
  1    Bioinformatics and Mathematics         

 Traditionally, the study of biology is from morphology to cytology and then to 
the atomic and molecular level, from physiology to microscopic regulation, 
and from phenotype to genotype. The recent development of bioinformatics 
begins with research on genes and moves to the molecular sequence, then to 
molecular conformation, from structure to function, from systems biology to 
network biology, and further investigates the interactions and relationships 
among, genes, proteins, and structures. This new reverse paradigm sets a theo-
retical starting point for a biological investigation. It sets a new line of inves-
tigation with a unifying principle and uses mathematical tools extensively to 
clarify the ever - changing phenomena of life quantitatively and analytically. 

 It is well known that there is more to life than the genomic blueprint of 
each organism. Life functions within the natural laws that we know and those 
that we do not know. Life is founded on mathematical patterns of the physical 
world. Genetics exploits and organizes these patterns. Mathematical regulari-
ties are exploited by the organic world at every level of form, structure, pattern, 
behavior, interaction, and evolution. Essentially all knowledge is intrinsically 
unifi ed and relies on a small number of natural laws. Mathematics helps us 
understand how monomers become polymers necessary for the assembly of 
cells. Mathematics can be used to understand life from the molecular to the 
biosphere levels, including the origin and evolution of organisms, the nature 
of genomic blueprints, and the universal genetic code as well as ecological 
relationships. 

 Mathematics and biological data have a synergistic relationship. Biological 
information creates interesting problems, mathematical theory and methods 
provide models for understanding them, and biology validates the mathemati-
cal models. A model is a representation of a real system. Real systems are too 
complicated, and observation may change the real system. A good system 
model should be simple, yet powerful enough to capture the behavior of the 
real system. Models are especially useful in bioinformatics. In this chapter 
we provide an overview of bioinformatics history, genetic code and mathemat-
ics, background mathematics for bioinformatics, and the big picture of 
bioinformatics – informatics.  
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Copyright © 2011 John Wiley & Sons, Inc.

1

c01.indd   1c01.indd   1 9/27/2010   2:24:46 PM9/27/2010   2:24:46 PM

CO
PYRIG

HTED
 M

ATERIA
L



2  BIOINFORMATICS AND MATHEMATICS

   1.1    INTRODUCTION 

     Mendel ’ s Genetic Experiments and Laws of Heredity     The discovery of 
genetic inheritance by Gregor Mendel back in 1865 was considered as the start 
of bioinformatics history. He did experiments on the cross - fertilization of dif-
ferent colors of the same species. Mendel ’ s genetic experiments with pea 
plants took him eight years (1856 – 1863). During this time, Mendel grew over 
10,000 pea plants, keeping track of progeny number and type. He recorded the 
data carefully and performed mathematical analysis of the data. Mendel illus-
trated that the process of inheritance of traits could be explained more easily 
if it was controlled by factors passed down from generation to generation. He 
concluded that genes come in pairs. Genes are inherited as distinct units, one 
from each parent. He also recorded the segregation of parental genes and their 
appearance in the offspring as dominant or recessive traits. He published his 
results in 1865. He recognized the mathematical patterns of inheritance from 
one generation to the next. Mendel ’ s laws of heredity are usually stated as 
follows: 

   •      The law of segregation.     A gene pair defi nes each inherited trait. Parental 
genes are randomly separated by the sex cells, so that sex cells contain 
only one gene of the pair. Offspring therefore inherit one genetic allele 
from each parent.  

   •      The law of independent assortment.     Genes for different traits are sorted 
from one another in such a way that the inheritance of one trait is not 
dependent on the inheritance of another.  

   •      The law of dominance.     An organism with alternate forms of a gene will 
express the form that is dominant.    

 In 1900, Mendel ’ s work was rediscovered independently by DeVries, 
Correns, and Tschermak, each of whom confi rmed Mendel ’ s discoveries. 
Mendel ’ s own method of research is based on the identifi cation of signifi cant 
variables, isolating their effects, measuring these meticulously, and eventually 
subjecting the resulting data to mathematical analysis. Thus, his work is con-
nected directly to contemporary theories of mathematics, statistics, and physics.  

  Origin of Species     Charles Darwin published  On the Origin of Species by 
Means of Natural Selection  (Darwin,  1859 ) or  “ The Preservation of Favored 
Races in the Struggle for Life. ”  His key work was that evolution occurs 
through the selection of inheritance and involves transmissible rather than 
acquired characteristics between individual members of a species. Darwin ’ s 
landmark theory did not specify the means by which characteristics are inher-
ited. The mechanism of heredity had not been determined at that time.  

  First Genetic Map     In 1910, after the rediscovery of Mendel ’ s work, Thomas 
Hunt Morgan at Columbia University carried out crossing experiments with 
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INTRODUCTION  3

the fruit fl y ( Drosophila melanogaster ). He proved that the genes responsible 
for the appearance of a specifi c phenotype were located on chromosomes. He 
also found that genes on the same chromosome do not always assort indepen-
dently. Furthermore, he suggested that the strength of linkage between genes 
depended on the distance between them on the chromosome. That is, the 
closer two genes lie to each other on a chromosome, the greater the chance 
that they will be inherited together. Similarly, the farther away they are from 
each other, the greater the chance of that they will be separated in the process 
of crossing over. The genes are separated when a crossover takes place in the 
distance between the two genes during cell division. Morgan ’ s experiments 
also lead to  Drosophila  ’ s unusual position as, to this day, one of the best 
studied organisms and most useful tools in genetic research. In 1911, Alfred 
Sturtevant, then an undergraduate researcher in the laboratory of Thomas 
Hunt Morgan, mapped the locations of the fruit fl y genes, creating the fi rst 
genetic map ever made.  

  Transposable Genetic Elements     In 1944, Barbara McClintock discovered 
that genes can move on a chromosome and can jump from one chromosome 
to another. She studied the inheritance of color and pigment distribution in 
corn kernels at the Carnegie Institution Department of Genetics in Cold 
Spring Harbor, New York. At age 81 she was awarded a Nobel prize. It is 
believed that transposons may be linked to such genetic disorders as hemo-
philia, leukemia, and breast cancer; and transposons may have played a crucial 
role in evolution.  

