
CHAPTER 1

CLASSICAL RESULTS ON THE
REGULARITY OF PATHS

This initial chapter contains a number of elements that are used repeatedly in the
book and constitute necessary background. We will need to study the paths of
random processes and fields; the analytical properties of these functions play a
relevant role. This raises a certain number of basic questions, such as whether the
paths belong to a certain regularity class of functions, what one can say about
their global or local extrema and about local inversion, and so on. A typical
situation is that the available knowledge on the random function is given by
its probability law, so one is willing to know what one can deduce from this
probability law about these kinds of properties of paths. Generally speaking,
the result one can expect is the existence of a version of the random function
having good analytical properties. A version is a random function which, at
each parameter value, coincides almost surely with the one given. These are the
contents of Section 1.4, which includes the classical theorems due to Kolmogorov
and the results of Bulinskaya and Ylvisaker about the existence of critical points
or local extrema having given values. The essence of all this has been well known
for a long time, and in some cases proofs are only sketched. In other cases we
give full proofs and some refinements that will be necessary for further use.

As for the earlier sections, Section 1.1 contains starting notational conventions
and a statement of the Kolmogorov extension theorem of measure theory, and
Sections 1.2 and 1.3 provide a quick overview of the Gaussian distribution and
some connected results. Even though this is completely elementary, we call the
reader’s attention to Proposition 1.2, the Gaussian regression formula, which
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will appear now and again in the book and can be considered as the basis of
calculations using the Gaussian distribution.

1.1. KOLMOGOROV’S EXTENSION THEOREM

Let (�,A, P) be a probability space and (F,F) a measurable space. For any
measurable function

Y : (�,A) → (F,F),

that is, a random variable with values in F , the image measure

Q(A) = P(Y−1(A)) A ∈ F

is called the distribution of Y .
Except for explicit statements to the contrary, we assume that probability

spaces are complete; that is, every subset of a set that has zero probability is
measurable. Let us recall that if (F,F, μ) is a measure space, one can always
define its completion (F,F1, μ1) by setting

F1 = {A : ∃B,C, A = B � C, such that B ∈ F, C ⊂ D ∈ F, μ(D) = 0},
(1.1)

and for A ∈ F1, μ1(A) = μ(B), whenever A admits the representation in (1.1).
One can check that (F,F1, μ1) is a complete measure space and μ1 an extension
of μ.

A real-valued stochastic process indexed by the set T is a collection of random
variables {X(t) : t ∈ T } defined on a probability space (�,A, P). In what follows
we assume that the process is bi-measurable. This means that we have a σ -algebra
T of subsets of T and a Borel-measurable function of the pair (t, ω) to the reals:

X : (T × �, T × A) → (R,BR)

(BR denotes the Borel σ -algebra in R), so that

X(t)(ω) = X(t, ω).

Let T be a set and RT = {g : T → R} the set of real-valued functions defined
on T . (In what follows in this section, one may replace R by Rd , d > 1.) For
n = 1, 2, . . . , t1, t2, . . . , tn, n distinct elements of T , and B1, B2, . . . , Bn Borel
sets in R, we denote

C(t1, t2, . . . , tn;B1, B2, . . . , Bn) = {g ∈ R
T : g(tj ) ∈ Bj , j = 1, 2, . . . , n}

and C the family of all sets of the form C(t1, t2, . . . , tn;B1, B2, . . . , Bn). These
are usually called cylinder sets depending on t1, t2, . . . , tn. The smallest σ -algebra
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of parts of R
T containing C will be called the Borel σ -algebra of R

T and denoted
by σ(C).

Consider now a family of probability measures

{Pt1,t2,...,tn}t1,t2,...,tn∈T ; n=1,2,... (1.2)

as follows: For each n = 1, 2, . . . and each n-tuple t1, t2, . . . , tn of distinct ele-
ments of T , Pt1,t2,...,tn is a probability measure on the Borel sets of the product
space Xt1 × Xt2 × · · · × Xtn , where Xt = R for each t ∈ T (so that this product
space is canonically identified as R

n).
We say that the probability measures (1.2) satisfy the consistency condition if

for any choice of n = 1, 2, . . . and distinct t1, . . . , tn, tn+1 ∈ T , we have

Pt1,...,tn,tn+1(B × R) = Pt1,...,tn(B)

for any Borel set B in Xt1 × · · · × Xtn . The following is the basic Kolmogorov
extension theorem, which we state but do not prove here.

Theorem 1.1 (Kolmogorov). {Pt1,t2,...,tn}t1,t2,...,tn∈T ; n=1,2,...,satisfy the consis-
tency condition if and only if there exists one and only one probability measure
P on σ(C) such that

P(C(t1, . . . , tn; B1, . . . , Bn)) = Pt1,...,tn(B1 × · · · × Bn) (1.3)

for any choice of n = 1, 2, . . ., distinct t1, . . . , tn ∈ T and Bj Borel sets in Xtj ,
j = 1, . . . , n.

It is clear that if there exists a probability measure P on σ(C) satisfying (1.3),
the consistency conditions must hold since

C(t1, . . . , tn, tn+1;B1, . . . , Bn, Xtn+1) = C(t1, . . . , tn;B1, . . . , Bn).

So the problem is how to prove the converse. This can be done in two steps:
(1) define P on the family of cylinders C using (1.3) and show that the definition
is unambiguous (note that each cylinder has more than one representation); and
(2) apply Caratheodory’s theorem on an extension of measures to prove that this
P can be extended in a unique form to σ(C).

