump in with both
feet, picking up a good self-study book first and then cranking out your first
test project schedule with one of the project management tools on the market.
My ability to schedule projects continues to improve — partly as a result of
acquiring skills with the tools, although mostly as a result of experience — but



Chapter 1 ■ Defining What’s on Your Plate 43

I started with simple schedules and ran a number of test projects successfully.
Scheduling and project management are not trivial skills, so keep it simple to
start. Simple schedules are less precise but more accurate. If you try to create
complicated 300-task schedules, you can get lost in the minutiae.

ID Task Name Duration
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58

  User Interface
  Performance
  Config Options
  Installation
  Error Handle/Recover
  Capacity/Volume
  Dates
  Network
  Peer Revlew/Wrap

Execution
 Component Test
  Build C1 Rdy
  Cycle One
  Cycle Two
  Cycle Three

 Integration Test
  Build I1 Rdy
  Cycle One
  Cycle Two
  Cycle Three

 System Test
  Build S1 Rdy 
  Localization 
  Cycle One
  Cycle Two
  Cycle Three

1 wk
3 days 
2 days 
2 days 
2 days 
1 day 
1 day 

2 days 
1 wk 

40 days 
18 days 
0 days 

1 wk 
1 wk 
1 wk 

15 days 
0 days 

1 wk 
1 wk 
1 wk 

20 days 
0 days 
2 wks 
1 wk 
1 wk 
1 wk

7/3 
7/10 
7/15 
7/17 
7/19 
7/23 
7/24 
7/25 
7/29 

7/1 
7/1 
7/1 
7/4 

7/11 
7/18 

7/15 
7/15 
7/15 
7/22 
7/29 

7/29 
7/29 
7/29 
8/5 

8/12 
8/19

7/9 
7/12 
7/16 
7/18 
7/22 
7/23 
7/24 
7/26 
8/2 

8/23 
7/24 
7/1 

7/10 
7/17 
7/24 

8/2 
7/15 
7/19 
7/26 
8/2 

8/23 
7/29 
8/9 
8/9 

8/16 
8/23

Start Finish
June July August SeptemberMay

5/12 5/19 5/26 6/2 6/9 6/16 6/23 6/30 7/7 7/14 7/21 7/28 8/4 8/11 8/18 8/25 9/1 9/8 9/15 9/22

Page 2

Hi tech, Marla, New Hire, Tech

Hi tech, New Hire

Hi tech

Hi tech

7/15

New Hire

New Hire

New Hire

Maria [50%]

Maria, Sol Srv, NT Srv, Nvl Srv

Maria

Maria

Maria

Maria

Maria

Maria

Maria

7/1

Est Test Lab

7/29

Hi tech, Marla, New Hire, Tech

Hi tech, Marla, New Hire, Tech

Figure 1-11 The second page of a Gantt-chart view of the work-breakdown-structure for
SpeedyWriter

Estimating Resources and Creating a Budget
Given a work-breakdown structure with detailed resource allocations, I can
hammer out a budget in a couple of hours. Again, I use a top-down approach.
I first create a list of resources, starting with general categories such as these:

Staff. This category includes permanent employees, contractors, and
consultants.

Test tools. If I’m testing software, I might need code-coverage analyzers,
scripting utilities, GUI test automation systems, low-level diagnostic
programs, and so forth. Hardware testing can involve oscilloscopes,
shock and vibration tables, thermal chambers, and other equipment.
Don’t forget basic utilities for hardware and software testing.



44 Chapter 1 ■ Defining What’s on Your Plate

Facilities and overhead. Items in this category can include travel
allowances, lab space, workstations, and infrastructure such as cabling,
routers, hubs, bridges, ISDN terminals, and so forth.

Test environment. This category includes the hardware, software, engi-
neering samples, and experimental prototypes.

External labs. I include this category if I intend to use external labs for
environmental testing, localization, performance, or other purposes (see
Chapter 10).

Within each category, I list the individual items I will need. I use placeholders
to indicate where I might add items or quantities later.

To transform this resource list into a budget, I load it into a spreadsheet and
line up columns to the right for each month of the project. For each item, I
enter a cost figure — a monthly figure for variable costs or a one-time figure
for fixed costs. Don’t forget hidden or invisible costs such as burden rates for
staff, agency markups for staff, application software, support contracts, and
training.