   DNA  Double Helix     In 1953, James Watson and Francis Crick proposed a 
double - helix model of DNA. DNA is made of three basic components: a sugar, 
an acid, and an organic  “ base. ”  The base was always one of the four nucleo-
tides: adenine (A), cytosine (C), guanine (G), or thymine (T). These four dif-
ferent bases are categorized in two groups: purines (adenine and guanine) and 
pyrimidines (thymine and cytosine). In 1950, Erwin Chargaff found that the 
amounts of adenine (A) and thymine (T) in DNA are about the same, as are 
the amounts of guanine (G) and cytosine (C). These relationships later became 
known as  “ Chargaff ’ s rules ”  and led to much speculation about the three -
 dimensional structure that DNA would have. Rosalind Franklin, a British 
chemist, used the x - ray diffraction technique to capture the fi rst high - quality 
images of the DNA molecule. Franklin ’ s colleague Maurice Wilkins showed 
the pictures to James Watson, an American zoologist, who had been working 
with Francis Crick, a British biophysicist, on the structure of the DNA mole-
cule. These pictures gave Watson and Crick enough information to propose in 
1953 a double - stranded, helical, complementary, antiparallel model for DNA. 
Crick, Watson, and Wilkins shared the 1962 Nobel Prize in Physiology or 
Medicine for the discovery that the DNA molecule has a double - helical struc-
ture. Rosalind Franklin, whose images of DNA helped lead to the discovery, 
died of cancer in 1958 and, under Nobel rules, was not eligible for the prize. 
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4  BIOINFORMATICS AND MATHEMATICS

In 1957, Francis Crick and George Gamov worked out the  “ central dogma, ”  
explaining how DNA functions to make protein. Their  sequence hypothesis  
posited that the DNA sequence specifi es the amino acid sequence in a protein. 
They also suggested that genetic information fl ows only in one direction, from 
DNA to messenger RNA to protein, the central concept of the central dogma.  

  Genetic Code  (see Appendix  A )      The genetic code was fi nally  “ cracked ”  in 
1966. Marshall Nirenberg, Heinrich Mathaei, and Severo Ochoa demonstrated 
that a sequence of three nucleotide bases, a codon or triplet, determines each 
of the 20 amino acids found in nature. This means that there are 64 possible 
combinations (4 3     =    64) for 20 amino acids. They formed synthetic messenger 
ribonucleic acid (mRNA) by mixing the nucleotides of RNA with a special 
enzyme called polynucleotide phosphorylase. This resulted in the formation 
of a single - stranded RNA in this reaction. The question was how these 64 
genetic codes could code for 20 different amino acids. Nirenberg and Matthaei 
synthesized poly(U) by reacting only uracil nucleotides with the RNA -
 synthesizing enzyme, producing  – UUUU – . They mixed this poly(U) with the 
protein - synthesizing machinery of  Escherichia coli  in vitro and observed the 
formation of a protein. This protein turned out to be a polypeptide of phenyl-
alanine. They showed that a triplet of uracil must code for phenylalanine. 
Philip Leder and Nirenberg found an even better experimental protocol to 
solve this fundamental problem. By 1965 the genetic code was solved almost 
completely. They found that the  “ extra ”  codons are merely redundant: Some 
amino acids have one or two codons, some have four, and some have six. Three 
codons (called  stop codons ) serve as stop signs for RNA - synthesizing 
proteins.  

  First Recombinant  DNA  Molecules     In 1972, Paul Berg of Stanford University 
created the fi rst recombinant DNA molecules by combining the DNA of two 
different organisms. He used a restriction enzyme to isolate a gene from a 
human - cancer - causing monkey virus. Then he used lipase to join the section 
of virus DNA with a molecule of DNA from the bacterial virus lambda, creat-
ing the fi rst recombinant DNA molecule. He realized the risks of his experi-
ment and terminated it temporarily before the recombinant DNA molecule 
was added to  E. coli , where it would have quickly been reproduced. He pro-
posed a one - year moratorium on recombinant DNA studies while safety issues 
were addressed. Berg later resumed his studies of recombinant DNA tech-
niques and was awarded the 1980 Nobel Prize in Chemistry. His experiments 
paved the road for the fi eld of genetic engineering and the modern biotechnol-
ogy industry.  

   DNA  Sequencing and Database     In early 1974, Frederick Sanger from the 
UK Medical Research Council was fi rst to invent DNA - sequencing tech-
niques. During his experiments to uncover the amino acids in bovine insulin, 
he developed the basics of modern sequencing methods. Sanger ’ s approach 
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involved copying DNA strands, which would show the location of the nucleo-
tides in the strands. To apply Sanger ’ s approach, scientists had to analyze the 
composite collections of DNA pieces detected from four test tubes, one for 
each of the nucleotides found in DNA (adenosine, cytosine, thymidine, 
guanine). Then they needed to be arranged in the correct order. This technique 
is very slow and tedious. It takes many years to sequence only a few million 
letters in a string of DNA. Almost simultaneously, the American scientists 
Alan Maxam and Walter Gilbert were creating a different method called the 
 cleavage method . The base for virtually all DNA sequencing was the dideoxy -
 chain - terminating reaction developed by Sanger. 

 In 1978, David Botstein developed restriction - fragment - length polymor-
phisms. Individual human beings differ one base pair in every 500 nucleotides 
or so. The most interesting variations for geneticists are those that are recog-
nized by certain enzymes called  restriction enzymes . Each of these enzymes 
cuts DNA only in the presence of a specifi c sequence (e.g., GAATTC in the 
case of the restriction enzyme EcoR1). This sequence is called a  restriction site . 
The enzyme will bypass the region if it has mutated to GACTTC. Thus, when 
a specifi c restriction enzyme cuts the DNA of different people, it may produce 
fragments of different lengths. These DNA fragments can be separated accord-
ing to size by making them move through a porous gel in an electric fi eld. 
Since the smaller fragments move more rapidly than the larger ones, their sizes 
can be determined by examining their positions in the gel. Variations in their 
lengths are called  restriction - fragment - length polymorphisms . 

 In 1980, Kary Mullis invented polymerase chain reaction (PCR), a method 
for multiplying DNA sequences in vitro. The purpose of PCR is to make a 
huge number of copies of a specifi c DNA fragment, such as a gene. Use of 
thermostable polymerase allows the dissociation of newly formed complemen-
tary DNA and subsequent annealing or hybridization of the primers to the 
target sequence with a minimal loss of enzymatic activity. PCR may be neces-
sary to receive enough starting template for instance sequencing. 

 In 1986, scientists presented a means of detecting ddNTPs with fl uorescent 
tags, which required only a single test tube instead of four. As a result of this 
discovery, the time required to process a given batch of DNA was reduced 
by one - fourth. The amount of sequenced base pairs increased rapidly from 
there on. 

 Established in 1988 as a national resource for molecular biology informa-
tion, the National Center for Biotechnology Information (NCBI) carries out 
diverse responsibilities. NCBI creates public databases, conducts research in 
computational biology, develops software tools for analyzing genome data, 
and disseminates biomedical information: all for a better understanding of 
molecular processes affecting human health and disease. NCBI conducts 
research on fundamental biomedical problems at the molecular level using 
mathematical and computational methods. 

