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MATHEMATICAL BACKGROUND AND
ANALYSIS TECHNIQUES

1.1 INTRODUCTION

This introductory chapter focuses on various mathematical
techniques and solutions to practical problems encountered
in many of the following chapters. The discussions are
divided into three distinct topics: deterministic signal analy-
sis involving linear systems and channels; statistical analysis
involving probabilities, random variables, and random pro-
cesses; miscellaneous topics involving windowing functions,
mathematical solutions to commonly encountered problems,
and tables of commonly used mathematical functions. It
is desired that this introductory material will provide the
foundation for modeling and finding practical design solu-
tions to communication system performance specifications.
Although this chapter contains a wealth of information
regarding a variety of topics, the contents may be viewed
as reference material for specific topics as they are encoun-
tered in the subsequent chapters.

This introductory section describes the commonly used
waveform modulations characterized as amplitude modula-
tion (AM), phase modulation (PM), and frequency modula-
tion (FM) waveforms. These modulations result in the
transmission of the carrier- and data-modulated subcarriers
that are accompanied by negative frequency images. These
techniques are compared to the more efficient suppressed
carrier modulation that possesses attributes of the AM,
PM, and FM modulations. This introduction concludes
with a discussion of real and analytic signals, the Hilbert
transform, and demodulator heterodyning, or frequency
mixing, to baseband.

Sections 1.2–1.4, deterministic signal analysis, transform
in the context of a uniformly weighted pulse f(t) and its spec-
trum F(f) and the duality between ideal time and frequency
sampling that forms the basis of Shannon’s sampling theorem
[1]. This section also discusses the discrete Fourier transform
(DFT), the fast Fourier transform (FFT), the pipeline imple-
mentation of the FFT, and applications involving waveform
detection, interpolation, and power spectrum estimation. The
concept of paired echoes is discussed and used to analyze the
signal distortion resulting from a deterministic band-limited
channel with amplitude and phase distortion. These sections
conclude on the subject of autocorrelation and cross-
correlation of real and complex deterministic functions; the
corresponding covariance functions are also examined.

Sections 1.5–1.10, statistical analysis, introduce the con-
cept of random variables and various probability density func-
tions (pdf) and cumulative distribution functions (cdf) for
continuous and discrete random variables. Stochastic pro-
cesses are then defined and the properties of ergodic and sta-
tionary random processes are examined. The characteristic
function is defined and examples, based on the summation
of several underlying random variables, exhibit the trend in
the limiting behavior of the pdf and cdf functions toward the
normal distribution; thereby demonstrating the central limit
theorem. Statistical analysis using distribution-free or nonpa-
rametric techniques is introduced with a focus on order statis-
tics. The random process involving narrowband white
Gaussian noise is characterized in terms of the noise spectral
density at the input and output of an optimum detection filter.
This is followed by the derivation of thematched filter and the
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equivalence between the matched filter and a correlation
detector is also established. The next subject discussed
involves the likelihood ratio and log-likelihood ratio as they
pertain to optimum signal detection. These topics are general-
ized and expanded in Chapter 3 and form the basis for the opti-
mum detection of the modulated waveforms discussed in
Chapters 4–9. Section 1.9 introduces the subject of parameter
estimation which is revisited in Chapters 11 and 12 in the con-
text of waveform acquisition and adaptive systems. The final
topic in this section involves a discussion of modem configura-
tions and the important topic of automatic repeat request
(ARQ) to improve the reliability of message reception.

Sections 1.11–1.14, miscellaneous topics, include a
characterization of several window functions that are used
to improve the performance the FFT, decimation filtering,
and signal parameter estimation. Section 1.12 provides an
introductory discussion of matrix and vector operations. In
Section 1.13 several mathematical procedures and formulas
are discussed that are useful in system analysis and simulation
programming. These formulas involve prime factorization of
an integer and determination of the greatest common factor
(GCF) and least common multiple (LCM) of two integers,
Newton’s approximation method for finding the roots of
a transcendental function, and the definition of the
standard deviation of a sampled population. This chapter
concludes with a list of frequently used mathematical formu-
las involving infinite and finite summations, the binomial
expansion theorem, trigonometric identities, differentiation
and integration rules, inequalities, and other miscellaneous
relationships.

Many of the examples and case studies in the following
chapters involve systems operating in a specific frequency
band that is dictated by a number of factors, including, the
system objectives and requirements, the communication
range equation, the channel characteristics, and the result-
ing link budget. The system objectives and requirements
often dictate the frequency band that, in turn, identifies the
channel characteristics. Table 1.1 identifies the frequency

band designations with the corresponding range of frequen-
cies. The designations low frequency (LF), medium fre-
quency (MF), and high frequency (HF) refer to low,
medium, and high frequencies and the prefixes E, V, U,
and S correspond to extremely, vary, ultra, and super.

1.1.1 Waveform Modulation Descriptions

This section characterizes signal waveforms comprised of
baseband information modulated on an arbitrary carrier fre-
quency, denoted as fc Hz. The baseband information is char-
acterized as having a lowpass bandwidth of B Hz and, in
typical applications, fc >> B. In many communication system
applications, the carrier frequency facilitates the transmission
between the transmitter and receiver terminals and can be
removed without effecting the information. When the carrier
frequency is removed from the received signal the signal pro-
cessing sampling requirements are dependent only on the
bandwidth B.

The signal modulations described in Sections 1.1.1.1
through 1.1.1.4 are amplitude, phase, frequency, and sup-
pressed carrier modulations. The amplitude, phase, and fre-
quency modulations are often applied to the transmission
of analog information; however, they are also used in various
applications involving digital data transmission. For exam-
ple, these modulations, to varying degrees, are the underlying
waveforms used in the U.S. Air Force Satellite Control
Network (AFSCN) involving satellite uplink and downlink
control, status, and ranging.

In describing the demodulator processing of the received
waveforms, the information, following removal of the carrier
frequency, is associated with in-phase and quadphase (I/Q)
baseband channels or rails. Although these I/Q channels
are described as containing quadrature real signals, they
are characterized as complex signals with real and imaginary
parts. This complex signal description is referred to as com-
plex envelope or analytic signal representations and is dis-
cussed in Section 1.1.1.5. Suppressed carrier modulation
and the analytic signal representation emphasize quadrature
data modulation that leads to a discussion of the Hilbert
transform in Section 1.1.1.6. Section 1.1.1.7 discusses con-
ventional heterodyning of the received signal to baseband
followed by data demodulation.

1.1.1.1 Amplitude Modulation Conventional amplitude
modulation (AM) is characterized as

s t =A 1 +mIm t sin ωmt sin ωct (1.1)

where A is the peak carrier voltage, mI > 0 is the modulation
index, m(t) is the information modulation function, ωm is the
modulation angular frequency, and ωc is the AM carrier
angular frequency. Upon multiplying (1.1) through by sin

TABLE 1.1 Frequency Band Designations

Designation Frequency
Letter
Designation

Frequency
(GHz)

ELF 3–30 Hz L 1–2
SLF 30–300 Hz S 2–4
ULF 0.3–3 kHz C 4–8
VLF 3–30 kHz X 8–12
LF 30–300 kHz Ku 12–18
MF 0.3–3 MHz K 18–27
HF 3–30 MHz Ka 27–40
VHF 30–300 MHz V 40–75
UHF 0.3–3 GHz W 75–110
SHF 3–30 GHz mm (millimeter) 110–300
EHF 30–300 GHz
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(ωct) and applying elementary trigonometric identities, the
AM-modulated signal is expressed as

s t =Asin ωct +
AmI

2
m t cos ωc−ωm t

−
AmI

2
m t cos ωc +ωm t

(1.2)

Therefore, s(t) represents the conventional double side-
band (DSB) AM waveform with the upper and lower side-
bands at ωc ±ωm equally spaced about the carrier at ωc.
With the information modulation function m(t) normalized
to unit power, the power in each sideband is mIPS/4 where
PS is the power in the carrier frequency fc.

1.1.1.2 Phase Modulation Conventional phase modula-
tion (PM) is characterized as

s t =Asin ωct +φ t (1.3)

where A is the peak carrier voltage, ωc is the carrier angular
frequency, and φ(t) is an arbitrary phase modulation function
containing the information. The commonly used phase func-
tion is expressed as

φ t =ϕsin ωmt (1.4)

where ϕ is the peak phase deviation. Substituting (1.4) into
(1.3), the phase-modulated signal is expressed as

s t =A sin ωct +ϕsin ωmt (1.5)

and, upon applying elementary trigonometric identities, (1.5)
yields

s t =Asin ωct cos ϕsin ωmt +Acos ωct sin ϕsin ωmt

(1.6)

The trigonometric functions involving sinusoidal argu-
ments can be expanded in terms of Bessel functions [2]
and (1.6) simplifies to

s t =AJ0 ϕ sin ωct +A
∞

n = 1

Jn ϕ sin ωc + nωm t

+ −1 nJn ϕ sin ωc−nωm t

(1.7)

Equation (1.7) is characterized by the carrier frequency
with peak amplitude AJ0(ϕ) and upper and lower sideband
pairs at ωc ± nωm with peak amplitudes AJn(ϕ). For small
arguments the Bessel functions reduce to the approximations
J0 ϕ 1,J1 ϕ ϕ 2 with Jn ϕ 0 n> 1 and (1.7)
reduces to

s t Asin ωct +
Aϕ

2
sin ωc +ωm t −

Aϕ

2
sin ωc−ωm t

small ϕ
(1.8)

Under these small argument approximations, the similari-
ties between (1.8) and (1.2) are apparent.

1.1.1.3 FrequencyModulation The frequency-modulated
(FM) waveform is described as

s t =Asin ωct +
Δf
fm

sin ωmt (1.9)

where A is the peak carrier voltage, ωc is the carrier angular
frequency, Δf is the peak frequency deviation of the modula-
tion frequency fm, and ωm is the modulation angular fre-
quency. The ratio Δf/fm is the frequency modulation index.
Noting the similarities between (1.9) and (1.5), the expres-
sion for the frequency-modulated waveform is expressed,
in terms of the Bessel functions, as

s t =AJ0
Δf
fm

sin ωct +A
∞

n = 1

Jn
Δf
fm

sin ωc + nωm t

+ −1 nJn
Δf
fm

sin ωc−nωm t

(1.10)

with the corresponding small argument approximation for the
Bessel function expressed as

s t Asin ωct +
AΔf
2fm

sin ωc +ωm t −
AΔf
2fm

sin ωc−ωm t

small
Δf
fm

(1.11)

The similarities between (1.11), (1.8), and (1.2) are apparent.

1.1.1.4 Suppressed Carrier Modulation A commonly
used form of modulation is suppressed carrier modulation
expressed as

s t =Am t sin ωct +φ t (1.12)

In this case, when the carrier is mixed to baseband, infor-
mation modulation functionm(t) does not have a direct current
(DC) spectral component involving δ(ω). So, upon multiplica-
tion by the carrier, there is no residual carrier component ωc in
the received baseband signal. Because the carrier is suppressed
it is not available at the receiver/demodulator to provide a
coherent reference, so special considerations must be given
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to the carrier recovery and subsequent data demodulation.
Suppressed carrier-modulated waveforms are efficient, in
that, all of the transmitted power is devoted to the information.
Suppressed carrier modulation and the various methods of
carrier recovery are the central focus of the digital communi-
cation waveforms discussed in the following chapters.

1.1.1.5 Real and Analytic Signals The earlier modula-
tion waveforms are described mathematically as real wave-
forms that can be transmitted over real or physical
channels. The general description of the suppressed carrier
waveform, described in (1.12), can be expressed in terms
of in-phase and quadrature modulation functions mc(t) and
ms(t) as

s t =mc t cos ωct −ms t sin ωct (1.13)

The quadrature modulation functions are expressed as

mc t =Adcm t cos φ t (1.14)

and

ms t =Adsm t sin φ t (1.15)

With PM the data {dc, ds} may be contained in a phase
function φd(t), m(t) is a unit energy symbol shaping function
that provides for spectral control relative to the commonly
used rect(t/T) function, and A represents the peak carrier
voltage on each rail. With quadrature modulations, unique
symbol shaping functions, mc(t) and ms(t), may be applied
to each rail; for example, unbalanced quadrature modulations
involve different data rates on each quadrature rail. With
quadrature amplitude modulation (QAM) the data is
described in terms of the multilevel quadrature amplitudes
{αc, αs} that are used in place of {dc, ds} in (1.14) and (1.15).

Equation (1.13) can also be expressed in terms of the real
part of a complex function as

s t =Re s t ejωct (1.16)

where

s t =mc t + jms t (1.17)

The function s t is referred to as the complex envelope or
analytic representation of the baseband signal and plays a
fundamental role in the data demodulation, in that, it contains
all of the information necessary to optimally recover the
transmitted information. Equation (1.17) applies to receivers
that use linear frequency translation to baseband. Linear fre-
quency translation is typical of heterodyne receivers using
intermediate frequency (IF) stages. This is a significant result
because the system performance can be evaluated using the

analytic signal without regard to the carrier frequency [3];
this is particularly important in computer performance
simulations.

Evaluation of the real part of the signal expressed in (1.16)
is performed using the complex identity No. 4 in
Section 1.14.6 with the result

s t =
1
2

s t ejωct + s t ∗e− jωct (1.18)

A note of caution is in order, in that, the received signal
power based on the analytic signal is twice that of the power
in the carrier. This results because the analytic signal does not
account for the factor of 1/2 when mixing or heterodyning
with a locally generated carrier frequency and is directly
related the factor of 1/2 in (1.18). The signal descriptions
expressed in (1.12) through (1.18) are used to describe the
narrowband signal characteristics used throughout much of
this book.

1.1.1.6 Hilbert Transform and Analytic Signals The
Hilbert transform of the real s(t) is defined as

s t ≜
1
π

∞

−∞

s τ

t−τ
dτ = s t ∗ 1

πt
(1.19)

The second expression in (1.19) represents the convolu-
tion of s(t) with a filter with impulse response h t = 1 πt
where h(t) represents the response to a Hilbert filter with fre-
quency response H(ω) characterized as

h t H ω

=
− jsign ω ω > 0

0 o w

(1.20)

The Hilbert transform of s(t) results in a spectrum that is
zero for all negative frequencies with positive frequencies
representing a complex spectrum associated with the real
and imaginary parts of an analytic function. Applying
(1.20) to the signal spectrum S ω s t results in the spec-
trum of the Hilbert transformed signal

S ω =

jS ω ω< 0

0 ω= 0

− jS ω ω> 0

(1.21)

Applying (1.21) to the spectrum S(ω) of (1.12) or (1.13),
the bandwidth B of m(t) must satisfy the condition B << fc.
In this case, the inverse Fourier transform of the spectrum
S ω yields the Hilbert filter output s t given by
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s t = TH Am t sin ωct +ϕ t =Am t sin ωct +ϕ t −π 2

= −Am t cos ωct +ϕ t

(1.22)

where TH[s(t)] represents the Hilbert transform of s(t).
The function s t expressed by (1.22) is orthogonal to s(t)

and, if the carrier frequency were removed following the
Hilbert transform, the result would be identical to the
imaginary part of the analytic signal expressed by (1.17).
The processing is depicted in Figure 1.1.

1.1.1.7 Conventional and Complex Heterodyning Con-
ventional heterodyning is depicted in Figure 1.2. The zonal
filters are ideal low-pass filters with frequency response
given by

H f = rect f −
fc
2

zonal lowpass filter (1.23)

These filters remove the 2ωc term that results from the
mixing operation and, for s(t) as expressed by (1.13), the
quadrature outputs are given by

sc t =
A

2
mc t cos ϕ t −ms t sin ϕ t (1.24)

and

ss t =
A

2
mc t sin ϕ t +ms t cos ϕ t (1.25)

With ideal phase tracking the phase term ϕ(t) is zero
resulting in the quadrature modulation functions mc(t) and
ms(t) in the respective low-pass channels.

1.2 THE FOURIER TRANSFORM AND
FOURIER SERIES

The Fourier transform is so ubiquitous in the technical liter-
ature [4–6], and its application are so widely used that it
seems unnecessary to dwell at any length on the subject.
However, a brief description is in order to aid in the under-
standing of the parameters used in the applications discussed
in the following chapters.

The Fourier transform F(f) of f(t) is defined over the inter-
val t ≤ ∞ and, if f(t) is absolutely integrable, that is, if

∞

−∞

f t dt < ∞ (1.26)

then F(f) exists, furthermore, the inverse Fourier transform
of F(f) results in f(t). In most applications* of practical inter-
est, f(t) satisfies (1.26) leading to the Fourier transform pair
f t F f defined as

F f =

∞

−∞

f t e− j2πftdt f t =

∞

−∞

F f ej2πftdf (1.27)

In general, f(t) is real and the Fourier transform F(f) is
complex and Parseval’s theorem relates the signal energy
in the time and frequency domains as

∞

−∞

f t 2dt =

∞

−∞

F f 2df (1.28)

The Fourier series representation of a periodic function is
closely related to the Fourier transform; however, it is based
on orthogonal expansions of sinusoidal functions at discrete
frequencies. For example, if the function of interest is peri-
odic, such that, f(t) = f(t – iTo) with period To and is finite
and single valued over the period, then f(t) can be represented
by the Fourier series

f t =
∞

n= −∞
Cne

jnωot (1.29)

where ωo = 2π/To and Cn is the n-th Fourier coefficient
given by

s(t) s(t)

s(t)˘Hilbert
filter

FIGURE 1.1 Hilbert transform of carrier-modulated signal s(t)
B fc 1 .

Ss(t)

Sc(t)

s(t)

cos(ωct)

Zonal
filter

–sin(ωct)

Zonal
filter

FIGURE 1.2 Heterodyning of carrier-modulated signal s(t)
B fc 1 .

*For special cases refer to Papoulis (Reference 7, Chapter 2).
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Cn =
1
To

To 2

−To 2

f t e− jnωotdt (1.30)

Equation (1.29) is an interesting relationship, in that, f(t)
can be described over the time interval To by an infinite set
of frequency-domain coefficient Cn; however, because f(t)
is contiguously replicated over all time, that is, it is periodic,
the spectrum of f(t) is completely defined by the coefficients
Cn. Unlike the Fourier transform, the spectrum of (1.29) is not
continuous in frequency but is zero except at discrete fre-
quencies occurring at multiples of nωo. This is seen by taking
the Fourier transform of (1.29) and, using (1.27), the result is
expressed as

F f =
∞

n= −∞
Cn

∞

−∞

e− j2π f −nfo tdt

=
∞

n= −∞
Cnδ f −nfo

(1.31)

where δ f −nfo is the Fourier Transform* of ejnωoT .
Equation (1.31) is applied in Chapter 2 in the discussion of
sampling theory and in Chapter 11 in the context of signal
acquisition.

Alternate forms of (1.29) that emphasize the series expan-
sion in terms of harmonics of trigonometric functions are
given in (1.32) and (1.33) when f(t) is a real-valued function.
This is important because when f(t) is real the complex coef-
ficients Cn and C−n form a complex conjugate pair such that
C−n =C∗

n which simplifies the evaluation of f(t). For example,
using the complex notations Cn = αn + jβn and C∗

n = αn− jβn,
the function f(t) is evaluated as

f t =Co + 2
∞

n= 1

αn cos nωot −βn sin nωot (1.32)

this simplifies to

f t =Co + 2
∞

n= 1

Cn cos nωot +ϕn (1.33)

where Cn = α2 + β2 and ϕn = arctan β α .
An important consideration in spectrum analysis is the

determination of signal spectrums involving random data
sequences, referred to as stochastic processes [8]. A stochas-
tic process does not have a unique spectrum; however, the
power spectral density (PSD) is defined as the Fourier
transform of the autocorrelation response. Oppenheim and

Schafer [9] discuss methods of estimating the PSD of a
real finite-length (N) sampled sequence by averaging
periodograms, defined as

IN ω =
1
N

F ω 2 (1.34)

where F(ω) is the Fourier transform of the sampled sequence.
This method is accredited to Bartlett [10] and is used in the
evaluation of the PSD in the following chapters. For a fixed
length (L) of random data, the number of periodograms (K)
that can be averaged is K = L/N. As K increases the variance
of the spectral estimate approaches zero and as N increases
the resolution of the spectrum increases, so there is a trade-
off between the selection of K and N. To resolve narrowband
spectral features that occur, for example, with nonlinear
frequency shift keying (FSK)-modulated waveforms, it is
important to use large values of N. Fortunately, many of
the spectrum analyses presented in the following chapters
are not constrained by L so K and N are chosen to provide
a low estimation bias, that is, low variance, and high spectral
resolution. Windowing† the periodograms will also reduce
the estimation bias at the expense of decreasing the spectral
resolution.

1.2.1 The Transform Pair rect(t/T) Tsinc(fT)

The transform relationship rect(t/T) Tsinc(fT) occurs so
often that it deserves special consideration. For example,
consider the following function:

s t =Acos ωc t−τ −ϕ rect
t−τ

T
(1.35)

where ωc, τ, and ϕ represent arbitrary angular frequency,
delay, and phase parameters. The signal s(t) is depicted in
Figure 1.3.

The Fourier transform of s(t) is evaluated as

S f =A

T 2 + τ

−T 2 + τ

cos ωc t−τ −ϕ e− j2πftdt (1.36)

T/2 + τ–T/2 + τ τ

A

0

t

s(t)

FIGURE 1.3 Pulse-modulated carrier.

*A summary of Fourier transforms pairs is given in Section 1.2.11. †Windows are discussed in Section 1.11.
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Expressing the cosine function in terms of complex
exponential functions and performing some simplifications
results in the expression

S f =
A

2
e− j 2πf τ +ϕ

τ + T 2

τ−T 2

e− j2π f − fc tdt

+ e− j 2πf τ−ϕ
τ + T 2

τ−T 2

e− j2π f + fc tdt

(1.37)

Evaluation of the integrals in (1.37) appears so often that it
is useful to generalize the solutions as follows:

Consider the integral

I y =

x2

x1

e− j y ± y xdx

=
e− j y ± y x2 −e− j y ± y x1

− j y± y

(1.38)

The general solution involves multiplying the last equality
in (1.38) by the factors e− j y ± y x2 + x1 2 and ej y ± y x2 + x1 2,
having a product of one, where x2 + x1 2 is the average
of the integration limits. Distributing the second factor over
the numerator of (1.38) and then simplifying yields the result

I y = x2−x1 e− j y ± y x2 + x1 2 sin y ± y x2−x1 2
y ± y x2−x1 2

(1.39)

Applying (1.39) to (1.37) and simplifying gives the
desired result

S f =
AT

2
e− j 2πf τ +ϕ sinc f − fc T + e− j 2πf τ−ϕ sinc f + fc T

(1.40)

When fc 1 T , the positive and negative frequency
spectrums do not influence one another and, in this case,
the positive frequency spectrum is defined as

S+ f =
AT

2
sinc f − fc T fc

1
T

(1.41)

On the other hand, when the carrier frequency and phase
are zero, (1.40) simplifies to the baseband spectrum, evalu-
ated as

Sbb f =ATe− j2πf τsinc fT fc = 0, ϕ= 0 (1.42)

Using (1.42), the baseband Fourier transform pair, corre-
sponding to of (1.35) with fc = 0, is established as

rect
t−τ

T
Te− j2πf τsinc fT t−τ ≤

T

2
(1.43)

and, with τ = 0,

rect
t

T
Tsinc fT t ≤

T

2
(1.44)

1.2.2 The sinc(x) Function

The sinc(x) function is defined as

sinc x =
sin πx

πx
(1.45)

and is depicted in Figure 1.4. When x is expressed as the nor-
malized frequency variable x = fT then (1.45), when scaled by
T, is the frequency spectrum of the unit amplitude pulse rect
(t/T) of duration T seconds such that t ≤ |T/2|. This function is
symmetrical in x and the maximum value of the first sidelobe
occurs at x=1.431with a level of 10log(sinc2(x)) =−13.26 dB;
the peak sidelobe levels decrease in proportion to 1/|x|. The
noise bandwidth of a filter function H(f) is defined as

Bn ≜

∞

−∞
H f 2df

H fo
2 (1.46)

where fo is the filter frequency corresponding to the maxi-
mum response. When a receiver filter is described as
H(f) = sinc(fT) the receiver low-pass noise bandwidth is eval-
uated as Bn = 1/T where T is the duration of the filter impulse
response.

x
0 1 2 3 4 5 6 7 8 9

si
nc

(x
)

–0.4

–0.2

0.0

0.2

0.4

0.6

0.8

1.0

FIGURE 1.4 The sinc(x) function.
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It is sometimes useful to evaluate the area of the sinc(x)
function and, while there is no closed form solutions, the
solution can be evaluated in terms of the sine-integral
Si(x)

* as

z

0
sinc x dx=

z

0

sin πx

πx
dx=

1
π

π z

0

sin λ

λ
dλ

=
1
π
Si πz

(1.47)

where the sine-integral is defined as the integral of sin(λ)/λ.
Equation (1.47) is shown in Figure 1.5. The limit of Si(πz) as
|z| ∞ is† π sign(1,z)/2 so the corresponding limit of (1.47)
is 0.5sgn(z).

A useful parameter, often used as a benchmark for
comparing spectral efficiencies, is the area under sinc2(x)
as a function of x. The area is evaluated in terms of the
sine-integral as

z

0
sinc2 x dx=

z

0

sin2 πx

πx 2 dx

=
1
π

Si 2πz −
sin2 2πz

2πz

(1.48)

Equation (1.48) is plotted in Figure 1.6 as a percent of the
total area and it is seen that the spectral containment of 99%
is in excess of 18 spectral sidelobes, that is, x = fT = 18. In
the following chapters, spectral efficient waveforms are
examined with 99% containment within 2 or 3 sidelobes,
so the sinc(x) function does not represent a spectrally efficient
waveform modulation.

1.2.3 The Fourier Transform Pair

n
δ t−nT ωo n

δ ω−nωo

The evaluation of this Fourier transform pair is fundamental
to Nyquist sampling theory and is demonstrated in
Section 2.3 in the evaluation of discrete-time sampling. In this
case, the function f(t) is an infinite repetition of equally spaced
delta functions δ(t) with intervals T seconds as expressed by

f t =
∞

n= −∞
δ t−nT (1.49)

The challenge is to show that the Fourier transform of
(1.49) is equal to an infinite repetition of equally spaced
and weighted frequency domain delta functions expressed as

F ω =ωo

∞

n= −∞
δ ω−nωo (1.50)

with weighting ωo and frequency intervals ωo = 2π T . Direct
application of the Fourier transform to (1.49) leads to the

spectrum
n
e− jnωT but this does not demonstrate the equal-

ity in (1.50). Similarly, evaluation of the inverse Fourier
transform of (1.50) results in the time-domain expression

g t =
1
T

∞

n = −∞
ejnωot (1.51)

So, by showing that g t = f t , the transform pair between
(1.49) and (1.50) will be established. Consider gN(t) to be a
finite summation of terms in (1.51) given by

gN t =
1
T

N

n= −N

ejnωot

=
sin 2N + 1 ωot 2

T sin ωot 2

(1.52)
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FIGURE 1.6 Integral of sinc2(x) function.

x
0 1 2 3 4 5 6 7 8 9

In
te

gr
al

 s
in

c(
x)

0.00

0.25

0.50

0.75

FIGURE 1.5 Integral of sinc(x).

*The arguments x and z may be complex; however, the following analysis
uses only real arguments.
†The sign(a, x) function is defined in Section 1.14.7.
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The second equality in (1.52) can be shown using
the finite series identity No. 12, Section 1.14.1. Equation
(1.52) is referred to by Papoulis [7] as the Fourier-series
kernel and appears in a number of applications involving
the Fourier transform.

The function gN(t) is plotted in Figure 1.7 for N = 8. The
abscissa is time normalized by the pulse repetition interval
T = 1 fo such that, gN t = gN t−nT , and there are a total
of 2N + 1 peaks of which three are shown in the figure. Fur-
thermore, there are eight time sidelobes between t/T = 0 and
0.5 with the first nulls from the peak value at t/T = 0 occurring
at ±T 2N + 1 ; the peak values are 2N + 1 T = 17 T in
this example.

The maximum values of 2N + 1, occurring at t T = n, are
determined by applying L’Hospital’s rule to (1.52), which is
rewritten as

gN t = 2N + 1
sin 2N + 1 ωot 2
T 2N + 1 sin ωot 2

2N + 1
sin 2N + 1 ωot 2
T 2N + 1 ωot 2

(1.53)

The approximation in (1.53) is obtained by noting that
as N increases the rate of the sinusoidal variations in the
numerator term increases with a frequency of 2N + 1 fo Hz
while the rate of sinusoidal variation in the denominator
remains unchanged. Therefore, in the vicinity of t T = n,
sin ωot 2 ωot 2 and (1.53) reduces to a sin(x)/x function
with x = 2N + 1 ωot 2 and a peak amplitude (2N + 1). The
proof of the transform pair is completed by showing that
f(t) = g(t). Referring to (1.51) g(t) is expressed as

g t = lim
N ∞

gN t (1.54)

From (1.53) as N approaches infinity the sin(x)/x sidelobe
nulls converge to t/T = n, the peak values become infinite,
and the corresponding area over the interval |t/T| = n ± 1/2
approaches unity. Therefore, g(t) resembles a periodic series
of delta functions resulting in the equality

g t = lim
N ∞

gN t =
∞

n = −∞
δ t−nT

= f t

(1.55)

thus completing the proof that (1.49) and (1.50) correspond to
a Fourier transform pair. Papoulis (Reference 7, pp. 50–52)
provides a more eloquent proof that the limiting form of
gN(t) is indeed an infinite sequence of delta functions.

1.2.4 The Discrete Fourier Transform

The DFT pair relating the discrete-time function f(mΔt) ≡
f(m) and discrete-frequency function F(nΔf) ≡ F(n) is de-
noted as f m F n where

F n =Δt
M−1

m = 0

f m e− j2πnΔfmΔt f m =Δf
N−1

n = 0

F n ej2πnΔfmΔt

DFT

(1.56)

With the DFT the number of time and frequency samples
can be chosen independently. This is advantageous when pre-
paring presentation material or examining fine spectral or
temporal details, as might be useful when debugging simula-
tion programs, by the independent selection of the integers m
and n.

1.2.5 The Fast Fourier Transform

As discussed in the preceding section, the DFT pair, relating
the discrete-time function f(mΔt) ≡ f(m) and the discrete-
frequency function F(nΔf) ≡ F(n), is denoted as f m

F n where f(m) and F(n) are characterized by the expres-
sions for the DFT. The FFT [11–17], is a special case corre-
sponding to m and n being equal to N as described in the
remainder of this section. In these relationships N is the num-
ber of time samples and is defined as the power of a fixed
radix-r FFT or as the powers of a mixed radix-rj FFT.

*

The fixed radix-2 FFT, with r = 2 and N = 2i, results in the
most processing efficient implementation.
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FIGURE 1.7 The Fourier-series kernel gN(t) (N = 8).

*Mixed radix FFTs provide an efficient method of computing the Fourier
transform when the number of samples is not a power of r. In general,
N = r1 i1 r2 i2… and the radices of the FFT are determined as the prime factors
of N. For example, N = 31 = 1∗31 requires a single radix = 31 FFT, N = 32 =
2∗2∗2∗2∗2 requires a radix-2 FFT, and N = 33 = 3∗11 requires a radix-3 and
a radix-11 FFT.
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Defining the time window of the FFT as Tw results in
an implicit periodicity of f(t) such that f(t) = f(t ± kTw)
and Δt = Tw/N. The sampling frequency is defined as
fs = 1 Δt =N Tw and, based on Shannon’s sampling theo-
rem, the periodicity does not pose a practical problem as
long as the signal bandwidth is completely contained in
the interval |B| ≤ fs/2 = N/(2Tw). Since the FFT results in
an equal number of time and frequency domain samples, that
is,Δf = fs/N andΔt = Tw/N, it follows thatΔfΔt = fs Tw/N

2 = 1/
N. Normalizing the expression of the time function, f(m), in
(1.56), that is, multiplying the inverse DFT (IDFT) by Δt
requires dividing the expression for F(n) by Δt. Upon substi-
tuting these results into (1.56), the FFT transform pairs
become

F n =
N−1

m= 0

f m e− j2πnm N f m =
1
N

N−1

n = 0

F n ej2πnm N

FFT

(1.57)

The time and frequency domain sampling characteristics
of the FFT are shown in Figure 1.8. This depiction focuses
on a communication system example, in that, the time sam-
ples over the FFT window interval Tw are subdivided into
Nsym symbol intervals of duration T seconds with Ns sam-
ples/symbol.

