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INTRODUCTION

1.0 SUMMARY

This chapter begins with a brief review of the several widely used numerical
metheds utilized in the field of parallel computational electromagnetics (CEM).
This book is intended to provide a parallel frequency-domain solution to
radiation and scattering for electromagnetic (EM) field problems. It is important
to ensure that the parallel EM codes developed are compatible with all the typical
computer platforms that are currently available. Therefore, computers with
different architectures and operating systems have been used as benchmark
platforms in this book. A brief description of the hardware used for this work is
provided for easy reference. ScalLAPACK and PLAPACK, the two software
library packages that have been employed for implementing parallel
computations, are also intreduced in this chapter.

1.1 A BRIEF REVIEW OF PARALLEL CEM

1.1.1  Computational Electromagnetics

Electromagnetic devices and syslems, ranging [rom everyday office appliances to
cellular phones, have become an integral part of modern life. The continued
development of new technology greatly depends on the engineering analysis and
synthesis of electromagnetic systems. These are based on obtaining accurate
solutions of Maxwell’s equations for the system of interest. The increase of
research and development in a wide variety of applications, including antenna
design, microwave circuits, photonics, ray tracing, wireless communication,
electromagnetic compatibility/interference (EMC/EMI), and so on, have led to
systems becoming more and more complex. In many cases, a single device has
become a very complicated structure that includes a number of conductors,
dielectric, and semiconductors of arbitrary shapes and of a complex physical
nature. The expensive fabrication technologies preclude the possibility of
modifying a device if its performance is not within the specifications of the

1



2 INTRODUCTION

designer. Therefore, methods capable of extremely accurate characlerization of
systems are required to analyze the structures of interest, Tt is challenging to
obtain such methods because of the complex nature of any of thc modem
electromagnetic devices. The analysis of these devices does not lead to
closed-form expressions.

Analytical solutions in closed form are known for only a limited number of
special cascs, which arc hardly cver dircetly applicable to real-world
applications. The (ailure 1o derive closed lorm solutions from Maxwell’s
equations for real-world applications has led to intensive research on numerical
techniques. The application of numerical methods to clectromagnetic field
prablems is known as computational electromagnetics (CEM). Tt is a branch of
clectromagnetics that deals with computational mcthods and is a natural
extension of the analytical approach to solving the Maxwell equations [1,2].

For a student of engineering electromagnetics or a researcher just starting to
work in this area, lew textbooks can lurnish initial guidance to CEM. So, a short
bibliography of the mest widely used numerical methods is reviewed in this
chapter. Among the methods to be described, the method of moments (MoM) is
considered 1o be one of the most popular integral equation-based numerical
metheds. It coincides formally with the weighted-residual method because the
sources (unknowns) are expanded by a sum of certain basis functions multiplied
by unknown coefficients. The residual of the iniegral equation is weighted using
a suitable inner product and a set of weighting functions. This results in a set of
linear equations, which can be solved in the usual way. Regarding MolM,
R. F. Harrington worked out a systematic, functional-space description of
electromagnetic problems, starting from integral equations and using the reaction
concept. Harringlon summarized his work in a book published in 1968, which is
still considered 1o be a classic texibook even today [3]. For analysis of radiation
from conducting structures, it is difficult to surpass the accuracy and efficiency
of an integral equation—based computational methodology. For composite
structures containing beth conducters and dielectrics, where the dielectric
inhomogenity is not severe, the integral equation methodology is still an
excellent numerical procedure. Besides MoM, a number of variations of the
integral equalion-based numerical selution procedure have been developed. For
example, the fast multipole method (FMM) and multileve! fast multipole
algorithm (MLFMA) have been proposed to accelerate the matrix—vector product
that arises in the iterative solution of the MoM equations [4].

The finite element method (FEM) is a numerical method that is used to
solve boundary-value problems characterized by a partial differential equation
and a set of boundary conditions. The [irst book completely committed to finite
elements in electromagnetics was by P. P. Silvester and R. L. Ferrari and was
published in 1983 [5]. The introductory text by J. M. Jin in 1993 was particularly
directed to scattering and antenna problems [6]. The book by M. Salazar-Palma
et al. [7] introduced an iterative and self-adaptive finite-element technique for
electromagnetic modeling in 1998, with a review of the history of numerical
methods in electromagnetics and a categorization of these methods as presented



A BRIEF REVIEW OF PARALLEL CEM 3

in the first chapter [7]. A selected bibliography for FEM in microwaves was also
provided by R. Coccioli et al. [£].

The finite-difference time-domain (FDTD} method is a finite-difference
solution for electromagnetic problems. The methed was developed by K. 8. Yee
in 1966 [9]. With the advent of low-cost, powerful computers and improvement
of the method itself, FD'TD has become one of the most widely used methods for
solving Maxwell’s equations for scientific and engineering applications.
K. L. Shlager and J. B. Schneider published a selective survey of the FDTD
literature in 1995 [10]. In the same vear, A. Taflove authored a comprehensive
textbook that he and 8. C. Hagness subsequently expanded and updated to a third
edition in 2005 [11].

MoM, FEM, and FDTD, the methods mentioned so far, are the most
frequently used algorithms in CEM. Many more books are also available for
these and other numerical methods, which will not be discussed further.