 The European Bioinformatics Institute (EBI) is a nonprofi t academic orga-
nization that forms part of the European Molecular Biology Laboratory 
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6  BIOINFORMATICS AND MATHEMATICS

(EMBL). The roots of the EBI lie in the EMBL Nucleotide Sequence Data 
Library, which was established in 1980 at the EMBL laboratories in Heidelberg, 
Germany and was the world ’ s fi rst nucleotide sequence database. The original 
goal was to establish a central computer database of DNA sequences rather 
than having scientists submit sequences to journals. What began as a modest 
task of abstracting information from literature soon became a major database 
activity with direct electronic submissions of data and the need for a highly 
skilled informatics staff. The task grew in scale with the start of the genome 
projects, and grew in visibility as the data became relevant to research in the 
commercial sector. It became apparent that the EMBL Nucleotide Sequence 
Data Library needed better fi nancial security to ensure its long - term viability 
and to cope with the sheer scale of the task.  

  Human Genome Project     In 1990, the U.S. Human Genome Project started 
as a 15 - year effort coordinated by the U.S. Department of Energy and the 
National Institutes of Health. The project originally was planned to last 15 
years, but rapid technological advances accelerated the expected completion 
date to 2003. Project goals were to: 

   •      Identify all the genes in human DNA  
   •      Determine the sequences of the 3 billion chemical base pairs that make 

up human DNA  
   •      Store this information in databases  
   •      Improve tools for data analysis  
   •      Transfer related technologies to the private sector  
   •      Address the ethical, legal, and social issues (ELSIs) that may arise from 

the project    

 In 1991, working with Nobel laureate Hamilton Smith, Venter ’ s genomic 
research project (TIGR) created the  shotgunning method . At fi rst the method 
was controversial among Venter ’ s colleagues, who called it crude and inaccu-
rate. However, Venter cross - checked his results by sequencing the genes in 
both directions, achieving a level of accuracy that greatly impressed his initial 
sceptical rivals. Within a year, TIGR published the entire genome of 
 Haemophilus infl uenzae , a bacterium with nearly 2 million nucleotides. 

 The draft human genome sequence was published on February 15, 2001, in 
the journals  Nature  (publically funded Human Genome Project) and  Science  
(Craig Venter ’ s fi rm Celera).    

   1.2    GENETIC CODE AND MATHEMATICS 

 It is known that the secrets of life are more complex than DNA and the genetic 
code. One secret of life is the self - assembly of the fi rst cell with a genetic 
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GENETIC CODE AND MATHEMATICS  7

blueprint that allowed it to grow and divide. Another secret of life may be the 
mathematical control of life as we know it and the logical organization of the 
genetic code and the use of math in understanding life. 

 Mathematics has a fundamental role in understanding the complexities of 
living organisms. For example, the genetic code triplets of three bases in mes-
senger ribonucleic acid (mRNA) that encode for specifi c amino acids during 
the translation process (synthesis of proteins using the genetic code in mRNA 
as the template) have some interesting mathematical logic in their organiza-
tion (Cullman and Labouygues,  1984 ). An examination of this logical organiza-
tion may allow us to better understand the logical assembly of the genetic code 
and life. 

 The genetic code in mRNA is composed of U for uracil, C for cytosine, A 
for adenine, and G for guanine. The genetic code triplets of three bases in 
messenger ribonucleic acid (mRNA) that encode for specifi c amino acids 
during the translation process (synthesis of proteins using the genetic code in 
mRNA as the template) have some interesting and mathematical logic in their 
organization. 

 In the fi rst stage there was an investigation of the  standard genetic code . In 
the past few decades, some other variants of the genetic code were revealed, 
which are described at the Web site  http://www.ncbi.nlm.nih.gov/Taxonomy/
Utils/wprintgc.cgi  and which differ from the standard genetic code in some 
correspondences among 64 triplets, 20 amino acids, and stop codons. One 
noticeable feature of the genetic code is that some amino acids are encoded 
by several different but related base codons or triplets. There are 64 triplets 
or codons. In the case of the standard genetic code, three triplets (UAA, UAG, 
and UGA) are nonsense codons — no amino acid corresponds to their code. 
The remaining 61 codons represent 20 different amino acids. The genetic code 
is encoded in combinations of the four nucleotides found in DNA and then 
RNA. There are 16 possible combinations (4 2 ) of the four nucleotides of 
nucleotide pairs. This would not be suffi cient to code for 20 amino acids 
(Prescott et al.,  1993 ). The solution is mathematically simple. During the self -
 assembly and evolution of life, a code word (codon or triplet) evolved that 
provides for 64 (4 3 ) possible combinations. This simple code determines all the 
proteins necessary for life. 

 The genetic code is also degenerate. For example, up to six different codons 
are available for some amino acid. Another noteworthy aspect of biological 
messages is that minimal information is necessary to encode the messages 
(Peusner,  1974 ), and the messages can be encoded and decoded and put to 
work in amazingly short periods of time. A bacterial  E. coli  cell can grow and 
divide in half an hour, depending on the growth conditions. Mathematically, it 
could not be simpler. 

 Selenocysteine (twenty - fi rst amino acid encoded by the genetic code) codon 
is UGA, normally a stop codon. Selenocysteine is a derivative of cysteine in 
which the sulfur atom is replaced by a selenium atom that is an essential atom 
in a small number of proteins, notably glutathione peroxidase. These proteins 
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8  BIOINFORMATICS AND MATHEMATICS

are found in prokaryotes and eukaryotes, ranging from  E. coli  to humans. The 
selenocysteine is incorporated into proteins during translation in response to 
the UGA codon. This amino acid is readily oxidized by oxygen. Enzymes 
containing this amino acid must be protected from oxygen. As the oxygen 
concentration increased, the selenocysteine may gradually have been replaced 
by cysteine with the codons UGU and UGC (Madigan et al.,  1997 ). The three -
 base code sometimes differs only in the third base position. For example, the 
genetic code for glycine is GGU, GGC, GGA, or GGG. Only the third base is 
variable. A similar third - base - change pattern exists for the amino acids lysine, 
asparagine, proline, leucine, and phenylalanine. These relationships are not 
random. For example, UUU codes for the same amino acid (phenylalanine) 
as UUC. In some codons the third base determines the amino acid. The second 
base is also important. For example, when the second base is C, the amino acid 
specifi ed comes from a family of four codons for one amino acid, except for 
valine. Biological expression is in the form of coded messages — messages that 
contain the information on shapes of bimolecular structure and biochemical 
reactions necessary for life function. The coded message determines the 
protein, which folds into a shape that requires the minimal amount of energy. 
Therefore, the total energy of attraction and repulsion between atoms is 
minimal. How did this genetic code come to be the code of life as we know 
it? Nature had billions of years to experiment with different coding schemes, 
and eventually adopted the genetic code we have today. 