If you find it difficult to estimate costs for tools, facilities, infrastructure,
or the test environment, you can hit the Web or make some telephone
calls. Estimating the cost of using an external lab might require an actual
bid, although you can probably get a rough estimate by calling the lab. For
unknown items — the placeholders on your resource list — you’ll simply have
to make an educated guess. Pick a comfortable figure with some wiggle room,
but don’t allow so much wiggle room that you’ll be shot down when you
approach management.

At this point, you can compare each line item against your schedule. When
do you start using the resource? How long do you use it? Are ramp-up and
ramp-down times associated with the resource? Answering these questions
will tell you which months must absorb charges for each item, and what
fraction of the charge applies in beginning and ending months. For fractions, I
keep it simple; I find that halves and quarters are usually precise enough.

As I do for my schedules, I run a sanity check to ensure that all the numbers
make sense. If allowed, I involve my staff in the process, making sure that
they don’t see each other’s salary information. (Check with your management
before circulating any proposed budget among your staff. Some companies
don’t allow individual contributors to see any budget information.) After
coming up with the budget, I usually sleep on it and then review it the next
day. I ask myself whether I’ve forgotten anything. If the budget contains a few
gaping holes where I don’t have enough information to even hazard a guess,
I’ll be honest and indicate that. Figure 1-12 provides an example of a budget
for SpeedyWriter, assuming the schedule shown in Figures 1-10 and 1-11.



Chapter 1 ■ Defining What’s on Your Plate 45

Figure 1-12 SpeedyWriter budget

Negotiating a Livable Test Project
With a quality risks list, schedule, and budget, I have a concise package that I
can take to management. By speaking management’s language, I can address
four key questions that will arise:

What type of risk management are we buying?

How long will it take?

What will it cost?

What’s the return on investment (see Chapter 11)?

Although each company has a different process for approving a test pro-
gram, every project I’ve worked on has required some degree of discussion,



46 Chapter 1 ■ Defining What’s on Your Plate

explanation, and negotiation. Be flexible. If management insists on reduced
costs or a faster schedule (or both), I eliminate tests in reverse priority order.
If cost is the major concern but I can add a few weeks to the schedule, perhaps
I can get by with one less employee. Outsourcing can also reduce costs when
done wisely, as you’ll see in Chapter 10. I make the case for what I believe
needs to be done, but I’m prepared to do less. The only taboo is agreeing to do
everything I initially proposed to do but in less time and/or for less money,
unless management wants to cut out the contingency time (schedule slack)
and money and run a high risk that later discoveries will break my budget or
schedule. If I’ve created a realistic schedule and budget, then agreeing to some
faster schedule and lower budget that fits management desire but not reality
is hardly doing anyone any favors, and it certainly won’t help my credibility.
If handed a non-negotiable dictate — for example, ‘‘You will do this amount
of testing in this period of time with this budget, end of discussion’’ — then
I simply agree to do the best job possible within those parameters, and
move on.

At the end of this negotiation, I have an approved budget and schedule
and a mutual understanding of the scope and deliverables for my test project.
Now it’s time to move on to creating a detailed plan, building the testware,
and putting the resources in place to carry out the project.

Case Study

On one project, we applied the failure mode and effect analysis (FMEA) tech-
nique to analyze possible ways that an application might fail. This application
provided secure-file deletion functionality for PC users running some versions
of the Windows operating system. We had a six-hour cross-functional meeting
with the test team, the programmers, the project manager, a salesperson, and
the marketing manager. In this meeting, we discussed ways in which the
system might fail and possible approaches to mitigation. These included both
testing and various programming-process improvements. Figure 1-13 shows
the top portion of this 100-item document. The full document is available at
www.rbcs-us.com.

Notice that while the DataRocket example shown earlier in the chapter
broke down failure modes based on major subsystems of the server, in this
case the analysis starts with major functionality and expected behaviors. You
can also use categories of quality risk as the starting point.



Chapter 1 ■ Defining What’s on Your Plate 47

Figure 1-13 A case study FMEA

Exercise

1. Based on your reading of the Omninet Marketing Requirements Docu-
ment, the Omninet System Requirements Document, and your experience
with testing and bugs, perform a risk analysis for Omninet.11

a. What will determine how long it takes to finish test execution for the
Omninet project? You have to consider the following:

The time required to run each test once

The time required to find, fix, and confirm the fix for each bug

b. What other factors should you consider?

c. What management/stakeholder-expectation issues might also affect
the test schedule?

11This exercise and solution are adapted from Chapter 7 of my book Pragmatic Software Testing.