As 5. M. Rao states: “CEM has evolved rapidly during the past decade to a
point where extremely accurate predictions can be made for very general
scattering and antenna structures™ [12]. Numerical simulation technology is the
most cost-effective means of meeting many technical challenges in the areas of
electromagnetic signature processing, antenna design, electromagnetic coupling,
microwave device design and assembly, and so on. With the rapid increase in the
performance of desktop computers, it has become feasible for designers to apply
computational electromagnetics to determine the electromagnetic behavior of
many systems. However, when performing an electromagnetic simulation
associated with a large-scale configuration, it is difficult to achieve a high level
of accuracy when using conventional computing platforms. The numerical
capability of CEM can be enhanced substantially by using scalable parallel
computer systems, which will be discussed next.

1.1,2  Parallel Computation in Electromagnetics

Large-scale CEM simulations have encountered computational limitations in
terms of physical memory space and centra! processing unit (CPU) time of the
computer. Parallel computing on clusters andfor computers with multicore
processors continues to be the method of cheice for addressing modem
engineering and scientific challenges that arise [rom the extremely complicated
real-life applications.

Parallel computing is a form of computational methodology in which many
mnstryctions are carried out simultaneously [13]. Parallel computing operates on
the principle that large problems can almost always be divided into smaller ones,
which may be carried out concurrently (*in parallel”). Tn the simplest sense,
parallel computing is the simultaneous use of multiple cemputational resources
to solve a numerical problem. In paralicl computing, a problem is broken up into
discrete parts that can be solved concurrently, and each part is [urther broken
down into a series of instructions, and the instructions from euch part are
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executed simultaneously on different CPUs (or cores). A very good tutorial on
the topic of parallel computing is provided online [14].

The primary reasons for using parallel computing are that it saves time
(wall clock time), solves larger problems, and provides concurrency (multiple
tasks at the same time). A Lawrence Livermore Laboratory report [14] also
points out additional reasons such as taking advantage of nonlocal computer
resources available on a wide area network, or even the Internet when local
resources are scarce, Also, cost saving can be a consideration for using multiple
“cheap” computing resources instead of buying computational time on a
supercomputer. Another reason for using parallel computing is to overcome
storage constraints. For large-scale problems, using the memory and hard disk of
multiple computers may overcome the limited resources of a single computer.

Parallel computing has been wused for many vears, mainly in
high performance computing (HPC), but interest has been growing more recently
mainly because of physical constraints preventing high-frequency scaling,
Parallelism has become the dominant paradigm in computer architecture, mainly
in the form of multicore processors. Since 2002 or so, the trends indicated by
ever faster networks, distributed systems, multicore CPUs, and multi-processor
computer architectures clearly show that parallelism is the future of computing
[14].

The last two decades (1990s-2000s) witnessed significant developments in
both computer hardware capabilities and implementations of fast and efficient
algorithms, The performance of parallel computations on any computer system
is closely tied to communication and latency. These factors, particular to each
individual system, are introduced by the cemmunication protocol and operating
system implementation, both of which have profound influence on the
performance of a parallel code. Therefore, a judicious tradeoff between a
balanced workload and interprocessor communication is needed to efficiently use
distributed-memaory, multinode computers. Such a need is intrinsically related to
the numerical algorithms and hardware architectures. A synergism of the
relatively new numerical procedures and high-performance parallel computing
capability opens up a new frontier in electromagnetics research [15].

Table 1.1 lists some selected publications on parallel CEM code
development since 1998, from which one can see that parallel computing
techniques have penetrated into mainstream numerical methods. Generally
speaking, CEM codes are currently run on ail typical computer platforms. Note
that the works cited in Table 1.1 do not indicate the evolutionary process in
parallel CEM, but only show that research has touched on different CEM
methads to date.

The subject of reviewing parallel CEM is too broad to be covered
extensively in several pages, and therefore only a synoptic view is given here.
Even though the topic of this book is parallel frequency-domain MoM, parallel
implementations of the other most widely used frequency-domain and
time-domain numerical methods, like FEM and FDTD, are also briefly
introduced here to provide an overview on the subject.
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TABLE 1.1. Several Publications on Parallel CEM

Method Research Topic Year

Frequency Domain

MoM A parallel implementation of NEC for the analysis of 2003
large structures [16]

Highly efficient parailel schemes using out-of-core 2007
solver for MoM [17]

FMM 10 million unknowns: Is it that big? [1¥] 2003

Massively paralle! fast muliipole method solutions of 2007
large electromagnetic scattering problems [19]

FEM Open-region, electromagnetic finite-element scattering 1999
calculations in anisotropic media on paratlel
computers {20]

Time Domain

TD-FEM Implementing a linite-element lime-domain program in 2000
parallel [21]

FDTD A parallel FDTD algorithm using the MPI library [22] 2001

Study on the optimum virtual topology for MPI-based 2005
parallel conformal FDTD algorithm on PC clusters [23]

A robust parallel conformal finite-difference 2005
time-domain processing package using the MPI [24]

TDIE A parallel marching-on-in-time solver [25] 2008

MoM is the most well known technique among integral equation (IE)-based
methods. As the most popular frequency-domain integral equation method, MoM
is an extremely powerful and versatile numerical methodology for discretizing an
integral equatien te a matrix equation. Because of the many advantages of MoM,
the parallel implementation of the method itself, the hybrid methods and fast
algorithms related to MoM, have all been significant research topics during the
more recent decades and will continue to be popular for years to come.