 It is simple in terms of mathematics. It is also conserved but can be mutated 
at the DNA level and also repaired. The code is thermodynamically possible 
and consistent with the origin, evolution, and diversity of life. Math as applied 
to understanding biology has countless uses. It is used to elucidate trends, pat-
terns, connections, and relationships in a quantitative manner that can lead to 
important discoveries in biology. How can math be used to understand living 
organisms? One way to explore this relationship is to use examples from the 
bacterial world. The reader is also referred to an excellent text by Stewart 
 (1998)  that illustrates how math can be used to elucidate a fuller understand-
ing of the natural world. For example, the exponential growth of bacterial cells 
(1 cell    →    2 cells    →    4 cells    →    8 cells    →    16 cells, and so on) is essential informa-
tion that is one of the foundations of microbiology research. Exponential 
growth over known periods of time is essential in the understanding of bacte-
rial growth in countless areas of research. The ability to use math to describe 
growth per unit of time is an excellent example of the interrelationship between 
math and the capability to understand this aspect of life. For example, the basic 
unit of life is the cell, an entity of 1. Bacteria also multiply by dividing. 
Remember that life is composed of matter, and matter is composed of atoms, 
and that atoms, especially in solids, are arranged in an effi cient manner into 
molecules that minimize the energy needed to take on specifi c confi gurations. 
Often, these arrangements or confi gurations are repeating units of monomers 
that make up polymers. Stewart  (1998)  described it very well in his excellent 
book when he posed the question:  “ What could be more mathematical than 
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GENETIC CODE AND MATHEMATICS  9

DNA? ”  The ability of DNA to replicate itself exactly and at the same time 
change ever so slightly allows evolutionary changes to occur. The mathemati-
cal sequences of four different bases (adenine, thymine, guanine, and cytosine) 
in DNA are the blueprint of life. Again, the order of the four bases determines 
the mRNA sequence, and then the protein that is synthesized. DNA in a cell 
is also capable of replicating itself precisely in a cell. The replicated DNA can 
then partition into each new cell when one cell divides and becomes two cells. 
The DNA can only replicate with the assistance of enzymes that unwind the 
DNA and allow the DNA strands to act as templates for synthesis of the 
second strand. The ability of a cell to unwind its DNA, replicate or copy new 
strands, and then partition them between two new cells has a mathematical 
basis. The four bases are paired in a specifi c manner: A (adenine) with T 
(thymine), C (cytosine) with G (guanine) on the opposite strands along a sugar 
phosphate backbone. Each strand can contain all four bases in any order. 
However, A must bond with T and C with G on opposite strands. This precise 
mathematical pairing must be obeyed. 

 Living organisms also have amazing mathematical order and symmetry. The 
repeating units of fatty acids, glycerol, and phosphate that make up a phos-
pholipid membrane bilayer are one example. An excellent example of math-
ematical symmetry is the S - layer in many Archaea bacterial (prokaryotes 
consisting of methanogens, most extreme halophiles and hyperthermophiles, 
and  Thermoplasma ) cell walls that exhibit a hexagonal confi guration. A cell 
that can assemble the same repeating units countless times is effi cient and 
reduces the numbers of errors incorporated into the assembly. This is exactly 
the characteristic that is needed for a living cell to grow and divide. Yet a little 
bit of change can occur over time. 

 Biochemical reactions in cells are accompanied by gains or losses in energy 
during the reactions. Some of the energy is lost as heat and is not available to 
do work. In humans, heat is used to maintain a normal body temperature. The 
energy available to the cell is expressed as free energy and can be expressed 
as kJ/mol. Without the use of math and units of measurement, it would be 
impossible to describe energy metabolism in cells. Nor would we be able to 
describe the rates of enzyme reactions necessary for the self - assembly and 
functioning of life. Without units of temperature, we would not be able to 
describe the lower, upper, and optimum growth temperatures of specifi c 
microorganisms. The pH ranges for bacterial growth and the optimum pH 
values for enzyme reactions would be unknown without math to describe the 
values. Water availability values and oxygen concentrations would not be able 
to be described for growth of specifi c organisms. The examples are numerous. 
Without the use of math and scientifi c units to express values, our understand-
ing of life would be minimal, and biology would not have made the great 
advances that it has made in the past decades. One central characteristic of 
living organisms is reproduction. From nutrients in their environment, they 
can self - assemble new cells in virtually exact copies. Second, living organisms 
are interdependent on each other and their activities. The Earth ’ s biosphere, 
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with its abundance of oxygen and living organisms, was self - assembled by 
living organisms. 

 From a chaotic lifeless environment on the early Earth, life self - assembled 
with the cell as the basic unit, with mathematically precise order, symmetry, 
and base pairing in DNA as the genetic blueprint and with triplet codons as 
the genetic code for protein synthesis. 

 It is well known that all knowledge is intrinsically unifi ed and lies in a small 
number of natural laws. Math can be used to understand life from the molecu-
lar level to the level of the biosphere. For example, this includes the origin and 
evolution of organisms, the nature of the genomic blueprints, and the universal 
genetic code as well as ecological relationships. Math helps us look for trends, 
patterns, and relationships that may or may not be obvious to scientists. Math 
allows us to describe the dimensions of genes and the sizes of organelles, cells, 
organs, and whole organisms. Without this knowledge, a paucity of information 
would still exist on many aspects of life.  

   1.3    MATHEMATICAL BACKGROUND 

 In this section we provide a general background of major branches of math-
ematics that we discuss in relation to bioinformatics throughout the book. 

     Algebra      Algebra  is the study of structure, relation, and quantity through 
symbolic operations for the systematic solution of equations and inequalities. 
In addition to working directly with numbers, algebra works with symbols, 
variables, and set elements. Addition and multiplication are viewed as general 
operations, and their precise defi nitions lead to advance structures such as 
groups, rings, and fi elds in which algebraic structures are defi ned and investi-
gated axiomatically. Linear algebra studies the specifi c properties of vector 
spaces, including matrices. The properties common to all algebraic structures 
are studied in universal algebra. Axiomatic algebraic systems such as groups, 
rings, fi elds, and algebras over a fi eld are investigated in the presence of a 
geometric structure (a metric or a topology) which is compatible with the 
algebraic structure. In recent years, algebraic structures have been discovered 
within the genetic codes, biological sequences, and biological structures. 
Matrices, polynomials, and other algebraic elements have been applied to 
studies of sequence alignments and protein structures and classifi cations.  