Typically the bandwidth of the modulated waveform is
taken to be the reciprocal of the symbol duration, that is, 1/
THz; however, the receiver bandwidth required for low sym-
bol distortion is typically several times greater than 1/T
depending upon the type of modulation. Referring to
Figure 1.8 the sampling frequency is fs = 1/Δt, the sampling
interval is Δt = T/Ns, the size of the FFT is Nfft = NsNsym, and
the frequency sampling increment is Δf = fs/Nfft. Upon using
these relationships, the frequency resolution, or frequency
samples per symbol bandwidth B = 1/T, is found to be

B

Δf
=Nsym determines frequency resolution (1.58)

and the number of spectral sidelobes* or symbol bandwidths
over the sampling frequency range is

fs
B
=Ns determines spectral sidelobes (1.59)

Therefore, to increase the resolution of the sampled signal
spectrum, the number of symbols must be increased and this

is comparable to increasing Tw. On the other hand, to increase
the number of signal sidelobes contained in the frequency
spectrum the number of samples per symbol must be
increased and this is comparable to decreasing Δt. Both of
these conditions require increasing the size (N) of the FFT.
However, for a given size, the FFT does not allow independ-
ent selection of the frequency and time resolution as
determined, respectively, by (1.58) and (1.59). This can be
accomplished by using the DFT as discussed in
Section 1.2.4. Since the spectrum samples in the range 0 ≤
f < fs/2 represent the positive frequency signal spectrum
and those over the range fs/2 ≤ f < fs represent the negative
frequency signal spectrum, the range of signal sidelobes of
interest is ±fs/(2B) = ±Ns/2. As a practical matter, if the signal
carrier frequency is not zero then the sampling frequency
must be increased to maintain the signal sidelobes aliasing
criterion. The sampling frequency selection is discussed in
Chapter 11 in the context of signal acquisition when the
received signal frequency is estimated based on locally
known conditions.

The following implementation of the FFT is based on the
Cooley and Tukey [18] decimation-in-time algorithm as
described by Brigham and Morrow [19] and Brigham [20].
Although (1.57) characterizes the FFT transform pairs, the
real innovation leading to the fast transformation is realized
by the efficient algorithms used to execute the transforma-
tion. Considering the radix-2 FFT with N = 2n, this involves
defining the constant

W ≜ e− j2π N (1.60)

and recognizing that

F n =Δt
N−1

m= 0

f m Wnm (1.61)

Equation (1.61) can be expressed in matrix form, using
N = 4 for simplicity, as

Nsym : symbols / window (Tw)
Ns : samples / symbol (T)

…

0 3T2T

f(mΔt)

Δt
Tw =

NsymT

t
…

(a)

T
f

(b)

…

F(nΔf )

Δf
fs / 2 fs =

Nfft Δf
0 1/T

Ns : bandwidths / frequency ( fs)
Nsym : samples / bandwidth (B)

Bandlimited sampled spectrum
( f = nΔf )

 Time sampled waveform
(t = mΔt)

FIGURE 1.8 FFT time and frequency domain sampling.

*These results are based on the underlying rect(t/T) window and the sinc(fT)
frequency function that includes the principal lobe and the positive and neg-
ative spectral side lobes.
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F 0

F 1

F 2

F 3

=Δt

W0 W0 W0 W0

W0 W1 W2 W3

W0 W2 W4 W6

W0 W3 W6 W9

f 0

f 1

f 2

f 3

(1.62)

Recognizing that W0 = 1 and the exponent nm is modulo
(N), upon factoring the matrix in (1.62) into the product of
two submatrices (in general the product of log2N subma-
trices) leads to the implementation involving the minimum
number of computations expressed as

F 0

F 2

F 1

F 3

=Δt

1 W0 0 0

1 W2 0 0

0 0 1 W1

0 0 1 W3

1 0 W0 0

0 1 0 W2

1 0 W2 0

0 1 0 W2

f 0

f 1

f 2

f 3

(1.63)

The simplifications result in the outputs F(2) and F(1)
being scrambled and the unscrambling to the natural-number
ordering simply involves reversing the binary number
equivalents, that is, with F (1) = F(2) and F (2) = F (1); there-
fore, the unscrambling is accomplished as F(1) = F (01) =
F (2) = F (10) and F (2) = F (10) = F (1) = F (01). The
radix-2 with N = 4 FFT, described by (1.63), is implemented
as shown in the diagram of Figure 1.9.

The inverse FFT (IFFT) is implemented by changing the
sign of the exponent ofW in (1.60), interchanging the roles of
F(n) and f(m), as described earlier, and replacing Δt by Δf.

Recognizing that ΔtΔf = 1/N, it is a common practice not
to weight the FFT but to weight the IFFT by 1/N as indicated
in (1.57). The number of complex multiplication is deter-
mined from (1.63) by recognizing that W2 = −W0 and not
counting previous products like W0f(2) from row 1 and
W2f(2) = −W0f(0) from row 3 in the first matrix multiplication
on the rhs of (1.63). For the commonly used radix-2 FFT, the
number of complex multiplications is (N/2)log2(N) and the
number of complex additions is Nlog2(N). By comparison,
the number of complex multiplications and additions in the
direct Fourier transform are N2 and N(N − 1), respectively.
These computational advantages are enormous for even mod-
est transform sizes.

1.2.5.1 The Pipeline FFT The FFT algorithm discussed
in the preceding section involves decimation-in-time proces-
sing and requires collecting an entire block of time-sampled
data prior to performing the Fourier transform. In contrast,
the pipeline FFT [21] processes the sampled data sequentially
and outputs a complete Fourier transform of the stored data at
each sample. The implementation of a radix-2, N = 8-point
pipeline FFT is shown in Figure 1.10. The pipeline FFT
inherently scrambles the outputs F (n) and the unscrambled
outputs are not shown in the figure; the unscrambling is
accomplished by simply reversing the order of the binary
representation of the output locations, n, as described in
the preceding section.

In general, the number of complex multiplications for a
complete transform is (N/2)(N − 1). In Chapter 11 the pipeline
FFT is applied in the acquisition of a waveform where a

F′(3)

F′(2)

F′(1)

F′(0)

F(3)

F(2)

F(1)

F(0)

W 1

W 0

W 2

W 2

W 2

W 3

W 0

W 0

1

1

11

1

1

11

f(2)

f(3)

f(1)

f(0)

Ts

Ts

Ts Unscramble

Sampled
data

FIGURE 1.9 Radix-2, N = 4-point FFT implementation tree diagram.
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complete N-point FFT output is not required at every sample.
For example, if the complete N-point FFT is only required at
sample intervals of NsTs, the number of complex multiplica-
tions can be significantly reduced (see Problem 10). The
pipeline FFT can be used to interpolate between the
fundamental frequency cells by appending zeros to the data
samples and appropriately increasing the size of the FFT;
it can also be used with data samples requiring mixed radix
processing. The pipeline FFT is applicable to radar and sonar
signal detection processing [21] using a variety of spectral
shaping windows; however, the intrinsic rect(t/T) FFT win-
dow is nearly matched for the detection of orthogonally
spaced M-ary FSK modulated frequency tones.

1.2.6 The FFT as a Detection Filter

The pipeline Fourier transform is made up of a cascade of
transversal filter building blocks shown in Figure 1.10. The
transfer function of this building block is

Ti s =
eo s

ei s

=Wi + e
−skiTs

(1.64)

The overall transfer function from the input to a particular
output is evaluated as

Sampled
data
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F′(0)
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F′(4)

F′(5)

F′(7)

F′(6)

f(m)

W3

W1

W2

W2

W0

W0

W0 Ts
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Ts

Ts

2Ts

2Ts

4Ts

FIGURE 1.10 Radix-2, N = 8-point pipeline FFT implementation tree diagram.
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Tℓ s =
eℓ s

ei s

=
k

i= 1

Wℓ, i + e
−skiTs

(1.65)

where k = log2(N) and ki = 2i − 1, i = 1, …, k. The complex
weights are given by

Wℓ, i = e
− jϕℓ, i (1.66)

where

ϕℓ, i =
2πℓi
N

(1.67)

Substitution of Wℓ,i into (1.65) results in

Tℓ s = e− jΦℓ

N−1

k = 0

e−k sTs − jϕℓ (1.68)

where

Φℓ =
k

i= 1

ϕℓ, i (1.69)

This transfer function is expressed in terms of a
magnitude and phase functions in ω by substituting s = jω
with the result

Tℓ ω =
sin N ωTs−ϕℓ,k 2

sin ωTs−ϕℓ,k 2
e− jΦℓ e− j N−1 ωTs 2 (1.70)

where

Φ
ℓ
=Φℓ − N−1 ϕℓ,k 2 (1.71)

Therefore, the FFT forms N filters, ℓ = 0,…,N−1 each
having a maximum response Tℓ ω max =N that occurs at
the frequencies ω=ϕℓ,k Ts. As N increases these transfer
functions result in the response

Tℓ ω =N
sin N ωTs−ϕℓ,k 2

N ωTs−ϕℓ,k 2
e− jΦℓ e− j N−1 ωTs 2 N ∞

(1.72)

The magnitude of (1.72) is the sinc(x) function associated
with the uniformly weighted envelope modulation function
and, therefore, the FFT filter functions as a matched de-
tection filter for these forms ofmodulations. Examples of these
modulated waveforms are binary phase shift keying (BPSK),
quadrature phase shift keying (QPSK), offset quadrature phase
shift keying (OQPSK), andM-ary FSK.

The FFT detection filter loss relative to the ideal
matched filter is examined as N increases. The input signal
is expressed as

s t = 2Pcos ωct−ϕ rect
t

T
(1.73)

and the corresponding signal spectrum for positive frequen-
cies with ωc 2π/T is

S ω =
T

2
sin ω−ωc T 2

ω−ωc T 2
e− jϕ (1.74)

The matched filter for the optimum detection of s(t) in
additive white noise with spectral density No is defined as

H ω =KS∗ ω e− jωTo (1.75)

where K is an arbitrary scale factor and To is an arbitrary
delay influencing the causality of the filter. By letting
K = 2N 2P T , ϕ = −Φ

ℓ
, To = (N − 1)Ts/2, and ωc = ϕℓ,n

Ts it is seen that the FFT approaches a matched filter as N
increases.

The question of how closely the FFT approximates a
matched filter detector is examined in terms of the loss in sig-
nal-to-noise ratio. The filter loss is expressed in dB as

ρ = 10log10
SNRo

SNRo opt

(1.76)

where (SNRo)opt = 2E/No is the signal-to-noise ratio out of the
matched filter and E is the signal energy. The signal-to-noise
ratio out of the FFT filter is expressed in terms of the peak
signal output of the detection filter and the output noise
power as

SNRo =
gℓ t max 2

NoBn
(1.77)

where Bn is the detection filter noise bandwidth. For conven-
ience the zero-frequency FFT filter output is considered, that
is, for ℓ = 0, and letting the signal phase ϕ = 0, the response of
interest is

To ω =
sin NωTs 2
sin ωTs 2

(1.78)

and, from (1.74),

S ω =
T

2
sin ωT 2
ωT 2

(1.79)
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To evaluate SNRo at the output of the FFT filter, go(t)max
and Bn are computed as

go t max =
1

2πN

∞

−∞

To ω S ω dω

=
1

2πN

π Ts

0

sin ωT 2 sin NωTs 2
ωT 2 sin ωTs 2

dω

(1.80)

and

Bn =
1
2π

∞

−∞

To ω 2dω

To 0 2

=
1
πN

π Ts

0

sin2 NωTo 2

sin2 ωTo 2
dω

=
1

2NTs

(1.81)

Substituting these results into (1.77) and using (1.76), the
parameter ρ is evaluated as

ρ = 20log
2
Nπ

π 2

0

sin2 Nx

xsin x
dx dB (1.82)

Equation (1.82) is evaluated numerically for several
values of N and the results are tabulated in Table 1.2. These
results indicate, for example, that detecting an 8-ary
FSK-modulated waveform with orthogonal tone spacing
using an N = 8-point FFT results in a performance loss of
0.116 dB relative to an ideal matched filter.

1.2.7 Interpolation Using the FFT

When an FFT is performed on a uniformly weighted set of
N data samples a set of N sinc(fTw) orthogonal filters is gen-
erated where Tw = NTs is the sampled data window and Ts is

the sampling interval. The N filters span the frequency range
fs = 1/Ts and provide N frequency estimates that are separated
by Δf = fs/N Hz. Frequency interpolation is achieved if the
FFT window is padded by adding nN zero-samples, thereby
increasing the window by nNTs seconds. In this case, a set of
(n + 1)N sinc(fTw) filters spanning the frequency fs is gener-
ated that provides n-point interpolation between each of
the original N filters.

The FFT can also be used to interpolate between time
samples. For example, consider a sampled time function
characterized by N samples over the interval Tw = NTs where
Ts is the sampling interval. The corresponding N-point FFT
has N filters separated by Δf = fs/N where fs = 1/Ts. If nN
zero-frequency samples are inserted between frequency sam-
ples N/2 and N/2 + 1 and the IFFT is taken on the resulting
(n + 1)N samples, the resulting time function contains n inter-
polation samples between each of the original N time sam-
ples. These interpolations methods increase the size of the
FFT or IFFT and thereby the computational complexity.

1.2.8 Spectral Estimation Using the FFT

Many applications involve the characterization of the PSD of
a finite sequence of random data. A random data sequence
represents a stochastic process, for which, the PSD is defined
as the Fourier transform of the autocorrelation function of the
sequence. If the random process is such that the statistical
averages formed among independent stochastic process are
equal to the time averages of the sequences, then the Fourier
transform will converge in some sense* to the true PSD,
S2(ω); however, this typically requires very long sequences
that are seldom available. Furthermore, the classical
approach, using the Fourier transform of the autocorrelation
function, is processing intense and time consuming, requiring
long data sequences to yield an accurate representation to the
PSD. Amuch simpler approach, analyzed by Oppenheim and
Schafer [22], is to recognize that the Fourier transform of a
relatively short data sequence x(n) of N samples is

X ejω =
N−1

n= 0

x n e− jωn (1.83)

and, defining the Fourier transform of the autocorrelation
function Cxx(m) of x(n) as the periodogram

IN ω =
N−1

m= − N−1

Cxx m e− jωm

=
1
N

X ejω
2

(1.84)

TABLE 1.2 N-ary FSK Waveform
Detection Loss Using anN-Point FFT
Detection Filter

N ρ (dB)

2 0.452
3 0.236
8 0.116
16 0.053

*These are referred to as ergodic process and, under some circumstances,
converge to the mean of the stochastic process.
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However, the periodogram is not a consistent estimate* of
the true PSD, having a large variance about the true values
resulting in wild fluctuations. Oppenheim and Schafer then
show that Bartlett’s procedure [10, 23] of averaging period-
ograms of independent data sequences results in a consistent
estimate and, if K periodograms are averaged, the resulting
variance is decreased by K. In this case, the PSD estimate
is evaluated as

S2xx =
1
K

K

i= 1

I i
N ω (1.85)

Oppenheim and Schafer also discuss the application
of windows to the periodograms and Welch [17] describes a
procedure involving the averaging of modified periodograms.

1.2.9 Fourier Transform Properties

The following Fourier transform properties are based on the
transform pairs x t S f and y t Y f where x(t) and
y(t) may be real or complex.

1.2.9.1 Linearity

ax t + by t aX f + bY f (1.86)

1.2.9.2 Translation

x t−τ X f e− j2πf τ (1.87)

and

X f − fo x t e− j2πfot (1.88)

1.2.9.3 Conjugation

x∗ t X∗ − f (1.89)

and

X∗ f x∗ − t (1.90)

1.2.9.4 Differentiation With z t ≜ dnx t dtn and Z f
≜ dnX f df n then

z t j2πf nX f (1.91)

and

Z f − j2πt nx t (1.92)

1.2.9.5 Integration Defining z t ≜
t

−∞
…

τ1

−∞
x τ

dτ…dτn and Z f ≜
f

−∞
…

f1

−∞
Z f df…dfn then

z t X f
δ t

2
+

1
j2πf n (1.93)

and

Z f x t
δ t

2
+

1
− j2πt n (1.94)

1.2.10 Fourier Transform Relationships

The following Fourier transform relationships are based on
the transform pairs x t X f and y t Y f where
x(t) and y(t) may be real or complex.

1.2.10.1 Convolution Defining the Fourier transforms
z t X f Y∗ f and Z f x t y∗ t then

z t =
∞

−∞
x t−τ y∗ τ dτ =

∞

−∞
x τ y∗ t−τ dτ (1.95)

and

Z f =
∞

−∞
X f − f y∗ f df =

∞

−∞
X f Y∗ f − f df (1.96)

1.2.10.2 Integral of Product (Parseval’s Theorem)

∞

−∞
x t y∗ t dt =

∞

−∞
X f Y∗ f df (1.97)

Letting y(t) = x(t) results in Parseval’s Theorem that
equates the signal energy in the time and frequency
domains as

∞

−∞
x t 2dt =

∞

−∞
X f 2df Parseval’s theorem

(1.98)
*A consistent estimate is one in which the variance about the true value and
the bias approaches zero as N increases.
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1.2.11 Summary of Some Fourier Transform Pairs

Some often used transform relationships are listed in
Table 1.3.

1.3 PULSE DISTORTION WITH IDEAL
FILTER MODELS

In this section the distortion is examined for an isolated base-
band pulse after passing through an ideal filter with uniquely
prescribed amplitude and phase responses. In radar applica-
tions isolated pulse response leads to a loss in range resolu-
tion; however, in communication application, where the
pulse is representative of a contiguous sequence of informa-
tion-modulated symbols, the pulse distortion leads to inter-
symbol interference (ISI) that degrades the information
exchange. The following two examples use the baseband
pulse, or symbol, as characterized in the time and frequency
domains by the familiar functions

s t = rect
t

T
S f =Tsinc fT (1.99)

1.3.1 Ideal Amplitude and Zero Phase Filter

In this example, the filter is characterized in the frequency
domain as having a constant unit amplitude over the band-
width f ≤ |B| with zero amplitude otherwise and a zero phase
function. Using the previous notation the filter is character-
ized in the frequency and time domains as

H f = rect
f

2B
h t = 2Bsinc 2Bt (1.100)

The frequency characteristics of the signal and filter are
shown in Figure 1.11.

TABLE 1.3 Fourier Transforms for f(t) F(f)

Waveform f(t) Spectrum F(f)

1 δ(f)

f(t − τ) F(f)exp(−j2πfτ)

f t ej2πfot f f − fo

δ(t)
1
2π

ejω tdt = 1

δ(t − τ) exp(−j2πfτ)

f(at) (1/a)F(f/a)

ej2π fot δ f − fo

cos(2πfot)
1
2

δ f + fo + δ f − fo

sin(2π fot)
j

2
δ f + fo −δ f − fo

∞

n= −∞
δ t−nτ

1
τ

∞

n= −∞
e− j2πnf τ =

1
τ

∞

n= −∞
δ f −

n

τ

dnf t

dtn
(j2πf)nF(f)

− j2πt nf t dnF f

df n

t

−∞
f ξ dξ 1 2 δ f + 1 jπf F f

1 2 δ t −1 jπt s t
f

−∞
F λ dλ

e− t a 2 2 2πae− 2πfa 2 2

f(t) = x(t) y(t) X(f)*Y(f) = X f −λ Y λ dλ

f(t) = x(t)*y(t) F(f) = X(f) Y(f)

u t =
1 t ≥ 0

0 o w
U f =

1
2

δ f +
1
jπf

u t−τ =
1 t−τ ≥ 0

0 o w
U(f)exp(−j2πfτ)

sgn t = 2u t −1

=
1 t > 0

−1 t < 0

a

sgn f =
1
jπf

sgn t =
1
jπt

sgn f = 2u f −1

rect
t

T
= 1 t <

T

2

= 0 o w

Tsinc(fT)b

sinc(2t/T) T

2
rect

fT

2
= 1 f <

1
T

= 0 o w

*Denotes convolution.
aThe signum function sgn(x) is also denoted as signum(x).
bWoodward [24].

–B B

0

0

… … f

T

–2/T –1/T 1/T 2/T

S(f)

f

1
H(f)

FIGURE 1.11 Ideal signal and filter spectrums.
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The easiest way to evaluate the filter response to a pulse
input signal is by convolving the functions as

g t =
∞

−∞
h τ s τ− t dτ

= 2B
∞

−∞
sinc 2Bτ rect

τ− t

T
dτ

(1.101)

The rect(•) function determines the integration limits
with the upper and lower limits evaluated for τ when the
argument equals ±½, respectively. This evaluation leads to
the integration

g t = 2B
t + T 2

t−T 2

sin 2πBτ
2πBτ

dτ (1.102)

Equation (1.102) is evaluated in terms of the sine
integral [25]

Si y =
y

0

sin x

x
dx (1.103)

resulting in the filter output g(t) expressed as

g t =
1
π
Si 2πB t +T 2 −

1
π
Si 2πB t−T 2 (1.104)

Defining the normalized variable y = t/T and the parameter
ρ = BT, Equation (1.104) is expressed as

g y =
1
π
Si 2πρ y+ 1 2 −

1
π
Si 2πρ y−1 2 (1.105)

Equation (1.105) is plotted in Figure 1.12 for several
values of the time-bandwidth (BT) parameter. Range resolu-
tion is proportional to bandwidth and the increased rise time

or smearing of the pulse edges with decreasing bandwidth is
evident. The ISI that degrades the performance of a commu-
nication system results from the symbol energy that occurs in
adjacent symbols due to the filtering.

This analysis considers only the pulse distortion caused by
constant amplitude filter response and, as will be seen in the
following section, filter amplitude ripple and nonlinear phase
functions also result in additional signal distortion. If the filter
were to exhibit a linear phase functionϕ(f) = −2πfTowhere To
represents a constant time delay, then, referring to Table 1.3,
the output is simply delayed by Towithout any additional dis-
tortion. If To is sufficiently large, the filter can be viewed as a
causal filter, that is, no output is produced before the input
signal is applied.

1.3.2 Nonideal Amplitude and Phase Filters: Paired
Echo Analysis

In this section the pulse distortion caused by a filter with
prescribed amplitude and phase functions is examined using
the analysis technique of paired echoes [26]. A practical
application of paired echo analysis occurred when a modem
production line was stopped at considerable expense due to
noncompliance of the bit-error test involving a few tenths
of a decibel. The required confidence level of the bit-error
performance under various IF filter conditions precluded
the use of Monte Carlo simulations; however, much to the
pleasure of management, the paired echo analysis was suc-
cessfully applied to identify the cause of the subtle filter dis-
tortion losses.

Consider a filter with amplitude and phase functions
expressed as

H f =A f e− jϕ f rect
f

2B
(1.106)

where the amplitude and phase fluctuations with frequency
are expressed as

A f = 1 + asin 2πf τa (1.107)

and

ϕ f = 2πfTo + bsin 2πf τb (1.108)

The parameters a and τa represent the amplitude and
period of the amplitude ripple and b and τb represent the
amplitude and period of the phase ripple. Using these func-
tions in (1.106) and separating the constant delay term invol-
ving To, results in the filter function

H f = 1+ acos 2πf τa e− jbsin 2πf τb rect
f

2B
e− j2πfTo

(1.109)

Normalized time (t/T)
–2 –1 0 1 2

R
es

po
ns

e 
g(

t/T
)

–0.25

0.00

0.25

0.50

0.75

1.00

1.25

BT =5
21

Pre
symbol

ISI

Post
symbol

ISI

inf

FIGURE 1.12 Ideal band-limited pulse response (constant-
amplitude, zero-phase filter).
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Equation (1.109) is simplified by using the trigonometric
identity

cos 2πf τa =
1
2

e− j2πf τa + ej2πf τa (1.110)

and the Bessel function identity [27]

e− jbsin 2πf τb =
∞

n = −∞
Jn −b ej2πnf τb

= Jo b + J1 b e− j2πf τb −ej2πf τb +O2 ± n

(1.111)*

In arriving at the last expression in (1.111), the following
identities were used

Jn −b = J−n −b = −1 nJn b (1.112)

Upon substituting (1.110) and (1.111) into (1.109), and
performing the multiplications to obtain additive terms repre-
senting unique delays results in the filter frequency response

H f = J0 b e− j2πfTo +
a

2
J0 b e− j2πf To + τa

+
a

2
J0 b e− j2πf To −τa + J1 b e− j2πf To + τb

+
a

2
J1 b e− j2πf To + τa + τb +

a

2
J1 b e− j2πf To −τa + τb

−J1 b e− j2πf To −τb −
a

2
J1 b e− j2πf To + τa −τb

−
a

2
J1 b e− j2πf To −τa −τb

rect
f

2B
+ higher order filter terms involving Jn b

(1.113)

Upon performing the inverse Fourier transform of each
term in (1.113), the filter impulse response, h(t), becomes a
summation of weighted and delayed sinc(x) functions of
the form 2BKsinc(2B(t − Td)) where K and Td are the ampli-
tude and delay associated with each of the terms. Performing
the convolution indicated by the first equality in (1.101), that
is, for an arbitrary signal s(t), the ideally filtered response g(t)
is expressed as

g t = 2B
∞

−∞
sinc 2Bτ s τ− t dτ (1.114)

When g(t) is passed through the filter H(f) with amplitude
and phase described, respectively, by (1.107) and (1.108), the
distorted output go(t) is evaluated as

go t = J0 b g t−To +
a

2
J0 b g t−To−τa

+
a

2
J0 b g t−To + τa + J1 b g t−To−τb

+
a

2
J1 b g t−To−τa−τb +

a

2
J1 b g t−To + τa−τb

−J1 b g t−To + τb −
a

2
J1 b g t−To−τa + τb

−
a

2
J1 b g t−To + τa + τb

(1.115)

If the input signal is described by the rect(t/T) function,
then g(t) is the response expressed by (1.104) and depicted
in Figure 1.12. The distortion terms appear as paired echoes
of the filtered input signal and Figure 1.13 shows the relative
delay and amplitude of each echo of the filtered output g(t).
For b << 1 the approximations J0(b) = 1.0 and J1(b) = b/2
apply and when a = b = 0 the filter response is simply the

Amplitude distortion terms

t
To + τaTo – τa

aJo(b)/2 aJo(b)/2

Jo(b)

To

t
To + τbTo

To + τa – τb
To – τa – τb

To + τa + τb
To – τa + τb

To

To – τb

J1(b)

J1(b)

Phase distortion terms

aJ1(b)/2

aJ1(b)/2

t

Joint amplitude and phase distortion terms

(a)

(b)

(c)

FIGURE 1.13 Location of amplitude and phase distortion paired
echoes relative to delay To.

*The notation O2(±n) refers to higher order terms involving |n| ≥ 2. These
terms can be neglected for small values of b, that is, b < 0.2.
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delayed but undistorted replica of the input signal, that is,
go(t) = g(t − To). More complex filter amplitude and phase
distortion functions can be synthesized by applying Fourier
series expansions that yield paired echoes that can be viewed
as noisy interference terms that degrade the system perfor-
mance; however, the analysis soon becomes unwieldy so
computer simulation of the echo amplitudes and delays must
be undertaken.

1.3.3 Example of Delay Distortion Loss Using
Paired Echoes

The evaluation of the signal-to-interference ratio resulting
from the delay distortion of a filter is examined using paired
echo analysis. The objective is to examine the distortion
resulting from a specification of the filters peak phase error
and group delay within the filter bandwidth. The filter phase
response is characterized as

ϕ f = 2π fTo−ϕo sin 2πf τ (1.116)

where To is the filter delay resulting from the linear phase
term, ϕo is the peak phase deviation from linearity over the
filter bandwidth, and τ is the period of the sinusoidal phase
distortion function. The linear phase term introduces the filter
delay To that does not result in signal distortion; however, the
sinusoidal phase term does cause signal distortion. In this
example, the phase deviation over the filter bandwidth is
specified parametrically as ϕo(deg) = 3 and 7 . The parameter
τ is chosen to satisfy the peak delay distortion defined as

Td f = −
∂ϕ f

2π∂f

= τϕo cos 2πf τ

(1.117)

where ϕo is in radians. The peak delay, evaluated for fτ = 0,
is specified as Td = 34 and 100 ns and, using (1.117), the
period of the sinusoidal phase function, τ = Td/ϕo, is tabu-
lated in Table 1.4 for the corresponding peak phase errors
and peak delay specification. Practical maximum limits of
the group delay normalized by the symbol rate, Rs, are also
specified.

Considering an ideal unit gain filter with amplitude
response of A(ω) = 1, the filter transfer function is ex-
pressed as

H f = e− jϕ f

= e− j2π fToejϕo sin 2π f τ

= e− j2π fTo
∞

n= −∞
Jn ϕo ejnπ f τ

(1.118)

Upon taking the inverse Fourier transform of (1.118), the
filter impulse response is evaluated as

g t = Jo ϕo δ t−To

+
∞

n= 1

Jn ϕo δ t−To + nτ 2 −δ t−To−nτ 2

(1.119)

The parameter τ determines the delay spread of all the
interfering terms; however, for small arguments the interfer-
ence is dominated by the J1(ϕo) term and the signal-to-
interference ratio is defined as

γi = 20log
J1 ϕo

Jo ϕo
(1.120)

For ϕo(deg) = 3 and 7 , the respective signal-to-inter-
ference ratios are 32 and 24.3 dB and under these
conditions, a 10 dB filter input signal-to-noise ratio results
in the output signal-to-noise ratio degraded by 0.02 and
0.17 dB, respectively.

1.4 CORRELATION PROCESSING

Signal correlation is an important aspect of signal processing
that is used to characterize various channel temporal and
spectral properties, for example, multipath delay and fre-
quency dispersion profiles. The correlation can be performed
as a time-averaged autocorrelation or a time-averaged cross-
correlation between two different signals. Frequency domain,
autocorrelation, and cross-correlation are performed using fre-
quency offsets rather than time delays. The Doppler and multi-
path profiles are characteristics of the channel that are typically
based on correlations involving statistical expectations as
opposed to time-averaged correlations that are applied to deter-
ministic signal waveforms and linear time-invariant channels.
The following discussion focuses on the correlation of deter-
ministic waveforms and linear time-invariant channels.

The autocorrelationof the complex signal x t is defined as*

Rxx τ ≜
∞

−∞
x t x∗ t−τ dt =

∞

−∞
x t + τ x∗ t dt (1.121)

TABLE 1.4 Values of τ for the Phase and Delay Specifications

ϕo(deg) Td(ns) τ(ns) Tg/Rs
a

3 34 649 ±0.15
7 100 818

aNormalized group delay over filter bandwidth.

*The asterisk denotes complex conjugation. The double subscripts on Rxx(τ)
are not always included for the autocorrelation notation; however, they are
important when describing the cross-correlation response.
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The autocorrelation function implicitly contains the mean
value of the signal and the autocovariance is evaluated, by
removing the mean value, as

Cxx τ =

∞

−∞

x t −mx x t−τ −mx
∗dt

=Rxx τ − mx
2

(1.122)

where mx =mxc + jmxs is the complex mean of the signal x t .
The cross-correlation of the complex signals x t and y(t) is
defined as

Rxy τ ≜
∞

−∞
x t y∗ t−τ dt =

∞

−∞
x t + τ y∗ t dt (1.123)

Similarly, the corresponding cross-covariance is evalu-
ated as

Cxy τ =
∞

−∞
x t −mx y t−τ −my

∗
dt

=Rxy τ −mxm
∗
y

(1.124)

The properties of various correlation functions applied to
complex and real valued functions are summarized in
Table 1.5. The properties of correlation functions are also
discussed in Section 1.5.9 in the context of stochastic
processes.

1.5 RANDOM VARIABLES AND PROBABILITY

This section contains a brief introduction to random variables
and probability [6, 8, 28–30].A randomvariable is described in
the context of Figure 1.14 in which an event χ in the space S is
mapped to the real number x characterized as X(χ) = x or f(x) :
xa ≤ x ≤ xb. The function X(χ) is defined as a random variable

which assigns the real number x or f(x) to each event χ S.* The
limits [xa, xb] of the mapping are dependent upon the physical
nature or definition of the event space. The second depiction
shown in Figure 1.14 comprises disjoint, or nonintersecting,
subspaces, such that, for i j the intersection Si Sj = Ø is
the null space. Each subspace possesses a unique mapping
x|Sj conditioned on the subspace Sj : j = 1, …, J. The union
of subspaces is denoted as Si Sj. This is an important distinc-
tion since each subspace can be analyzed in a manner similar
to the mapping of χ S. The three basic forms of the
random variable X are continuous, discrete, and a mixture of
continuous and discrete random variables as distinguished
in the following sections.