The parallel MoM code was developed at the beginning of the 1990s
[26—28]. J. E. Patterson programmed and execuied the numerical
electromagnetics code (NEC} |29] in a parallel processing environment, which
was developed at Lawrence Livermore National Laboratory, in 1990. T. Cwik,
J. Partee, and J. E. Patterson used MoM io solve scattering problems in parallel



6 INTRODUCTION

in 1991. Later, working with Robert A. van de Geijn, the author of PLAPACK
{30], T. Cwik, developed a parallel MoM code using the Rao—Wilton-Glisson
(RW(G) basis function in 1994 [31,32], In 1998, parallel MoM employing the
RW( basis functions, using ScalL APACK library package [33] as the solver, was
implemented for the Cray T3E system [34].

Since the mid-1990s, research has been carried out on parallel
implementations of standard production-level MoM codes. One of the [requently
studied parallel implementations of existing codes is the widely used NEC.
Successfully implemented in 2003, parallel NEC is portable to any platform that
supports message-passing parallel environments such as the message passing
interface (MPD) [35] and the parallel virtual machine (PVM} [36]. The code
could even be executed on heterogeneous clusters of computers programmed
with different operating systems [16],

The bottleneck of this traditional parallel MoM partly comes trom the
memory storage requirements. One remedy to overcome this disadvantlage is to
parallclize the hybrid of MoM and such high-frequency methods as
uniform geometrical theory of diffraction (UTD) [37], physical aptics (PO) [38],
and so on, For example, the hybrid MoM-UTD method, which greatly extends
the capability of MoM, is implemented in SuperNEC [39], and is then
parallelized, The parallel iterative MoM and PO hybrid solver lor arbitrary
sutfaces using the RWG basis functions also has been implemented [40,41].

Fast algorithms can also be employed to reduce the overall memory and time
requirements, Some of the frequently used fast algorithms are the conjugate
gradient (CG) fast Fourier transform {CG-FFT) [42], adaptive integral method
{ATM) [43], fast multipole method (FMM) [44], and precorrected FFT [45]. The
FMM, arguably the most popular of these methods, was even further improved
via the multilevel fast multipole algorithm (MLFMA) 10 further improve the time
taken for calculation of a matrix—vector product [46,47]. While difficult to
implement, the MLFMA has become the algorithm of choice when solving
large-scale scattering problems arising in electromagnetics. Therefore, the
parallelization of MLFMA on distributed memory compiding clusters [48-56]
and shared memory multiprocessors [57] has always been a topic of great
interest.

While some success has been demonstrated in parallelizing MLFMA in
distributed memory environments [49,50,55,56], it requires sophisticated load
distribution strategies involving shared and distributed partitions of the MLFMA
iree. Thus, parallel scaling of the MLFMA algerithm has been limited to a
handtul of processors as addressed in [19]. An FFT extension of the conventional
FMM, known as FMM-FFT, lowers the matrix—vector mulliplication time
requirement of the conventional algerithm, while preserving the propensity for
parallel scaling of the single-level FMM (since it does not employ the tree
structure of MLFMA). The research published in 2007 has demonstrated that a
parallel FMM-FFT algorithm is quite attractive {when compared to the MLFMA)
in the context of massively parallel distributed-memory machines | 19].

These methods have been implemented mainly in commercially available
software [58]. However, the vuse of hybrid methods and fast algerithms sacrifice
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accuracy to accommaodate the selution of large problems. Also, the disadvantage
ol the MoM with subdemain basis functions, which is implemented in NEC orin
commercial software, is that it generates much more unknowns than the MoM
formulation using the entire-domain or larger subdomain basis functions, thus
leading to large memeory requirements. Although 64-bit computers these days
theoretically have “huge™ memory capacity, the development and applications of
in-core solvers are limited by the amount of RAM available. Using virtual
memory of the computer is not a good alternative because the significant
degradation in performance results in increased time for generating a solution.

On the other hand, as an example, a 10-node Dell 18355 cluster equipped
with 20 CPUs and 80 gigabytes (GB) of memory could complete a problem that
occupies all the available memory using an in-core solver for a dense linear
matrix equation in less than 3 hours. This suggests that the processing power of
high-performance machines is underutilized and much larger problems can be
tackled before runtimes become prohibitively long.

For this reason, onc optional mcthod to overcome the memory storage
bottlencck of MoM while maintaining its accuracy is using an out-of-core solver,
rather than using hybrid methods or fast algorithms, which may incur accuracy
problems in some cases, e.g., coupling analysis during antenna design. Since the
matrix generaled by MoM is a full dense matrix, the LU decomposition method
used te solve the matrix equation is computationally intensive when compared
with the read/write process of the matrix elements from/into the hard disk [59].
Therefore, it is natural to introduce an out-of-core solver to tackle large, dense,
linear systems generated using the MoM formulation. Furthermore, to solve the
large problem cut-of-core as quickly as possible, the code can be designed in a
parallel way to run on a cluster,

Another way to overcome the bottleneck in storing the matrix clements in
the memory is to apply the higher-order basis lunctions defined over a large
domain t¢ MoM [60- 62] as (his requires fewer numbers of unknowns (by a
factor of = 10 involving canonical planar structurcs). In two publications in
2007, the authors presented a parallel in-core implementation of MoM using
higher-order basis functions [63,64], and the details of this methodology will be
further discussed in this book along with the parallel out-of-core implementation
[65]. The most important dillerence between the parallel in-core solver and the
parallel out-of-core solver is that the latter has the ability to break the
random access memory {RAM) restriction and thus can go far beyond the limit of
the physical memory in any computer or cluster to solve a large MoM matrix
equation within a reasonable amount of time.