  Abstract Algebra     Abstract algebra extends the familiar concepts from basic 
algebra to more general concepts.  Abstract algebra  deals with the more general 
concept of  sets : a collection of all objects selected by property, specifi c for the 
set under binary operations. Binary operations are the keystone of algebraic 
structures studied in abstract algebra: They form a part of groups, rings, fi elds, 
and more. A  binary operation  is a rule for combining two objects of a given 
type to obtain another object of that type. More precisely, a binary operation 
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on a set  S  is a binary relation that maps elements of the Cartesian product 
 S     ×     S  to  S :

    f S S S: × →   

 Addition ( + ), subtraction ( − ), multiplication ( × ), and division ( ÷ ) can be 
binary operations when defi ned on different sets, as is addition and multiplica-
tion of matrices, vectors, and polynomials. Groups, rings, and fi elds are funda-
mental structures in abstract algebra. 

 A  group  is a combination of a set  S  and a single binary operation  “  *  ”  with 
the following properties: 

   •      An  identity  element  e  exists such that for every member  a  of  S ,  e     *     a  and 
 a     *     e  are both identical to  a .  

   •      Every element has an  inverse : For every member  a  of  S , there exists a 
member  a   − 1  such that  a     *     a   − 1  and  a   − 1     *     a  are both identical to the identity 
element.  

   •      The operation is  associative : If  a ,  b , and  c  are members of  S , then ( a     *     b )    *     c  
is identical to  a     *    ( b     *     c ).  

   •      The set  S  is  closed  under the binary operation  * .    

 For example, the set of integers under the operation of addition is a group. 
In this group, the identity element is 0 and the inverse of any element  a  is its 
negation,  −  a . The associativity requirement is met because for any integers  a , 
 b , and  c , ( a     +     b )    +     c     =     a     +    ( b     +     c ). The integers under the multiplication opera-
tion, however, do not form a group. This is because, in general, the multiplica-
tive inverse of an integer is not an integer. For example, 4 is an integer, but its 
multiplicative inverse is 1/4, which is not an integer. 

 The structures and classifi cations of groups are studied in group theory. A 
major result in this theory is the classifi cation of fi nite simple groups, which is 
thought to classify all of the fi nite simple groups into roughly 30 basic types. 

 Semigroups, monoids, and quasigroups are structures similar to groups, but 
more general. They comprise a set and a closed binary operation, but do not 
necessarily satisfy the other conditions. A  semigroup  has an  associative  binary 
operation but might not have an identity element. A  monoid  is a semigroup 
that does have an identity but might not have an inverse for every element. A 
 quasigroup  satisfi es a requirement that any element can be turned into any 
other by a unique pre -  or postoperation; however, the binary operation might 
not be associative. All are instances of  groupoids , structures with a binary 
operation upon which no further conditions are imposed. All groups are 
monoids, and all monoids are semigroups. 

 Groups have only one binary operation. Rings and fi elds explain the 
behavior of the various types of numbers; they are structures with two opera-
tors. A  ring  has two binary operations,  +  and  × , with    ×    distributive over  + . 
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12  BIOINFORMATICS AND MATHEMATICS

Distributive property generalized the  distributive law  for numbers and 
specifi es the order in which the operators should be applied. For the integers 
( a     +     b )    ×     c     =     a     ×     c     +     b     ×     c  and  c     ×    ( a     +     b )    =     c     ×     a     +     c     ×     b , and    ×    is said to be 
 distributive  over  + . Under the fi rst operator ( + ), it is commutative (i.e., 
 a     +     b     =     b     +     a ). Under the second operator ( × ) it is associative, but it does not 
need to have the identity or inverse property, so division is not allowed. The 
additive ( + ) identity element is written as 0 and the additive inverse of  a  is 
written as  −  a . Integers with both binary operations  +  and    ×    are an example of 
a ring. 

 A  fi eld  is a ring with the additional property that all the elements, excluding 
0, form an  Abelian group  (have a commutative property) under  × . The multi-
plicative ( × ) identity is written as 1, and the multiplicative inverse of  a  is 
written as  a   − 1 . The rational numbers, the real numbers, and the complex 
numbers are all examples of fi elds. 

 These algebraic structures have been used in the study of genetic codes. 
Group theory has many applications in physics and chemistry, and it is poten-
tially applicable in any situation characterized by symmetry. In chemistry, 
groups are used to classify crystal structures, regular polyhedrals, and the sym-
metries of molecules. The assigned point groups can then be used to determine 
physical properties (such as polarity and chirality) and spectroscopic proper-
ties (particularly useful for Raman spectroscopy and infrared spectroscopy), 
and to construct molecular orbitals.  

  Probability      Probability  is the language of uncertainty. It is the likelihood or 
chance that something is the case or will happen. Probability theory is used 
extensively in areas such as statistics, mathematics, science, philosophy, psy-
chology, and in the fi nancial markets to draw conclusions about the likelihood 
of potential events and the underlying mechanics of complex systems. The 
probability of an event  E  is represented by a real number in the range 0 to 1 
and is denoted by  P ( E ),  p ( E ), or Pr( E ). An impossible event has a probability 
of 0, and a certain event has a probability of 1.  

  Statistics      Statistics  is a mathematical science pertaining to the collection, 
analysis, interpretation or explanation, and presentation of data. Statistical 
methods can be used to summarize or describe a collection of data; this is 
called  descriptive statistics . Descriptive statistics can be used to summarize the 
data, either numerically or graphically, to describe the sample. Basic examples 
of numerical descriptors include the mean and standard deviation. Graphical 
summarizations include various types of charts and graphs. In addition, pat-
terns in the data may be modeled in a way that accounts for randomness and 
uncertainty in the observations, and then used to draw inferences about the 
process or population being studied; this is called  inferential statistics . Inferential 
statistics is used to model patterns in the data, accounting for randomness 
and drawing inferences about the larger population. These inferences may 
take the form of answers to yes/no questions (hypothesis testing), estimates 
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of numerical characteristics (estimation), descriptions of association (correla-
tion), or modeling of relationships (regression). Other modeling techniques 
include ANOVA, time series, and data mining. Both descriptive and inferential 
statistics comprise applied statistics. 

 Probability and statistics have been used successfully to investigate sequence 
analysis, alignments, profi le searches and phylogenetic trees, and many prob-
lems in bioinformatics.  

  Differential Geometry      Differential geometry  is a mathematical discipline 
that uses the methods of differential and integral calculus to study problems 
in geometry. The theory of plane and space curves and of surfaces in three -
 dimensional Euclidean space formed the basis for its initial development. 
Differential geometry has grown into a fi eld concerned more generally with 
geometric structures on differentiable manifolds. It is closely related to dif-
ferential topology and to the geometric aspects of the theory of differential 
equations. In physics, differential geometry is the language in which Einstein ’ s 
general theory of relativity is expressed. According to the theory, the universe 
is a smooth manifold equipped with a pseudo - Riemannian metric, which 
describes the curvature of space – time. Understanding this curvature is essen-
tial for the positioning of satellites into orbit around the Earth. In the biologi-
cal and medical sciences, differential geometry has been used to study protein 
confi rmation and the elasticity of nonrigid objects such as human hearts and 
human faces.  