1.5.1 Probability and Cumulative Distribution and
Probability Density Functions

The mathematical description [6, 8, 24, 28, 30–32] of the ran-
dom variable X resulting from the mapping X(χ) given the
random event χ S is based on the statistical properties of
the random event characterized by the probability P({X ≤
x}) where {X ≤ x} denotes all of the events X(χ) in S. For
continuous random variables P(X = x) = 0. The probability
function P(Xi Si) satisfies the following axioms:

A1. P(X(χ) S) ≥ 0

A2. P({X(χ) S}) = 1

A3. If P(Si Sj) = Ø i j then P S1 ,…,SJ =
J

j= 1
P Sj

AxiomA3 applies for infinite event spaces by letting J =∞.
Several corollaries resulting from these axioms are as follows:

C1. P(χc) = 1 − P(χ) where χc is the complement of χ
such that χc χ = Ø

C2. P(χ) ≤ 1

C3. P(χi χj) = P(χi) + P(χj) − P(χi χj)

C4. If P(Ø) = 0

The cumulative distribution function (cdf) of the variable
X is defined in terms of the value of x on the real line as

FX x ≜P X ≤ x −∞ < x< ∞ , cumulative

distribution function
(1.125)

TABLE 1.5 Properties of Correlation Functions

Property Comments

Rxx −τ =R∗
xx τ

Cxx −τ =Rxx τ − mx
2

Rxx −τ =Rxx τ x : real

Cxx −τ =Rxx τ −m2
x x : real

Rxy −τ =R∗
yx τ

Cxy τ =Rxy τ −mxm∗
y

Cxy τ =Rxy τ −mxmy x,y : real

Rzz τ =Rxx τ +Ryy τ +Rxy τ +Ryx τ z = x+ y

*A particular outcome x = f(x) is a random variable resulting from the map-
ping X(χ) onto the real line; however, X(χ) is also referred to as a random
variable. Wozencraft and Jacobs (Reference 30, p. 39) point out that this
nomenclature stems from practical applications and is somewhat misleading.
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where FX(x) has the following properties:

P1. 0 ≤ FX(x) ≤ 1

P2. In the limit as x approaches ∞, FX(x) = 1

P3. In the limit as x approaches −∞, FX(x) = 0

P4. FX(x) is a nondecreasing function of x

P5. In the limit as ε approaches 0, FX(xi) = FX(xi + ε)

P6. The probability in the interval xi < x ≤ xj is: P(xi < x
≤ xj) = FX(xj) – FX(xi)

P7. In the limit as ε approaches 0, the probability of the
event xi is P(xi − ε < x ≤ xi) = FX(xi) − FX(xi − ε).

Property P5 is referred to as being continuous from the
right and is particularly important with discrete random vari-
ables, in that, FX(xi) includes a discrete random variable at xi.
Property P7, for a continuous random variable, states that
P(xi) = 0; however, for a discrete random variable, P(xi) =
pX(xi) where pX(xi) is the probability mass function (pmf)
defined in Section 1.5.1.2.

The probability density function* (pdf) of X is defined as

fX x ≜
dFX x

dx
probability density function (1.126)

The pdf is frequency used to characterize a random vari-
able because, compared to the cdf, it is easier to describe
and visualize the characteristics of the random variable.

1.5.1.1 Continuous Random Variables A random varia-
ble is continuous if the cdf is continuous so that FX(x) can be
expressed by the integral of the pdf. The mapping in
Figure 1.14 results in the continuous real variable x. From
(1.125) and (1.126) it follows that

P X ≤ x =FX x =
x

−∞
fX x dx (1.127)

A frequently encountered and simple example of a
continuous random variable is characterized by the uniformly
distributed pdf shown in Figure 1.15 with the corresponding
cdf and probability function.

From property P7, the probability of X = xi is evaluated as

P X = xi = lim
ε 0

FX xi−ε −FX xi (1.128)

However, for continuous random variables, the limit in
(1.128) is equal to FX(xi) so P(X = xi) = 0; this event is han-
dled as described in Section 1.5.2.

1.5.1.2 Discrete Random Variables The probability
mass function [8, 28, 29] (pmf) of the discrete random vari-
able X is defined in terms of the discrete probabilities on the
real line as

pX xi ≜P X = xi (1.129)

The corresponding cdf is expressed as

FX x =
i

pX xi u x−xi (1.130)

Real line: x 
Real line: x 

X(χ) = x  
χJ χj χ1 

S

xa xbx 

Event space

X(χj) = x|Sj 

χ xbjxaj x|Sj

S = S1
◡S2

◡…SJ

…

Si ◠ Sj = Ø : i ≠ j  

Event space

FIGURE 1.14 Mapping of random variable X(χ) on the real line x.

x

1

FX(x)

xbxb

(xb – xa)–1

0
x

fX(x)

0
x

1

P(X ≤ x)

xaxa xa xb0
X

(a)

pdf

(b)

cdf  Probability

(c)

FIGURE 1.15 Uniformly distributed continuous random variable.

*The pdf is formally denoted fX(x) and in the notation f(x) the random variable
X is understood by the usage; the notation p(x) is also used to denote the pdf;
however, these notations are sometimes justified by notational simplicity.
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where u(x − xi) is the unit-step function occurring at x = xi and
is defined as

u x−xi ≜
0 u< xi

1 u ≥ xi
(1.131)

Using (1.126), and recognizing that the derivative of u(x −
xi) is the delta function δ(x − xi), the pdf of the discrete ran-
dom variable is expressed as

fX x =
i

pX xi δ x−xi (1.132)

The pmf pX(xi) results in a weighted delta function and,
from (1.130), (1.131), and property P2, the summation must

satisfy the condition
i
pX xi = 1.

The pdf, cdf, and the corresponding probability for the
discrete random variable corresponding to binary data {0,1}
with pmf functions pX(0) = 1/3 and pX(1) = 2/3 are shown
in Figure 1.16. The importance of property P5 is evident in
Figure 1.16, in that, the delta function at x = 1 is included in
the cdf resulting in P(X ≤ 1) = 1. Regarding property P7, the
limit in (1.128) approaches X = xi from the left, corresponding
to the base of the discontinuity, so that P(X = xi) = pX(xi).

1.5.1.3 Mixed Random Variables Mixed random vari-
ables are composed of continuous and discrete random vari-
ables and the following example is a combination of the
continuous and discrete random variables in the examples of
Sections 1.5.1.1 and 1.5.1.2. The major consideration in this

case is the determination of the event pmf for the continuous
(C) and discrete (D) random variables to satisfy property P2.
Considering equal pmfs, such that, pX(S = C) = pX(S = D) =
1/2, the pdf, cdf, and probability are depicted in Figure 1.17.

1.5.2 Definitions and Fundamental Relationships for
Continuous Random Variables

For the continuous random variables X, such that the events X
(χj) Si, the joint cdf is determined by integrating the joint
pdf expressed as

FX1,…,XN x1,…,xN =
x1

−∞

xN

−∞
fX1,…,XN x1 ,…,xN dx1,…,dxN

(1.133)

and, provided that FX1,…,XN x1,…,xN is continuous and
exists, it follows that

fX1,…,XN x1,…,xN =
∂NFX1,…,XN x1,…,xN

∂x1…∂xN
(1.134)

The probability function is then evaluated by integrating
xi over the appropriate regions xi1 < ri ≤ xi2: i = 1,…,N with
the result

P Xr1,…,XrN =
r1 rN

fX1,…,XN x1,…,xN dx1…dxN

(1.135)

fX(xi)

x

FX(x)

x
1

x
1

2/3

1/3

0

1

1/3

0

P(X ≤ x) 

X
1

1

1/3

0

(b)

cdf

(a)

pdf
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FIGURE 1.16 Discrete binary random variables.
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FIGURE 1.17 Mixed random variables.
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1.5.2.1 Marginal pdf of Continuous Random Variables
The marginal pdf is determined by integrating over the
entire region of all the random variables except for the
desired marginal pdf. For example, the marginal pdf for x1
is evaluated as (see Problem 17)

MX1 x1 =
d

dx1

x1

−∞

∞

−∞

∞

−∞
fX1…XN x1,…,xN dx1,…,dxN

= fX1 x1
∞

−∞

∞

−∞
fX2…XN x2,…,xN dx2,…,dxN

= fX1 x1

(1.136)

The random variables Xi are independent iff the joint cdf
can be expressed as product of the each cdf, that is

FX1,…,XN x1,…,xN =FX1 x1 FX2 x2 FXN xN (1.137)

In addition, if Xi i are jointly continuous, the random
variables are independent if the joint pdf can be expressed
as the product of each pdf as

fX1,…,XN x1,…,xN = fX1 x1 fX2 x2 fXN xN (1.138)

Therefore, the joint pdf of independent random variables
is the same as the product of each marginal pdf computed
sequentially as in (1.136).

The joint cdf of two continuous random variables is
defined as

FX,Y x,y ≜P X ≤ x,Y ≤ y (1.139)

with the following properties,

FX,Y x,∞ =FX x , FX,Y ∞ ,y =FY y , FX,Y ∞ ,∞ = 1

FX,Y x, −∞ = 0, FX,Y −∞ ,y = 0

(1.140)

and the joint pdf is defined as

f X,Y =
∂2

∂x∂y
FX,Y x,y (1.141)

with the following properties,

∞

−∞

∞

−∞
fX,Y x,y dxdy = 1,

∂FX,Y x,y
∂x

=
y

−∞
fX,Y x,y dy ,

∂FX,Y x,y
∂y

=
x

−∞
fX,Y x ,y dx

(1.142)

1.5.2.2 Conditional pdf and cdf of Continuous Random
Variables The conditional pdf is expressed as

fX1…Xi x1,…,xi xi + 1,…,xn =
fX1…Xn x1,…,xn

fXi + 1…Xn xi+ 1,…,xn
(1.143)

and the conditional cdf is evaluated as

FX1…Xi x1,…,xi xi+ 1,…,xn

=

x1

−∞
…

xi

−∞
fX1…Xn x1,…, xi,xi+ 1,…,xn d x1,…,d xi

fXi + 1…Xn xi+ 1,…,xn
(1.144)

A basic rule for removing random variables from the left
and right side of the conditional symbol ( | ) is given by
Papoulis [33]. To remove random variables from the left side
simply integrate each variable xj from −∞ to ∞: j ≤ i. To
remove random variables from the right side, for example,
xj and xk: i + 1 ≤ j,k ≤ n, multiply by the conditional pdfs
of xj and xk with respect to the remaining variables and inte-
grate xj and xk from −∞ to ∞. For example, referring to
(1.143) and considering fX1(x1|x2,x3,x4), eliminating the ran-
dom variables x3 and x4 from the right side is evaluated as

fX1 x1 x2 =
∞

−∞

∞

−∞
fX1 x1 x2,x3,x4 f x3,x4 x2 dx3dx4

(1.145)

The conditional probability of Y S1 given X(χ) = x is
expressed as

P Y S1 X = x =
P Y S1,X = x

P X = x
(1.146)

Since P(X = x) = 0 for the continuous random variable X,
(1.146) is undefined; however, if X and Y are jointly contin-
uous with continuous joint cdfs, as defined in (1.139), then
the conditional cdf of Y, given X, is defined as

FY y X ≤ x ≜
P X ≤ x,Y ≤ y

P X ≤ x
=
FX,Y x,y

FX x
(1.147)

and differentiating (1.147) with respect to y results in

fY y X ≤ x =
∂yFX,Y x,y dy

FX x
=

x

−∞
fX,Y x ,y dx

∞

−∞

x

−∞
fX x ,y dx dy

=
fX,Y x,y

fX x

(1.148)
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If fX(x) 0, the conditional cdf of y, given X = x, is
expressed as [34]

FY y X = x =

y

−∞
fX,Y x,y dy

fX x
(1.149)

and the corresponding conditional pdf is evaluated by differ-
entiating (1.149) with respect to y and is expressed as

fY y X = x =
fX,Y x,y
fX x

=
fX,Y x,y

∞

−∞

fX,Y x,y dy

(1.150)

If X and Y are independent random variables then
fY ,X y,x = fY y fX x and (1.147) and (1.150) become
FY y x =FY y and fY y x = fY y .

Upon rearranging (1.150), the joint pdf of X and Y is
expressed as

fY ,X y,x = fY y x fX x (1.151)

Considering the probability space S1 = SY|X SX, such
that ScX Ø, the probability P(Y SX) is determined by the
total probability law defined as

P Y SX =
SX

SY X

fY y x dy fX x dx

=
SX

P Y SY x fX x dx

(1.152)

In this case, the subspace SX can be examined as if it were a
total probability space obeying the axioms, corollaries, and
properties stated earlier.

1.5.2.3 Expectations of Continuous Random Variables
In general, the k-th moment of the random variable X is
defined as the expectation

E Xk ≜
∞

−∞
xkfX x dx (1.153)

and the k-th central moments are defined as the expectation

E X−mx
k ≜

∞

−∞
x−mx

kfX x dx (1.154)

The mean value mx of X is defined as the expectation

mx ≜E X =
∞

−∞
xfX x dx (1.155)

The second central moment of X is evaluated as

E X−mx
2 ≜

∞

−∞
x−mx

2fX x dx

=E x2 −m2
x

=Var x

(1.156)

where Var[x] is the variance of x. An efficient approach in
evaluating the k-th moments of a random variable, without
performing the integration in (1.153) or (1.155), is based
on the moment theorem as expressed by the moment gener-
ation function (1.241) in Section 1.5.6.

The expectation of the function g(x) is evaluated as

E g X =
∞

−∞
g x fX x dx (1.157)

and the expectation of the function g(X,Y) of two continuous
random variables is

E g X,Y =
∞

−∞

∞

−∞
g x,y fX,Y x,y dxdy (1.158)

The expectation is distributive over summation so that

E X +Y =E X +E Y (1.159)

and

E X + Y 2 =E X2 + 2E XY +E Y2 (1.160)

The following relationships between X and Y apply under
the indicated conditions:

E XY =
E X E Y X and Y are uncorrelated

0 X and Y are orthogonal
(1.161)

From (1.160) and (1.161) it is seen that if X and Y are
uncorrelated random variables they are also orthogonal ran-
dom variables if the mean of either X or Y is zero. The follow-
ing example demonstrates that if two jointly Gaussian
distributed random variables are orthogonal they are also
independent.

The conditional expectation of X given Y is defined as

E X Y =
∞

−∞
xfX x y dx (1.162)

However, if Y is a random variable the function g2(Y) =
E(X|Y) is also a random variable and, using (1.157), the
expectation (1.162) becomes

E g2 Y =E E X Y =
∞

−∞
E x y fY y dy (1.163)
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Papoulis [35] establishes the basic theorem for the condi-
tional expectation of the function g(X,Y) conditioned on
X = x, expressed as the random variable E[g(X,Y)|X = x].
The theorem is:

E E g X,Y X =E g X,Y (1.164)

with the corollary relationship

E g1 X g2 Y =E E g1 X g2 Y X =E g1 X E g2 Y X

(1.165)

Papoulis refers to (1.165) as a powerful formula.

The Bivariate Distribution—An Example of Conditional
Distributions Consider that x1 and x2 are Gaussian random
variables with means m1, m2 and variances σ1, σ2, respec-
tively, with the joint pdf is expressed as [36]

fX1,X2 x1,x2

=

exp −
σ22 x1−m1

2−2σ1σ2ρ x1−m1 x2−m2 + σ21 x2−m2
2

2 σ21 σ
2
2 1−ρ2

2πσ1σ2 1−ρ2

(1.166)

where ρ is the correlation coefficient, such that, |ρ| ≤ 1,
expressed as

ρ=
E x1−m1 x2−m2

σ1σ2
=
E x1x2 −m1m2

σ1σ2
(1.167)

Using (1.150), the distribution of x1 conditioned on x2 is
expressed as

f
X1 X2

x1 x2 =
fX1,X2 x1,x2

fX2 x2

=
1

2π 1−ρ2 σ1
exp −

x1−m1 −ρ σ1 σ2 x2−m2
2

2 σ21 1−ρ2

=
1

2π 1−ρ2 σ1
exp −

x1−m1 −ρ x2−m2
2

2 σ21 1−ρ2
σ2 = σ1

(1.168)

If x1 and x2 are uncorrelated random variables then
E[x1x2] = E[x1]E[x2] and, from (1.167), the correlation
coefficient is zero and (1.168) reduces to the Gaussian distri-
bution of x1 with fX1 X2

x1 x2 = fX1 x1 ρ= 0. Therefore, two

jointly Gaussian distributed random variables are orthogonal
and independent if they are uncorrelated.

Referring to (1.165), the first and second conditional
moments of the second equality in (1.168) are evaluated

using as E[g1(X1)g2(X2)] and E g21 X1 g22 X2 , respectively,
with g1 X1 =X1 and g2 X2 =X2 In the evaluation, the con-
ditional mean of the Gaussian distribution is established
from (1.168) by observation as

E X1 X2 = x2 = ρ
σ1
σ2

x2−ρ
σ1
σ2

m2 +m1 (1.169)

and the desired result is evaluated as

E X2E X1 X2 = x2 =E x2 ρ
σ1
σ2

x2−ρ
σ1
σ2

m2 +m1

= ρ
σ1
σ2

E x22 − ρ
σ1
σ2

m2−m1 E x2

= ρσ1σ2 +m1m2

(1.170)

where E x22 = σ22 +m
2
2 and E x2 =m2. The evaluation of

E g21 X1 g22 X2 is left as an exercise in Problem 12. The
evaluation of (1.169) could have been performed using the
integration in (1.155); however, it is significantly easier
and less prone to error to simply associate the required para-
meters with the known form of the conditional Gaussian
distribution as indicated in (1.168).

With zero-mean random variables X1 and X2, that is, when
m1 = m2 = 0, the second equality in (1.168) results in (see
Papoulis [37])

E X1X2 = ρσ1σ2 zero-mean Gaussain conditional pdf

(1.171)

and

E X2
1X

2
2 =E X2

1 E X2
2 + 2E2 X1X2 (1.172)

The time correlated zero-mean, equal-variance Gaussian
random variables denoted as xi and xi−1 taken at ti = ti−1 +
Δt are characterized, using the last equality in (1.168), as

fXi Xi−1
xi xi−1 =

1

2πσ1 1−ρ2
exp −

xi−ρxi−1
2

2 σ21 1−ρ2

(1.173)

Equation (1.173) is used to model Gaussian fading chan-
nels with the fade duration dependent on Δt and ρ and the
fade depth dependent on σ1.

1.5.3 Definitions and Fundamental Relationships
for Discrete Random Variables

In the following relationships, xi, yi, x, and y are considered
to be discrete random variables corresponding to the
event probabilities PX(xi), PY(yi), PX(x), and PY(y) with the
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corresponding pmfs pZ(z) =PZ(Z = z) : Z = {X,Y}, z = {xi,yi,z,y}
corresponding to the amplitude of the discrete delta functions.
In general, the characterization of discrete random variables is
similar to that of continuous random variables with the integra-
tions replaced by summations and the pdf replaced with
the pmf.

1.5.3.1 Statistical Independence If X(χi) = x with χi S
and the events χi are independent i, then the joint probabil-
ities are expressed as the product

P X1 = x1,…,XN = xN =
N

i= 1

Pi Xi = xi (1.174)

or, in terms of the pmf, pX(xi) = P(X = xi)

pX1
,…,pXN x1,…,xN =

N

i= 1

p
Xi xi (1.175)

If S = S1 S2 such that X(χi) = xiwith χi S1, Y(χj) = yjwith
χj S2 , and the individual mdfs satisfy (1.175), then

P S =
i j

pX,Y xi,yj =
i j

pX xi pY yj

=
i

pX xi
j

pY yj

=P S1 P S2

(1.176)

Therefore, if the joint pmfs are independent, X and Y are
also independent and, from the last equality in (1.176), S1
and S2 are also independent. Consequently, {X,Y} are inde-
pendent iff the pmfs of X and Y can be expressed in the prod-
uct form as in (1.175).

The expectation of x is evaluated as

E X =
∞

−∞
x

i

pX x δ x−xi =
i

xipX xi =
i

xiP X = xi

(1.177)

For the discrete sampled function g(X,Y), the expectation
value is evaluated as

E g X,Y =
i, j

g xi,yj pXY X = xi,Y = yj (1.178)

where the pmf is expressed as pXY xi,yj =P X = xi,Y = yj .

1.5.3.2 Conditional Probability The conditional proba-
bility of X given Y = yj is expressed as

P X = xi Y = yj =
P X = xi,Y = yj

P Y = yj
(1.179)

and, in terms of the conditional pmfs, (1.179) becomes

pX xi yj =
pX,Y xi,yj
pY yj

(1.180)

The pmf behaves like the pdf of continuous random vari-
ables, in that, if the event X(χi) = xi with χi S1, the proba-
bility of X S1 given Y = yj is evaluated as

P X S1 Y = yj =
i

pX xi yj (1.181)

If X and Y are independent (1.180) becomes

pX xi yj =
pX xi pY yj

pY yj
= pX xi (1.182)

1.5.3.3 Bayes Rule Bayes rule is expressed, in terms of
the condition probability, as

P X = xi Y = yj =
P Y = yj xi P X = xi

P Y = yj
(1.183)

and, in terms of probabilities and pmfs, Bayes rule is
expressed as

pX xi yj =
pY yj xi P X = xi

P Y = yj
(1.184)

The probability state transition diagram is shown in
Figure 1.18 for N-dimensional input and output states xi
and yi, respectively. The outputs are completely defined by
the conditional, or transition, probabilities P(yj|xi) and the
input a priori probabilities P(xi). Upon choosing the state
yj, that is, given yj, the a posteriori probability P(xi|yj) is

P(yj)

P(yj|xN)

P(yj|xi)

P(yj|x1)

P(x1)

P(xi)

P(xN)

...

...

FIGURE 1.18 Probability state transition diagram.
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the conditional probability that the input state was xi.
Wozencraft and Jacobs (Reference 30, p. 34) point out that,
“The effect of the transmission [decision] is to alter the
probability of each possible input from its a priori to its a
posteriori value.”

The conditional expectation of X given Y = y is

E X Y =
xi

xipX xi y (1.185)

where the pmf pX(xi|y) = P(X = xi|y).

1.5.4 Functions of Random Variables

Applications involving random variables that are functions of
random variables, that is, z = g(x1,…, xM), require that the
density function fZ(z) be determined given fXm xm : n = 1,
…,M. In the following subsections, the transformation from
fXm xm to fZ(z) is discussed for the relatively easy case invol-
ving functions of one random variables, that is, M = 1. More
complicated cases are also discussed involving functions of
two random variables and M random variables of the form

Z =
M

m = 1
Xm. The following descriptions involve continu-

ous random variables and cases involving discrete and mixed
random variables are discussed in References 6, 8, 29.

1.5.4.1 Functions of One Random Variable In the fol-
lowing description, the mapping of the random variable
X = x is continuous and FX(x) is differentiable at x as in
(1.126), with finite values of fX(x). The transformation from
X to Z can be based on the functional relationships z = g(x) or
x = h(z) with the requirements that P X = ∞ =P Z = ∞ = 1
corresponding to unit areas under each transformation. These
transformations correspond, respectively, to

fZ z =
fX x = h z

dg x dx x= h z

(1.186)

and

fZ z = fX x= h z
dh z

dz
(1.187)

Equations (1.186) and (1.187) require the inverse
relationship

dh z

dz
=

dg x

dx

−1

x = h z

(1.188)

The function z = h(x) typically has a finite number of
solutions xn, corresponding to the roots z = h(x1), h(x2),…,
h(xN) of the transformation and, under these conditions, the

solution to fZ(z) given fX(xn) is determined using the funda-
mental theorem [38, 39],

fZ z =
N

n = 1

fX xn = h zn
dh zn
dzn

=
N

n= 1

fX xn = h zn h zn

(1.189)

where h(zn) corresponds to the transformation of xn expressed
in terms of zn and h zn = dh zn dzn.

As an example, consider a sinusoidal signal z, with con-
stant amplitude a and random phase φ uniformly distributed
between ±π, expressed as

z = asin φ (1.190)

Referring to Figure 1.19, and noting that z= asin φ1 =
asin φ2 , the problem is to determine the pdf fZ(z) using
the two roots of φ1 = h z1 and φ2 = h z2 . Using (1.190),
φ= h z is evaluated as

φ= h z = sin−1 z

a
φ= φ1,φ2 (1.191)

and

h z =
dh z

dz
=

1

a2−z2
φ= φ1,φ2 and z < a

(1.192)

Therefore, evaluating (1.189) with fΦ(φ) = 1/(2π) results in

fZ z = fΦ φ
1

h z1 + fΦ φ
2

h z2

=
1
2π

1

a2−z2
+

1

a2−z2

=
1
π

1

a2−z2
z < a

(1.193)

1.5.4.2 Functions of Two or More Random Variables
The concepts involving a function of one random variable
can also be applied when the random variable Z is a function

–a

a

1 2

z

φ φ
φ

π–π 0

FIGURE 1.19 Random variable x = asin(φ) (fΦ(φ) = 1/(2π)).
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of several random variables; for example, the dependence on
two random variables, such that, z = g(x,y) is discussed at
length by Papoulis (Reference 8, Chapters 6 and 7) where
the subjects involving marginal distributions, joint density
functions, probability masses, conditional distributions and
densities, and independence are introduced. According to
(1.126), the probability density function fZ(z) is determined
from the distribution function FZ(z) as

fZ z =
∂FZ z

∂z
(1.194)

and the joint pfd of X and Y is characterized for continuous
distributions as

fXY x,y =
∂2FXY x,y

∂x∂y
(1.195)

where the joint cdf is given by

FXY x,y =
y

−∞

x

−∞
fXY x ,y dx dy (1.196)

Based on the conditions for the equality of the probabil-
ities, that is,

PZ Z ≤ z =PXY x,y g x,y ≤ z

the pdfs are equated as

FZ z =FXY g x,y ≤ z =
g x,y ≤ z

fX,Y x,y dxdy (1.197)

Upon differentiating (1.197) with respect to z yields the
desired result expressed as

fZ z =
∂FZ z

∂z
=

∂

∂z g x,y ≤ z
f x,y dxdy (1.198)

As an example application consider the random variable
Z = X + Y; Papoulis states that, “This is the most important
example of a function involving two random variables.”
Upon letting y = z – x and using (1.198) the density function
of Z is evaluated as

fZ z =
∂

∂z

∞

−∞

z−x

−∞
f x,y dxdy =

∞

−∞
fXY x,z−x dx

(1.199)

and, when X and Y are independent, (1.199) is simply the
convolution of fX(x) with fY(y). Several examples involving
the use of (1.199) are given in Section 1.5.6.1.

Using the joint probability density function of two contin-
uous random variables x and y, as expressed in (1.195), the

marginal pdfs fX(x) and fY(y) are obtained by integrating over
y and x, respectively, resulting in

fX x =
∞

−∞
fXY x,y dy (1.200)

and

fY y =
∞

−∞
fXY x,y dx (1.201)

These results can also be generalized to apply to the joint
density function of any number of continuous random vari-
ables by integrating over each of the undesired variables.

1.5.5 Probability Density Functions

The following two subsections examine the probability den-
sity function [40] of the magnitude and phase of a sinusoidal
signal with additive noise and the probability density func-
tion of the product of two zero-mean equal-variance Gaussian
distributions. In these cases, the random variables of interest
involve functions of two random variables. In Section 1.5.6,
the characteristic function is defined and examined for
several probability distribution functions demonstrating the
central limit theorem with increasing summation of random
variables. In Section 1.5.7, many of the probability distribu-
tions used in the following chapters are summarized and
compared.

1.5.5.1 Distributions of Sinusoidal Signal Magnitude
and Phase in Narrowband Additive White Gaussian Noise
This example involves the evaluation of the pdf of the mag-
nitude and phase at the output of a narrowband filter when the
input is a sinusoidal signal with uniformly distributed phase
and zero-mean additive white Gaussian noise [41] (AWGN).
In this case, the output of the narrowband filter is a
narrowband random process. The evaluation involves three
random variables: the input signal phase φ and the two inde-
pendent-identically distributed (iid) zero-mean quadrature
noise random variables with variance σ2n. The signal plus
noise out of the filter is expressed as

s t =Acos ωct +φ + n t cos ωct +ϕ t

=Acos φ cos ωct −Asin φ sin ωct

+ n t cos ϕ t cos ωct −n t sin ϕ t sin ωct

= Acos φ + nc t cos ωct − Asin φ + ns t sin ωct

(1.202)

where the third equality in (1.202) emphasizes the in-phase
and quadrature functions of the signal and noise terms and,
when sampled at t = iTs, represent the random variables
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xc, nc, xs, and ns. The functional relationships are
xc =Acos φ + nc and xs =Asin φ + ns with nc and ns repre-
senting zero-mean quadrature Gaussian random variables.
The signal phase, φ, is uniformly distributed between 0
and 2π. Under these conditions, the quadrature signal and
noise components xc and xs are independent random vari-
ables* and the pdfs of xc and xs are expressed as

fXc xc =
1

2πσn
e− xc−Acos φ 2 2σ2n (1.203)

and

fXs xs =
1

2πσn
e− xs −Asin φ 2 2σ2n (1.204)

The pdf of the phase is

fΦ φ =
1
2π

0 ≤φ ≤ 2π (1.205)

Using (1.203), (1.204), and (1.205) the joint pdf is
expressed as

fXc , Xs,Φ xc,xs,φ = fXc xc fXs xs fΦ φ

=
1

4π2σ2
e−

xc −Acos φ 2 + xs −Asin φ 2

2σ2

(1.206)

The evaluation of the joint pdf of the magnitude and phase
of the sampled sine-wave plus noise involves the transfor-
mation of variables from (xc,xs) to (r,θ) as depicted in
Figure 1.20. The magnitude is described as

r = s iTs = x2c + x
2
s (1.207)

and the in-phase and quadrature components, xc and xs, are
described in terms of the angle θ as

xc = rcos θ and xs = r sin θ (1.208)

Expressing the phase angle in (1.208) as a function of xc
and xs leads to the expressions

θ = cos−1
xc
x2c + x2s

(1.209)

and

θ = sin−1 xs
x2c + x2s

(1.210)

The Jacobian of the transformation is defined as [6, 8,
28, 29]

J xc,xs ≜
∂g11 xc,xs

∂xc

∂g12 xc,xs
∂xs

∂g21 xc,xs
∂xc

∂g22 xc,xs
∂xs det

(1.211)

and, using the Jacobian, the transformation from (xc,xs) to
(r,θ) is expressed as

fR,Θ,Φ r,θ,φ =
fXc , Xs,Φ h1 r,θ ,h2 r,θ ,φ

J xc,xs
(1.212)

To evaluate the Jacobian for this transformation, the func-
tions gij(xc,xs) are defined in terms of (1.207), (1.209), and
(1.210) as follows:

g11 xc,xs = g12 xc,xs = x2c + x
2
s (1.213)

g21 xc,xs = cos−1
xc
x2c + x2s

(1.214)

and

g22 xc,xs = sin−1 xs
x2c + x2s

(1.215)

Upon evaluating the partial derivatives in (1.211), the
Jacobian is found to be†

J xc,xs =
1

x2c + x2s
=
1
r

(1.216)

xs

0

r
θ

xc

FIGURE 1.20 Relationship between transformation variables.

*Orthogonal Gaussian random variables are also independent.