Besides MoM, another well-established frequency-domain technique is the
finite element method (FEM), which is an effective means for analyzing
electromagnetic problems. The principal attribute of FEM is that it elliciently
models highly irregular geometries as well as penetrable and inhomogeneous
material media. Publications on parallel implementations of FEM on
supercomputers, workstatiens, and PCs during the period of 1985-1995 were
summarized in a paper published in 1996 [66]. In a massively parallel
environment, traditional sequential algorithms will not necessarily scale and may
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lead to very poor utilization of the architecture associated with the multiprocessor,
A domain decomposition method based on the finite-element tearing and
interconnecting (FETI) algorithm was considered to be more scalable and
efficient on parallel platforms than traditional iterative methods such as a
preconditioned conjugate gradient algorithm when solving large matrices [67].

Research on parallel implementation of time-domain numerical methods
has also been of interest for many years, accompanied by the development in
computer technology. Two popular time-domain methods in the analysis of
electromagnetic phenomena are the FDTD and FETD {finite-element
time-domain} schemes. FDTD is, by nature, essentially data-parallel. A. Taflove
et al. started the effort in 1988 on a parallel implementation of FDTD on CM-1
and CM-2 supercomputers [68]. Parallelization of the FDTD method using
distributed computing was done in 1994 by V. Varadarajan and R. Mittra [69],
who suggested rules and tolerances for implementation on a cluster of computers,
They used the parallel virtual machine (PVM) message-passing protocol over
TCP/TP on a cluster of eight HP computers. Since then, many problems have
been solved wusing FDTD on various hardware platforms, processor
configurations, and software. Z. M. Liu et al. implemented parallel FDTD on a
CM-5 parallel computer in 1995 [70]. A. D. Tinniswood et al. ran parallel FDTD
on 128-node [BM 8P-2 cluster later in 1990 [71]. Note that the reported
maximum speedup factor from different publications varies significantly and is
not even a relative measure of the performance of the underlying algorithm. The
works described so far have been restricted by the available technology, software
systems, or factors under examination, as well as differences in the size of the
domain of the selected problem [72].

With the development of MP1 programming technology, a parallel FDTD
implementation using the MP! Cartesian 2D tepology to simplify and accelerate
the algorithm was presented in 2001 and it allowed noncontiguous locations in
memory to be associated with the data type [22]. Furthermore, suggestions on
improved domain partitioning conditions based on the estimated processing time
for different types of media [dispersive, perfectly matched layer {PML), and
other boundary conditions] were given, and good performance results have been
obtained. These aspects appear to be evolutionary for the FDTI) computation for
the following reasons, MPT is a widely embraced standard; the operations occur
only at initialization; the methods are scalable and extensible; and there is no
impact duc to runtime load balancing to yield an improvement in overall
performance. In the same vear, an MPT Cartesian 3D topology was used for
parallel FDTD, and different MPI communication patterns were investigated
[73]. Later, the optimum MPI topology for 3D parallel FDTD was studied on a
PC cluster [23,74,75]. The influence of different virtual topology schemes on the
performance of a parallel FOTD code was discussed in detail, and the gencral
rules were presented on how to obtain the highest efficiency of the parallel
FDTD algorithm by optimizing the MPI virtual topology. Tn 20035, an MPI-based
parallel conformal FDTD package was developed with a friendly graphical user
interface (GUI) [24]. Paralle] implementation of FI¥TD using MPT is continuing
to find even wider use today.
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The parallel finite-element time-domain (FETD) package using the MPI
message-passing standard was developed in 2000 [76]. Different mathematical
backgrounds of FETD and FDTD methods have led to different properties. The
numerical performance of the distributed implementations of the FDTD and
FETD methods was compared in [77] with respect to scalability, load balancing,
and speedup.

Another promising time-domain method used to analyze the scattering and
radiation from arbitrary structures is the time-domain integral equation {TDIL)
based marching-on-in-time (MOT) method or marching-on-in-degree (MQOD)
method [78,79]. Note that the MOT method may sometimes suffer from its
late-time instability. This can be overcome by using the associated Laguerre
polynomials for the temporal variation. As such, the time derivatives can be
handied analyticatly and stable numerical results can be cbtained even for late
times in the MOD method. A parallel time-domain simulator for analyzing the
electromagnetic scattering and radiation phenomena has been developed by the
authors of this book and partly presented in a previous reference [25].

To summarize, parallel CEM has been a fervently pursued research topic,
and what was reviewed in the preceding paragraphs provide just a glimpse of its
development. There is much room left for future study and improvement,
specifically in the paralle] out-of-core implementation of MoM.

In the next section, the computer hardware and software that supports the
research on parallel CEM presented in this book are introduced.

1.2 COMPUTER PLATFORMS ACCESSED IN THIS BOOK

Current computers generally have a single processor and use the TA-32 (Intel
architecture, 32-bit) [80] instruclion set, which is one of the instruction sets of
Intel’s most successful microprocessor generically termed x86-32. [A-32 is the
32-bit extension of the original Intel x86 processor architecture that defines the
instruction set installed in most persenal computers {(PC) in the world. The
limitation of the 32-bit architecture is that it can address only 2** bits at most.
This resiricts the sizc ol the variable 1o be stored in the memory, which cannot
exceed 4 GB. A typical 2 GB ol RAM can store a matrix size ol approximately
15,000x15,000 when the wvariable is defined in single-precision (complex)
arithmetic or a matrix size of approximately 11,000x11.000 when using
double-precision {complex) arithmetic. In other words, one cannot deal with an
integral equation solver in'a MoM context il the humber of unknowns exceeds
15,000 for single precision and 11,000 for double precision using LAPACK [81]
for serial codes or ScaLAPACK [82)/PLAPACK [83] for parallel codes.