  Topology      Topology  is the mathematical study of the properties that are 
preserved through deformations, twistings, and stretchings of objects; however, 
tearing is not allowed. A circle is topologically equivalent to an ellipse (into 
which it can be deformed by stretching), and a sphere is equivalent to an 
ellipsoid. Similarly, the set of all possible positions of the hour hand of a clock 
is topologically equivalent to a circle (i.e., a one - dimensional closed curve with 
no intersections that can be embedded in two - dimensional space), the set of 
all possible positions of the hour and minute hands taken together is topologi-
cally equivalent to the surface of a torus (i.e., a two - dimensional surface that 
can be embedded in three - dimensional space), and the set of all possible posi-
tions of the hour, minute, and second hands taken together are topologically 
equivalent to a three - dimensional object. Topology can be used to abstract the 
inherent connectivity of objects while ignoring their detailed form. The math-
ematical defi nition of topology is described here briefl y. 

 Let  X  be any set and let  T  be a family of subsets of  X . Then  T  is a topology 
on  X  if: 

   •      Both the empty set and  X  are elements of  T .  
   •      Any union of arbitrarily many elements of  T  is an element of  T .  
   •      Any intersection of fi nitely many elements of  T  is an element of  T .    

 If  T  is a topology on  X , then  X  together with  T  is called a  topological space . 
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14  BIOINFORMATICS AND MATHEMATICS

 All sets in  T  are called  open ; note that, in general, not all subsets of  X  need 
be in  T . A subset of  X  is said to be  closed  if its complement is in  T  (i.e., it is 
open). A subset of  X  may be open, closed, both, or neither. 

 A function or map from one topological space to another is called  continu-
ous  if the inverse image of any open set is open. If the function maps the real 
numbers to the real numbers (both spaces with the standard topology), this 
defi nition of continuous is equivalent to the defi nition of continuous in calcu-
lus. If a continuous function is one - to - one and onto and if the inverse of the 
function is also continuous, the function is called a  homeomorphism , and the 
domain of the function is said to be homeomorphic to the range. Another way 
of saying this is that the function has a natural extension to the topology. If 
two spaces are homeomorphic, they have identical topological properties and 
are considered to be topologically the same. The cube and the sphere are 
homeomorphic, as are the coffee cup and the doughnut. But the circle is not 
homeomorphic to the doughnut. DNA topology and protein topology are 
active research areas.  

  Knot Theory      Knot theory  is the mathematical branch of topology that 
studies mathematical  knots , which are defi ned as embeddings of a circle in 
three - dimensional Euclidean space,  R  3   . This is basically equivalent to a con-
ventional knotted string with the ends joined together to prevent it from 
becoming undone. Two mathematical knots are equivalent if one can be 
transformed into the other via a deformation of  R  3  upon itself (known as an 
 ambient isotopy ); these transformations correspond to manipulations of a 
knotted string that do not involve cutting the string or passing the string 
through itself. 

 Knots can be described in various ways. Given a method of description, 
however, there may be more than one description that represents the same 
knot. For example, a common method of describing a knot is a planar diagram. 
But any given knot can be drawn in many different ways using a planar 
diagram. Therefore, a fundamental problem in knot theory is determining 
when two descriptions represent the same knot. One way of distinguishing 
knots is by using a  knot invariant , a  “ quantity ”  that remains the same even 
with different descriptions of a knot. The concept of a knot has been extended 
to higher dimensions by considering  n  - dimensional spheres in  m  - dimensional 
Euclidean space. 

 The discovery of the Jones polynomial by Vaughan Jones in 1984 revealed 
deep connections between knot theory and mathematical methods in statisti-
cal mechanics and quantum fi eld theory. In the last 30 years, knot theory has 
also become a tool in applied mathematics. Chemists and biologists use knot 
theory to understand, for example, the chirality of molecules and the actions 
of enzymes on DNA. In the last several decades of the twentieth century, 
scientists and mathematicians began fi nding applications of knot theory to 
problems in biology and chemistry. Knot theory can be used to determine 
whether or not a molecule is  chiral  (has  “ handedness ” ). Chemical compounds 
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of different handedness can have drastically differing properties, thalidomide 
being a notable example. More generally, knot theoretic methods have been 
used in studying  topoisomers , topologically different arrangements of the same 
chemical formula. The closely related theory of  tangles  has been used effec-
tively in studying the action of certain enzymes on DNA.  

  Graph Theory      Graph theory  is the study of  graphs , mathematical structures 
used to model pairwise relations between objects from a certain collection. In 
this context a graph is a collection of vertices or  nodes  and a collection of  edges  
that connect pairs of vertices. A graph may be  undirected , meaning that there 
is no distinction between the two vertices associated with each edge, or its 
edges may be  directed  from one vertex to another. A graph structure can be 
extended by assigning a weight to each edge of the graph. Graphs with weights, 
 weighted graphs , are used to represent structures in which pairwise connec-
tions have some numerical values. For example, if a graph represents a road 
network, the weights could represent the length of each road. A digraph with 
weighted edges in the context of graph theory is called a  network . 

 Many applications of graph theory exist in the form of network analysis. 
These split broadly into three categories: 

  1.     Analysis to determine structural properties of a network, such as the 
distribution of vertex degrees and the diameter of the graph. A vast 
number of graph measures exist, and the production of useful ones for 
various domains remains an active area of research.  

  2.     Analysis to fi nd a measurable quantity within the network: for example, 
for a transportation network, the level of vehicular fl ow within any 
portion of it.  

  3.     Analysis of dynamical properties of networks.    

 Graph theory is also used to study molecules in chemistry and biology. In 
chemistry a graph makes a natural model for a molecule, where vertices rep-
resent atoms and edge bonds. This approach is used especially in computer 
processing of molecular structures, ranging from chemical editors to database 
searching.  

  Fractals     A  fractal  is generally  “ a rough or fragmented geometric shape that 
can be split into parts, each of which is (at least approximately) a reduced - size 
copy of the whole, ”  a property called  self - similarity . Because they appear 
similar at all levels of magnifi cation, fractals are often considered to be infi -
nitely complex (in informal terms). Natural objects that approximate fractals 
to a degree include clouds, mountain ranges, lightning bolts, coastlines, and 
snowfl akes. 

 Fractals can also be classifi ed according to their self - similarity. Three types 
of self - similarity are found in fractals: 
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16  BIOINFORMATICS AND MATHEMATICS

  1.     Exact self - similarity.     This is the strongest type of self - similarity; the 
fractal appears identical at different scales. Fractals defi ned by iterated 
function systems often display exact self - similarity.  

  2.     Quasi - self - similarity.     This is a loose form of self - similarity; the fractal 
appears approximately (but not exactly) identical at different scales. 
Quasi - self - similar fractals contain small copies of the entire fractal in 
distorted and degenerate forms. Fractals defi ned by recurrence relations 
are usually quasi - self - similar but not exactly self - similar.  