†The phase angle can also be expressed as θ = tan−1(xs/xc) with the Jacobian
evaluated as earlier using, g21(xs, xc) = g22(xs, xc) = tan−1(xs/xc) (see
Problem 16).
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and, using (1.208), the functions h1(r,θ) and h2(r,θ) are
expressed as

h1 r,θ = xc r cos θ = rcos θ (1.217)

and

h2 r,θ = xs r sin θ = r sin θ (1.218)

Substituting (1.216), (1.217), and (1.218) into (1.212) and
applying the independence of xc, xs, and φ, as in (1.206), the
pdf of the transformed variables r and θ is expressed as

fR,Θ,Φ r,θ,φ = fR r fΘ θ fΦ φ

=
r

4π2σ2
e−

rcos θ −Acos φ 2 + rsin θ −Asin φ 2

2σ2

=
r

4π2σ2
e−

r2 + A2 −2Arcos θ−φ
2σ2

(1.219)

where r ≥ 0, otherwise the pfd is zero, and θ and φ are
uniformly distributed over the range 0 ≤ θ, φ ≤ 2π. The pdf
for the magnitude r is determined by computing the marginal
distribution MR(r) by integrating over the ranges of θ and φ.
Defining ψ = θ − φ, the marginal is evaluated as

fR r =
r

σ2
e−

r2 + A2

2σ2
1
2π

2π

0

1
2π

2π−φ

φ

eArcos ψ σ2dψ dφ

(1.220)

Davenport and Root [42] point out that the integrand of the
bracketed integral is periodic in the uniformly distributed
phase ψ and can be integrated over the interval 0 to 2π. With
this integration range, the bracketed integral is identified as
the zero-order modified Bessel function expressed as [43]

Io
Ar

σ2
=

1
2π

2π

0

eArcos ψ σ2dψ (1.221)

Therefore, upon using (1.221) and performing the integra-
tion over φ, the marginal distribution function MR(r) simpli-
fies, at least in notation, to

fR r =
r

σ2
e−

r2 + A2

2σ2 Io
Ar

σ2
(1.222)

Equation (1.222) is the Rice distribution or, as referred to
throughout this book, the Ricean distribution that, as devel-
oped in the forgoing analysis, characterizes the baseband

magnitude distribution of a CW signal with narrowband addi-
tive white Gaussian noise. The Ricean distribution also char-
acterizes the magnitude distribution of a received signal from
a channel with multipath interference; this channel is referred
to as a Ricean fading channel. The Ricean distribution
becomes the Rayleigh distribution as A 0 and the Gaussian
distribution as A ∞; the proof of these two limits is the
subject of Problems 19 and 20. The Rayleigh distribution
characterizes the amplitude distribution of narrowband noise
or, in the case of multipath interference, the composite signal
magnitude of many random scatter returns without a domi-
nant specular return or signal component. The multipath
interference is the subject of Chapter 18. Defining the
signal-to-noise ratio as γ = A2/(2σ2), (1.222) is expressed as

fR r =
r

σ2
e− r2 2σ2 + γ Io

r 2γ
σ

(1.223)

The pdf of the phase function is evaluated by computing
the marginal distribution MΘΦ(θ,φ) by integrating over the
range of the magnitude r. By forming or completing the
square of the exponent in the last equality in (1.219) the inte-
gration is performed as

fΘΦ θ,φ =
1

4π2σ2
e−Asin

2 θ−φ 2σ2
∞

0
re− r−Acos θ−φ 2 2σ2dr

(1.224)

Davenport and Root [44] provide an approximate solution
to (1.224), under the condition Acos(θ – φ) >> σ. The approx-
imation is expressed as

fΘΦ θ,φ
Acos θ−φ

2π 3 2σ
e−γsin

2 θ−φ 0 ≤ θ,φ ≤ 2π (1.225)

where γ is the signal-to-noise ratio defined earlier. An alter-
nate solution, without the earlier restriction, is expressed by
Hancock [45], with ψ = θ − φ, as

fΨ ψ =
e−γ

2π
1 + 4πγcos ψ eγcos

2 ψ P 2γcos ψ

−π ≤ψ ≤ π

(1.226)

where P(z) is the probability integral defined in Section 3.5.
Hancock’s phase function is used in Section 4.2.1 to charac-
terize the performance of phase-modulated waveforms.

As γ 0 in (1.226) the function fΨ(ψ) 1/2π resulting in
the uniform phase pdf. However, for γ greater than about 3,
the probability integral is approximated as [26]

P z 1−
e− z

2 2

2πz
z > 3 (1.227)
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Using (1.227), the phase pdf is approximated as

fΨ ψ
γ πcos ψ e−γsin

2 ψ 1 > cos ψ > 2 5 γ

0 −2 5 γ > cos ψ > −1

(1.228)

With |ψ | 0 such that sin2(ψ) ψ2 and defining
γ = 1 2σ2ψ (1.228) is approximated as

fΨ ψ
1

2πσψ
e−ψ

2 2σ2ψ ψ 0 and γ = 1 2σ2ψ (1.229)

Equation (1.229) describes a zero-mean Gaussian phase
pdf with the phase variance σ2ψ = 1 2γ. Hancock’s phase
function, expressed in (1.226), is plotted in Figure 4.3 for var-
ious signal-to-noise ratios.

1.5.5.2 Distribution of the Product of Two Independent
Gaussian Random Variables In this section the pdf of
the product z = xy of two zero-mean equal-variance iid Gaus-
sian random variables X and Y is determined. The solution
involves defining an auxiliary random variable w = h(x) = x
with z = g(x,y) = xy and evaluating fZ,W(w,z) characterized as

fW ,Z w,z =
fX,Y w,z w

JX,Y x,y
(1.230)

where JX,Y(x,y) is the Jacobian of the transformation evalu-
ated as

JX,Y x,y =

∂g x,y
∂x

∂g x,y
∂y

∂h x,y
∂x

∂h x,y
∂y det

= −x (1.231)

Using (1.231) and the joint Gaussian pfd of X and Y,
expressed by (1.230), with x = w and y = z/w, the marginal
pdf of z is evaluated as

fZ z =
∞

−∞

1
w

fX,Y w,z w dw (1.232)

However, since X and Y are independent

fX,Y x,y = fX x fY y =
1

2πσ2
e
−

x2 + y2

2σ2 (1.233)

and, upon substituting x = w and y = z/w into (1.233), (1.232)
is expressed as

fZ z =
1

2πσ2

∞

−∞

1
w

e−
w2 + z w 2

2σ2 dw

=
1
πσ2

∞

0

1
w
e−

w2 + z w 2

2σ2 dw

(1.234)

where the second equality recognizes that the first equality is
symmetrical in w. Letting λ = w2/2σ2 (1.234) is expressed as

fZ z =
1

2πσ2

∞

0

1
λ
e− λ + z2

4σ4 λ dλ (1.235)

The solution to the integral in (1.235) appears in the
table of integrals by Gradshteyn and Ryzhik (Reference
46, p. 340, pair No. 12) as

∞

0
λv−1e

− λ+ u2

4λ dλ= 2
u

2

v
K−v u (1.236)

whereKv(u) is the modified Bessel function of the second kind
of order v. With v = 0 and u = z/σ2, (1.235) is evaluated as

fZ z =
1
πσ2

Ko
z

σ2
(1.237)

The magnitude of z in (1.237) is used because of the even
symmetry of fZ(z) with respect to z. The symmetry of fZ(z)
results in a zero-mean value so the variance is evaluated as

Var z =E z2 zero-mean

=
2
πσ2

∞

0
z2Ko

z

σ2
dz

(1.238)

The solution to the integral in (1.238) is found in Gradsh-
teyn and Ryzhik (Reference 46, p. 684, Integral No. 16) and
the variance fZ(z) is evaluated as

Var z =
4
π
Γ2 3

2
σ4 = σ4 (1.239)

where the second equality in (1.239) results from the value of
the Gamma function Γ 3 2 = π 2. In Example 4 of
Section 1.5.6.1, the pdf of the summation of N iid random
variables with pdfs expressed by (1.237) is examined.

1.5.6 The Characteristic Function

The characteristic function of the random variable X is
defined as the average value of ejvx and is expressed as

CX v ≜E ejvx =
∞

−∞
fX x ejvxdx (1.240)
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With v = −ω and x = t (1.240) is similar to the Fourier
transform of a time-domain function. The characteristic func-
tion is also referred to as the moment-generating function, in
that, the nth moment of the random variable X, defined as the
expected value E[xn], is evaluated (see Problem 26) as

E xn = − j nd
nCX v

dvn v = 0

(1.241)

The Fourier transform relationship between time domain
convolution and frequency domain multiplication also
applies to the convolution of random variables and the mul-
tiplication of the corresponding characteristic functions.
Therefore, based on the discussion in Section 1.5.6.1, the
summation of N identically distributed (id) random variables
corresponds to the product of their individual characteristic
functions, that is,

CZ v =
N

i= 1

CXi v Z = Xi, i = 1,…,N; Xi id

(1.242)

This is a very useful result, in that, the distribution of the
summation of N independent random variables is obtained as
the inverse transform [47] of (1.242) expressed as

fZ z =
∞

−∞
CZ v e− jvzdz (1.243)

Campbell and Foster [47] provide an extensive listing of
Fourier transform pairs defined as

G g =
∞

−∞
F f ej2πfgdf and F f =

∞

−∞
G g e− j2πfgdg

(1.244)

and, by defining v = −2πf, the Fourier transform pairs apply
to the transform pairs between fX(x) and CX(v) as expressed
in (1.240).

1.5.6.1 Summation of Independently Distributed Random
Variables If two random variables X and Y are independent
then the probability density fZ(z) of their sum Z = X + Y is
determined from the convolution of fX(x) with fY(y) so that*

fZ z =
∞

−∞
fX z−y fY y dy=

∞

−∞
fX x fY z−x dx (1.245)

For multiple summations of a random variable, the convo-
lution is repeated for each random variable in the summation.

Example 1 Consider the summation of N zero-mean uni-
formly distributed random variables Xi expressed as

Z =
N

i= 1

Xi 1 246

with

fX x =
1
2a

−a ≤ x ≤ a (1.247)

For N = 2 the convolution involves two ranges of the
variable z as shown in Figure 1.21 and the integrations are
evaluated as

fZ z =
1
4a2

z+ a

−a
dx −2a ≤ z ≤ 0 (1.248)

and

fZ z =
1
4a2

a

z−a
dx 0 ≤ z ≤ 2a (1.249)

Upon evaluation of (1.248) and (1.249) and recognizing
the symmetry about z the density function is expressed as

fZ z =
1
2a

−
z

2a
+ 1 z ≤ 2a (1.250)

Repeating the application of the convolution for N = 3
and 4 (see Problem 24) results in the probability density func-
tions shown in Figure 1.22 with the corresponding cdf results
shown in Figure 1.23. As N ∞ the probability density and
characteristic functions will approach those of the Gaussian
distributed random variable (see Problem 23).

x

x

x

z + a 

0 a–a

f(x)

1/2a

z

Range 1:
–2a ≤ z ≤0 

z

Range 2:
0 ≤ z ≤ 2a

z – a

1/2a

1/2a

FIGURE 1.21 Convolution of two zero-mean uniform
distributions.

*For proof see Reference 8, p. 189.
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The moments of the random variable X are evaluated
using the characteristic function

CX v =
sin av

av
(1.251)

In regions where the characteristic function converges, the
moments E[xn] completely define the characteristic function
and the pdf of the random variable X, so, upon expanding
(1.251) as the power series

CX v = 1−
av 2

3
+

av 4

5
− (1.252)

the moments are easily evaluated using (1.241). The
moments for the random variable Z, formed as in (1.246),
are determined using (1.242) and, with Xi : i = 1,…,N
iid random variables, the characteristic function for Z is
approximated as

CZ v =CN
X v 1−

N av 2

3
(1.253)

The first and second moments for N = 1, …, 4 are listed
in Table 1.6. These results are also obtained by evaluating
fZ(z) using (1.250) and then evaluating the moments (see
Problem 25) as

E zn =
Na

−Na
znfZ z dz (1.254)

However, it is much easier to use the characteristic
function.

Example 2 As another example, consider the summation of
N random variables Xi characterized as the sinusoidal
function

Xi =Ai sin Φi 1 255

with constant amplitudes Ai and zero-mean uniformly distrib-
uted phase, expressed as

fΦ φ =
1
2ϕ

φ ≤ϕ (1.256)

The resulting pdf of the random variable Xi for ϕ = π, is
evaluated in (1.193) as

fX xi =
1

π A2
i − x2i

(1.257)

and is plotted in Figure 1.24.

z
–4 –3 –2 –1 0 1 2 3 4

f Z
(z

)

0.000

0.125

0.250

0.375

0.500

N = 2
3

4

FIGURE 1.22 pdf for sum of N = 2, 3 and 4 independent zero-
mean uniform distributions (a = 1).

z
–4 –3 –2 –1 0 1 2 3 4

F
Z(

z)

0.00

0.25

0.50

0.75

1.00
N = 2

4
3

FIGURE 1.23 cdf for sum of N = 2, 3 and 4 independent zero-
mean uniform distributions (a = 1).

TABLE 1.6 Moments of fZ(zN) for
Z= Xi i = 1,…,4, Xi iid Zero-Mean
Uniform Distributions

N E[z] E[z2]

1 0 a2/3
2 0 2a2/3
3 0 a2

4 0 4a2/3

0002861001.3D 33 6/2/2017 7:48:08 AM

RANDOM VARIABLES AND PROBABILITY 33



The pdf of the random variable Z, expressed as in (1.246),*

is evaluated by successive convolutions as in (1.245) and the
results for N = 2, 3, and 4 are plotted in Figure 1.25 with the
corresponding cdf functions shown in Figure 1.26. The
results in Figures 1.25 and 1.26 for N > 1 are obtained by
numerical evaluations of the convolutions using incremental
values of Δz = 2.5 × 10−5; this is a reasonable compromise
between simulation time and fidelity in dealing with the infi-
nite value at |x| = 1.0.

In this case, the mean and variance of the random variable
X are evaluated using the characteristic function of (1.257)

found in (Reference 47, p. 123, Transform Pair 914.5); the
result is

CX v = Io − jAv (1.258)

where Io(−) is the modified Bessel function of order
zero. Expanding (1.258) for Av < 1 as a power series,
(Reference 46, p. 375, Ascending Series 9.6.10), results in†

CX v = 1−
Av 2

4 1 2 +
Av 4

42 2 2 −
Av 6

43 3 2 (1.259)

and the moments are easily evaluated using (1.241). The first
and second moments are listed as the theoretical values in
Table 1.7. The moments for the random variable Z, formed
as in (1.246) with Xi iid random variables for all i as expressed
by the pdf in (1.255), are determined using the characteristic
function expressed as

z
–4 –3 –2 –1 0 1 2 3 4

f Z
(z

)

0.00

0.25

0.50

0.75

1.00

3

4

N = 2 

FIGURE 1.25 pdf of N = 2, 3, and 4 successive convolutions
of fX(x).

z
–4 –3 –2 –1 0 1 2 3 4

F
Z
(z

)

0.00

0.25

0.50

0.75

1.00
N = 1 2 3

4

FIGURE 1.26 cdf of N = 2, 3, and 4 successive convolutions
of fX(x).

x
–1.0 –0.5 0.0 0.5 1.0

f X
(x

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

FIGURE 1.24 pdf of x = Asin(φ) with zero-mean uniformly
distributed phase, A = 1 and ϕ = π.

TABLE 1.7 Moments of fZ(zN) for Z= Xi i= 1,…,N, Xi iid

Random Variables Expressed by (1.255)

N

Theoretical Numericala (A = 1)

E[z] E[z2] E[z] E[z2]

1 0 A2/2 0 0.4999
2 0 A2 0 1.0044
3 0 3A2/2 0 1.5055
4 0 2A2 0 2.0146

aNumerical values are sampled with Δz = 2.5 × 10−5.

*By forming the average summation Z = 1 N
N

i= 1
xi, the range of the pdf

is limited to ±a with an associated decrease in the standard deviation.

†By comparing the ascending series expansion of Io(z) with that of the Bessel
function Jo(z) it is found that Io(−jz) = Jo(z).
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CZ v =CN
X v 1−

N Av 2

4 1 2 (1.260)

The corresponding first two moments of the random var-
iable Z for N = 2, 3, and 4 are also listed in Table 1.7. The
numerical results listed in Table 1.7 are based on computer
evaluations of the various convolutions resulting in the pdfs
shown in Figures 1.24 and 1.25.

A major observation in these two examples is that the
probability distribution of the random variable Z approaches
a Gaussian distribution as N increases (see Problem 27). This
is evidence of the central limit theorem which states that (see
Davenport and Root, Reference 6, p. 81) the sample mean of
the sum of N arbitrarily distributed statistically independent
samples becomes normally distributed as N increases. This is
referred to the equal-components case of the central limit the-
orem. However, as pointed out by Papoulis (Reference 8,
p. 266), a consequence of the central limit theorem is that
the distribution fZ(z) of the sum of N statistically independent
distributions having arbitrary pdf’s tends to a normal distri-
bution as N increases. This is a stronger statement and sug-
gests that the probability P(z) = fZ(Z < z) can be considered a
Gaussian distribution for all z as is frequency assumed to be
the case in practice. Davenport and Root also point out that,
even though N is seemingly large, the tails of the resulting
distribution may result in a poor approximation to the
Gaussian distribution.

Upon computing the mean and variance using the power
series expansion of CZ(v) expressed by (1.252) with av << 1,
the approximate expression for the corresponding Gaussian
distribution is easily obtained. After summing N uniformly
distributed amplitudes the expression for the pdf is

fZ z =
1

2πNa2 3
e− z

2 2Na2 3 z = xi, i= 1,…,N,

p xi =
1
2a

, xi ≤ a

(1.261)

Similarly, for the summation of N sinusoids with Av << 1,
the pdf in Example 2 is expressed as

fZ z =
1

2πNA2 2
e− z

2 2NA2 2

z = xi, i= 1,…,N, xi =Asin φi

p φi =
1
2π

, φi ≤ π

(1.262)

It is interesting to note that the second moments are Nλ2

for all values of N including those for which the pdf does
not have the slightest resemblance to the Gaussian pdf.

In these cases, the important difference is that the corres-
ponding probabilities P(x) = FX(X < x) are entirely different
from those of the Gaussian distribution with the possible
exception of the median value. Finally, it is noted that the
limiting behavior for λv << 1 and N ∞ applies to the sum-
mation of independently distributed distributions that may,
or may not, be identically distributed distributions.

Example 3 This example involves the summation of
random chips {±1} in a direct-sequence spread-spectrum
(DSSS) waveform. In this case, the chips occur with equal
probabilities according to the pdf expressed as

fX x =
1
2
δ x−1 +

1
2
δ x + 1 1 263

Using (1.240), the characteristic function is evaluated as

CX v =
∞

−∞
fX x ejvxdx

=
1
2

∞

−∞
ejvxδ x−1 dx+

∞

−∞
ejvxδ x+ 1 dx

= cos v

(1.264)

The DSSS waveform uses N chips per bit and the demod-
ulator correlation sums the N chips to form the correlation

output y =
N−1

n= 0
xn with the corresponding characteristic

function given by

CY v =CN
X x = cosN v

= 1−
v2

2
+
v4

4
−
v6

6
+

N

= 1−
Nv2

2
+

(1.265)

To evaluate the first and second moments of y only the
first two terms in the expansion of cosN(v) are required
and, upon using (1.241), these moments are evaluated as

E x = j
2Nv
2 v = 0

= 0 first moment mean value, x

(1.266)

and

E x2 = −1
−2N
2 v = 0

=N second moment (1.267)
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The variance of y is defined as the second central

moment E x−x 2 =E x2 −x2 and with zero-mean the var-

iance is σ2y =E x2 =N.

Example 4 The pdf fZ(z) of the product of two, zero-mean,
equal-variance, iid Gaussian random variables, z = xy, is
expressed in (1.237) as a function of the zero-order modified
Bessel function Ko(|z|/σ

2) where the magnitude of z provides
for the range: −∞ ≤ z ≤∞. In this example, the pdf fZ z

is evaluated where Z =
i
Zi : i = 1,…,N. The evaluation

is based on the N-th power of the characteristic function
CZ(v) and, from the work of Campbell and Foster
(Reference 47, p. 60, pair No. 558), the characteristic func-
tion is evaluated as*

CZ v =
1 σ2

1 σ4−p2
(1.268)

The characteristic function of Z is the N-th power of
(1.268) expressed as

CN
Z v =

1 σ2N

1 σ4−p2 N 2
(1.269)

and, using the transform pair of Campbell and Foster
(Reference 47, p. 61, pair No. 569.0), the pdf of Z is evaluated
as

fZ z =
1 σ2N

πΓ N 2 2 σ2 N−1 2
z N−1 2K N−1 2

z

σ2

(1.270)

As in the case for fZ(z), the pdf fZ z applies for −∞ ≤ z ≤∞
and is symmetrical with respect to z resulting in a zero-mean
value with the variance expressed as

Var z =E z2 with zero-mean

=
2 σ2N

πΓ N 2 2 σ2 N−1 2

∞

0
z2z N−1 2K N−1 2

z

σ2
dz

(1.271)

The solution to the integral in (1.271) is found in
Gradshteyn and Ryzhik (Reference 46, p. 684, Integral No.
16) and the variance fZ(z) is evaluated using

∞

0

zuKv az dz=
2u−1

au + 1
Γ

1 + u + v
2

Γ
1 + u−v

2
(1.272)

Substituting the solution to the integral in (1.272) into
(1.271), with u = (N + 3)/2, v = (N − 1)/2, and a = 1/σ2,
the solution to variance simplifies to

Var z =Nσ4 (1.273)

In the earlier evaluation, the integer argument Gamma
function is related to the factorial as Γ N = N−1 ! and
Γ 3 2 = π 2. This result could also be evaluated using
the movement generating function of (1.241), however, using
the integral solution as in (1.272) it is sometimes easier
to evaluate the moments. With a sufficiently large value
of N the pdf fZ z is approximated as the Gaussian pfd
expressed as

fZ z
N ∞

1

2πNσ4
e−z

2 2Nσ4 zero-mean Gaussian pdf

(1.274)

The probability density functions discussed earlier and
others encountered in the following chapters are summarized
in Table 1.8 with the corresponding mean values, variances,
and characteristic functions.

1.5.7 Relationships between Distributions

In the following two subsections, the relationship between
various probability density functions is examined by straight-
forward parameter transformations, allowing parameters to
approach limits, or simply altering various parameter values.
The most notable relationship is based on the central limit
theorem in which a distribution approaches the Gaussian
distribution by increasingly summing the operative random
variable.

1.5.7.1 Relationship between Chi-Square, Gaussian,
Rayleigh, and Ricean Distributions A random variable
has a chi-square (χ2) distribution with N degrees of freedom
if it has the same distribution as the sum of the squares of
N-independent, normally distributed random variables, each
with zero-mean and unit variance.†

Consider the zero-mean Gaussian or normal distributed
random variable x with variance σ2x and pdf expressed as

pX x =
1

2πσx
e− x

2 2σ2x (1.275)

The pdf of a new random variable y = x2, obtained by sim-
ply squaring x, is determined by considering the positive and
negative regions of x = ± y as shown in Figure 1.27.

*The tables of Campbell and Foster are Fourier transform pairs that corre-
spond to characteristic function pairs with p = −jv.

†A normally distributed random variable x with mean value mx and variance
σ2x can be transformed into a zero-mean, unit-variance normally distributed
random variable y by substituting y = (x −mx)/σx.
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The pdf of y is determined using the incremental intervals
dy = 2xdx at x= ± y such

pY y = pX x = y
dx

dy
+ pX x = − y

dx

dy
U y

=
1

2πσx
e−y 2σ2x + e−y 2σ2x

1
2 y

U y

=
e−y 2 σ2x

2πyσx
U y

(1.276)

TABLE 1.8 Probability Distributions and Characteristic Functions

Name fX(x) E[x] Var[x] CX(v) Conditions

Uniform 1
b−a

a+ b
2

b−a 2

12

ejvb−ejva

jv b−a

a ≥ x ≤ b

Bernoulli p i= 1

1−p i= 2

p p(1 − p) (1 − p) + pv Discrete binary variable
x = ki : i = 1, 2

Binomial n

k
pk 1−p n−k

np np(1 – p) 1−p + pv n Discrete variable
x= k = 1,2,…,n

Poisson αke−α k! α α eα v−1 Discrete variable
x= k = 0,1,…; α> 0

Exponential αe−αx 1/α 1/α2 α α− jv x ≥ 0; α > 0

Gaussian (normal)
e−

x−m 2

2σ2

2πσ

m σ2
e− jmv−

σ2 v2

2
−∞ ≤ x ≤ ∞

Chi-square (N = 2)
Exponential (α = 1/2)

e−x 2

2

2 4 1− j2v −1 x ≥ 0

Chi-squared (N-degrees) xN 2−1e−x 2

2N 2 N 2−1

N 2N 1− j2v −N 2 N-degrees of freedom x ≥ 0

Rayleigh xe− x
2 2σ2

σ2
π 2σ as γ ∞ 4−π σ2

2
as γ ∞

1− jv β α x > 0

Ricean
xe−

x2 −A2

2σ2

σ2
Io

xA

σ2

a a a x > 0

A2 2σ2 ∞

A2 2σ2 = 0

Gamma β βx α−1

Γ α
e−βx

α/β α/β2 1

1− j vβ
α

x > 0
β > 0; λ > 0

Lognormal
e−

ln y −m 2

2σ2

2πyσ

em + σ2 2 em+ 2σ2

−em+ σ2

b y is lognormal
y = ex ≥ 0
x = N(m,σ)

Nakagami-m 2mmx2m−1e−mx2 Ω

Γ m Ωm

c c c x ≥ 0

m =
E x2

2

E x2−E x2 2

≥ 1 2

Notes: γ = A2/(2σ2) is the signal-to-noise ratio. γ 0 fX(x) = Rayleigh with E[x] = π 2σ, Var[x] = 4−π σ2 2.
aγ ∞ fX(x) = Gaussian with E[x] = A, Var[x] = σ2.
bApproximated using a series expansion of ejvy.
cRefer to special cases in Section 1.5.7.2.

x–x

y

0

y

x

FIGURE 1.27 Transformation of the random x to y = x2.
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The characteristic function of (1.276) is evaluated as

C1
Y v =E pY y ejvy =

1

1− j2 σ2xv
1 2

(1.277)

Consider now the random variable z resulting from the
summation of N independent random variables yi such that

z=
N

i= 1

yi =
N

i= 1

x2i (1.278)

The characteristic function of z is simply the N-th power
of CY(v) so that

CN
Z v = C1

Y v
N

=
1

1− j2 σ2xv
N 2

(1.279)

Equation (1.279) transforms to the pdf of z, resulting in

pZ z =
zN 2−1e−z 2 σ2x

2 σ2x
N 2 N

2
−1

U y (1.280)

In conforming to the earlier definition, the chi-square
distribution is expressed by letting σ2x = 1 in (1.280) or, more
formally, using the transformation χ = z σ2x ; therefore, the
pdf of the chi-square random variable χ with N degrees of
freedom is

pX χ =
χN 2−1e−χ 2

2N 2 N

2
−1

U y Chi-square distribution

(1.281)

and the corresponding characteristic, or moment generating,
function is

CN
X v =

1

1− j2v N 2
Chi-square characteristic function

(1.282)

Equation (1.281) is occasionally referred to as the central
χ2 distribution because it is based on noise only, that is,
the underlying zero-mean Gaussian random variables xi

with distribution given by (1.275) do not contain a signal
component.*

Special Case for N = 2 Under this special case z = x21 + x
2
2

(1.280) reduces to the exponential distribution

pZ z =
e−z 2 σ2x

2 σ2x
U y exponential distribution (1.283)

So the resulting chi-square χ2 distribution is obtained from
(1.281) with N = 2. This is an important case because x1 and
x2 can be thought of as orthogonal components in the com-
plex description of a baseband data sample. Urkowitz [48]
shows that the energy of a wide-sense stationary narrowband
white noise Gaussian random process with bandwidth –W to
W Hz and measured over a finite interval of T seconds is
approximated by N = 2WT terms or degrees of freedom.
The frequency W is the noise bandwidth of the narrowband
baseband filter and the approximation error in the energy
measurement decreases with increasing 2WT. The factor of
two can be thought of as the computation of complex orthog-
onal baseband functions z= x2c + jx

2
s so N = 2 degrees of free-

dom correspond to WT = 1. For example, the rect(t/T)
function observed over the interval T seconds has a noise
bandwidth of W = 1/T Hz corresponding to WT = 1 resulting
in 2 degrees of freedom.

Upon letting w= z = x2c + x
2
s , the random variable w is

described in terms of the Rayleigh distribution

pW w =
w

σ2x
e−w

2 2σ2x U y Rayleigh distribution (1.284)

So the Rayleigh distribution is derived from the magni-
tude of the quadrature zero-mean Gaussian distributed ran-
dom variables, x = N(0,σ).†

1.5.7.2 Relationship between Nakagami-m, Gaussian,
Rayleigh, and Ricean Distributions The Nakagami-m dis-
tribution [49] was initially derived from experimental data to
characterize HF fading; however, subsequent experimental
observations demonstrate its application to rapid fading at
carrier frequencies from 200 MHz to 4 GHz. It is considered
to be a generalized distribution from which other distri-
butions can be derived, for example, m = 1 results in the
Rayleigh power distribution, m = ½ results in the one-sided

*When the underlying Gaussian distributed random variable is composed of
signal plus noise, the signal amplitude represents the mean value of the dis-
tribution. An analysis, similar to that of (1.276) through (1.280), containing a
mean value, results in a noncentral χ2 distribution with 1 through N degrees
of freedom. The noncentral χ2 distribution is developed and discussed in
Appendix C.
†The notation N(m,σ) is used to denote the distribution of a Gaussian, or nor-
mal, random variable with mean value m and standard deviation σ.
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zero-mean Gaussian distribution, and as m ∞ the
m-distribution approaches the Gaussian distribution with a
unit mean value. In the region 1 ≤ m ≤ ∞, the Nakagami-m
distribution behaves much like the Ricean distribution;
however, the normalized distributions are subtly different
when plotted for various signal-to-noise ratios less than
about 10 dB. The Ricean distribution, referred to as the
n-distribution by Nakagami, is derived from concepts invol-
ving narrowband filtering of a continuous wave (CW) signal
with additive Gaussian noise, whereas the Nakagami-m
distribution is derived from experimental data involving
multipath communication links.

1.5.8 Order Statistics

Communication systems analysis and performance evalua-
tions often involve a large number of random samples taken
from an underlying continuous or discrete probability distri-
bution function. The various parameters, used to characterize
the system performance, result in limiting distributions
with associated means, variances, and confidence levels as
dictated, for example, by an underlying distribution. Order sta-
tistics [31, 50, 51], on the other hand, involves a distribution-
free or nonparametric analysis that requires only that
the probability distribution functions be continuous and not
necessary related to the underlying distribution from which
the samples are taken. However, the randomly drawn samples
are considered to be statistically independent.

Consider that the n random samples {X1, X2, …, Xn} are
taken from the continuous pdf fX(x) over the range a ≤ x ≤ b.
Now consider reordering the random variables Xi : i = 1,
…, n to form the random variables {Y1, Y2,…, Y n} arranged
in ascending order of magnitude, such that, a ≤ Y1 < Y2 <
< Yn ≤ b where fYi yi = 1 b−a is uniformly distributed
over the interval b − a. The joint pdf of the ordered samples
[52] is expressed as

gY1,Y2,…,Yn y1,y2,…,yn = n
n

i= 1

fYi yi (1.285)

for a ≤ y1 < y2 < < yn ≤ b and n! is the number of mutually
disjoint sets of x1, x2,…, xn. For example, for n = 4 the set
x1, x2, x3, x4 results in n! = 24 mutually disjoint sets deter-
mined as shown in Table 1.9. The first six mutually disjoint
sets are determined by cyclically left shifting the indicated
subsets of original set x1, x2, x3, x4; a cyclic left shift of a
subset is obtained by shifting each element of the subset to
the left and replacing the leftmost element in the former posi-
tion of the rightmost element. Following the first six sets
shown in the figure, the original set is cyclically shifted three
more times each leading to six mutually disjoint sets by shift-
ing subsets resulting in a total of 24 mutually disjoint sets.

The ordered sample Yi is referred to as the i-th order sta-
tistic of the sample set. The marginal pfd of the n-th order
statistic Yn, that is, the maximum of {X1, X2,…, Xn}, is eval-
uated using (1.285) by performing the integrations in the
ascending order i = 1, 2, …, n − 1 as follows*:

gYn yn = n
yn

a

y4

a

y3

a

y2

a
f y1 dy1 f y2 f yn dy2 dyn−1

= n
yn

a

y4

a

y3

a
F y2 f y2 dy2 f y3 f yn dy3 dyn−1

= n
yn

a

1
2

y4

a
F2 y3 f y3 dy3 f y4 f yn dy4 dyn−1

= n fYn yn
1

n−2

yn

a
Fn−2 yn−1 f yn−1 dyn−1

(1.286)

The solution (see Problem 15) to (1.286) is

gYn yn = n F yn
n−1fYn yn a < yn ≤ b (1.287)

where Fn−1(yn) is the cdf evaluated as

Fn−1 yn = n−1
yn

a
Fn−2 yn−1 fY yn−1 dyn−1 =

yn−a
n−1

b−a n−1

(1.288)

Using the marginal pdf of Yn given by (1.287), the prob-
ability of selecting the maximum of value Yn is determined as

P y = n
y

a
Fn−1 yn fY yn dyn

y = b

= 1 (1.289)

TABLE 1.9 Example of Mutually Disjoint Sets (n = 4,
24 Mutually Disjoint Sets)

No. Mutually Disjoint Sets Shiftinga

1 x1, x2, x3, x4 Original set
2 x1, x2, x4, x3 Shift subset x3, x4
3 x1, x3, x4, x2 Shift subset x2, x3, x4
4 x1, x3, x2, x4 Shift subset x4, x2
5 x1, x4, x2, x3 Shift subset x3, x4, x2
6 x1, x4, x3, x2 Shift subset x2, x3
7 x2, x3, x4, x1 Shift original set
8 x2, x3, x1, x4 Shift subset x4, x1
9 x2, x4, x1, x3 Shift subset x3, x4, x1

aShift denotes a cyclic left shift of a previous set or subset.