The TA-32 structure was extended by Advanced Micro Devices (AMD)
Corporation in 2003 to 64 bits. The first [amily of processors that AMD built was
the AMD K8 processors, which AMD subsequently named AMD64. This was
the first time any company other than Intel Corporation had any significant
additions to the 32-bit architecture, Intel Corporation was forced 1o do
something, and they came up with the TA-32e, or the NetBurst (amily of
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processors. Later, Intel called them EMG64T (extended-memory 64-bit
technology). These 64-bit AMD and Intel processors are backward-compatible
with the 32-bit code without any loss in the performance.

In addition, there is the IA-64 {Intel architecture, 64-bit), which is a true
64-bit  processor architecture developed cooperatively by Intel and
Hewlett-Packard and was implemented in the Itanium and the Itanium 2

processors. A 64-bil computer can theoretically address up to 2% =16.8 million

terabytes (TB) directly, which is sufficicnt to store a 10°x10° matrix in single
precision or a 0.7x10°x0.7x10” matrix in double precision, provided enough
physical memory and virtual memory are available.

While manufacturing technology continues to improve, breaking the
physical limits of semiconductor-based microelectronics has become a major
design concern. Some eftects of these physical limitations can cause significant
heat dissipation and data synchronization problems. The demand for more
capable microprocessors causes CPU designers to try various methods of
increasing performance. Some instruction-level parallelism (ILP) methods, like
superscalar pipelining, are suitable for many applications, but are inefticient tor
others that tend to contain a difficult-to-predict code. Many applications are
better suited for thread-level parallelism (TLP) methods. Ulilizing multiple
independent CPUs is one common method used to increase a system’s overall
TLP. A combination of increased available space due to refined manufacturing
processes and the demand for increased TLP is the logic behind the creatien of
multicore CPUs [84].

A multicore CPU [or chip-level multiprocessor (CMP)} combines two or
more independent cores into a single package composed of a single integrated
circuil {IC), called a die, or more dies packaged together. A dual-core processor
contains two cores, and a quad-core processor contains four cores. A multicore
processor implements multiprocessing in a single physical package. Cores in a
multicore device may share a single coherent cache at the highest on-device
cache level (e.g., L2 for the Intel core 2) or have separate caches {e.g., current
AMD dual-core processors). The processors also share the same interconnect to
the rest of the system, like the L2 cache and the interface to the [tontside bus
(FSB). Each core independently implements oplimizations such as superscalar
execution, pipelining, and multithreading. Software benefits from multicore
architectures where a code can be executed in paraliel. Multicore processors can
deliver significant benefits in performance for multithreaded software by adding
processing power with minimal latency, given the proximity of the processors.

The general trend in processor development has been from multicore to
many-core. AMD was the first x86 processor manulacturer 1o demonstrate a fully
functioning dual-core processer on a shipping platform [85). Intel built a
prototype of a processor with 80 cores that delivered TFLOPS
(tera-floating-point operations per second) performance in 2006.

The compute resources for parallel computing may include a single
computer with muitiple processors or one processor with multiple ceres, an
arbitrary number of computers connected by a network, or a combination of both.
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Research efforts in this book involve all three types of computing rescurces and
have employed 18 different computer platforms to observe how the performance
of the in-core and out-ot-core parallel solvers scales in various hardware and
software environments.

Table 1.2 provides a summary of the various computing platforms that the
authors have had access to during this research on frequency-domain parallel 1E
solvers. Here, the term mode is used to characterize a piece of hardware with a
network address. A node may contain muitiple cores or CPUs for processing.

The platforms listed in Table 1.2 cover a range of computer architectures,
including single-core, dual-core, and quad-core CPUs from both of the primary
CPU manufacturers, Intel and AMD. The two common operating systems (0%)
for computaticnal platforms, Linux and Windows, and the three system
manufacturers, Dell, IBM, and HP, are all represented in this study. Detailed
information on the various platforms can be found in Appendix A.

TABLE 1.2. A Summary of the Computer Platforms Used for This Research

Procgssor Platform CPU Total Total Opcrating
Architecture {(Manufacturer) Nodes  Cores System
1A-32 CEM-I Intel single-core i 8 Windows
CEM-5 Intel single-core [ [ Linux
EMoa4T CEM-2 {Dell) Intel dual-core 1 4 Windows
CEM-4 (Dl Intcl single-core 10 20 Linux
CEM-7 (Dell) Intef quad-core 2 I Linux
CEM-8 (Dell) Intel quad-core 1 8 Windows
CEM-9 (1BM) Lntgl quad-core 2 16 Linux
CEM-10 Intel dual-core 1 2 Windows
Cluster-1 {(HP) Intel dual-core 40 160 Linux
Cluster-2 {HP} [ntel quad-core 65 520 Linux
Cluster-3 {HP) Intel quad-core 20 160 Linux
Cluster-4 (HP) Intel quad-core 20 160 Linux
Cluster-5 (HPF) Intel dual-corc 40 160 Linux
Cluster-6 (FP) Inte! dual-core 60 240 Linux
Cluster-7 (IBM) Inte! quad-core 14 112 Linux
Cluster-8 (1BM) Intel quad-core ¥ 64 Linux
AMDo4 CEM-6 ([BM) AMD dual-core 2 16 Linux
LA-64 CEM-3 (HP) Intel single-core 1 4 Windows
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The portability of the codes developed in this book has been verified by
executing them on the various platforms listed in Table 1.2. Portability is a
characteristic of a well-constructed program (code) that is written in such a way
that the same code can be recompiled and run successfully in different
environments, i.e., different operating systems, different processor architectures,
different versions of libraries, and the like. Portability is important to long-term
maintenance of the code by ensuring its robustness to different computational
platforms.