  3.     Statistical self - similarity.     This is the weakest type of self - similarity; the 
fractal has numerical or statistical measures that are preserved across 
scales. Most reasonable defi nitions of  fractal  trivially imply some form 
of statistical self - similarity. (A fractal dimension itself is a numerical 
measure that is preserved across scales.) Random fractals are examples 
of fractals that are statistically self - similar, but neither exactly self - similar 
nor quasi - self - similar.    

 Approximate fractals are easily found in nature. These objects display a 
self - similar structure over an extended but fi nite scale range. Examples include 
clouds, snowfl akes, crystals, mountain ranges, lightning, river networks, cauli-
fl ower and broccoli, and systems of blood vessels and pulmonary vessels. 
Coastlines may be loosely considered fractal in nature.  

  Complexities      Complexity theory  and  chaos theory  study systems that are too 
complex to predict their future accurately, but nevertheless, exhibit underlying 
patterns that can help us cope in an increasingly complex world. Science 
usually examines the world by breaking it into smaller and smaller pieces until 
the pieces can be understood. When we use this approach, we often miss the 
bigger picture. Knowing all we can about an individual ant will not teach us 
about how an entire ant colony works. Dissecting a rat will never tell us all 
that we need to know about living rats. Sometimes the way that the parts 
interact is critical to how the entire system works. This is what complexity 
studies. Complexity is relevant to an enormous range of areas of study, includ-
ing traffi c fl ows, earthquakes, the stock market, and systems biology.  

  Rademacher and Walsh Functions     Digital communication uses nonsinusoi-
dal orthogonal functions, Rademacher and Walsh functions being among the 
best known. They are described extentively in the literature (Ahmed and Rao, 
 1975 ; Geadah and Corinthios,  1977 ; Goldberg,  1989a,b ; Peterson and Weldon, 
 1972 ; Sklar,  2001 ; Trahtman and Trahtman,  1975 ; Vose and Wright,  1998 ; 
Waterman,  1999 ; Yarlagadda and Hershey,  1997 ; Zalmanzon,  1989 ). 

  Rademacher functions  are an incomplete set of orthogonal functions intro-
duced by Rademacher in 1922. A Rademacher function of index  m , denoted 
by rad( m ,  t ), is a train of rectangular pulses with 2  m    − 1  cycles in the half - open 
interval [0, 1), taking the values  + 1 or  − 1 (Figure  1.1 ). The exception is 
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rad(0,  t ), which is equal to  + 1 along the entire interval. Rademacher functions 
can be generated using the recurrence relation:
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 The incomplete set of Rademacher functions was completed by Walsh in 1923 
to form a complete orthogonal set of rectangular functions now known as 
 Walsh functions . In the fi eld of digital communication, sets of Walsh functions 
are generally classifi ed into three groups, which differ from one another by 
the order in which individual functions appear: 

  1.     Walsh ordering  
  2.     Dyadic or Paley ordering  
  3.     Natural or Hadamard ordering    

 All these variants of the sets of Walsh functions can be presented in connection 
with relevant Hadamard matrices (see Chapter  8 ). Peculiarities of these 
variants are related closely to the famous Gray code (Ahmed and Rao,  1975 , 
pp. 88 – 93). 

 The complete set of Walsh functions defi ned on the unit interval [0, 1) can 
be divided into two groups of even and odd functions about the point  t     =    0.5. 
These even and odd functions are analogous to the sine and cosine functions, 
respectively. The class of nonsinusoidal orthogonal functions described plays 
an important role in the spectral analysis of signals and in relevant transforms 
of digital signals to provide effective transfer of information.    

     FIGURE 1.1     Rademacher functions.  
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18  BIOINFORMATICS AND MATHEMATICS

   1.4    CONVERTING DATA TO KNOWLEDGE 

 The biological information we gain allows us to learn about ourselves, about 
our origins, and about our place in the world. We have learned that we are 
quantitatively strongly related to other primates, mice, zebrafi sh, fruit fl ies, 
roundworms, and even yeast. The fi ndings should induce in us some modesty: 
in learning and seeing how much we share with all living organisms. The infor-
mation we are gaining is not just of philosophical interest but is also intended 
to help humanity to lead healthy lives. Knowledge about primitive organisms 
provides much information about shared metabolic features and hints about 
diseases that affect humans in an economically and ethically acceptable 
manner. 

 Knowledge from many scientifi c disciplines and their subfi elds has to be 
integrated to achieve the goals of bioinformatics. It was believed (Wilson, 
 1998 ) that all knowledge is intrinsically unifi ed, and that behind disciplines as 
diverse as physics and biology, and anthropology and the arts, lie a small 
number of natural laws. Applying the knowledge can lead to new scientifi c 
methods, new diagnostics, and new therapeutics. 

 At the beginning of the  “ genomic revolution, ”  a bioinformatics concern was 
the creation and maintenance of a database to store biological information, 
such as nucleotide, amino acid, and protein sequences. Development of this 
type of database involved not only design issues but also the development of 
complex interfaces whereby researchers could both access existing data and 
submit new or revised data. Ultimately, all of this information must be com-
bined to form a comprehensive picture of normal cellular activities. Therefore, 
the fi eld of bioinformatics has evolved such that the most pressing task now 
involves the analysis and interpretation of various types of data, including 
nucleotide, amino acid sequences, protein domains, and protein structures and 
interactions. Important research branches within bioinformatics include the 
development and implementation of tools that enable effi cient access to, and 
use and management of, various types of information and new algorithms and 
statistics with which to assess relationships among members of large data sets, 
such as methods to locate a gene within a sequence, predict protein structure 
and/or function, and cluster protein sequences into families of related 
sequences. The process of converting data to knowledge may be illustrated as 
shown in Figure  1.2 .    

   1.5    THE BIG PICTURE: INFORMATICS 

  Informatics  is the study of the structure, behaviors, and interactions of natural 
and artifi cial computational systems. Informatics studies the representation, 
processing, and communication of information in natural and artifi cial systems. 
It has computational, cognitive, and social aspects. The central notion is the 
transformation of information: whether by computation or communication, 
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whether by organisms or artifacts. Information building blocks are illustrated 
conceptually in Table  1.1 .   

 Understanding informational phenomena such as computation, cognition, 
and communication enables technological advances. In turn, technological 
progress prompts scientifi c enquiry. The science of information and the engi-
neering of information systems develop hand - in - hand. Informatics is the 
emerging discipline that combines the two. In natural and artifi cial systems, 
information is carried at many levels, ranging, for example, from biological 
molecules and electronic devices, through nervous systems and computers, and 
on to societies and large - scale distributed systems. It is characteristic that 
information carried at higher levels is represented by informational processes 
at lower levels. Each of these levels is the proper object of study for some 
discipline of science or engineering. Informatics aims to develop and apply 
fi rm theoretical and mathematical foundations for the features that are 
common to all computational systems. 