*For notational simplicity f(y) is used to denote fY(y).
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These results are distribution free, in that, the pdf has not
been defined; however, from a practical point of view (1.289)
can be evaluated for any continuous pdf.

The distributions from which the xi are taken need not be
identical*; for example, the samples x1 through xj can be
taken from a distribution involving signal plus noise (or clut-
ter) and those from xj+1 through xn corresponding to noise
(or clutter) only. Using this example the distribution in
(1.287) is expressed as

fYn yn =
n

j−1 n− j
Fsn yj

j−1
1−Fn yj

n− j
fYn yn

(1.290)

where Fsn(y) is the distribution corresponding to signal plus
noise and Fn(y) is the noise-only distribution.

Example distributions used to evaluate the performance
of communication and radar systems are Gaussian, Ricean,
lognormal, and Weibull distributions. Table 1.10 lists the
false-detection probabilities, for the indicated signal-to-noise
ratios γdB, associated with the detection of j = 1 signal-plus-
noise event and k = n − j = (1,2,4, and 8) noise-only events.

1.5.9 Properties of Correlation Functions

Correlation processing is used in nearly every aspect of
demodulator signal detection from energy detection, wave-
form acquisition, waveform tracking, parameter estimation,
and information recovery processing. With this wide range
of applications, the theoretical analyst, algorithm developer,
software coder, and hardware developer must be thoroughly
familiar with the properties and implementation of waveform
correlators. An equally important processing function is
that of convolution or linear filtering. The equivalence
between matched filtering and correlation is established in
Section 1.7.2 and involves a time delay in the correlation
response; with this understanding, the properties of correla-
tion can be applied to convolution or filtering. The correlation

response can be exploited to determine the signal signature
regarding the location of a signal in time and frequency,
the duration and bandwidth of the signal, the shape of the
modulated signal waveform, and the estimate of the informa-
tion contained in the modulated waveform.

The correlation function† is evaluated for the complex
functions x t and y t as the integral

Rxx τ =
∞

−∞
x t x∗ t−τ dt autocorrelation (1.291)

and

Rxy τ =
∞

−∞
x t y∗ t−τ dt cross-correlation (1.292)

where the asterisk denotes complex conjugation.
Autocorrelation processing examines the correlation

characteristics of a single random process with the maximum
magnitude corresponding to the zero-lag condition Rxx τ = 0
that is equal to the maximum energy over the correlation
interval. The correlation response Rxx τ is indicative of
the shape of x t and the duration, τd, of the principal corre-
lation response is indicative of the correlation time. For deter-
ministic signals, the correlation time (τo) is usually
characterized in terms of the one-sided width of the principal
correlation lobe; however, for stochastic processes the corre-
lation interval is defined when |Rxx τ | decreases monotoni-
cally from Rxx 0 to a defined level; for example, when the
normalized correlation response first reaches the level
Rxx τo Rxx 0 = e−1. The normalized correlation response
is referred to as the correlation coefficient as defined in
(1.295) or (1.296). The parameters related to the correlation
of the function x t have equivalent Fourier transform
frequency-domain definitions. In the case of stochastic
processes, the Fourier transform of Rxx τ is defined as the
PSD of the process.

Expanding (1.292) in terms of the real and imaginary
with x t = xr t + jxi t and y t = yr t + jyi t results in

Rxy τ =
∞

−∞
xr t yr t−τ dt +

∞

−∞
yi t yi t−τ dt

+ j
∞

−∞
xi t yr t−τ dt−

∞

−∞
xr t yi t−τ dt

(1.293)

This evaluation requires four real multiplies and integra-
tions for each lag, whereas, if x t and y(t) were real functions
only one multiplication and integration is required for each

TABLE 1.10 Order Statistics False-Detection Probability for
Gaussian Distributed Random Variables

Ordered S + N and
N Statistics (j,k)

False-Detection Probability (Pfd)

γdB = 10 γdB = 15 γdB = 20

1,1 2.440e−2 6.645e−5 1.408e−12

1,2 4.226e−2 1.308e−4 2.815e−12

1,4 6.980e−2 2.547e−4 5.629e−12

1,8 1.089e−1 4.874e−4 1.126e−11

*Equation (1.286) allows for different distributions; however, (1.287)
through (1.289) are based on independent identically distributed (iid) random
variables.

†A stationary stochastic processes is characterized by the first- and second-
order moments corresponding to the mean E x t =mxr + jmxi and autocor-
relation response Rxx τ =E x t x∗ t−τ .
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lag. With discrete-time sampling, the integrations are
replaced by summations over the finite sample values xn
and yn where t = nTs: n = 0, …, N − 1 and Ts is the sampling
interval; in this case, the computational complexity is propor-
tional toN2. The computation complexity can be significantly
reduced by performing the correlation in the frequency
domain using FFT [53], in which case, for a radix-2 FFT
with N = 2k, the computation complexity is proportional to
Nlog2(N). Brigham [54] provides detailed descriptions of
the implementation and advantages of FFT correlation and
convolution processing. The correlation results throughout
the following chapters use the direct and FFT approaches
without distinction.

Referring to (1.291) the zero-lag correlation is
expressed as

Rxx 0 =
∞

−∞
x t x∗ t dt +

∞

−∞
x t 2dt

=Ex

(1.294)

where Ex is the total energy in the received signal. Using
(1.294), the normalized correlation is defined in terms of
the normalized autocorrelation coefficient as

ρx τ ≜
Rxx τ

Ex
normalized autocorrelation coefficient

(1.295)

with |ρx(τ)| ≤ 1. From (1.292), the normalized cross-correlation
coefficient is defined as

ρxy τ ≜
Rxy τ

ExEy
normalized cross-correlation coefficient

(1.296)

with |ρxy(τ)| ≤ 1.
The correlation may also be defined in terms of the long-

term average over the interval T as

Rxx τ = lim
T ∞

1
T

T 2

−T 2
x t x∗ t−τ dt autocorrelation

(1.297)

However, most practical waveforms are limited to a finite
duration Tc = NTs and, in these cases, x t is zero outside of
the range Tc. Therefore, dividing the zero-lag correlation by
Tc results in the second-order moment E x 2 = σ2x +m

2
x

where m2
x is the DC or mean signal power. Removing the

mean signal level prior to performing the correlation results
in the autocovariance with E x 2 = σ2x . Table 1.11 summar-
ized several properties of correlation functions.

Consider, for example, that y t = x t + n t is a received
signal plus AWGN, the correlation Rxy τ is performed in the
demodulator using the known reference signal x t . The
dynamic range of the demodulator detection processing is
minimized by the normalization in (1.296) and the optimum
signal detection corresponds to ρxy(0). On the other hand, if
the optimum timing is not known, near optimum detection
can be achieved by choosing the maximum correlation output
over the uncertainty range of the correlation lag about τ = 0.
During initial signal acquisition, the constant false-alarm rate
(CFAR) threshold, described in Section 11.2.2.1, is an effec-
tive algorithm for signal presence detection and coarse
synchronization.

1.6 RANDOM PROCESSES

Many of the signal descriptions and processing algorithms in
the following chapters deal exclusively with the signal and
neglect the additive noise under the reasoning that the noise
detracts from the fundamental signal processing requirements
and complicates the notation which has the same effect. On
the other hand, understanding the impact of the noise on the
system performance is paramount to the waveform selection
and adherence to the system performance specifications. To
this end, the performance evaluation is characterized by
detailed analysis of the signal-plus-noise conditions and con-
firmed by computer simulations.

The following descriptions of noise and signal plus noise
are provided to illustrate the assumptions and analysis asso-
ciated with the inclusion of the most basic noise source—
AWGN. The reference to narrowband Gaussian noise simply
means that the carrier frequency fc is much greater than

TABLE 1.11 Correlation Function Properties of Deterministic
and Stochastic Processes

Property Comments

Rxx −τ =R∗
xx τ Autocorrelation

Rxx −τ =Rxx τ x(t) is real

Cxx −τ =Rxx τ − mx
2 Autocovariance

Cxx −τ =Rxx τ −m2
x x t real

Rxx τ =Ryy τ
x t =m t cos ωct
y t =m t sin ωct

Rxy τ = −Ryx τ
x t =m t cos ωct
y t =m t sin ωct

Rxy −τ =R∗
yx τ x t ,y t complex

Cxy τ =Rxy τ −mxm∗
y Cross-covariance

Cxy τ =Rxy τ −mxmy x t ,y t real

Rzz τ =Rxx τ +Ryy τ +Rxy τ +Ryx τ z t = x t + y t
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the signal modulation Nyquist bandwidth BN so that the 2fc
heterodyning or homodyne mixing terms are completely
eliminated through filtering. In such cases, the white noise
in the baseband demodulator bandwidth is denoted by the
single-sided noise density No watts/Hz, where single-sided
refers to positive frequencies.

1.6.1 Stochastic Processes

The subject of stochastic processes is discussed in consider-
able detail by Papoulis [55] and Davenport and Root [56] and
the following definitions are often stated or implied in the
applications discussed in throughout the following chapters.
A stochastic process is defined as a random variable that is a
function of time and the random events χ in S as depicted in
Figure 1.14. In this context the random variable is character-
ized as x(t,χ). For a fixed value of t = ti, x(ti,χ) is a random
variable and χ = χi, x(t,χi) denotes as the real random process
x(t) such that x(ti) is a random variable with pdf fX(x:ti); in
general, the pdf of x(t) is defined as fX(x:t).

1.6.1.1 Stationarity There are several ways to define the
stationarity of a stochastic process, for example, stationarity
of finite order, asymptotic stationary, and periodic stationar-
ity; however, the following two are the most frequently
encountered.

Strict-Sense Stationary Process The stochastic process x(t)
is strict-sense stationary, or simply stationary, if the statistics
are unaltered by a shift in the time axis. Furthermore, two ran-
dom variables are jointly stationary if the joint statistics are
unaltered by an equal time shift of each random variable, that
is, the probability density function f(x ; t) is the same for all
time shifts τ. This is characterized as

f x1,x2,…; t1, t2,… = f x1,x2,…; t1 + τ, t2 + τ,…

1 298

Wide-Sense Stationary Process The stochastic process x(t)
is wide-sense stationary (WSS) if its expected value is con-
stant and autocorrelation function is a function of the time
shift τ = t2 − t1 t1 and t2. WSS stationarity is characterized
as

E x t =mx = constant 1 299

and

E x t x t−τ =Rx τ (1.300)

Because wide-sense stationarity depends on only the first
and second moments it is also referred to asweak stationarity.
A function of two random processes is wide-sense stationary

if each process is wide-sense stationary and their cross-
correlation function is dependent only the time shift, that is,

E x t1 y t2 =Rxy t1− t2 =Rxy τ (1.301)

1.6.1.2 Ergodic Random Process The random process x
(t), defined earlier, is an ergodic random process if the statis-
tics of x(t) are completely defined by the statistics of x(t,χ).
Denoting the random process x(ti,χ) as an ensemble of x
(t,χ), then ergodicity ensures that the statistics x(ti) are iden-
tical to those of the ensemble; in short, the time statistics are
identical to the ensemble statistics.* Ergodicity of the mean,
of the stochastic process x(t,χ), exists under the condition

x t,χ i =E x ti,χ i (1.302)

where the time average is defined as

x t,χi ≜ lim
T ∞

1
2T

T

−T
x t,χi dt (1.303)

and the ensemble average is defined as

E x ti,χ ≜
∞

−∞
χfχ ti,χ dχ (1.304)

Since the mean value of a random process must be a con-
stant, the ergodic of the mean theorem states that the equality
condition in (1.302) is satisfied when E x ti,χ = η i
where η is a constant. This is a nontrivial task to prove, how-
ever, following the discussion by Papoulis [57], the ergodic
of the mean theorem states that

lim
T ∞

1
2T

T

−T
x t dt =E x t = η

iff lim
T ∞

1
2T

T

−T
Rx τ dτ = η2

(1.305)

The iff condition in (1.305) is formally expressed in terms
of the autocovariance function for which the limit T ∞
is expressed as the variance σ2x = η

2−E x t 2. However,
from (1.305), the expectation E[x(t)] = η resulting in σ2x = 0.
Therefore, the limit T ∞ of the autocovariance function
converges in probability with the conclusion that
E x t,χi =E x ti,χ proving ergodicity of the mean.† Dem-
onstration of ergodicity of the autocorrelation function

*Papoulis (Reference 8, Chapter 9) discusses the ergodicity of a stochastic
process with respect to certain parameters.
†Convergence in probability is also discussed by Davenport and Root
(Reference 6, pp. 66–71).
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is considerably more involved, requiring the fourth-order
moments.

1.6.2 Narrowband Gaussian Noise

Consider the noise described by the narrowband process [58]
with bandwidth B << fc expressed as

n t =N t cos ωct + θ t −N t sin ωct + θ t (1.306)

where N(t) and θ(t) represent, respectively, the envelop
and phase of the noise and ωc = 2πfc is the angular carrier
frequency. Upon expanding the trigonometric functions,
(1.306) can also be expressed as

n t = nc t cos ωct −ns t sin ωct (1.307)

where

nc t =N t cos θ t (1.308)

and

ns t =N t sin θ t (1.309)

The noise terms nc(t) and ns(t) are uncorrelated with spec-
trum S(f) and bandwidth B, such that S(f) = 0 for |f − fc| > B/2.
This is the general characterization of a narrowband noise
process; however, in the following analysis, nc(t) and ns(t)
are also considered to be statistically independent, stationary
zero-mean white noise Gaussian processes with one-sided
spectral density No watts/Hz.

Because of the stationarity, the noise autocorrelation is
dependent only on the correlation lag τ and is evaluated as

Rnn τ =E n t n t−τ

=E nc t cos ωct −ns t sin ωct

nc t−τ cos ωc t−τ −ns t−τ sin ωc t−τ

(1.310)

Upon evaluating the product in (1.310) and distributing
the expectation, it is found that the conditions for stationarity
require* Rss(τ) = Rcc(τ) and Rcs(τ) = −Rsc(τ) so that (1.310)
reduces to

Rnn τ =Rcc τ cos ωcτ −Rss τ sin ωcτ (1.311)

The noise power is evaluated using (1.311) with τ = 0 with
the result Rnn(0) = Rcc(0) = σ2n. This evaluation can be carried

further using the Wiener–Khinchin theorem† which states
that the power spectral density of a WSS random process
is the Fourier transform of the autocorrelation function,
that is,

Sn f =
∞

−∞
Rnn τ e− j2πf τdτ (1.312)

From (1.312) the inverse Fourier transform is

Rnn τ =
∞

−∞
Sn f ej2πf τdf (1.313)

and, substituting the condition that the single-sided noise
spectral density is defined as No watts/Hz, (1.313) becomes

Rn τ =
No

2

∞

−∞
ej2πf τdf =

No

2
δ τ (1.314)

In (1.314) the single-sided noise density is divided by two
because of the two-sided integration, that is, the integration
includes negative frequencies. In this case, the noise power,
defined for τ = 0, is infinite, however, when the ideal band-
limited filter, with bandwidth B, is considered the noise
power in the filter centered at fc is computed as

Rn 0 =No

fc+B 2

fc −B 2
df =NoB (1.315)

In this case the one-sided noise density No is used instead
of No/2 because the one-sided integration is over positive
frequencies.

If a linear filter with impulse response h(t) is used, the fre-
quency response is given by

H f =
∞

−∞
h t e− j2πftdt (1.316)

The corresponding unit gain normalizing factor is |H(0)|.
With the stationary noise process n(t) applied to the input of
the filter, the output is determined using the convolution inte-
gral and the result is as follows:

no t =
∞

−∞
n t−λ h λ dλ (1.317)

*See Problem 29.

†Leon-Garcia (Reference 29, p. 404) refers to this theorem as the Einstein–
Wiener–Khinchin theorem based on the discovery of an earlier paper by
Albert Einstein.
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Using (1.317) it can be shown (see Problem 33) that
the normalized spectrum of the output noise is expressed,
in terms of the input noise PSD Sn(f), as

Sno f = Sn f
H f

H 0

2

(1.318)

where |H(0)| is the normalizing gain of the filter. Using
(1.318), with Sn(f) = No/2 corresponding to white noise, the
output noise power is evaluated as

Rno 0 =
fc+B 2

fc−B 2
Sn f

H f 2

H fc
2df

=
No

2

fc+B 2

fc −B 2

H f 2

H fc
2df

=NoBn

(1.319)

where the second integral in (1.319) is recognized as the def-
inition of the noise bandwidth of the bandpass filter with low-
pass bandwidth Bn.

1.7 THE MATCHED FILTER

The problem in the detection of weak signals in noise is one
of deciding whether the detection filter output is due to the
signal and noise or simply noise only. The matched filter
[59, 60], provides for the optimum signal detection in AWGN
noise based on the maximum instantaneous signal-to-noise
ratio when sampled at the optimum time.* The matched filter,
for an AWGN channel, is characterized as having an impulse
response equal to the delayed time-reverse replica of the
received signal. To maximize the signal detection probability
the matched filter output must be sampled at To as defined in
the following analysis. The matched filter can be implemen-
ted at a convenient receiver IF or in the demodulator using
quadrature baseband-matched filters.

Considering the received signal, sr(t), the matched filter
impulse response depicted in Figure 1.28 is expressed as

h t =Gsr To− t (1.320)

The gain G is selected for convenience; however, it must
be a constant value. The delay To is required to result in a
causal impulse response, that is, the response of h(t ≤ 0) =
0 for h(t) to be realizable; consequently, sr(t ≥ To) must be
zero. Usually the selection of To is not an issue since many
symbol modulation functions are time limited or can be trun-
cated without a significant impact on the transmitted signal

spectrum; however, the matched filter delay results in a
throughput delay. To the extent that the impulse approxi-
mates (1.320) a detection loss will be encountered.

The criterion of the matched filter is to provide the max-
imum signal-to-noise ratio in the AWGN channel when
sampled at the optimum time To. The following matched fil-
ter analysis follows that of Skolnik [61]. The signal-to-noise
ratio of interest is

γf =
sr t 2

max

N
(1.321)

where sr t 2
max = sr To 2 is evaluated as

so To
2 =

∞

−∞
S f H f ej2πfTodf

2

(1.322)

and N is the noise power evaluated as

N =
∞

−∞
N f H f 2df =

No

2

∞

−∞
H f 2df (1.323)

In these expressions, the filter spectrum H(f) is normal-
ized, such thatH(0) = 1, and the last equality in (1.323) results
because the channel noise is white with one-sided constant
power density of No watts/Hz. Substituting (1.322) and
(1.323) into (1.321) results in the expression for the signal-
to-noise ratio

γf =

∞

−∞
S f H f ej2πfTodf

No 2
∞

−∞
H f 2df

2

(1.324)

Themaximum signal-to-noise ratio is evaluated by applying
Schwarz’s inequality (see Section 1.14.5, Equation 5) to the
numerator of (1.324). Upon substituting f ∗ f = S f ej2πfTo

and g f =H f into the Schwarz inequality, (1.324) is
expressed as

0

0 To

To
t

sr(t)

t

h(t)

FIGURE 1.28 Example received signal and corresponding
matched filter.

*The matched filter was first derived by D.O. North [59] and is also referred
to as the North filter.
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γf ≤

∞

−∞
S f 2df

∞

−∞
H f 2df

No 2
∞

−∞
H f 2df

=

∞

−∞
S f 2df

No 2

(1.325)

The equality condition of the signal-to-noise ratio in
(1.325) applies when f(f) = cg(f), where c > 0 is a conven-
iently selected constant resulting in the matched filter fre-
quency response expressed as

H f =GS∗ f e− j2πfTo matched filter frequency response

(1.326)

where G = 1/c is an arbitrarily selected constant gain greater
that zero. Upon applying Parseval’s theorem and recognizing
that the numerator of the second equality in (1.325) is the sig-
nal energy, E, the optimally sampled matched filter output
signal-to-noise ratio is simply expressed as

γf max =
2E
No

baseband modulated signal (1.327)

Therefore, for the AWGN channel, the optimally sampled
matched filter output results in a signal-to-noise ratio that is a
function the signal energy and noise density and is independ-
ent of the shape of the signal waveform. The factor of two in
(1.327) results from the analytic or baseband signal descrip-
tion in the derivation of the matched filter. Typically, the
received signal spectrum is modulated onto a carrier fre-
quency with an average power equal to one-half the peak car-
rier power. In this case, the signal-to-noise ratio at the output
of the matched filter is one-half of that in (1.327) resulting in

γf max =
E

No
carrier moduated signal (1.328)

Referring to (1.326), the inverse Fourier transform of the
complex conjugate of the signal spectrum results in the filter
impulse response corresponding to the time reverse of the sig-
nal. In addition, the inverse Fourier transform of the exponen-
tial function in (1.326) results in a signal time delay of To
seconds, so the resulting filter impulse response, h(t), corre-
sponds to the example depicted in Figure 1.28. Consequently,
the matched filter impulse response can be expressed in the
time domain by (1.320) or in the frequency domain by (1.326).

The detection loss associated with a filter that is not
matched to the received signal is evaluated as

ρf ≜
γf

γf max
=

so t 2
max No

2E No
(1.329)

where so t and No are the output signal and mean noise
power density at the output of the unmatched filter. Typically

the matched filter is based on the transmitted waveform;
however, the received signal into the matched filter may be
distorted by the channel or receiver filtering* resulting in a
detection loss. The matched filter implementation may also
result in design compromises that result in a detection loss.

1.7.1 Example Application of Matched Filtering

In this example, a BPSK-modulated received signal is con-
sidered with binary source data bits bi = {0,1} expressed
as the unipolar data di = (1 − 2bi) = {1,−1} over the data inter-
vals iT ≤ t ≤ i+ 1 T of the bit duration T. The received signal
plus noise is expressed as

r t = dis t + n t (1.330)

The signal is described as

s t =Acos ωct (1.331)

The noise is zero-mean additive white Gaussian noise with
one-sided spectral density No described as

n t = nc t cos ωct −ns t sin ωct (1.332)

The receiver-matched filter impulse response and Fourier
transform are given by

h t =As To− t
ℑ

H f =GS∗ f e− j2πfTo (1.333)

In (1.333) the signal spectrum defined as S(f) and the
squared magnitude of the matched filter output at the opti-
mum sampling point is

so To
2 =

∞

−∞
S f H f ej2πfTodf

=
∞

−∞
S f 2df =E

(1.334)

where the gain G = |H(0)| is normalized to one resulting in a
unit gain-matched filter response H(f).

Referring to the additive noise described by (1.332) and
Section 1.6.2, the noise power at the output of the matched
filter is expressed as

Rno 0 =
No

2

B 2

−B 2
H f 2df (1.335)

where B/2 is the baseband bandwidth of the matched filter.

*Adaptive channel equalizers are often used to compensate for the channel
distortion.
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The received signal, as expressed in (1.330), can be
rewritten in terms of the optimally sampled matched filter
output as

l r iTo = Edi +
No

2
ni (1.336)

where ni are iid zero-mean, unit variance, white Gaussian

noise samples. Upon dividing (1.336) by No 2 the sampled
matched filter output is expressed as

l ri =
2E
No

di + ni (1.337)

The sampled values l(r(iTo)) and l (ri) are referred to as
sufficient statistics, in that, they contain all of the information
in r(t), expressed in (1.330), to make a maximum-likelihood

estimate di of the source-bit di. The normalized form in
(1.337) is used as the turbo decoder input discussed in
Section 8.12. In Section 1.8 the sufficient statistic is seen
to be a direct consequence of the log-likelihood ratio.

1.7.2 Equivalence between Matched Filtering
and Correlation

Consider the receiver input as the sum of the transmitted
signal plus noise expressed as

r t = s t + n t (1.338)

The cross-correlation of r(t) with a replica of the received
signal is computed as

R τ =
∞

−∞
r t s t−τ dt cross-correlation (1.339)

Defining the matched filter impulse response as h(t), the
matched filter output response to the input r(t) is

yo t =
∞

−∞
r λ h t−λ dλ convolution (1.340)

However, referring to the preceding matched filter discus-
sion, the matched filter response is equal to the delayed image
of the signal, such that,

h t = s To− t (1.341)

As mentioned previously, the delay To ensures that
the filter response is causal and, therefore, realizable.
To substitute (1.341) into (1.340) first let t = t−λ so that
h t−λ = s To− t−λ = s λ− t−To and substitute this
result in (1.340) to get

yo t =
∞

−∞
r λ h t−λ dλ

=
∞

−∞
r λ s λ− t−To dλ

=R t−To

(1.342)

So that the convolution response is equal to the cross-
correlation response delayed by To. If the input noise is zero,
so that r(t) = s(t), the same conclusion can be drawn regarding
the autocorrelation response.

1.8 THE LIKELIHOOD AND
LOG-LIKELIHOOD RATIOS

Bayes criterion is based on two events, referred to as hypoth-
esis H1 and H0, that are dependent upon a priori probabilities
P1 and P0 and the, respective, associated costs (C01,C11) and
(C10,C00). Letting m correspond to the decision and n corre-
spond to the hypothesis, the range of the cost is 0 ≤ Cmn ≤ 1
with Cmn + Cnn|m n = 1. The cost of a correct decision is Cnn

and an incorrect decision is Cmn|m n. For communication
links the cost of incorrect decision is typically higher than
a correct decision so that Cmn|m n > Cnn. For example, when
Cmn|m n = 1 and Cnn = 0 the decision threshold minimizes
the probability of error which is the goal of communication
demodulators. In summary,

Cmn =
m= n cost of correct decision

m n cost of decision error
(1.343)

and the a priori probabilities are typically known and equal.
In the following example, the hypotheses correspond to

selecting di = {1,−1}, such that, under the two hypotheses

H1 di = + 1 with a prioi probability P1

H0 di = −1 with a prioi probability P0
(1.344)

with the observations

ri = di + ni t = iTo (1.345)

corresponding to the optimally sampled outputs of the
matched filter. In terms of the a priori, the transition probabil-
ities, and the cost functions, the hypothesis H1: with di = 1 is
chosen if the following inequality holds,

Pr H1
r H1 P1 C01−C11 ≥Pr H0

r H0 P0 C10−C00

(1.346)
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otherwise, chose H0 with di = −1. The decisions are made
explicit under the following rearrangement of (1.346)

Pr H1
r H1

Pr H0
r H0

>
H1

<
H0

P0 C10−C00

P1 C01−C11
(1.347)

Left and right sides of (1.347) are defined as the likelihood
ratio (LR) Λ(r) and decision threshold η or, alternately, as the
log-likelihood ratio (LLR) lnΛ(r) with the threshold lnη, so
(1.347) is also expressed as

Λ r >
H1

<
H0

η or lnΛ r >
<
H0

H1
lnη alternate decisions thresholds

(1.348)

1.8.1 Example of Likelihood and Log-Likelihood
Ratio Detection

Consider the two hypotheses H1 and H0 mentioned earlier
with di = {1,−1} and the observation ri in (1.345) with the
additive noise ni characterized as iid zero-mean white
Gaussian noise, denoted as N(0,σn). The transition probabil-
ities are expressed in terms of the Gaussian noise pdf as

p n =
1

2πσn
e− r−m 2 2σ2n (1.349)

Upon forming the likelihood ratio and recognizing that
m = ±di, the likelihood ratio decision simplifies to

exp
2ri
σ2n

>
H1

<
H0

P0 C10−C00

P1 C01−C11
(1.350)

and the log-likelihood ratio decision simplifies to

2
σ2n

ri >
H1

<
H0

ln
P0 C10−C00

P1 C01−C11
(1.351)

Recognizing that l(ri) is a sufficient statistic, (1.351) is
rewritten as

l ri >
H1

<
H0

σ2n
2
ln

P0 C10−C00

P1 C01−C11
(1.352)

When C10 = C01 = 1, C00 = C11 = 0, and P0 = P1 the LLR
simplifies to

l ri >
H1

<
H0

0 ln η= 1 = 0 (1.353)

Therefore, the data estimate is di = 1 when l(ri) > 0, other-

wise, di = −1. Recall that observations ri : t = iTo are made at
the output of the matched filter. These concepts involving the
LR and LLR surface again in Section 3.2 and the notion of the
natural logarithm of the transitions probabilities is discussed
in the following section involving parameter estimation.

1.9 PARAMETER ESTIMATION

The subject of optimum signal detection in noise was exam-
ined in the preceding section in terms of a pulsed-modulated
carrier and it resurfaces throughout the following chapters in
the context of a number of different waveform modulations.
However, signal detection is principally based on the signal
energy without regard to specific signal parameters, although
frequency and range delay must be estimated to some degree
to declare signal presence and subsequently detection. Signal
detection uses concepts involving direct probabilities,
whereas the subject of parameter estimation uses concepts
involving inverse probabilities as discussed by Feller [32],
Slepian [62], Woodward and Davies [63], and others. The
distinction between these concepts is that direct probability
is based on the probability of an event happening, whereas
inverse probability formulates the best estimate of an event
that has already occurred. With this distinction, it is evident
that parameter estimation involves inverse probabilities. The
major characteristic of inverse probability is the use of a
priori information associated with the available knowledge
of each source event. At the receiver the a posteriori proba-
bility is expressed in terms of the inverse probability using
Bayes rule that associates the transition probability and a
priori knowledge of the source events.

The subject of this section is signal parameter estimation
and, although the major parameter of interest in communica-
tions is the estimation of the source information, the estima-
tion of parameters like, frequency, delay, and signal and
noise powers are important parameters that aid in the estima-
tion of the source information. For example, estimation of
the received signal and noise powers form the basis for esti-
mating the receiver signal-to-noise ratio that is used in the
network management to improve and maintain communica-
tion reliability. Furthermore, characterizing the theoretical
limits in the parameter estimates provides a bench mark or
target for the accuracy of the parameter estimation during
the system design.

The following discussion of statistical parameter estima-
tion is largely based on the work of Cramér [64], Rao [65],
Van Trees [66], and Cook and Bernfeld [67]. The received
signal is expressed in terms of the transmitted signal with
M unknown parameters a1, a2, …, aM and additive noise, as

r t = s t;a1,a2,…,aM + n t (1.354)
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Considering that N discrete samples of the received signal
and additive noise are used to estimate the parameters, the
joint probability density function (pdf) of the samples is

pr r1,r2,…,rN a1,a2,…,aM = pn r1−s1,r2−s2,…,rN −sN
(1.355)

where the noise samples ni = ri − si are substituted into
the joint pdf of the noise. The noise samples are statistically
independent and the statistical characteristics of the noise
are assumed to be known. Therefore, based on the received
signal-plus-noise samples ri, the receiver must determine
the estimates â1, â2,…, âM of the M unknown parameters.
The probability density function pr(r1,… |a1,…) in (1.355)
is called the likelihood function.

Van Trees discusses several estimation criteria* and the
following focuses on the optimum estimates for the mean-
square (MS) error† and maximum a posteriori probability
(MAP) criterion that are defined, respectively, for a single
parameter a as

ams r =
∞

−∞
apa r a r da MS estimate (1.356)

and

∂

∂a
lnpa r a r

a= amap r

= 0 MAP equation (1.357)

The estimate âms(r) is optimum in the sense that it results
in the minimumMS error over all si and a. TheMAP estimate
âmap(r) is the solution to (1.357) and is optimum in the sense
that it locates the maximum of the a posteriori probability
density function; however, the solution must be checked to
determine if it corresponds to the global maximum in the
event of a multimodal distribution.