1.3 PARALLEL LIBRARIES EMPLOYED FOR THE
COMPUTATIONS

Choice of the appropriate software (operating system and the relevant scientitic
subroutine package libraries) is very important (o achieve an optimum efficiency
for parallel computation. There are several prejects for the parallelization of
numerical software. An overview of the public-domain libraries for
high performance computing can be found at the HPCNetlib homepage at
http://www.nhse.org/hpe-netlib, These libraries are generally very specialized
and optimized for the particular hardware platform on which the problem is to be
executed.

Basically, the libraries in use for parallel computation consist of
mathematical subroutines and programs implementing the MPI protocols.
Understanding the importance of matching the software with the hardware has
led to various computer manufacturers developing their own libraries.

For example, as {or math librarics, the AMD Core Math Library (ACML)
released by AMD is specifically designed to support multithreading and other
key features of AMD’s next-generation processors. ACML currently supports
OpenMP, while future releases will expand on its support of multiplatform,
shared-memory multiprocessing [86]. Intel has come up with the Intel Math
Kernel Library (Intel MKL), a math library highly optimized for Intel Itanium,
[ntel Xeon, Intel Pentium 4, and Intel Core 2 Duo processor-based systems. Intel
MKL performance is competitive with that of other math software packages on
non-Intel processors [87].

As for the MPIL library, the HP-MPI has been developed by the
Hewlett-Packard (HP) company for Linux, HP-UX, Tru64 UNIX, Microsoft
Windows Compute Cluster Server 2003, and Windows XP Professional systems.
it is a high-performance and production quality implementation of the
message passing interface (MPI) standard for HP servers and workstations [88].
Intel MPI library from the Intel Company implements the high-performance
MPI-2 specification on multiple fabrics. The Intel MPI library enables users to
quickly deliver end-user maximum performance even when they change or
upgrade to new interconnects, without requiring major changes to the software or
to the operaiing environment. Intel also provides a free runtime environment kit
for products developed with the Intel MPI library [89].
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For the computations used in this book, Intel MKL is employed on the
computational platforms with Intel CPUs, and AMD ACML is used on platforms
with AMD CPUs. These math libraries along with ScaLAPACK and PLAPACK,
two of the most general parallel library packages based on message passing with
MPIL, can be used o obtain a satisfactory paralle] computational efficiency. While
HP-MPI is used for compiling the CEM source codes and launching the parallel
jobs on HP clusters with the Linux operating sysiem, Iniel MPI is used on other
computer platforms also using the Linux operating system. For computer
plaiforms that use the Windows operating system, different MPICH2 packages
are downleaded from the Argonne National Laboratory webpage
(http:/Awww.mes.anl.gov/rescarch/projects/mpich2/index.php)  and  installed
according to the system architecture.

In the following paragraphs, ScaLAPACK and PLAPACK will be
introduced in some detail.

1.3.1  ScaLAPACK — Scalable Linear Algebra PACKage

ScalLAPACK is the largest and most flexible public-domain library with basic
numerical operations for distributed-memory parallel systems to date. [t can
solve problems associated with svstems of linear equations, linear least-squares
problems, eigenvalue problems, and singular value decomposition. ScaLAPACK
can also handle many associated computations such as matrix factorizations and
estimation of the condition number of a matrix.

ScaLAPACK is a parallel version of LAPACK in both function and
software design. Like LAPACK, the ScalAPACK routines are based on
block-partitioned algorithms in order to minimize the frequency of data
movement between different levels of the memory hierarchy, The fundamental
building blocks of the ScaLAPACK library are distributed-memory versions of
the level 1, level 2, and level 3 BLAS (basic /inear algebra subprograms [90]),
called the parallel BLAS (PBLAS) [91], and a set of basic linear algebra
commutication subprograms (BLACS) [92] for communication tasks that arise
frequently in parallel linear algebra computations. In the ScalL,APACK routines,
the majority of interprocessor communication occurs within the PBLAS, so the
source code of the top software layer of ScalAPACK resembles that of
LAPACK.

Figure 1.1 describes the Scall APACK software hierarchy [93]. The
components below the dashed line, labeled “Local”, are called on a single
process, with arguments stored on a single process only. The components above
the dashed line, labeled “Global™, are synchronous parallel routines, whose
arguments in¢lude matrices and vectors distributed across multiple processes.
The components below the solid line are machine-specific, while those above the
solid line are machine-independent. Each component in Figure 1.1 is described in
the following with the various acronyms defined.
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ScaLAPACK

PBLAS
Global addressing

Local addressing

LAPACK
w Machine-independent
| Machine-specific
BLAS BLACS
MPI

Figure 1.1, ScaLAPACK software hierarchy.

MP1l. The message passing interface (MPI) standard is a library
specification for message-passing, proposed as a standard by a broadly based
committee of vendors, implementers, and users. It is a language-independent
communications protocol used to program parallel computers. The MPF interface
is meant to provide essential virtual topology, synchronization, and
communication functionality between a set of processes {that have been mapped
to nodes/servers/computer instances) in a language-independent way, with
language-specific  syntax (bindings), plus a few features that are
language-specific. MPI has such functions included, but are not limited to,
point-to-point rendezvous-type send/receive operations, choosing between a
Cartesian or graph-like logical process topology, exchanging data between
process pairs {send/receive operations}, combining partial results of computations
(gathering and reduction operations), synchronizing nodes (barrier operations), as
well as obtaining network-related information (such as the number of processes),
neighboring processes accessible in a logical topology. and so on. MPI programs
always work with processes, although usually people talk about processors.
When one tries to achieve maximum performance, one process per
processoticore is selected as part of the mapping activity, This mapping activity
oceurs at runtime, through the agent that starts the MPI program, normally called
mpirun or mpiexec [94,95].