 In its attempts to account for phenomena, science progresses by defi ning, 
developing, criticizing, and refi ning new concepts. Informatics is developing its 
own fundamental concepts of communication, knowledge, data, interaction, 

     FIGURE 1.2     Process of converting data to knowledge.  
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  TABLE 1.1    Information Building Blocks (Monomer to 
Polymer) 

   Monomer     Polymer  

  Nucleotides 
    Adenine (A) 
    Cytosine (C) 
    Guanine (G) 
    Thymine/

uracil (T/U)  

  DNA: 
    ACTGGTAGCCTTAGA  …  
 RNA: 
    ACUGGUAGCCUUAGA  …   

  Amino acids 
    Cysteine (Cys) 
    Alanine (Ala) 
    Proline (Pro)  

  Protein: 
    Met – Cys – Gly – Pro – Pro – Arg  …   

  Letters: A, B, C,  …     Words: CAT, GO, FRIEND,  …   
  Symbols: 0, 1    Binary code: 1001011100101  …   
  Monomial: 1,  x ,  x  2 ,  …     Polynomial:  P ( x ),  …   
  Line:  l  1 ,  l  2 ,  l  3 ,  …     Polygons: triangle, rectangle,  …   
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20  BIOINFORMATICS AND MATHEMATICS

and information, and relating them to such phenomena as computation, 
thought, and language. 

 Informatics has many aspects and encompasses a number of existing aca-
demic disciplines: artifi cial intelligence, cognitive science, and computer 
science. Each takes part of informatics as its natural domain: In broad 
terms, cognitive science concerns the study of natural systems; computer 
science concerns the analysis of computation and the design of computing 
systems; and artifi cial intelligence plays a connecting role, designing systems 
that emulate those found in nature. Informatics also informs and is informed 
by other disciplines, such as mathematics, electronics, biology, linguistics, and 
psychology. Thus, informatics provides a link between disciplines with their 
own methodologies and perspectives, bringing together a common scientifi c 
paradigm, common engineering methods, and a pervasive stimulus from tech-
nological development and practical application. 

     Computational Systems     Computational systems, whether natural or artifi -
cial, are distinguished by their great complexity with regard to both their 
internal structure and behavior, and their rich interaction with the environ-
ment. Informatics seeks to understand and to construct (or reconstruct) such 
systems using analytic, experimental, and engineering methodologies. The 
mixture of observation, theory, and practice will vary between natural and 
artifi cial systems. 

 In natural systems, the object is to understand the structure and behavior 
of a given computational system. Ultimately, the theoretical concepts underly-
ing natural systems are built on observation and are themselves used to predict 
new observations. For artifi cial systems, the object is to build a system that 
performs a given informational function. The theoretical concepts underlying 
artifi cial systems are intended to secure their correct and effi cient design and 
operation. Computer language systems have been evolving and communicat-
ing with biological data as part of computational systems. The computer lan-
guages and their interfaces with various data types are illustrated in Table  1.2 .   

  TABLE 1.2    Communications Between Computer 
Languages and Data Types and BioModules    a     

   Computer Languages     Design Goals  

  FORTRAN    Numerical analysis  
  LISP    Symbolic computation  
  C    System programming  
  C +  +     Objects, speed, compatibility 

with C  
  Java    Objects, Internet  
  Perl    System administration  
  Python    General programming  

     a  BioModules    =    bio    +    languages.   
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 Informatics provides an enormous range of problems and opportunities. 
One challenge is to determine how far, and in what circumstances, theories of 
information processing in artifi cial devices can be applied to natural systems. 
A second challenge is to determine how far principles derived from natural 
systems are applicable to the development of new types of artifi cial systems. 
A third challenge is to explore the many ways in which artifi cial information 
systems can help to solve problems facing humankind and help to improve the 
quality of life for all living things. One can also consider systems of mixed 
character; a question of longer - term interest may be to what extent it is 
helpful to maintain the distinction between natural and artifi cial systems. In 
Chapter  10  we present the evolution, future trends, and the central dogma of 
informatics.    

   1.6    CHALLENGES AND PERSPECTIVES 

 The interaction between biology and mathematics has been a rich area of 
research for more than a century. The interface between them presents chal-
lenges and opportunities for both mathematicians and biologists. Due to the 
explosion of biological data with the advent of new technologies that can 
organize the plethora of data, unique opportunities for research and new chal-
lenges have surfaced within the last 10 to 20 years. For biology, the possibilities 
range from the level of the cell and molecule to the level of the biosphere. For 
mathematics, the potential is great in traditional and nontraditional areas such 
as statistics and differential equations, knot theory, and topology. Stochastic 
processes and Markov chains in statistics have their origins in biological ques-
tions. Galton invented the correlation method based on questions in evolution-
ary biology. The analysis of variance was derived from R. A. Fisher ’ s work in 
agriculture. Modeling the success (survival) over many generations of a family 
name led to the development of the subject of branching processes. The com-
pilation of DNA sequence data led to Kingman ’ s coalescence model and 
Ewens ’  sampling formula. Furthermore, biological applications have stimu-
lated the study of ordinary and partial differential equations, especially regard-
ing problems in chaos, fractal geometry, and bifurcation theory. Further 
interactions between mathematics and biology have presented new opportuni-
ties and challenges. A number of fundamental mathematical and biological 
issues cut across all these challenges. 

   •      How do we incorporate variation among individual units in nonlinear 
systems and biological systems?  

   •      How do we explain the interactions among phenomena that occur on a 
wide range of scales and molecular levels, of space, time, and organiza-
tional complexity?  

   •      What is the relation between pattern and process both in mathematical 
and biological systems?    

c01.indd   21c01.indd   21 9/27/2010   2:24:47 PM9/27/2010   2:24:47 PM



22  BIOINFORMATICS AND MATHEMATICS

 It is in the analysis of these issues that mathematics is most essential and 
holds the greatest potential. These challenges, such as aggregation of compo-
nents to elucidate the behavior of ensembles, integration across scales, and 
inverse problems, are basic to all sciences, in particular to biological sciences, 
and a variety of techniques exist to deal with them and to begin to solve the 
biological problems that generate them. However, the uniqueness of biological 
systems shaped by evolutionary forces will pose new diffi culties, mandate new 
perspectives, and lead to the development of new mathematics. Algebraic 
biology and matrix genetics for genetic language are presented in Chapters  2  
and  8 , and a denotational mathematics for cognitive informatics is introduced 
in Chapter  9 . The excitement of this area of science is already evident, and is 
sure to grow in the years to come.  
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