By applying Bayes rule to (1.357), the MAP estimate is
expressed in terms of the a priori pdf, pa(a), and the likelihood
function, pr a r a , as

∂

∂a
lnpr a r a +

∂

∂a
lnpa a

a = amap r

= 0 (1.358)

When the a priori probabilities are unknown, that is, as
the a priori knowledge approaches zero, (1.358) becomes
the maximum-likelihood equation and âml(r) is the
maximum-likelihood estimate, evaluated as the solution to

∂

∂a
lnpr a r a

a = aml r
= 0 ML estimate (1.359)

To make use of these estimates it is necessary to determine
the bias and the variance of the estimate. The mean value of
the estimate is computed as

E a r =
∞

−∞
a r pr a r a dr (1.360)

The bias of the estimate is defined as B a =E a r −a. If,
as indicated, the bias is a function of a, the estimate has an
unknown bias, however, if the bias is B, independent of a,
the estimate has a known bias that can be removed from
the observation measurements r. In general, for any known
biased estimate â(r) of the real random variable a, the vari-
ance is defined as

σ2a =Var a r −a ≜E a r −a 2 −B2 (1.361)

Although the bias and variance are often difficult to deter-
mine, the Cramér–Rao inequality provides a lower bound on
the variance of the estimate. For a biased estimate of the ran-
dom parameter a with a priori pdf pa(a), the variance is lower
bounded by the Cramér–Rao inequality [64, 66]

σ2a ≥
∂E a r ∂a 2

E
∂ln pr a r a

∂a
+
∂ln pa a

∂a

2 biased; variable

(1.362)

or, the equivalent result,

σ2a ≥
∂E a r ∂a 2

−E
∂2 ln pr a r a

∂a2
+
∂2 ln pa a

∂a2

biased; variable

(1.363)

When the estimate is unbiased, that is, when E a r = a,
the estimation variance of the random variable a simplifies to

σ2a ≥
1

E
∂ln pr a r a

∂a
+
∂ln pa a

∂a

2

unbiased; variable

(1.364)

or, the equivalent result,

σ2a ≥
1

−E
∂2 ln pr a r a

∂a2
+
∂2 ln pa a

∂a2

unbiased; variable

(1.365)

*The criteria are based on Bayes estimation procedure that minimizes the risk
associated with the cost or weight assigned to various kinds of statistical deci-
sions. In communication systems, the decision costs are assigned tominimize
the demodulator bit-error probability.
†The MS error is also referred to as the minimum mean-square
error (MMSE).
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The Cramér–Rao bound in these relationships is formu-
lated in terms of the Schwarz inequality and the equality
condition applies when

∂ln pr a r a

∂a
+
∂ln pa a

∂a
= k a r −a

MAP efficient estimate condition

(1.366)

where k is a constant. Therefore, (1.366) guarantees that the
equality condition for the variance applies in (1.362) through
(1.365); in this case, the MAP estimate is defined as an effi-
cient estimate. Furthermore, an unbiased estimate, excluding
the trivial case k = 0, requires that a r = a leading to (1.358).

When the a priori knowledge pa(a) is constant, that is,
the parameter a is nonrandom, or unknown, then (1.359)
also requires that a = a or aml r = a. Under the maximum-
likelihood (ML) criteria Schwarz’s equality condition
applies when

∂ln pr a r a

∂a
= k a a r −a

ML efficient estimate condition

(1.367)

In this case, the constant k(a) may be a function of a; this
condition only applies when parameter a is a constant which
corresponds to the ML estimate.

Van Trees lists three principles based on the forgoing
results:

1 The mean-square (MS) error estimate is always the
mean of the a posteriori density, that is, the conditional
mean.

2 The MAP estimate corresponds to the value of a for
which the a posteriori density is maximum.

3 For a large class of cost functions, the optimum esti-
mate is the conditional mean whenever the a posteriori
density is a unimodal function which is symmetric
about the conditional mean. The Gaussian pdf is a com-
monly encountered example.

By way of review, the estimates are evaluated using the a
posteriori pdf; however, if the parameter is a random variable,
the a posteriori pdf must be expressed in terms of the transi-
tion distribution and the a priori pdf of the random parameter
using Bayes rule. If the estimate is unbiased, that is, if
B=E a r −a = 0, evaluation of the Cramér–Rao bound
simplifies to (1.364); it is sometimes necessary to use the
equivalent expression in (1.365). The Cramér–Rao equality
condition is established if the left-hand side of (1.366) can
be expressed in terms of the right-hand side where k is a
constant parameter resulting from Schwarz’s condition for
equality.

If the a priori knowledge is unknown then the maximum-
likelihood equation given in (1.359) is used to determine
maximum-likelihood estimate. In this case, the Cramér–
Rao bound is established by omitting the dependence of
pa(a) in, (1.362) through (1.365) and the equality condition
is established if the left-hand side of (1.367) can be expressed
in terms of the right-hand side where, in this case, the con-
stant k(a) is a function of the parameter a. With either the
MAP or ML estimates, if the bias is zero and the equality
condition applies, the estimate is referred to as an efficient
estimate.

Van Trees shows that for the MS estimate to be an effi-
cient estimate, the a posteriori probability density pa r a r
must be Gaussian for all r and, for efficient MAP estimates,
ams r = amap r . However, it may be easier to solve the MAP
equation than to determine the conditional mean as required
by the MS estimation procedure.

1.9.1 Example of MS and MAP Parameter
Estimation

As an example application of the parameter estimation pro-
cedures discussed earlier, consider the Poisson distribution
that is used to predict population growth, telephone call ori-
ginations, gamma ray emissions from radioactive materials,
and is central in the development of queueing theory [68].
For this example, the Poisson distribution is characterized as

pa a n =
an

n
e−a a ≥ 0; n = 0,1,2,… (1.368)

In the application of (1.368) to queueing theory, a = λt is
the average number of people entering a queueing line in
the time interval 0 to t and λ is the arrival rate. The a
posteriori distribution pa n a n is the probability of a condi-
tioned on exactly n arrivals occurring in the time interval.
A fundamental relationship in the Poisson distribution is that
the time interval between people entering the queueing line is
exponentially distributed and is characterized by the a priori
distribution

pa a = e−a a ≥ 0 (1.369)

The a posteriori pdf in (1.368) is expressed in terms of the
a priori and transition pdfs as

pa n a n =
pn a n a pa a

pn n
=
k

n
ane−2a (1.370)

where the constant k is a normalizing constant that includes 1/
pn(n). Integrating of the second equality in (1.370) with
respect to da over the range 0 to∞ and setting the result equal
to one, the value of k is found to be k = 2n+1 and (1.370)
becomes
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pa n a n =
2n+ 1

n
ane−2a (1.371)

Using (1.356) and (1.371) the MS estimate is evaluated as

ams n =
2n+ 1

n

∞

0
an + 1e−2ada=

n

2
(1.372)

Also, using (1.357) and (1.371) the MAP estimate is eval-
uated as

∂

∂a
ln

2n+ 1

n
ane−2a =

∂

∂a
ln

2n+ 1

n
+ n ln a −2a

=
n

a
−2

a= amap n
= 0

(1.373)

and solving the second equality in (1.373) for a results in
amap n = n 2. As is typical in many cases, the MS and
MAP estimation procedures result in the same estimate. It
is left as an exercise (see Problem 38) to determine the bias
of the estimates, compute the Cramér–Rao bound, and using
(1.366), determine if the estimates are efficient, that is, if the
Cramér–Rao equality condition applies.

1.9.2 Constant-Parameter Estimation in
Gaussian Noise

To simplify the description of the estimation processing,
the analysis in this section considers the single constant-
parameter case with zero-mean narrowband additive
Gaussian noise. Under these conditions, the estimation is
based on the solution to the maximum-likelihood equation
with the joint pdf of the received signal and noise written as

pr r1,r2,…,rN ;a = pn r1−s1,r2−s2,…,rN −sN

=
N

i= 1

pn ri−si
(1.374)

where a is the constant parameter to be estimated and ri = si +
ni represents the received signal samples. The sampling rate
satisfies the Nyquist sampling frequency and the second
equality in (1.374) recognizes that the noise samples are inde-
pendent. The following analysis is based on the work of the
Woodard [24] and Skolnik [61] and uses the maximum-
likelihood estimate of (1.359) with the Cramér–Rao bound
expressed by (1.365).

Using (1.374) with zero-mean AWGN, the minimum
Cramér–Rao bound on the variance of the estimate is
expressed as

σa2 min = −E
∂2

∂a2
ln

N

i

1

2πσn
exp −

ri−si
2

2 σ2n

−1

= −E
∂2

∂a2
ln kexp

−1
2No

N

i= 1

ri−si
2Δt

−1

= −E
∂2

∂a2
ln kexp

−1
2No

Te

0
r t −s t 2dt

−1

(1.375)

In arriving at the third equality in (1.375) the factor k is
independent of the parameter a and, it is recognized that,
σ2n =NoB where B = 1/Te is the bandwidth corresponding to
the estimation time. The integral is formed by letting Δt
0 as the number of samples N ∞ over the estimation inter-
val Te. Upon taking the logarithm of the product kexp(−) and
performing the partial derivatives on the integrand, (1.375)
simplifies to

σa2 min =E
−1
No

Te

0
r t −s t

∂2s t

∂a2
−

∂s t

∂a

2

dt

−1

=
1
No

Te

0

∂s t

∂a

2

dt

−1

(1.376)

The last equality in (1.376) is the basis for determining the
variance and is obtained by moving the expectation inside of
the integral and recognizing that E r t −s t =E n t = 0.
The following example outlines the procedures for estimating
the variance of the estimate using the ML procedures.

1.9.2.1 Example of ML Estimate Variance Evaluation
Consider the signal s(t) expressed as

s t =Acos ωot +ωt
2 2 +ϕ (1.377)

where A is the peak carrier voltage, ωo is the IF angular fre-
quency, ω is the angular frequency rate, and ϕ is a constant
phase angle; the signal power is defined Ps = A2/2.

The variance of the frequency estimate is determined by
squaring the partial derivative of s(t) respect to ωo and inte-
grating over the estimation interval Te as indicated in (1.376).
Under these conditions the analysis of the Cramér–Rao lower
bound is performed as follows.

σ2ωo
min =

A2

No

Te

0
t2sin2 ωot +ωt

2 2 +ϕ dt
−1

=
Ps

No

Te

0
t2 1−cos 2ωot +ωt

2 + 2ϕ dt
−1

(1.378)
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Upon neglecting the term involving 2ωo and performing
the integration, (1.378) becomes

σ2ωo
min =

3
T2
e γe

rad2 s2 (1.379)

where γe = PsTe/No is the signal-to-noise ratio in the estima-
tion bandwidth of 1/Te. In terms of the carrier frequency fo
in hertz, the standard deviation of the estimate is

σf o min =
3

2πTe γe
Hz (1.380)

In a similar manner, the standard deviation of the fre-
quency rate and phase are evaluated as

σ
f
min =

5
π T2

e γe
Hz s (1.381)

and

σϕ min =
1
γe

rad (1.382)

The evaluation of the standard deviation of the signal
amplitude (A) estimation error is left as an exercise (see
Problem 39).

1.9.3 Received Signal Delay and Frequency
Estimation Errors

Accurate estimation of the signal delay and frequency are
essential in aiding the signal acquisition processing by mini-
mizing the overall time and frequency search ranges. The delay
estimation accuracy (σTd) is inversely related to the signal
bandwidth (B) and the signal frequency estimation accuracy
(σfd) is inversely related to the time duration (T) of the signal.
Neglecting the signal-to-noise dependence of each measure-
ment, these inverse dependencies are evident, in that, the prod-
uct σTdσfd 1/TB where TB is the time-bandwidth product
of the waveform. For typical modulated waveforms T and B
are inversely related so that simultaneous accurate time and
frequency estimates are not attainable. However, the use of
spread-spectrum (SS) waveformmodulation provides for arbi-
trarily large BT products with simultaneous accurate estimates
of Td and fd. The analysis of delay and frequency estimation
errors in the following sections is based on the work of
Skolnik [61] and can be applied to conventional or SS-
modulated waveforms. In Section 1.9.3.3 delay and frequency
estimation is examined using a DSSS-modulated waveform.

1.9.3.1 Delay Estimation Error Based on Effective
Bandwidth The signal delay measurement accuracy using

the effective signal bandwidth was introduced by Gabor
[69] and is discussed by Woodward [24] and defined as the
standard deviation of the delay measurement expressed as*

σTd =
1

β 2γe
second (1.383)

where γe = Ps/NoW = E/No is the signal-to-noise ratio
† meas-

ured in the two-sided bandwidth W, No is the one-sided
noise density, Ps is the signal power, and β is the effective
bandwidth of the signal. β2 is the normalized second moment
of the waveform spectrum |S(f)|2, defined as

β2 ≜

∞

−∞
2πf 2 S f 2df

∞

−∞
S f 2df

(1.384)

The denominator in (1.384) is the signal energy and the
integration limits extend over the frequency range f ≤ |W/2|
corresponding to the nonzero signal spectrum. The one-
way range error corresponding to (1.383) is σrng = cσTd
meters where c is the free-space velocity of light in meter/
second.

For the rectangular symbol modulation function rect
(t/T), band limited to W Hz with β2 W/T and large time-
bandwidth products WT/2, (1.383) is evaluated as

σTd =
T

WTγe
band-limited rect t T symbol; WT 2 1

(1.385)

1.9.3.2 Frequency Estimation Error Based on Effective
Signal Duration In a manner similar to the analysis of
the delay estimation error in the preceding section, Manasse
[70] shows that the, minimum root-mean-square (rms) error
in the frequency estimate is given by‡

σfd =
1

α 2γe
Hz (1.386)

where γe = E/No is the signal-to-noise ratio measured in the
two-sided bandwidthW, No is the one-sided noise density, Ps

is the signal power, and α is the effective time duration of the

*Woodward refers to the delay error as the standard deviation of the error.
Slepian’s analysis [62] is based on the likelihood function and also arrives
at (1.383).
†The factor of two in γe results because No is the one-sided noise density and
W is the two-sided bandwidth.
‡The notation σfd is used to denote the standard deviation of the frequency
estimation error.
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received signal. The parameter α2 is the normalized second
moment of the waveform s(t) and is defined as

α2 ≜

∞

−∞
2π t 2s2 t dt

∞

−∞
s2 t dt

(1.387)

The Doppler frequency results from the velocity (v) and
the carrier frequency (fc) and is expressed as fd = (v/c)fc.
Frequency errors resulting from hardware oscillators are
usually treated separately and combined as the root-sum-
square (RSS) of the respective standard deviations.

For the band-limited rect(t/T) symbol modulation used
in the preceding section, the normalized second moment is
evaluated as α2 (πT)2/3 and (1.386) is expressed as

σfd =
3

πT 2γe
band-limited rect t T symbol; WT 2 1

(1.388)

Comparison of (1.385) and (1.388) demonstrates the
inverse relationship between the estimation accuracy of the
range-delay and frequency errors for conventional (unspread)
modulations. For example, for a given time bandwidth (WT)
product and signal-to-noise ratio (γe), the delay estimate error
decreases with decreasing symbol duration; however, the fre-
quency estimate error increases. The issue resolves about the
signal-to-noise ratio in the estimation bandwidth. For exam-
ple, with conventional waveform modulations,WT = 2BT = 2
so BT = 1 and the bandwidth changes inversely with the sym-
bol duration. Consequently, by decreasing symbol duration,
the bandwidth increases resulting in a signal-to-noise γs,

measured in the symbol bandwidth, degradation of B/B
where B >B. Therefore, in the previous example, to maintain
a constant signal-to-noise ratio γe the estimation interval
must be appropriately adjusted. As mentioned previously,
the solution to simultaneously obtaining accurate estimates
of range delay and frequency while maintaining a constant
γs, involves the use of a SS-modulated signals with an inher-
ently largeWT product as discussed in the following section.

1.9.3.3 Improved Frequency and Time Estimation Errors
Using the DSSS Waveform The DSSS waveform uses a
pseudo-noise (PN) sequence of chips with and instantaneous
bandwidth (W) over the estimation interval (T) as shown in
Figure 1.29.* The resulting largeWT product signal provides
for arbitrarily low time and frequency estimation errors. This
is accomplished by the respective selection of a high band-
width (short duration) chip interval (τ) and the low bandwidth
(long duration) estimation interval T. The estimation interval
can be increased to improve the frequency estimate; con-
versely, the chip interval can be decreased to improve the
range-delay estimate; however, to maintain the accuracy of
the other, the number of chips per estimation interval (N)
must be increased. These relationships are described in terms
of the pulse compression ratio, defined as ρ = T/τ = N. In
Figure 1.29 the chips are depicted as appropriately delayed
Adnrect((t−n)/τ − 0.5): n = 0,…,N − 1 functions and, because
of the equivalence between the correlator and matched filter,
the peak correlator output is a triangular function with a peak
value† of AN. When sampled at t = Nτ, the correlator output

AT

f

S(f)

–2/τ –1/τ 1/τ 2/τ0

(b) 

Signal spectrum

Time
Sidelobes

Nτ

(c) 

Demodulator correlation response

Rs(t)

t

AN

A

 Transmitted signal

dn = {1,–1}

2τ 3τ Nττ0

s(t)

t
. . . . . .

. . .

. . .

T

}dn

(a)

FIGURE 1.29 Time–frequency estimation using DSSS waveform.

*Although not shown in the figure, the chips are ± binary pulses which sug-
gest that the received signal carrier frequency is BPSK modulated.
†This suggests that the local reference is an identical unit amplitude PN
sequence that is synchronized with the received PN sequence.
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results in the maximum signal-to-noise ratio measured in the
bandwidth of 1/T Hz.

Based on the fundamental principles for jointly achieving
accurate time and frequency estimates as stated earlier, the
triangular shape of the wide bandwidth correlator output is
related to the accuracy of the time estimate and the low band-
width sampled output at interval of T = Nτ determines the
accuracy of the frequency estimate. Therefore, evaluation
of the time and frequency estimation accuracies of the DSSS
waveform involves evaluating, respectively, the effective
bandwidth (β) of the triangular function and the effective
time duration (α) of the rect(t/T − 0.5) function.

Delay Estimation Error of the DSSS Waveform The delay
estimation error is based on detecting the changes in the lead-
ing and trailing edge of wideband signals. This does not
require that the signal has a short duration but that the band-
width is sufficiently wide to preserve the rapid rise and fall
times of the correlator response. On the other hand, received
signals with additive noise must be detected and the para-
meters estimated under the optimum signal-to-noise condi-
tions as provided by matched filtering or correlation. In
this regard, the correlator output in Figure 1.29 is examined
in the context of the signal delay estimate error.

The triangular function, corresponding to the correlator
output, is an isosceles triangle with base and height equal
to 2τ and AN, respectively, and is described as

Rs ξ =AN 1− ξ τ ξ ≤ τ (1.389)

where, for convenience, ξ = t − Nτ such that the time axis
is shifted so that the isosceles triangle is symmetrical about
ξ = 0. The effective bandwidth of Rs(ξ) is evaluated (see
Problem 41) as

β =
3
τ

triangular function (1.390)

and the corresponding standard deviation of the delay esti-
mate is

σTd =
τ

3 2γe
triangular function (1.391)

Frequency Estimation Error of the DSSS Waveform The
frequency estimation error is based on the interval T of the
PN sequence under the conditions corresponding to the local
PN reference being exactly synchronized with and multiplied
by the received signal; in other words, with zero frequency
and phase errors, the integrand of the correlation integral is
constant over the interval T. However, with a frequency error
of fε Hz the correlator response is computed as

Rs T ; fε =A
T

0
ej2π fεξdξ

=ATejπ fεT
sin π fεT

π fεT
correlator response with fε

1 392

The principal frequency error in the main lobe of the sinc
(fεT) function corresponds to| fε| ≤ 1/T which defines the fun-
damental resolution accuracy of the frequency estimate.
However, the effective duration of the correlator of length
T = Nτ is evaluated (see Problem 42) as

α=
2πT
3

rectangular function (1.393)

and the corresponding standard deviation of the frequency
estimate is

σfd =
3

2πT 2γe
rectangular function (1.394)

Considering the SS pulse compression ratio, or processing
gain, ρ = T/τ, the correlator output signal-to-noise ratio (γe) in
(1.391) and (1.394) is measured in the bandwidth of 1/T. The
product of the estimation accuracies of the SS waveform is

σTdσfd =
τ

2πTγe
=

1
2πργe

(1.395)

Therefore, the time and frequency estimates accuracies
can be made arbitrarily low, even in low signal-to-noise ratio
environments, by designing a SS waveform with a suffi-
ciently high pulse compression ratio.

1.9.3.4 Effective Bandwidth of SRRC and SRC
Waveforms In view of the increasing demands on band-
width, the spectral containment of the spectral raised-
cosine (SRC) waveform meets the corresponding need for
spectrum conservation. Although the spectral root-raised-
cosine (SRRC) waveform has a slightly wider bandwidth
than the SRC waveform, it is preferred because of the
improved matched filter detection* and, in the context of
range delay estimation, provides for a somewhat better range
delay estimate. The spectrum of the SRC waveform is char-
acterized, in the context of a spectral windowing function, in
Section 1.11.4.1 and the spectrum of the SRRC is character-
ized in Section 4.3.2 in the context of the optimum transmit-
ted waveform for root-raised-cosine (RRC) waveform
modulation. The following analysis compares the effective

*The optimally sampled SRRC matched filter output results in the maximum
signal energy and orthogonal symbol samples resulting in zero intersymbol
interference.
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bandwidth of the SRC and SRRC waveforms with the under-
standing that the SRC delay estimate is based on the matched
filter out samples taken symmetrically about the optimum
matched filter sample at t = To.

The dependence of the effective bandwidth of the SRRC
and SRC waveforms on the excess bandwidth parameter α is
expressed as

βT = π
1
3
+

π2−8
π2

α2 SRRC waveform (1.396)

and

βT = π
4−3α+ 12α2−α3

3 4−α
−
8α2 16−α

2π 2 4−α
SRC waveform

(1.397)

Equations (1.396) and (1.397) are plotted in Figure 1.30
that demonstrates the advantages of the wider bandwidth
SRRC waveform in providing short rise-times symbols with
the associated improvement in range-delay detection. In this
regard, the rect(t/T) modulated received symbol, as character-
ized by the BPSK-modulated waveform, has zero rise-time
and results in perfect range-delay detection in a noise-free
channel and receiver; however, infinite bandwidth is required
to achieve this performance. The dashed curve in Figure 1.30
shows the normalized effective bandwidth of the rect(t/T)
modulated symbol after passing through an ideal (1/B)rect
(f/B) filter with one-sided bandwidth B/2 Hz; this is referred
to a filtered BPSK and is discussed in the following section.

The noise bandwidth of the SRRC frequency function
is significant, in that, it corresponds to the demodulator-
matched filter response used in the detection of the SRRC-
modulated waveform. On the other hand, the interest in the
noise bandwidth of the SRC is more academic in nature
because of its application as a windowing function. In either
event, the noise bandwidth of the SRRC and SRC frequency
functions is examined in Problem 44.

1.9.3.5 Effective Bandwidth of the Ideally Filtered rect
(t/T) Waveform In this case the effective bandwidth of
the ideal symbol modulation, characterized by rect(t/T), is
evaluated after passing through an ideal filter with frequency
response (1/B)rect(f/B) where B/2 is the one-sided or low-
pass bandwidth of the filter. The filter response is examined
in Section 1.3 and the normalized effective bandwidth of the
filtered symbol is characterized by Skolnik [71] as

βT =
πBT −sin πBT

Si πBT + cos πBT −1 πBT

ideally filtered rect t T waveform

(1.398)

This result is plotted in Figure 1.31 as a function of BT
where T is the symbol duration. From this plot it is evident
that as BT approaches infinity the standard deviation of the
range-delay estimate approaches zero resulting in an exact
estimate of the true range delay. A practical application is
to define a finite bandwidth which is sufficiently wide so
as not to degrade the symbol detection through intersymbol
interference.

Defining the excess bandwidth factor for the ideal filter as
α =B Rs =BT , where Rs = 1/T is the rect(t/T) symbol rate, in
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FIGURE 1.31 Normalized effective bandwidth for filtered
rect(t/T) waveform.
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SRC waveforms.
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terms of the excess bandwidth factor α of the raised-cosine
(RC) waveform, α = 1+ α 2. The corresponding range of
BT is 1/2 ≤ BT ≤ 1; this range of the filtered rect(t/T) effective
bandwidth from Figure 1.31 is plotted as the dashed curve in
Figure 1.30. The range of BT results in significant intersym-
bol interference and received symbol energy loss even under
the ideal conditions of symbol time and frequency correction.
However, under the same conditions, if the SRRC waveform
and matched filter responses are sufficiently long, the inter-
symbol interference and symbol energy loss will be negligi-
ble. At the maximum SRRC normalized effective bandwidth
of βT = 2.27, the filter time bandwidth product corresponds to
BT = 2.64 or a 32% increase with the filter bandwidth span-
ning the main signal spectral lobe and 16% of the adjacent
sidelobes. In other words, the one-sided filter bandwidth
spans 1.32 lobes and, referring to Appendix A, this results
in a performance loss of about 1.25 dB for BPSK waveform
modulation; for a loss of less than 0.3 dB the BT product
should be greater than 5 with a resulting effective bandwidth
of βT = 3.23 corresponding to a (3.23/2.27 − 1)100 = 42%
improvement relative to the best SRRC range-delay estima-
tion error; however, the required bandwidth is 150% wider.
The bandwidth and range-delay estimation accuracy are
design trade-off in the waveform selection.

1.10 MODEM CONFIGURATIONS AND
AUTOMATIC REPEAT REQUEST

The three basic modulator and demodulator configurations
are simplex, half-duplex, and full-duplex. The definition of
simplex communications involves communication in one
direction between a modulator/transmitter and a remote
receiver/demodulator. Examples of simplex communications
include broadcasting from radio and television stations or
from various types of monitoring devices. Half-duplex com-
munications is a broader definition including two-way com-
munications but only in one direction at a time. In these
cases, transceivers and modems are required at each loca-
tion. A common application of half-duplex operation is the
push-to-talk handheld radios. Full-duplex communications
provide the capability to communicate in both directions
simultaneously. In these cases the bidirectional communica-
tions may use identical transceivers and modems operating at
the same symbol rate; however, as is often the case, the com-
munication link in one direction may be designated as the
reverse channel and operated at a lower symbol rate. In either
event, the forward and reverse channels must operate at
different, noninterfering, frequencies.

The transfer of data is often performed using information
frames or packets, each containing a cyclic redundancy check
(CRC) code for error checking. If an error is detected the
receiving terminal requests that the frame be retransmitted,
otherwise an acknowledgment may be returned indicating

that the frame was received without error. These protocols
are referred to as automatic repeat request [72] (ARQ). The
ARQ protocol requires either a half-duplex or full-duplex
communication capability. The two commonly used varia-
tions of the ARQ protocol are generally referred to as idle-
repeat request (RQ) and continuous-RQ.* However, more
complex variations involving point-to-point and multipoint
protocols are also defined.†

The remainder of this section analyzes the idle-RQ proto-
col which is the simplest ARQ system to implement and eval-
uate, in that, when a data frame is transmitted a timer is
initiated and a new frame is transmitted only after acknowl-
edgment (ACK) that the current frame was received without
errors and/or the timer has not exceeded a maximum timeout
Tmax. However, the current frame is retransmitted if the
timer exceeds Tmax, a negative acknowledgment (NAK) is
received, indicating the receipt of an incorrect frame, or the
ACK or NAK code is received in error. The timer limit is
based on the information bits per frame, the bits in the
ACK and NAK codes, the date rates, and the expected
two-way link propagation delay through the media. The
idle-RQ implementation also has the advantage of requiring
less data storage compared to the continuous-RQ protocol
and the Go-back-N protocol [73]. However, the performance
cost of these advantages is that the end-to-end transmission
efficiency is lower and more sensitive to the link propagation
delay. The end-to-end transmission efficiency is defined as

ηtrans ≜
Rbf

Rbf
(1.399)

where Rbf is the average bit rate over the forward channel and
Rbf is the uninterrupted forward channel bit rate.

The idle-RQ is modeled as shown in Figure 1.32 with the
delays and other parameters defined in Table 1.12.

Using the parameters described earlier, the average time
associated with the transmission and acknowledgment is
described as

T =N Tdf + Tsf + 2Tp + Tcs + Tdr + Tsr + Tcp (1.400)

where N is the average number of frame repetition based on
the specified bit-error probability and the number of frame
information and CRC bits NB. The computation of N is based
on iid additive white Gaussian channel noise over all of the
NB bits. This provides for the probability of a correct message
to be expressed in terms of the discrete binomial distribution‡

given the bit-error probability Pbef; the result is expressed as

*Reference 72, Chapter 4, Protocol Basics.
†Reference 72, Chapter 5, Data Link Control Protocols.
‡See Table 1.42.
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Pcm = 1−Pbef
NB (1.401)

Therefore, using (1.401), the average number of transmis-
sions required to obtain an error-free frame with NB bits is
evaluated as

N =P−1
cm = 1−Pbef

−NB (1.402)

The idle-RQ transmission efficiency, as defined in
(1.399), is expressed as

ηtrans =
Tdf + Tsf

T
(1.403)

The number of forward channel bits per frame is
defined as∗

NB ≜ Tdf + Tsf Rbf (1.404)

With this definition, the transmission efficiency is
expressed explicitly in terms of NB, by substituting (1.400)
and (1.402) into (1.403) and, after some simplifications, the
efficiency is expressed as

ηtrans =
NB 1−Pbef

NB

NB +KB
(1.405)

where KB is defined as

KB ≜ 2Tp+ Tcr + Tdr +Tsc +Tcf Rbf (1.406)

The idle-RQ efficiency expressed in (1.405) is plotted in
Figure 1.33 for several one-way communication link ranges;
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FIGURE 1.32 Model of idle-RQ implementation.

TABLE 1.12 Idle-ARQ Parameter Definitions

Delay Value Description

Tdf (Nb + Ncrc)/Rbf Forward message duration
Tsf Nsf/Rbf Forward synchronization duration
Tp range/c Propagation delay between terminals
Tdr (Nbr+Nchk)/Rbr Reverse message duration
Tsr Nsr/Rbr Reverse synchronization duration
Tcs 0 Secondary terminal computational

delay (ms)a

Tcp 0 Primary terminal computational
delay (ms)a

Tmax >Tmin Idle-RQ maximum idle time (ms)
NB Variable Message bits: (Nb = info) +

(Ncrc = CRC)
Nsf 30 Forward synchronization bits
Rbf 100 Forward bit rate (kbps)
range Parameter One-way: 18.5, 200, 600, 35,800 (km)
c 3 × 108 Free-space velocity (m/s)
Nbrt 30 ARQ bits:(Nbr=ACK) +

(Nchk = parity)
Nsr 10 Reverse synchronization bits
Rbr = Rbf Reverse bit rate (kbps)
Pbef Parameter Forward channel bit-error probability:

10−4, 10−5

Pber = Pbef Reverse channel bit-error probability

aThe CRC and parity check codes provide instantaneous error decisions.
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FIGURE 1.33 Idle-RQ efficiency as function of bits/frame (Rbf =
100 kbps, Pbef = 10−5 solid, 10−4 dashed curve).

∗Inclusion of the synchronization bits Nsf = Tsf Rbf in the definition of NB is
optional.
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the solid curves correspond to Pbef = 10−5 and the dashed
curves correspond to Pbef =10

−4. The impact of the link prop-
agation delay (Tp) is significant and results in long idle
times for the ACK/NAK response. The performance is also
dependent on the link bit-error probabilities, the bit rate,
and the number of bits per frame.

The optimum number of forward channel bits per frame,
NB, corresponding to the maximum efficiency, ηtrans(max), is
evaluated by differentiating (1.405) with respect to NB and
setting the result equal to zero and then solving for NB(opt).
Following this procedure, the optimum NB, corresponding to
the maximum efficiency, is evaluated as the solution to the
quadratic equation

N2
B +NBKB−KB λ = 0 (1.407)

where λ = ln 1 1−Pbe . The solution to (1.407) is

NB opt = −
KB

2
+

KB

2

2

+
KB

λ
(1.408)

Using the example parameters, NB(opt) is listed in
Table 1.13 for the conditions shown in Figure 1.33.

Optimizing the message frame size using NB(opt) has lim-
ited practical appeal because the resulting maximum effi-
ciency may be unacceptable or because of the broad range
of NB over which the slope around ηtrans(max) is virtually
unchanged; this latter point is seen in Figure 1.33 correspond-
ing to Pbef = 10−5. Selecting NB from a range that satisfies an
acceptable minimum transmission efficiency is a preferable
criterion and operating at low bit-error probabilities offers
a wider range of selections.

1.11 WINDOWS

Windows have been characterized and documented by a
number of researchers [74, 75], and this section focuses on
the windows that are used in the simulation codes in the fol-
lowing chapters to enhance various performance objectives.
Windows are applied in radar and communication systems to

achieve a variety of objectives including antenna sidelobe
reduction, improvements in range resolution and target dis-
crimination, spectral control for adjacent channel interference
(ACI) reduction [76], ISI control, design of linear phase fil-
ters, and improvements in parameter estimation algorithms.
Windows can be applied as time or frequency functions to
achieve complementary results depending on the application.