BLAS., BLAS (basic finear glgebra subprograms [90]) include subroutines
for common linear algebra compuiations such as dot product, matrix—vector
multiplication, and matrix—matrix multiplication. An important aim of the BLAS
is to provide a portability layer for cemputation. As is well known, using
matrix—matrix operations (in particular, matrix multiplication) tuncd for a
particular architecture can mask the effects of the memory hierarchy (cache
migses, franslation Jook-aside huffer (TLB) misses, etc) and permit
{loating-point operations to be performed near peak speed of the machine.
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Optimized versions of the BLAS can be found at htip://www.tacc.utexas.edu/
resources/software/#blas.

BLACS — BLACS (fasic finear agigebra communication subprograms [92])
is a message-passing library designed for linear algebra. An important aim of the
BLACS is to provide a portable, linear algebra-specific layer for communication.
The computational model consists of a one- or two-dimensional process grid,
where each process stores pieces of the matrices and vectors. The BLACS
include synchronous send/receive reutines to communicate a matrix or submatrix
from one process to another, to broadcast submatrices to many processes, or to
compute global reductions (sums, maxima, and minima). There are alse routines
to construct, change, or query the process grid. Since several ScalLAPACK
algerithms require broadcasts or reductions among different subsets of processes,
the BLACS permit a process 1o be a member of several overlapping or disjointed
process grids, each one labeled by a context. Some message-passing systems,
such as MPI, also include this context concepi; MPI calls this a “communicator™.
The BLACS provide facilities for safe interoperation of system contexts and
BLACS contexts.

LAPACK. LAPACK, or finear algebra package [96], is a collection of
routines for solving linear systems, least-squares problems, eigenproblems, and
singular problems. High performance is attained by using algorithms that do
most of their work in calls to the BLAS, with an emphasis on matrix—matrix
multiplication. Each routine has one or more performuance tuning parameler,
such as the sizes of the blocks operated on by the BLAS. These parameters are
machine-dependent and are obtained from a table defined when the package is
installed and referenced at runtime.

The LAPACK routines are written as a single thread of execution.
LAPACK can accommodate shared-memory machines, provided parallel BLAS
are available (in other words, the only parallelism is implicit in calls to BLAS).
More detailed information about LAPACK can be found at htip://www .netlib.org
flapack/.

PBLAS. To simplify the design of ScaLAPACK, and because BLAS have
proved to be useful tools outside LAPACK, the authors of ScaLAPACK chose to
build a parallel set of BLAS, called PBLAS, which perform message passing and
whose interface is as similar to the BLAS as possible. This decision has
permitted the ScalLAPACK code to be quite similar, and sometimes nearly
identical, to the analogous LAPACK code. Further details of PBLAS can be
found in reference [91].

Scal APACK also contains additional libraries to treat distributed matrices
and vectors. One is the tools library, which offers useful routines, for example, to
find cut which part of the global matrix a local process has in its memory or to
identify the global index of a matrix element corresponding to its local index and
vice versa.

The research done for this book has found some drawbacks associated with
the commercial math library packages. For example, each process cannot address
more than 2 GB RAM for LU decomposition when using the earlier version of
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Intel Cluster Math Kemel Library (CMKL). Parallel computation on the Itanium
2 platform, using the Windows operating sysiem, is not supported by Intel or HP
[97]. Fertunately, these problems have so far been solved during the research
work for this book by the authors and/or the vendors.

1.3.2 PLAPACK — Parallel Linear Algebra PACKage

The parallel finear algebra package (PLAPACK) is a prototype of a more flexible
alternative to ScaLAPACK. Containing a number of parallel linear algebra
soivers, PLAPACK is an MPI-based parallel linear algebra package designed to
provide a user-friendly infrastructure for building parallel dense linear algebra
libraries.

Figure 1.2 gives the layering of the PLAPACK infrastructure with the part
concerning managed message passing interface (MMPI) omitted from reference
[83] since it is not used by the library employed in the solution of the problems
related to this book. The components of PLAPACK shown in the bottom row
{below the solid line} in Figure 1.2 are machine-dependent. The components that
are above the solid line are machine-independent.

A Application
User application layer
High-level global LA routines Library laver
(PLA_APD) PLA global BLAS e
application R SRR
program PLA copy/ LA object PLA local | [CAPACK
interface . i abstraction
reduce manipulation BLAS e
ayer
PLA/MPL PLA malloc PBMD PLA/BLAS ! Machine
interface = templates interface | independent
Cartesian Machine
el QAL distribution BLAS | (oecific

Figuere 1.2, Layering of the PLAPACK infrastructurc.

Te ensure completeness of the book, a very brief introduction is given for
each layer ol the PLAPACK infrastructure, based on the literature [98] to which
the reader may refer to for a detailed description.
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Machine/distribution-dependent layer. To ensure portability, PLAPACK
uses standardized components, namely, the MPI for communication, the standard
memory management routines provided by the C programming language
(muatiocicatioc), and the BLAS that is generally optimized by the vendors. The
author of PLAPACK also adds Cariesian matrix distributions to this layer, since
they provide the most general distribution of matrices commonly used for
implementation of parallel dense linear algebra algorithms.

Machine/distribution-independent layer. To achieve machine
independence, PLAPACK offers a number of interfaces to the
machine-dependent layer. Each interface is briefly described below.

PLAPACK-MPI interface. PLAPACK relies heavily on collective
communications like scatter (MPI scatter), gather (MP!_gather), coliect
(MPI_allgather), broadcast (MPI_bcast), and others. PLAPACK’s developers
created an intermediate layer that can be used to pick a particular implementation
of such an operation.

PLAPACK-memory management inferface. PLAPACK uses dynamic
memory allocation fo create space for storing data. By creating this extra laver, it
provides a means for customizing memory management, including the possibility
of allowing the user to provide all space used by PLAPACK.

Physically based mairix distribution (PBMDY) and templares. The approach
taken to describe Cartesian matrix distributions is fundamental to PLAPACK. In
particular, PLAPACK recognizes the important role that vectors play in
applications and thus all distribution of data starts with the distribution of the
vectors [30]. The details of the distribution are hidden by describing the generic
distribution of imaginary vectors and matrices (the template) and indicating how
actual matrices and vectors are aligned to the template.

Physically based matrix distribution was proposed by the authors of
PLAPACK as a basis for a set of more flexible parallel linear algebra libraries. It
was claimed that developers of applications will not have to “unnaturally”
modify the way they want to distribute the data in order to fit the distribution
required by the format of the respective library. They have the freedom to
distribute the vectors (which contain the data of “physical significance™) across
processors in a way that depends only on the application. The matrix (the
operator) is then distributed in a conforming way that, in effect, optimizes
matrix—vector products (MVPs) involving the vectors and the matrix.

PLAPACK-BLAS interface. Computation is generally performed locally on
each processing node by the BLAS, which have a FORTRAN-compatible calling
sequence. Since the interface between C and FORTRAN is not standardized, a
PLAPACK-BLAS interface is required to hide these platform specific
differences. To make the development of programs easier and to achieve better
performance, PLAPACK includes the parallel version of the BLAS routines,

PLAPACK abstraction layer. This layer of PLAPACK provides the
abstraction that frees users from details like indexing, communication, and local
computation.
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Linear algebra objects and theiv manipulation. All information that
describes a linear algebra object, like a vector or a matrix, is encapsulated in an
opaque object. This component of PLAPACK allows users to create, initialize,
and destroy such obiects. In addition, it provides an abstraction that allows users
to transparently index into a submatrix or vector. Finally, it provides a
mechanism for describing the duplication of the data.

Copyireduce: duplication and consolidation of data. Communication in
PLAPACK is not specified by explicit communication operations. Instead, linear
algebra objects are used to describe how data are to be distributed or duplicated.
Comunication is achieved by copying or reducing from one (duplicated) object
to another. This raises the level of abstraction at which communication can be
specified.

PLAPACK local BLAS. Since all information about matrices and vectors is
hidden in the linear algebra objects, a call to a BLAS routine on a given
processor requires extraction of that information, Rather than exposing this,
PLAPACK provides routines {the PLAPACK local BLAS) that e¢xtract the
information and subsequently call the correct sequential BLAS routine on each
Processor,

Library layer. The primary intent for the PLAPACK infrastructure is to
provide the building blocks for creating higher-level libraries. Thus, the library
layer for PLAPACK consists of global (parallel) basic linear algebra
subprograms and higher-level routines for solving lincar systems and algebraic
eigenvalue problems,

PLAPACK global BLAS. The primary building blocks provided by
PLAPACK are the global (parallel) versions of the BLAS. These allow dense
lincar algebra algorithms to be implemented quickly without exposing
paralielism in any form.

PLAPACK higher-level linear algebra routines. Higher-level algorithms
can be easily implemented using the global BLAS. ITowever, to ensure better
performance, it is oflen desirable to implement these higher-level algorithms
directly using the abstraction level of PLAPACK. Development of such
implementations can often be attained by incrementally replacing calls to global
BLAS with calls that explicitly expose parallelism by using objects that are
duplicated in nature.

PLAPACK application interface. A highlight of the PLAPACK
infrastructure is the inclusion of a set of routines that allow an application to
build matrices and vectors in an application friendly manner.

PLAPACK does not offer as many blackbox solvers as Scal APACK, but is
designed as a parallel infrastructure to develop routines lor solving linear algebra
preblems. With PLAPACK routines, the user can create a global matrix, vectors,
and multiscalars, multivectors, and may fill them with values with the help of an
AP1 (application programming interface).

Since PLAPACK is not as commercialized as ScaLAPACK, joint efforts
have been made by the authors of this book and Robert A. van de Geiin, the
author of PLAPACK, to make the library compatible to EM64T systems
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[99,100]. The method for generating a Windows version of the PLAPACK
library is also provided in Appendix B.

1.4 CONCLUSION

An introduction to parallel CEM is given with a special attention to a parallel
MoM methodology to solve EM problems in frequency domain., As will be
discussed in the later sections, this methodology can be a powerful tool to solve
challenging computational radiation and scattering problems by using parallel
out-of-core techniques. A summary of the various computing platforms and the
software to parallelize the computations is also provided. The parallel computing
platforms involve the most typical architectures available, including 1A-32,
EM64T, and TA-64 systems. Two popular parallel scientific librarics,
ScalLAPACK and PLAPACK, are briefly described to familiarize the reader with
themn as they will be used later on for implementing parallel solvers for matrix
equations.
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