Windows are described in terms of the discrete-time sam-
ples* w(n) where n is indexed over the finite window length
of N samples. When the window is applied as a discrete-
frequency sampled window the notation W(n) is used. The
discrete-time sampled rectangular window, defined, for
example, as w(n) = 1 for |n| ≤ N/2 and zero otherwise, is
typically used as the reference window by which the perfor-
mance measures of other windows are compared. The spec-
trum of the time-domain rectangular window is described in
terms of the sinc(x) function as S(f) = sinc(nf/N). The rectan-
gular window is also referred to as a uniformly weighted or
simply as an unweighted window.

Several window parameters [75] that are useful in select-
ing a window for a particular application are the gain, the
noise bandwidth, and the scalloping loss. The window volt-
age gain is defined as

Gv ≜
n

w n (1.409)

The noise bandwidth of the window follows directly
from the definition of the noise bandwidth defined by
Equation (1.46). In terms of the discrete-time sampling and
application of Parseval’s theorem, the normalized noise
bandwidth is expressed as

Bn =
n
w2 n

n
w n

2 (1.410)

In terms of Hertz, the bandwidth is given by

Bn Hz =
Bn

Tw
(1.411)

where 1/TwHz is the fundamental frequency resolution of the
window with duration Tw seconds. The theoretical normal-
ized noise bandwidth of the rectangular window is Bn = 1,
so the noise bandwidth is Bn = 1/Tw Hz. Harris [75] defines
the scalloping loss (SL) of a time-domain window, as the fre-
quency domain loss, relative to the maximum level, mid-way
between two maximum adjacent DFT outputs. The scallop-
ing loss is expressed as

TABLE 1.13 Optimum NB
a Corresponding to the Maximum

Efficiency Conditions in Figure 1.33

Pbef

Range (km)

18.5 200 600 35,800

1e−3 204 338 478 960
1e−4 697 1,232 1,889 7,589
1e−5 2,261 4,077 6,416 38,380
1e−6 7,208 13,079 20,757 143,125
1e−7 22,850 41,546 66,112 477,137

aNB in bits.

*The notation w(n) is a time-normalized sample corresponding to w(nTs)
where Ts is the sampling interval. Similarly, the frequency-domain samples
W(n) are normalized by fs/N = 1/NTs.
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SL≜
W π N

W 0
=

n
w n e− jπn N

n
w n

(1.412)

The characteristics of the various windows considered in
the following sections are summarized in Tables 1.14 and
1.15. The maximum sidelobes correspond to those adjacent
to the central, or main, lobe, and apply to the time (or fre-
quency) domains depending on whether the window is
applied, respectively, in the frequency (or time) domains.
The scalloping loss results from the frequency or time
domain ripple resulting from contiguous repetitions of the
window functions. Harris has compiled an extensive table
of windows and their performance characteristics.

The duration of the window and the manner in which it is
sampled is dependent upon the application. In the following
descriptions, the sampling is applied to windows that are sym-
metrical and asymmetrical about t = 0 as described by (1.413)
using the rect(x) window. The rect(x) window is a uniformly
weighted window* that is used to describe the window delay†

and duration Tw for all arbitrarily weighted windows.

w t =

rect
t−Td

Tw
−m−

1
2

asymmetrcial about t = 0

rect
t−Td
Tw

−m symmetrical about t = 0

(1.413)

The parameter Td introduces a delay and m is an integer
corresponding to a contiguous sequence of windows; in the
following analysis Td and m are zero. Considering N to be
an integer number of samples over the window duration with

the sampling interval of Ts = Tw/N seconds, the windows are
characterized, with a maximum value of unity, in terms of the
sample index n. In the following examples, the Bartlett or
triangular window‡ is used and the respective odd and even
values of N are 9 and 8. For odd integers N, the asymmetrical
triangle window is expressed as

w n N odd = 1−
n− N−1 2

N−1 2
0 ≤ n ≤N−1, asymmetrical

(1.414)

and the symmetrical triangle window is expressed as

w n N odd = 1−
n

N−1 2
n ≤ N−1 2, symmetrical

(1.415)

For the even integers, the asymmetrical triangle window is
expressed as

w n
N even
n = n + 5

=

2n + 1
N

0 ≤ n <N 2

2−
2n + 1
N

N 2 ≤ n ≤N−1

, asymmetrical

(1.416)

and the symmetrical triangle window is expressed as

w n N even
n= n + 5

=
1 +

1−2 n

N
−N 2 ≤ n < 0

1−
1 + 2 n

N
0 ≤ n ≤N 2−1

, symmetrical

(1.417)

Equations (1.414) through (1.417) are plotted in
Figure 1.34 with the circles indicating the window sampling
instances. The distinction between the symmetrical and
asymmetrical sampling is evident and must be applied com-
mensurately to the sampled data. In this regard, the windows
can be applied, for example, to the transmitted data-
modulated symbols for spectrum control, to the received data
symbol for detection, or to the FFT window for spectrum
evaluation. With minimum shift keying (MSK) modulation,
discussed in Section 4.2.3.4, a cosine window is applied to
each quadrature rail that are delayed, or offset, by one-half
symbol period, so the notion of symmetrical and asymmetri-
cal windows applies.§ The examples using an odd number of
window samples, shown in Figure 1.34a and b, include the
first and last window samples that are zero and increase

TABLE 1.14 Summary of Window Performance Results

Window
Max.
Sidelobe (dB) At ±fTw

Scalloping Loss (dB)
with Tw Zero-Padding

0 1 2 3

Rectangular −13.26 1.5 3.92 0.91 0.4 0.18
Bartlett −26.4 3.0 1.81 0.44 0.20 0.09
Blackman −58.2 3.6 1.09 0.27 0.12 0.05
Blackman–

Harris
−92.0 4.52 0.82 0.20 0.09 0.04

Hamming −42.6 4.5 1.74 0.43 0.19 0.09
Cosine k = 1 −23.0 1.89 2.08 0.51 0.22 0.10

k = 2 −31.5 2.4 1.41 0.35 0.15 0.07
k = 3 −39.3 2.83 1.06 0.26 0.12 0.05
k = 4 −46.7 3.33 0.85 0.21 0.09 0.04

Using N = 200 samples/window.

*Since the weighting is constant over Tw, the uniformly weighed window is
also referred to as an unweighted window.
†The application of a window to a sequence of received symbols prior to
spectral analysis requires the window to be appropriately delayed.

‡The triangular window is used to emphasize the sampling with respect to a
nonuniformly weighted window.
§Windows applied to transmitter symbols for spectral control are generally
referred to as symbol shaping functions and denoted as p(t).
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FIGURE 1.34 Examples of triangular window sampling.

TABLE 1.15 Summary of Window Performance Results

Bartlett Blackman Blackman–Harris Hamming

Samples (N) Bn Gv Bn Gv Bn Gv Bn Gv

1000 1.3357 0.4995 1.728 0.4196 2.006 0.3584 1.364 0.5395
500 1.335 0.499 1.730 0.419 2.008 0.358 1.365 0.539
200 1.340 0.498 1.735 0.418 2.014 0.357 1.368 0.538
100 1.347 0.495 1.744 0.416 2.025 0.355 1.373 0.535
50 1.361 0.490 1.762 0.412 2.045 0.352 1.383 0.531
25 1.394 0.480 1.799 0.403 2.088 0.344 1.403 0.522
12 1.467 0.455 1.884 0.385 2.186 0.329 1.450 0.502

Cosine k = 1 Cosine k = 2 Cosine k = 3 Cosine k = 4

1000 1.235 0.636 1.502 0.4995 1.737 0.424 1.946 0.3746
500 1.236 0.635 1.503 0.499 1.738 0.4236 1.948 0.3742
200 1.240 0.633 1.507 0.498 1.744 0.422 1.954 0.373
100 1.246 0.630 1.515 0.495 1.752 0.420 1.964 0.371
50 1.260 0.624 1.531 0.490 1.770 0.416 1.984 0.368
25 1.290 0.610 1.562 0.480 1.807 0.407 2.026 0.360
12 1.364 0.580 1.636 0.458 1.892 0.389 2.121 0.344

Noise bandwidth and voltage gain.
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symmetrically to the peak value. Although these cases are
visually appealing, the sampled windows in Figure 1.34c
and d use an even number of samples per window and result
in same performance commensurate with the Nyquist sam-
pling rate. Furthermore, using an even number of samples
is suitable for analysis using the efficient FFT.

The case for using an even number of samples can be
made based on the down-sampled output of a high sample
rate analog-to-digital converter. For example, relative to a
received data-modulated symbol, the down-sampled, or
rate-reduced, output is the average symbol amplitude of
the down-sampled interval from nTs to (n + 1)Ts, so the
window weighting should be applied to the point mid-
way between the two samples as is often done using rectan-
gular integration. This is accommodated by the even num-
ber of samples over the window interval shown in
Figure 1.34c and d, with the understanding that the data
sample at n = n + 0.5 results from the linear interpolation
of the data between sample n and n + 1. In addition to
applying the correctly aligned window with interpolated
data samples, this sampling arrangement also removes
the delay estimation bias thereby improving the symbol
tracking performance. Of course, the roles of the odd and
even sampling can be reversed; however, it is convenient
to use an even number of samples per symbol into the
detection-matched filter for symbol tracking and the detec-
tion of quadrature symbol offset modulations. However, as
long the Nyquist sampling criterion is satisfied the symbol
information can be extracted in either case. In the following
sections, the spectrums of the various windows are evalu-
ated using both symmetrically and asymmetrically sampled
windows with an odd number of samples. The reason for
this choice is simply based on esthetics or eye appeal which
is particularly noticeable when only a few number of sam-
ples is used.

1.11.1 Rectangular Window

In the time domain, the rectangular window is a uniformly
weighted function described by the rect(t/Tw) function
with amplitude equal to unity over the range |t/Tw| ≤ 1/2
and zero otherwise. Expressing the time in terms of the
discrete samples t = nTs, where Ts is the sampling interval,
results in the sample range |n| ≤ (N − 1)/2 for the symmetrical
window and 0 ≤ n ≤N − 1 for the asymmetrical window,where
N = Tw/Ts is the total number of samples per window.

The spectrum of the rectangular window is described in
terms of the sinc(fTw) function and, upon letting f = nδf
and δf = Δf/L, where Δf = 1/Tw is the fundamental frequency
resolution of the window, the spectrum is expressed as

W n =
sin πn L

πn L
= sinc

n

L
(1.418)

Defining the frequency increment in this way allows for
L samples per spectral sidelobe. The Fourier transforms
relationship between the time and frequency domains is dis-
cussed in Section 1.2. Special applications involving the rect
(x) window in the time and frequency domains are discussed
in Sections 1.11.4, 4.4.1, 4.4.4, and 4.4.5.

1.11.2 Bartlett (Triangular) Window

The sampling of the Bartlett or triangular window is dis-
cussed earlier under a variety of conditions that depend
largely on the application and signal processing capabilities.
The Bartlett window is shown in Figure 1.35 for N = 21 sam-
ples per symbol. Considering the frequency dependence of
the spectral attenuation, expressed as sinc2(fTw/2), the spec-
tral folding about the Nyquist band fN = fs/2 = N/2Tw is neg-
ligible for N = 201 and the peak spectral sidelobes are
virtually identical to the theoretical Bartlett spectrum over
the range of frequencies shown in Figure 1.36b, although
the sidelobe level at fTw = 29 is −65.8 dB and the theoretical
value is −66.5 dB. Furthermore, upon close examination, the
peak values of the sidelobe are progressively shifted to the
right with increasing fTw. These observations are more evi-
dent for the case involving N = 21 where the first sidelobe
level is −26.8 dB (1 dB higher that theory) and the sidelobe
at fTw = 9 is significantly skewed to the right with a level 6 dB
higher than the theoretical value. The sidelobe skewing is a
direct result of the odd symmetry of the folded spectrum
about 2kfTw : k = 1, 2, … which does not occur when N is
even. However, with even values of N, the sidelobes are still
altered by the folded spectral sidelobes. This phenomenon is
a direct result of the sampling and the implicit periodicity of
the window when using the discrete Fourier transform. These
observations do not alter the utility of windows for spectral
control; however, they may influence the spectral detail in
applications involving spectral analysis.
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FIGURE 1.35 Bartlett window with N = 21 samples.
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1.11.3 Cosine Window

The sidelobes of the window spectrum can be reduced by
providing additional shaping or tapering of the window func-
tion at the expense of a wider main spectral lobe that results
in a higher noise bandwidth. For example, the rectangular
window has an abrupt change in amplitude leading to a first
sidelobe level of −13 dB, a spectral roll-off proportional to
1/f 2 (6-dB/octave), and a noise bandwidth of 1/Tw Hz. On
the other hand, the Bartlett window has an abrupt change
in the slope of the amplitude leading to a first sidelobe level
of −26.9 dB, a spectral roll-off of 1/f 4 (12-dB/octave), and a
noise bandwidth of 1.336/Tw. The cosine window results in
the k-th derivative of the amplitude, that is, the slope of the
amplitude at the edges of the window is zero resulting in even
greater spectral sidelobe roll-off.

The cosine window is characterized as

w n = cosk ϕn + δ1 (1.419)

where δ1 = 0 when n ≤ N−1 2 and δ1 = −π/2 when
n = 0,…, N − 1; this corresponds to a sink(ϕn) window func-
tion. The phase function in (1.419) is expressed as

ϕn =
π

N−1
n + δ0 n ≤ N−1 2 (1.420)

where δ0 = 0 when n odd and δ0 = 0.5 when n even.
The cosine window is shown in Figure 1.37 for n > 0 and k =
1, …,4. In the following subsections, the cosine windows for
various values of k are described for the conditions δ0 = δ1 = 0.

The gain for the finite sampled cosine window with k = 1
and N samples per window is given by

Gv =
2
π

N−1
N

(1.421)

and the normalized noise bandwidth is given by

Bn =
π2

8
N

N−1
(1.422)

Gv and Bn are recorded in Table 1.15 for various values of N.
Equations (1.421) and (1.422) approach their theoretical lim-
its as N ∞.

1.11.3.1 Cosine Window (k = 1) With k = 1 the cosine
window is expressed as

w n = cos ϕn (1.423)

This window is used as the symbol weighting function for
MSK modulation and, in terms of the window duration Tw,
the theoretical spectrum is given by
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W f =
4Tw
π

cos πfTw

1− 2fTw
2 (1.424)

The spectrum shown in Figure 1.38a is based on computer
simulation with N = 200 samples per window.

1.11.3.2 Cosine-Squared (Hanning)Window (k = 2) The
cosine-squared window with k = 2 is referred to as a Hanning
window [74]. Applying trigonometric identities, this window
is expressed as

w n = 0 5 + 0 5cos 2ϕn (1.425)

and the spectrum is shown in Figure 1.38b for N = 200 sam-
ples per window.

1.11.3.3 CosineWindow (k = 3 and 4) Applying trigono-
metric identities, the cosine windows for k = 3 and 4 are
expressed as

w n = 0 75cos φn + 0 25cos 3φn k = 3 (1.426)

and

w n = 0 375 + 0 5cos 2ϕn + 0 125cos 4ϕn k = 4

(1.427)

The spectrums for these two cases are shown in
Figure 1.38c.

1.11.4 Temporal Raised-Cosine (TRC) Window

The temporal raised-cosine (TRC) window applies a cosine
shaping function symmetrically about each end of the
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rectangular window function, rect(nΔt/Tw), as shown in
Figure 1.39. In this case, the integer n corresponds to the sam-
ples N over the interval Tw such that N = Tw/Δt.

The TRC window is expressed as

w n =
1 n <

1−α
2

1
2

1−sin
π

α
n −

1
2

1−α
2

≤ n ≤
1 + α
2

(1.428)

where n = t/Tw = nΔt/Tw is the normalized sample index and
α is a design parameter limited to 0 ≤ α ≤ 1. The TRCwindow
is applied to the phase function of PSK-modulated wave-
forms in Sections 4.2.8 and 4.4.3.9 to improve the waveform
spectral containment while maintaining a constant signal
amplitude; in this application α is referred to as the excess
phase factor.

Letting m = f/Tw, the spectrum of the TRC amplitude win-
dow is evaluated as

W m =
sin πm

πm

cos απm

1− 2αm 2 (1.429)

1.11.4.1 Spectral Raised-Cosine Window The raised-
cosine window when applied in the frequency domain is
referred to as the spectral RC (SRC) window and the param-
eter α is referred to as the excess bandwidth. With m = fTw,
the SRC frequency response is expressed as

W m =
Tw m <

1−α
2

Tw
2

1−sin
π

α
m −

1
2

1−α
2

≤ m ≤
1 + α
2

(1.430)

and upon letting n = t/Tw, the SRC impulse response is eval-
uated as

w n =
sin πn

πn

cos απn

1− 2αn 2 (1.431)

This response has indeterminate solutions of the form 0/0
at n = 0 and 1/(2α) that are evaluated as w 0 = 1 and

w
1
2α

=
α

2
sin

π

2α
(1.432)

Using these results, (1.431) is plotted in Figure 1.40 for
several values of the excess bandwidth factor. The SRRC
window, associated with spectral shaping of a modulated
symbol, is discussed in detail in Section 4.3.2. In this appli-
cation the symbol duration is T = Tw and the transmitted
symbol and demodulator-matched filter spectrums have a
square-root RC, or simply root RC, frequency response of

W n . The matched filter output results in the SRC impulse
response shown in Figure 1.40 with symbol spacing corre-
sponding to integer values of n that results in zero ISI
n 0. With an AWGN channel and optimum matched filter

sampling the demodulator performance corresponds to max-
imum-likelihood detection.

1.11.5 Blackman Window

The Blackman window uses three terms to provide more
tapering of the window at the expense of a narrower time
response and a wider noise bandwidth. The Blackman
window is expressed as

w n = 0 42−0 5cos ϕn + 0 08cos 2ϕn (1.433)

where the phase function in (1.433) is expressed as

ϕn =
2π
N−1

n 0 ≤ n ≤N−1

=
2π
N−1

n+ N 2 − N 2 ≤ n ≤ N 2

(1.434)
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This definition of the phase function results in a symmet-
rical window for all values of N with indexing over ± N 2
as shown in Figure 1.41a for N = 21. The spectrum of the
Blackman window corresponding to N = 200 samples per
window is shown in Figure 1.41b.

1.11.6 Blackman–Harris Window

The Blackman–Harris window is expressed as

w n = co−c1cos ϕn + c2 cos 2ϕn −c3 cos 3ϕn (1.435)

Harris [75] performed a gradient search on the coefficients
ci to minimize spectral sidelobe level and the results are given
in Table 1.16 for a three- and four-term window.

The Blackman–Harris window, as formulated by
Harris, divides the phase function by N that results in an
asymmetrical window. To provide a symmetrical window
for all N, the phase function ϕn is divided by N − 1 and
expressed as

ϕn =
2π
N−1

n 0 ≤ n ≤N−1

=
2π
N−1

n+ N 2 − N 2 ≤ n ≤ N 2

(1.436)

The spectrum of the 4-Term 92 dB Blackman–Harris win-
dow is shown in Figure 1.42 for N = 200 samples per symbol
and L = 40 samples in the bandwidth 1/Tw Hz.

The coefficients for the Blackman–Harris function, as
given in Table 1.16, do not result in window values of zero
for the first and last sample resulting in a window pedestal of
6 × 10−5; this is a direct result of the coefficients not summing
to zero at the window edges. The pedestal plays a critical
role in the control of the sidelobes and noise bandwidth
and windows with more dramatic pedestals are examined
in the following sections.
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FIGURE 1.42 Blackman–Harris window spectrum (N = 200,
92 dB, 4-Term).

TABLE 1.16 Blackman–Harris
Window Coefficientsa

Coefficient
3-Term
67 dB

4-Term
92 dB

c0 0.42323 0.35875
c1 0.49755 0.48829
c2 0.07922 0.14128
c3 0.0 0.01168

aHarris [75]. Reproduced by permission of
the IEEE.
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FIGURE 1.41 Blackman window and spectrum.
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1.11.7 Hamming Window

The Hamming window is expressed as

w n = 0 54−0 46cos ϕn (1.437)

where the phase function ϕn is expressed as

ϕn =
2π
N−1

n 0 ≤ n ≤N−1 (1.438)

The window is shown in Figure 1.43a with indexing
over the range 0 ≤ n ≤ N − 1 and the spectrum is shown in
Figure 1.43b.

1.11.8 Kaiser (Kaiser–Bessel) Window

The Kaiser window, also referred to as the Kaiser–Bessel
window, is expressed as

w n =

Io πβ 1− n
N 2

2

Io πβ
n ≤N 2 (1.439)

where Io(x) is the modified Bessel function of order zero
and β is the time-bandwidth product equal to TwB
where Tw is the window duration and B is the corresponding
baseband bandwidth. The Kaiser window is shown in
Figure 1.44a, using N = 51 samples per window, as a
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symmetrical window for β = 2, 3, and 4; the range −N/2 ≤ n ≤
N/2 corresponds to –Tw/2 ≤ t ≤ Tw/2. The corresponding spec-
trum of the Kaiser window is shown in Figure 1.44b.

1.12 MATRICES, VECTORS, AND RELATED
OPERATIONS

A matrix is a convenient way to describe complicated linear
systems and is used extensively in the analysis of control
systems. For example, a large linear system is generally
described in terms of the inputs xj, outputs yi, and the system
coefficients aij as

y1 = a11x1 + a12x2 + + a1nxn

y2 = a21x1 + a22x2 + + a2nxn

ym = am1x1 + am2x2 + + amnxn

(1.440)

and using matrix and vector notations (1.440) is described as

y1

y2

ym

=

a11 a12 a1n

a21 a22 a2n

am1 am2 amn

x1

x2

xn

(1.441)

where the 1 by n inputs xj, and the 1 by m outputs yi are
described by vectors and the coefficients aij are described
by them by nmatrix. The notation of anm by nmatrix refers,
respectively, to the number of rows and columns of the
matrix. The linear system may include time-varying inputs,
outputs, and coefficients as found in control systems and
time-varying parameter estimation and tracking applications.
The following descriptions of matrices and vectors are intro-
ductory and targeted to the description of adaptive systems
in Chapter 12. More in-depth discussions on the subject
and applications are given by Derusso, Roy, and Close
[77], Haykin [78], Sage and White [79], and Gelb [80].

1.12.1 Definitions and Types of Matrices

• Am × nmatrix A containsm rows and n columns of ele-
ments aij and is denoted as

A=

a11 a1n

am1 amn

(1.442)

• A diagonal matrix (Λ) is a m ×m square matrix with
aij = 0: i j, otherwise, the elements on the principal
diagonal are identified as aii with Λ = diag(aii) i.

• The unit matrix (I) is similar to the diagonal matrix with
aij = 0: i j, and aii. = 1.

• A null matrix or zero matrix (O) is a matrix for which
all of the elements are zero.

• A symmetric matrix is a square matrix of real elements
if A = AT, that is, aji = aij i,j.

• A skew matrix is a square matrix of real elements if A =
−AT, that is, aij = −aji i,j.

• A nonsingular matrix A has an inverse A−1.

• A complex matrix is denoted as Ã and has complex
elements aij = acij + jasij where acij and asij denote the
respective real and imaginary values of the complex
elements. Conjugation the complex matrix is denoted
as Ã∗ with elements aij = acij− jasij.

The transposition of the matrix interchanges the row and
columns and is denoted with the superscript T. For example,
the transpose of the matrix A is the n ×m matrix denoted as

AT =

a11 am1

a1n amn

(1.443)

The Hermitian matrix is a complex matrix with the ele-
ments below the principal diagonal equal to the complex
conjugate of the those about the principal diagonal; satisfying
the conditions (A∗)T = A+ = AH where the superscripts + and
H denote the complex conjugate transposition. The super-
script + generally denotes complex transposition and H is
used to emphasize the Hermitian complex transposition.

The order, or rank, of an (m × n) matrix is denoted as
m-by-n and the order, or rank, of the square (m ×m) matrix
is denoted as m.

1.12.2 The Determinant and Matrix Inverse

The determinant [81] of an m ×m square matrix A is denoted
as |A| and defined in terms of the cofactors, Aij, of A as

A =
m

i= 1

aijAij =
m

j= 1

aijAij (1.444)

The cofactors are defined as

Aij = −1 i+ jMij (1.445)

where Mij is the determinant of the minor matrix of the
element aij. The m ×m m =m−1 minor matrix of aij
is the matrix formed by the m rows and columns of A
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excluding the row and column containing aij. For example,
considering the 4 × 4 square matrix A, the 3 × 3 minor matrix
A of the element a32, and the determinant M32 are expressed
in (1.446) as

A=

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

, A =

a11 a13 a14

a21 a23 a24

a41 a43 a44

, M32 = A

(1.446)

Therefore, using (1.446), the cofactor A32 is evaluated as
A32 = (−1)5M32. Following the evaluation of the remaining
m−1 cofactors Ai,2: i = 1,2,4 or the cofactors A3j: j = 1,3,4,
the determinant |A| is evaluated using, respectively, the first
or second equality in (1.444).

For square matrices of order ≤ 3, the determinant can be
computed in terms of the elements aij as expressed, for exam-
ple, in the 3 × 3 matrix described in (1.447). In this example,
the determinant is formed by summing the n = 3 products of
the elements parallel to the principal diagonal elements
(a11,a22,a33) and subtracting the n = 3 products of the ele-
ments parallel to the diagonal elements (a13,a22,a31). The
three positive products are indicated by solid arrows pointing
to the diagonal elements parallel to the principal diagonal and
the three negative products are indicated by dashed arrows
pointing to the diagonal elements parallel to the complement
of the principal diagonal. In both cases, the elements below
the diagonals are wrapped around to form the three element
products. In general, this procedure does not give the correct
results for orders > 3.

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

=
a11a22a33 + a12a23a31 + a13a21a32

−a13a22a31−a12a21a33−a11a23a32

(1.447)

Determinants are defined only for square matrices and
if |A| = 0 the matrix A is referred to as a singular matrix,
otherwise, A is nonsingular. The inverse of a nonsingular
n × n matrix A, with elements aij, is expressed as

A−1 =
Aji

A
(1.448)

where the matrix [Aji] is defined as the adjoint of the matrix
A. Considering the n × n matrix of cofactors [Aij] of the
matrix A, with the cofactor of each element aij evaluated
using (1.445), the adjoint matrix is the transpose of the
matrix [Aij] so that

Aji = Aij
T

(1.449)

Premultiplication of A−1 by A results in the unit matrix,
that is, AA−1 = I

1.12.3 Definition and Types of Vectors

A vector is an m × 1 column matrix with elements ai and is
denoted as

a=

a1

am

(1.450)

A complex vector is denoted as ã with complex elements
ak = ack ± jask where ac and as denote the real and imaginary
values of the complex element. The transposition of the
matrix a is the 1 ×m complex row vector aT. Conjugation
and conjugate transposition are denoted by the respective
superscripts ∗ and +.

1.12.4 Matrix and Vector Operations

Addition of two matrices of the same order (m × n) is

C = A + B : The elements of C are cij = aij + bij

Multiplication of the two matrices must conform to the
following rule: [m × n][ n ×m ] = [m ×m ] where the inner
dimension n must be identical.

y = Ax : Matrix postmultiplication by a vector results in
a [m × n][n × 1] = [m × 1] vector

The element multiplication is yi =
n

k
aikxk i= 1,…,m

y = xTA : Matrix premultiplication by a vector results in
a [1 × n][n ×m] = [1 ×m] vector.

The element multiplication is yi =
m

k
akixk i= 1,…,n

C = AB : Matrix multiplication results in a m× ℓ
ℓ × n = m× n matrix

The element multiplication is cij =
ℓ

k
aikbkj i= 1,m;

j= 1,…,n

In general, multiplication is not communicative AB BA

A(BC) = (AB)C : Associative

A(B + C) = AB + AC : Distributive

Multiplication by diagonal matrix D

C = AD : Postmultiplication of a real (m ×m) matrix A
by D results in a diagonal matrix C with the diagonal
element of A scaled by those of D; the elements of C
are cij = aijdjj : i,j = 1, …, m

C =DA : Premultiplication of a real (m ×m) matrix A by
D results in the same diagonal matrixC; the elements ofC
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are cij = diiaij : i,j = 1,…, m. In this case multiplication is
communicative.

Multiplication by unit matrix I

IA = A : Multiplication of a (m ×m) matrix A by I does
not alter the matrix A.

IA = AI : Multiplication by I is communicative.

Transposition of AB

C = (AB)T = ATBT

Scalar, or inner, product of two (m × 1) complex vectors
x and y

yTx∗= x + y =
m

i
yix

∗
i

xTy∗= y + x =
m

i
xiy∗i

are complex values and yTx∗ xTy∗

Scalar product of two (m × 1) real vectors x and y

yTx =
m

i
yixi is a real scalar value and yTx=

xTy =
m

i
xiyi

Orthogonality of two vectors is defined if their scalar
product is zero.

Length of a complex vector x is defined as magnitude,
denoted as ||x||, of the inner product

x =
m

i
xix∗i =

m

i
xi

2 (1.451)

Outer, or dyadic, product of two (m × 1) and (1 × n)
complex vectors x and y forms an (m × n) complex

matrix C = xy + with elements cij =
n

j
xiy

∗
j i = 1,…,m.

The autocorrelation matrix of a complex vector is
computed as the outer product.

Differentiation of Complex Matrices: Differentiation
of a complex matrix Ã(t) results in the complex
matrix C = d dt A t with elements evaluated as cij =
dacij dt ± j dasij dt .Thedifferentiationof sumsandpro-
ducts of matrices is evaluated as

d

dt
A t +B t =

d

dt
A t +

d

dt
B t (1.452)

d

dt
A t B t =

d

dt
A t B t +A t

d

dt
B t (1.453)

Differentiation of a complex vector follows by consider-
ing the vector as a single column matrix. Therefore,
differentiation of real matrices and vectors is identical with
aij = 0.

Differentiation of quadratic transformation with the
matrix Q t expressed as

Q t = xH t A t x t (1.454)

where the elements of the (m ×m) complex matrix Ã(t)
and the complex (m × 1) vector x t are functions of t.
The derivative of Q t is evaluated as

dQ t

dt
=

d

dt
xH t A t x t + xH t

dA t

dt
x t

+ xH t A t
d

dt
x t

(1.455)

For a real matrix A(t) and vector x(t), the matrix Q(t) is
symmetric and the derivative of the quadratic function
Q(t) simplifies to

dQ t

dt
= 2

d

dt
xT t A t x t + xT t

dA t

dt
x t (1.456)

Bilinear transformation with the real (m × m) matrix B(t),
expressed in terms of the (m × 1) real vectors x(t) and y(t),
is evaluated as

B t = xT t A t y t (1.457)

Differentiation of B(t) with respect to t is evaluated as

dB t

dt
=

d

dt
xT t B t y t + xT t

dB t

dt
y t

+ xT t B t
d

dt
y t

(1.458)

1.12.5 The Quadratic Transformation

The quadratic matrix Q is similar to the bilinear matrix,
expressed in (1.457), with the vector y = x. The following
description is based on the (n × n) correlation matrix*

R=E uuH (1.459)

where ũ is an (n,1) complex vector of arbitrary data and ũH

is the complex conjugate transpose† of ũ. The n columns
of the matrix Q represent the (n,1) characteristic vectors of

*In Chapter 12 the data vector is denoted as x and represents the discrete-time
samples of a stationary stochastic process andw is used to denote an arbitrary

nonzero vector with y =wHx.
†The Hermitian transpose ũH is an alternate notation to u+ denoting the com-
plex conjugate transpose.
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the correlation matrix R that is transformed to the diagonal
matrix Λ as

QHRQ =Λ (1.460)

The diagonal elements of Λ are the characteristic values∗

of the matrix R.
The derivation of (1.460) follows the work of Haykin [82]

and is based on the linear transformation of the (n,1) complex
vector x to the vector λx using the transformation

Rx= λx (1.461)

where λ is a constant. Equation (1.461) can be expressed as
R−λI x=Owhich has nontrivial solutions with x 0, iff the
determinant of R − λI is zero, that is,

R−λI det = 0 (1.462)

Equation (1.462) is the characteristic equation of the
matrix R and has n solutions corresponding to the λi charac-
teristic values or roots of (1.462). In general, the characteris-
tic values are distinct; however, for the correlation matrix R,
with the complex vector ũ based on samples of a discrete-
time weakly stationary stochastic process, the mean-square
value of the scalar y = xHu is evaluated as

E y 2 = xHRx ≥ 0 (1.463)

Equation (1.463) corresponds to a nonnegative definite
quadratic form and Haykin points out that the equality
condition rarely applies in practice so that (1.463) is almost
always positive definite.† Consequently, in these cases, char-
acteristic values are real with and λi > 0 i and, for the weakly
stationary stochastic process, the characteristic values are
equal with λi = σ2 i.

Referring to (1.461), the n solutions to the characteristic
equation are determined using

Rxi = λixi (1.464)

where xi are the characteristic vectors corresponding to the
characteristic values λi. Based on the correlation matrix R,
it can be shown [83] that the characteristic values are all real
and nonnegative and the characteristic vectors are linearly
independent and orthogonal to each other. A corollary to
the proof of independence is that when the characteristic
value is multiplied by a scalar constant the characteristic

vectors remain independent and orthogonal. This allows
for the independent scaling of all characteristic values so that

xi
Hxj =

1 i= j

0 i j
(1.465)

resulting in an orthonormal set of characteristic vectors
satisfying (1.464). Recognizing that the matrix Q is a
column of characteristic vectors with Q= x1 ,x2 ,…,xn
and Λ is a diagonal matrix of characteristic values
Λ = diag λ1,λ2,…,λn , (1.464) is expressed as

RQ =QΛ (1.466)

and the orthonormal matrix Q satisfies the relationship
QHQ = I, therefore, QH = Q−1 and premultiplying both sides
of (1.466) by QH results in (1.460) as stated. Also, by post-
multiplying both sides of (1.466) the correlation matrix is
expressed as

R=QΛQH =
n

i

λixixi
H (1.467)

Haykin states that there is no best way to compute the
characteristic values and suggest that the use of the character-
istic equation should be avoided except for the simple case
involving the 2 × 2 matrix. However, a number of authors
[77, 78, 84–89] describe computationally efficient methods
for computing the characteristic values.

Consider the quadratic form Q=wHRw discussed in
Section 12.3, where w is a (m × 1) complex vector with ele-
ments wi =wci + jwsi and R= E xx∗ is a (m × m) Hermitian
matrix with elements rji = r∗ij: i j corresponding to the auto-
correlation matrix of the (m × 1) complex vector x. The fol-
lowing derivatives with respect to the complex vector w are
evaluated as:

d

dw
Q =

d

dw
xHRw= 2Rw (1.468)

d

dw
cHw= 0 (1.469)

and

d

dw
wHc= 2c (1.470)

where c is a (m × 1) complex vector. The solutions to the
derivative of the quadratic form with respect to the vector
w are used in Chapter 12 in the analysis of adaptive systems.
The proofs of (1.468), (1.469), and (1.470) are given by
Haykin [78].

∗The characteristic vectors and values are also referred to as the eigenvectors
and eigenvalues.
†A quadratic form is positive definite iff the characteristic values of R are all
positive.
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1.13 OFTEN USED MATHEMATICAL
PROCEDURES

This section outlines the processing and formulas encoun-
tered in several of the chapters throughout this book.

1.13.1 Prime Factorization and Determination
of Greatest Common Factor and Least
Common Multiple

Prime factors are used in various coding applications where
polynomials are used as code generators. The greatest com-
mon factor (GCF) and least common multiple (LCM) are
often used where signal processing sample-rate changes are
required to improve performance or reduce processing com-
plexity. They are also used in the implementation of mixed
radix fast Fourier transforms. An integer p is prime if p
±1 and the only divisors are ±p and ±1. The procedures
involved in determining the prime factors of a number and
the GCF and LCM between two or more numbers are simply
given by way of the following examples. The algorithms are
easy to generalize and implement in a computer program.

1.13.1.1 Prime Factors of Two Numbers The following
examples, presented in Table 1.17, demonstrate the procedure
for determining the prime factors of the numbers 120 and 200.
The results are used in the following two examples to deter-
mine the GCF and LCM. The prime factors of a number are
determined, starting with repeated division of the number by 2.

1.13.1.2 Determination of the Greatest Common
Factor This example outlines the procedures in determin-
ing the GCF of the two numbers 120 and 200 using the prime
factors listed in Table 1.17; inclusion of more than more than
two numbers is straightforward. The GCF is also referred to
as the greatest common divisor (GCD). The GCF (or GCD)
between 120 and 200 is determined as the product of the
prime factors taken the minimum number of times that they
occurred in any one of the prime factorizations, that is,

GCF 120,200 = 23 × 30 × 51 = 8 × 1 × 5 = 40

1.13.1.3 Determination of the Least Common Multiple
This example outlines the procedures in determining the
LCM between 120 and 200. In this case, the LCM is deter-
mined as the product of the prime factors taken the maximum
number of times that they occurred in any one of the prime
factorizations, that is,

LCM 120,200 = 23 × 31 × 52 = 8 × 3 × 5 = 600

1.13.2 Newton’s Method

A transcendental equation involves trigonometric, exponen-
tial, logarithmic, and other functions that do not lend them-
selves to solutions by algebraic means. Newton’s method
[90] of solving transcendental equations is used extensively
in arriving at solutions to problems characterized by nonalge-
braic equations. The method provides a rapid and accurate
solution to determine the value of functions having the form
f(x) = h(x), by finding the solution of the auxiliary function g
(x) = f(x) – h(x) = 0. The solution begins by starting with an
estimate xo of the solution and performing iterative updates to
the estimate, described as

xi+ 1 = xi−
g xi
g xi

i= 0,… (1.471)

where g (xi) = ∂g(xi)/∂xi. The evaluation is terminated when
f xi+ 1 −h xi+ 1 ≤ ε where ε is an acceptable error in the
solution and the corresponding xi+1 is the desired value of
x satisfying f(x) h(x).

1.13.3 Standard Deviation of Sampled Population

When a finite number of samples n comprises the entire pop-
ulation, the standard deviation is computed as

σ =
1
n

x2−
1
n

x
2

(1.472)

where the summation is over the entire population. However,
when the samples n are a subset of the entire population, the
standard deviation is computed as

s =
1

n−1
x2−

n

n−1
1
n

x
2

(1.473)

where the summations are over the sample size n of the
subset.

TABLE 1.17 Example of Prime
Factorization

Using 120 Using 200

120 2 = 60 200 2 = 100
60 2 = 30 100 2 = 50
30 2 = 15 50 2 = 25
15 3 = 5 25 5 = 5
5 5 = 1 5 5 = 1
The prime factors are:
2 × 2 × 2 × 3 × 5 2 × 2 × 2 × 5 × 5
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1.13.4 Solution to the Indeterminate Form 0/0

The frequently encountered functional form

h x =
f x

g x
(1.474)

evaluated at x = a often results in the indeterminate form 0/0
resulting from f(a) = g(a) = 0. Application of L’Hospital’s
rule of repeated differentiation of f(x) and g(x) and evaluating
the result as

h x = lim
x a

f n x

g n x
(1.475)

often leads to a solution for n = 1 or 2. Solutions to other inde-
terminate forms involving ∞/∞, 0∗∞, ∞−∞, 00, ∞0, 0∞,
and 1∞ may also be found using similar techniques [90, 91].

1.14 OFTEN USED MATHEMATICAL
RELATIONSHIPS

In this section a number of mathematical relationships are
listed as found in various mathematical handbooks. The
references frequently referred to are as follows: Burington
[92], Korn and Korn [93], Milton and Stegun [94], and
Gradshteyn and Ryzhik [46].

1.14.1 Finite and Infinite Sums

1
M

m = 1

m =
M M + 1

2
summation of integers

2
M

m = 1

2m−1 =M2 summation of odd integers

3
M

m = 1

2m=M M + 1 summation of even integers

4
M

m = 1

m2 =
M M + 1 2M + 1

6

5
M−1

m= 0

xm =
1−xM

1−x
x < 1 finite geometric series

6
∞

m = 0

xm =
1

1−x
x < 1 infinite geometric series

7
∞

m = 0

mxm =
x

1−x 2 x < 1

8
M

m= 0

sin mα+ β =
sin

M + 1
2

α

sin α 2
sin

M

2
α+ β

M = positive integer

9
M

m= 0

cos mα+ β =
sin

M + 1
2

α

sin α 2
cos

M

2
α+ β

M = positive integer

10 1 + 2
M

m= 1

cos mα =
sin M + 1 2 α

sin α 2

11
M

m= 0

ej mα+ β =
sin

M + 1
2

α

sin α 2
e
j

M

2
α+ β

M = positive integer

12
M

m= −M

e ± jmα =
sin M + 1 2 α

sin α 2

13 1 ± x m = 1 ±mx +
m m−1

2
x2 +

+ ± 1 nm m−1 … m−n+ 1
n

xn + m> 0

14 1 ± x −m = 1 mx+
m m+ 1

2
x2 +

+ ± 1 nm m+ 1 … m+ n−1
n

xn + m> 0

1.14.2 Binomial Theorem and Coefficients

1 x ± y m = xm ±
m

1
xm−1y+

m

2
xm−2y2 ±

± 1 m−2
m

m−1
xym−1 ± 1 m−1

m

m
ym

=
m

i= 0

± 1 i
m

i
xm− iyi

2 1 ± y m = 1−
m

i= 1

± 1 i+ 1 m

i
yi

3
m

n
= mCn =

m

m−n n
coefficient evaluation

4
m

n
=

m

m−k
coefficient symmetry

5
m

n = 0

m

n
= 2m coefficient summation

6
m

n= 0

m

n
−1 n = 0 alternating sign coefficient summation
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7

m−1

n = 1

m−1

n

1
n + 1

=
1
m

m

n= 2

m

n

coefficient summation identity

1.14.3 Trigonometric Identities

1 sin 2α = 2sin α cos α

2 cos 2α = 2cos2 α −1 = 1−2sin2 α = cos2 α −sin2 α

3 sin2 α =
1
2
1−cos 2α

4 sin3 α =
1
4
3sin α −sin 3α

5 sin4 α =
1
8
3−4cos 2α + cos 4α

6 cos2 α =
1
2
1 + cos 2α

7 cos3 α =
1
4
3cos a + cos 3α

8 cos4 α =
1
8
3 + 4cos 2a + cos 4α

9 sin α + sin β = 2sin α+ β 2 cos α−β 2

10 sin α −sin β = 2cos α+ β 2 sin α−β 2

11 cos α + cos β = 2cos α+ β 2 cos α−β 2

12 cos α −cos β = −2sin α+ β 2 sin α−β 2

13 sin α sin β =
1
2
cos α−β −

1
2
cos α+ β

14 cos α cos β =
1
2
cos α−β +

1
2
cos α+ β

15 sin α cos β =
1
2
sin α+ β +

1
2
sin α−β

16 cos α sin β =
1
2
sin α+ β −

1
2
sin α−β

17 tan−1 z1 ± tan−1 z2 = tan−1 z1 ± z2
1 z1z2

18 sinh z =
1
2
ez−e−z = 1 csch z

19 cosh z =
1
2
ez + e−z = 1 sech z

20 tanh z =
ez−e−z

ez + e−z
=
sinh z

cosh z
= 1 ctnh z

1.14.4 Differentiation and Integration Rules

The notations u and v are functions of x

1
d

dx
uv = u

dv

dx
+ v

du

dx

2
d

dx
u v =

v
du

dx
−u

dv

dx
v2

3
d

dx
uv = uv

v

u

du

dx
+ ln u

dv

dx

4
d

dx
ln u =

1
u

du

dx
;
d

dx
loga u =

loga e

u

du

dx

5
d

dx
au = auloge a

du

dx
;
d

dx
eu = eu

du

dx

TABLE 1.18 Brief List of Binomial Coefficients

n

0 1 2 3 4 5 6 7 8 9 10m

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8 1

9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1
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6
d

dx
sin u = cos u

du

dx
;
d

dx
sin−1 u =

1

1−u2
du

dx

7
d

dx
cos u = −sin u

du

dx
;
d

dx
cos−1 u =

−1

1−u2
du

dx

8
d

dx
tan u = sec2 u

du

dx
;
d

dx
tan−1 u =

1
1 + u2

du

dx

9
d

dx
sinh u = cosh u

du

dx
;
d

dx
sinh−1 u =

1

1 + u2
du

dx

10
d

dx
cosh u = sinh u

du

dx
;

d

dx
cosh−1 u =

1

−1 + u2
du

dx
u > 1

11
d

dx
tanh u = sech2 u

du

dx
;

d

dx
tanh−1 u =

1
1−u2

du

dx

12 udv= uv− vdu: integration by parts with u = f(x) and

dv = g(x)dx

13

∞

0

xbe−axdx=
Γ b + 1
ab+ 1

a> 0, b > −1

=
b

ab+ 1
a > 0, b= 0,1,2,…

14

∞

0

e−axdx= 1
a

15

∞

0

xe−axdx=
π a

2a

16

∞

0

1
x
e−axdx=

π

a

17

∞

0

xbe−ax
2
dx=

Γ b + 1 2

2a b + 1 2
a > 0, b > −1

=
1 3 … b−1 π

2b 2 + 1a b + 1 2
a > 0, b = 0,2,4,…

=
b−1 2

2a b+ 1 2
a> 0, b = 1,3,5,…

18

∞

0

e− a
2 x2dx=

π

2a

19
d

dy

b y

a y

f x,y dx=

b y

a y

∂

∂y
f x,y dx

+ f b,y
db

dy
− f a,y

da

dy
Leibniz’s theorem

20

∞

−∞

s t 2dt =
1
2π

∞

−∞

F ω 2dω

Parseval’s Theorem

21 g t =

∞

−∞

x λ h t−λ dλ

=

∞

−∞

x t−λ h λ dλ convolution

22 R τ =

∞

−∞

x t y t−τ dt

=

∞

−∞

x t + τ y t dt correlation

1.14.5 Inequalities

1 a−b ≤ a ± b ≤ a + b triangle inequality

2
N

n= 1

an ≤
N

n= 1

an triangle inequality

3
N

n= 1

bn

1 N

≤
1
N

N

n= 1

an geometric mean ≤

arithmetic mean
bn > 0; equality holds iff bn = an

4
N

n= 1

anbn

2

≤
N

n = 1

a2n

N

n = 1

b2n Cauchy’s inequality

Equality holds for c = constant > 0 iff an= c bn

5

b

a

f ∗ x g x dx

2

≤

b

a

f x 2dx

b

a

g x 2dx

Schwarz’s inequality
Equality holds for c = constant > 0 iff f(x) = c g(x).

1.14.6 Relationships between Complex Numbers

For A=Maejα and B=Mbejβ

1 A − B ≤ A±B ≤ A + B

2 AB = A B ; A B = A B

3 A B=AB B 2

4 Re A =
1
2
A +A∗

5 Re A Re B =
1
2
Re AB +

1
2
Re AB∗
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6 Re A Im B =
1
2
Im AB −

1
2
Im AB∗

=
1
2
Im AB +

1
2
Im A∗B

7 Im A Re B =
1
2
Im AB +

1
2
Im AB∗

=
1
2
Im AB −

1
2
Im A∗B

8 Im A Im B =
−1
2
Re AB +

1
2
Re AB∗

1.14.7 Miscellaneous Relationships [94]

1 Γ z =
∞

0
tz−1e− tdt Euler’s integral, Re z > 0

2 Γ
1
2

=
−1
2

= π

3 Γ
3
2

=
1
2

=
π

2

4 Γ n+ 1 = n = n n−1 n−2 …1 integer factorial; 0 = 1

5 2n+ 1 = 1 3 5 2n+ 1 odd integer factorial [95]

6 2n = 2 4 6 2n even integer factorial [95]

7 log10 x = log x common logarithm of x

8 loge x = ln x natural logarithm of x

9 loga b =
1

logb a

10 loga x =
logb x

logb a

11 aloga x = x

12 r =mod a,b = a− int
a

b
b r,a,b 0

are same type real or integer*

Example: for b = 3: a = …−4 −3 −2 −1 0 1 2 3 4 …

r = …−1 0 –2 −1 0 1 2 0 1 …

13 r =modulo a,b

=

a− a b b r,a,b real

a−bq
r,a,b,q integer with q selected
so that r is nearer to zero than b

∗

Example: for b = 3: a = …−4 −3 −2 −1 0 1 2 3 4 …

r = … 2 0 1 2 0 1 2 0 1 …

14 sign a,b =
a b ≥ 0

− a b < 0
a,b are same type

real or integer∗

15 The solutions to the quadratic equation x2 + bx + c= 0 is

x1,x2 = −b 2 ± b 2 2−c

16 Completing the square of: x2 + bx= x + b 2 2− b 2 2

17 Completing the square of: ax2 + bx= ax + b 2 a 2

− b 2 2 a

ACRONYMS

ACI Adjacent channel interference
ACK Acknowledgment (protocol)
AFSCN U.S. Air Force Satellite Control Network
AM Amplitude modulation
ARQ Automatic repeat request
AWGN Additive white Gaussian noise
BPSK Binary phase shift keying
BT Time bandwidth (product, low pass)
CFAR Constant false-alarm rate
CRC Cyclic redundancy check (code)
DC Direct current
DFT Discrete Fourier transform
DSB Double sideband
DSSS Direct-sequence spread-spectrum (waveform)
EHF Extremely high frequency
ELF Extremely low frequency
FFT Fast Fourier transform
FM Frequency modulation
FSK Frequency shift keying
GCD Greatest common divisor
GCF Greatest common factor
HF High frequency
I/Q In-phase and quadrature (channels or rails)
IDFT Inverse discrete Fourier transform
IF Intermediate frequency
IFFT Inverse Fast Fourier transform
ISI Intersymbol interference
LCM Least common multiple
LF Low frequency
LLR Log-likelihood ratio
LR Likelihood ratio
MAP Maximum a posteriori
MF Medium frequency
ML Maximum likelihood
MMSE Minimum mean-square error
MS Mean square
MSK Minimum shift keying
NAK Negative acknowledgment (protocol)
OQPSK Offset quadrature phase shift keying
PM Phase modulation
PN Pseudo-noise (sequence)
PSD Power spectral density
PSK Phase shift keying
QAM Quadrature amplitude modulation

*Fortran 95 Language Reference, Revision D, Lahey Computer Systems,
Inc., Incline Village, NV, 1994. The notations a modulo(b) and a modulo-
b are also used.
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QPSK Quadrature phase shift keying
RC Raised-cosine
RQ Repeat request
RRC Root-raised-cosine (temporal)
RSS Root-sum-square
SHF Super high frequency
SLF Super low frequency
SRC Spectral raised-cosine
SRRC Spectral root-raised-cosine
SS Spread-spectrum
TRC Temporal raised-cosine
UHF Ultra-high frequency
ULF Ultra-low frequency
VLF Very low frequency
WSS Wide-sense stationary
WT Time bandwidth (product, bandpass)

PROBLEMS

1. Show that the amplitude-modulated waveform given by
(1.2), when heterodyned by a receiver local oscillator
that is phase locked to the received carrier angular
frequency ωc, recovers the modulation function
s t =A 1 +mI sin ωmt , except for a factor of 1/2.

Hint: Mix (1.2) with sin(ωct+ϕ) and show that ϕ must
be zero.

2. Show that the real signal given by (1.13) is a form of sup-
pressed carrier modulation. Under what conditions of M
(t) and ϕ(t) + ψ (t) does (1.13) reduce to the form of the
suppressed carrier modulation given by (1.12)? What
can be said about the information capacity between
the suppressed carrier modulations given by (1.12)
and (1.13)?

3. Compute the Hilbert transform of sc t = cos ωct
and ss t = sin ωct .

4. Given that the bandwidth of the modulation function A(t)
satisfies the condition B << fc, compute the Hilbert trans-
form of s t =A t cos ωct +ϕ t .

5. Show that the Fourier coefficients Cn and C−n, expressed
in (1.30), form complex conjugate pairs when f(t) is real.

6. Show that the real-valued function f(t) can be expressed
in terms of the Fourier series real coefficient Co = αo and
the complex coefficients Cn = αn + jβn: 1 ≤ n ≤ ∞ as

f t =Co + 2
∞

n= 1

Cn cos nωot +ϕn

where Cn = α2n + β
2
n and ϕn = arctan βn αn . Note:

This solution is based on Problem 5.

7. Show that the finite summation 1 T
N

n= −N
ejnωot is

equal to the second equality in (1.52).

Hint: Expand the summation and combine the exponen-
tial terms to yield a series involving cos(nωoT) terms and
then evaluate the closed form of the corresponding trig-
onometric series as identified in Section 1.14.1 Identity
No. 12.

8. With ωo = 2π/T show that the integral 2N + 1
T 2

−T 2

sin 2N + 1 ωot 2
2N + 1 ωot 2

dt is equal to unity as N ∞.

9. Referring to Figure 1.7 and using ωo = 2π/T, show that
the maximum value of (1.52) is (2N + 1)/T and that the
closest zero or null removed from a maximum occurs at
t = nT ± T/(2N + 1): |n| = 0,1,….

10. Consider a radix-2, N-point, pipeline FFT with the out-
put sampled at intervals of T = NsTs seconds, where Ns is
the number of samples per symbol. If the sequential input
samples are simply passed through the FFT delay ele-
ments with the complex multiplications and additions
only performed at the output sampling instants: (A)
determine the percentage of complex multiplies relative
to the pipeline FFT sampled every Ts seconds. Examine
the result as a function of increasing Ns with 1 ≤Ns ≤ 32
and N ≥ Ns; (B) determine the minimum number of com-
plex multiplications when 100 % zero padding is used
for frequency estimation and tracking and discuss the
pipeline FFT sampling requirements.

11. Compute the second moment, E[X2], of the Gaussian
random variable X with mean m and variance σ2.

12. Referring to (1.165) compute E g22 X2 E g21 X1 X2 =
x2 for the conditional Gaussian pdf, expressed by
the second equality of (1.168), with g22 X2 =X2

2 and
g21 X1 =X2

1 . Express the result in terms of the expecta-
tions as E X2

2X
2
1 =C1E X2

2 +C2E X3
2 +C3E X4

2 and
express C1, C2, and C3 in terms of the para-
meters ρ, σ21, σ

2
2, m1, and m2.

Using E X2
2 = σ22 +m

2
2, E X3

2 = 3σ22m2 +m3
2, and

E X4
2 = 3σ42 + 6σ

2
2m

2
2 +m

4
2 evaluate E X2

2X
2
1 with m1 =

m2 = 0.

13. Repeat Problem 12 using (1.172) and show that

E x21x
2
2 =E x21 E x22 + 2E2 x1x2

when x1 and x2 are zero-mean Gaussian random
variables.

14. In the transformation from fX(x) to fZ(z), discussed in
Section 1.5.4.1, show that the inverse relationship in
(1.188) applies for the function z = ax2.
Part B: Express fZ(z) using (1.186) or (1.187).
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Part C: Express fZ(z) when the pdf of fX(x) is Gaussian
with mean value m and variance σ2. Plot or sketch your
expression fZ(z) as a function of z.

Note: eλ + e−λ = 2cosh(λ).

Part D: Express fZ(z) when m = 0 in Part C and plot or
sketch as a function of z.

15. Given the statistically independent ordered random vari-
ables {X1, X2, …, Xn} such that a ≤ X1<X2< <Xn ≤ b
and characterized by the uniformly distributed pdf
fX xi = 1 b−a : i , i = 1,2,…, i ,…,n with the corre-

sponding cdf expressed as FX x =
x

a
fX xi dxi. Show that

1
i −2

xi

a
Fi −2
X xi −1 fX xi −1 dxi −1 =

1
i −1

Fi −1
X xi

with xn ≤ b.

Hint: Start with F1
X x2 =

x2

a
F0
X x1 fX1 x1 dx1 with

F0
X x1 ≜ 1 and note that F1

X x2 = x2−a b−a .

16. For the transformation in Section 1.5.5, evaluate the
Jacobian in (1.211) using the phase angle expressed as
θ = tan−1(xs/xc).

Hint: useg11(xc,xs) =g12(xc,xs) = x2c + x
2
s and g21(xc,xs) =

g22(xc,xs) = tan−1(xs/xc).

17. Given the joint pdf fX,Y(x,y), expressed in (1.166), com-
pute the marginal pdf MX(x).

Hint: Complete the square using: a2 + ba+ c2 =

a + b 2 2−b2 4 + c2.

18. Given the pdf fX,(x), perform the following:

A. Compute the pdf fY,(y) under the condition y = |x|.
Note that fY,(y) = 0 for y < 0.

B. Determine and sketch fY,(y) when fX,(x) is described
by the normal distribution N(mx,σx)

C. Repeat Part B with mx = 0

19. Show that the limiting form of the Ricean distribution,
expressed by (1.222), corresponds to the Rayleigh distri-
bution as A 0. Refer to Table 1.8.

Hint: Use the ascending series expression

Io z = 1 + z2 4 1 2 + z2 4
2

2 2

+ z2 4
3

3 2 + with z=Ar σ2.

20. Show that the limiting form of the Ricean distribution,
expressed by (1.222), corresponds to the Gaussian distri-
bution as A ∞. Refer to Table 1.8.

Hint: Use the asymptotic expansion of Io(z) for large
arguments expressed as

Io(z) ~ ez

2πz
1 + 1 8z+ 9 2 8z 2 + z ∞

with z =Ar σ2.

Recognize that as r A the condition r = A results in
the Gaussian distribution.

21. Determine the marginal pdf of Y1 = min{X1, X2, …, Xn}
given the joint pdf gY(y1, y2,…, yn) of the uniformly dis-
tributed ordered samples a ≤ y1 < y2 < < yn ≤ b corre-
sponding to fYj yj = 1 b−a j.

Hint: Show that the cdfs in the descending order
yn,yn−1,…,yj ,…y2 are expressed as

1
n− j + 1

Fn− j + 1
Y yj −1 =

1
n− j

b

yj −1

Fn− j
Y yj f yj dyj

with Fn− j
Y yj =

b−yj
b−a

n− j

and F0
Y yn ≜ 1.

Also show that Fn− j
Y yj = 1−FY yj

n− j
where

FY yj =
yj −a

b−a .

22. Show that the Nakagami-m distribution is the same as the
Rayleigh power distribution.

Hint: Use the transformation y = x 2 in the Rayleigh
distribution.

23. Derive the expression for the characteristic function
CX(v) for the Gaussian distribution fX(x) with mean value
xo and variance σ2.

24. Set up the integrations identifying the integration lim-
its and ranges of the variable z for the evaluation of
fZ(z) where the random variable Z is the summation
of three (3) zero-mean uniformly distributed random
variables X between –a and a.

Hint: There are three unique ranges on z. The evaluation
of the integrations is optional; however, the application
of Mathsoft’s Mathcad® symbolic formula evaluation is
an error-free time saver.

25. Using fZ(z) evaluated in Problem 24 forN= 3, compute the
first and second moments of the random variable Z using
(1.254) and compare the results with those in Table 1.6.

Hint: It is much easier and less prone to mistakes to use
Mathsoft’s Mathcad symbolic formula evaluation.

26. Show that the moments of the random variable X are
determined from the characteristic function as expressed
in (1.240).

Hint: Take the first derivative of CX(v) with respect to v
and evaluate the result for v = 0; and observe that the
resulting integral is E[x]. Repeat this procedure for addi-
tional derivatives of CX(v) and show that (1.240) follows.

27. Plot the cdf of a zero-mean Gaussian distribution with
variances corresponding to the second moments in
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Table 1.6 for N = 3 and 4 and compare the results with
the corresponding cdf’s in Figure 1.23; comment on the
quality of the match in light of the central limit
theorem. Repeat this exercise using the theoretical sec-
ond moments from Table 1.7 for N = 3 and 4 and com-
pare with the corresponding cdf’s in Figure 1.26.

28. Show that equations (1.261) and (1.262) apply for λv
<<1 as N increases in the respective summation
of N iid distributions in Examples 1 and 2 of
Section 1.5.6.1.

29. The narrowband noise process n(t), given by (1.307), is
expressed in terms of the baseband analytic noise ñ(t) as

n t =
1
2

n t ejωct + n∗ t e− jωct

Using this relationship, express the correlation func-
tion Rnn τ =E n t n t−τ in terms of the individual cor-
relation functions Rnn∗ τ , Rññ(τ), Rn∗n∗ τ and Rn∗n τ .
What are the required conditions on these correlation
functions to satisfy the stationarity property of the nar-
rowband process n(t)?

30. Express the individual correlation functions in Problem
29 in terms of the correlation functions Rcc(τ), Rcs(τ),
Rsc(τ), and Rss(τ), where the baseband analytic noise is
given by n t = nc t + jns t . Use these results and the
conditions for stationarity found in Problem 29 to
express Rnn(τ) in terms of the Rcc(τ) and Rsc(τ).

31. Referring to (1.315), that applies to the noise power out
of a bandpass filter centered at the positive frequency fc.
When the bandpass filter output is mixed to baseband,
express the noise power out the baseband filter in terms
of the bandwidth B and the one-sided noise spectral den-
sity No.

32. Given the noise input, expressed by (1.307), to a linear
filter with impulse response h(t), show that the respective
input and output of the correlation responses Rnn(τ)
and Rn n τ are related by the convolutions Rn n τ =
h∗ −τ ∗h τ ∗Rnn τ . Using this result with Fourier
transform pairs h(τ) H(f) and h∗(−τ) H∗(f), show
the relationship between the input and output noise
spectrums.

Hint: Using the convolution integral n t =
∞

−∞
n t−λ h λ dλ show that n (t) has zero-mean. Then

from the correlation

Rn n τ =E n t n∗ t−τ =E n t−λ h λ n∗ t−τ dλ

and show that Rn n τ =Rnn τ ∗h τ and, as the final step,
form the correlation

Rn n τ =E n t + λ n ∗ t−τ =E n t + τ n∗ t−λ h∗ λ dλ

and show that Rn n τ =Rn n τ ∗h∗ −τ .

33. Derive the expression for the matched filter output sig-
nal-to-noise ratio when the additive noise is not white
noise, that is, the noise power spectral density into the
matched filter is Ni f No.

34. Under the condition stated in Section 1.7.1 show that
(1.332) is a wide-sense stationary random process.

35. Given the random process x(ti) = a where ti is a discrete-
time sample and a is a discrete random variable such that
a = 1 with probability p and = −1 with probability q = 1 −
p. Using (1.303) and (1.304) determine if x(ti) is ergodic.

36. Show that the random process y t = x t cos ωct +φ is
wss if fc is constant and x(t) is a wss random process inde-
pendent of the random variable φ uniformly distributed
over the interval 0 to 2π. Also, express the PSD Sy(ω) in
terms of the autocorrelation Rx(τ) and the PSD Sx(ω).

37. The risk for the mean-square estimate is defined as

ℜms ≜
∞

−∞

∞

−∞
a−a sr

2pa sr a sr da psr sr dsr

Show that ∂ℜms ∂a rs = 0 and results in the opti-
mum estimate given by (1.356).

38. Determine if the MS and MAP estimates in the example
of Section 1.9.1 are unbiased estimates. If not, what is the
bias of the estimate? Also, evaluate the Cramér–Rao
bound for the estimates and, using (1.366), determine
if the estimates are efficient.

39. Given that the received baseband signal amplitude is A
volts, using theMLestimate, determine the following: Part
1, the variance σ2a of the estimation error of A given the
baseband samples ri =A+ ni: i = 1,…, N where ni are iid
Gaussian random variables characterized asN(0,σn), Part
2, show that the estimate âml(r) is efficient, Part 3 show
the condition for which the estimate âml(r) is unbiased.

40. Repeat Problem 39 under the following condition: the
baseband signal amplitude is Gaussian distributed with
a priori pdf pa(A) characterized by N(A,σa).

41. Using (1.384) determine the effective bandwidth (β) for
the isosceles triangle shaped pulse with base equal to
2τ and peak amplitude of AN volts.

Hints: The solution to the integral
∞

0

sin2m ax

x2
dx=

2m−3
2m−2

aπ

2
is encountered withm = 2 and the double
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factorial [96] is defined as (2m + 1)!! = 1 × 3 × 5…
(2m + 1). The denominator in the expression for α2 is
the signal energy E.

42. Determine the normalized effective bandwidth (βT) and
the corresponding standard deviation (σTd) for the SRC
and SRRC waveforms with 100% excess bandwidth,
that is, α = 1.

43. Determine the normalized effective bandwidth (βT) and
the corresponding standard deviation (σTd) of the delay
estimate for the SRC and SRRC waveforms with zero
excess bandwidth, that is, α = 0.

44. Determine the noise bandwidth for the SRRC and SRC
frequency functions.

Note: the noise bandwidth is defined by (1.46).

45. Using (1.387) determine the normalized effective time
duration αT for the rectangular pulse Arect(t/T − 0.5).
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