Remarks

1. Theorem 1.1 is interesting when T is an infinite set. The purpose is to be
able to measure the probability of sets of functions from T to R (i.e., subsets
of R

T ) which cannot be defined by means of a finite number of coordinates,
which amounts to looking only at the values of the functions at a finite number
of t-values.
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Notice that in the case of cylinders, if one wants to know whether a given
function g : T → R belongs to C(t1, . . . , tn; B1, . . . , Bn), it suffices to look at
the values of g at the finite set of points t1, . . . , tn and check if g(tj ) ∈ Bj

for j = 1, . . . , n. However, if one takes, for example, T = Z (the integers) and
considers the sets of functions

A = {g : g : T → R, lim
t→+∞g(t) exists and is finite}

or
B = {g : g : T → R, sup

t∈T

|g(t)| ≤ 1},

it is clear that these sets are in σ(C) but are not cylinders (they “depend on an
infinite number of coordinates”).

2. In general, σ(C) is strictly smaller than the family of all subsets of R
T . To

see this, one can check that

σ(C) = {A ⊂ R
T : ∃TA ⊂ T , TA countable and BA a Borel set in R

TA,

such that g ∈ A if and only if g/TA ∈ BA}. (1.4)

The proof of (1.4) follows immediately from the fact that the right-hand side is
a σ -algebra containing C. Equation (1.4) says that a subset of R

T is a Borel set
if and only if it “depends only on a countable set of parameter values.” Hence,
if T is uncountable, the set

{g ∈ R
T : g is a bounded function}

or
{g ∈ R

T : g is a bounded function, |g(t)| ≤ 1 for all t ∈ T }

does not belong to σ(C). Another simple example is the following: If T = [0, 1],
then

{g ∈ R
T : g is a continuous function}

is not a Borel set in R
T , since it is obvious that there does not exist a countable

subset of [0, 1] having the determining property in (1.4). These examples lead to
the notion of separable process that we introduce later.

3. In the special case when � = RT , A = σ(C), and X(t)(ω) = ω(t),
{X(t) : t ∈ T } is called a canonical process .

4. We say that the stochastic process {Y (t) : t ∈ T } is a version of the process
{X(t) : t ∈ T } if P(X(t) = Y (t)) = 1 for each t ∈ T .
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1.2. REMINDER ON THE NORMAL DISTRIBUTION

Let μ be a probability measure on the Borel subsets of Rd . Its Fourier transform
μ̂ : R

d → C is defined as

μ̂(z) =
∫

Rd

exp(i〈z, x〉)μ(dx),

where 〈·, ·〉 denotes the usual scalar product in R
d .

We use Bochner’s theorem (see, e.g., Feller, 1966): μ̂ is the Fourier transform
of a Borel probability measure on R

d if and only if the following three conditions
hold true:

1. μ̂(0) = 1.
2. μ̂ is continuous.
3. μ̂ is positive semidefinite; that is, for any n = 1, 2, . . . and any choice of

the complex numbers c1, . . . , cn and of the points z1, . . . , zn, one has

n∑
j,k=1

μ̂(zj − zk)cj ck ≥ 0.

The random vector ξ with values in R
d is said to have the normal distribu-

tion , or the Gaussian distribution, with parameters (m, �)” [m ∈ R
d and � a

d × d positive semidefinite matrix] if the Fourier transform of the probability
distribution μξ of ξ is equal to

μ̂ξ (z) = exp
[
i〈m, z〉 − 1

2 〈z, �z〉] z ∈ R
d .

When m = 0 and � = Id = identity d × d matrix, the distribution of ξ is called
standard normal in R

d . For d = 1 we use the notation

ϕ(x) = 1√
2π

e−(1/2)x2
and 	(x) =

∫ x

−∞
ϕ(y) dy

for the density and the cumulative distribution function of a standard normal
random variable, respectively.

If � is nonsingular, μξ is said to be nondegenerate and one can verify that it
has a density with respect to Lebesgue measure given by

μξ(dx) = 1

(2π)d/2(det(�))1/2
exp

[
−1

2
(x − m)T�−1(x − m)

]
dx

xT denotes the transpose of x. One can check that

m = E(ξ), � = Var(ξ) = E((ξ − m)(ξ − m)T),

so m and � are, respectively, the mean and the variance of ξ .
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From the definition above it follows that if the random vector ξ with values
in R

d has a normal distribution with parameters m and �, A is a real matrix
with n rows and d columns, and b is a nonrandom element of R

n, then the
random vector Aξ + b with values in R

n has a normal distribution with param-
eters (Am + b, A�AT). In particular, if � is nonsingular, the coordinates of the
random vector �−1/2(ξ − m) are independent random variables with standard
normal distribution on the real line.

Assume now that we have a pair ξ and η of random vectors in Rd and Rd ′
,

respectively, having finite moments of order 2. We define the d × d ′ covariance
matrix as

Cov(ξ, η) = E((ξ − E(ξ)(η − E(η)T).

It follows that if the distribution of the random vector (ξ, η) in R
d+d ′

is normal
and Cov(ξ, η) = 0, the random vectors ξ and η are independent. A consequence
of this is the following useful formula, which is standard in statistics and gives
a version of the conditional expectation of a function of ξ given the value of η.

Proposition 1.2. Let ξ and η be two random vectors with values in R
d and R

d ′
,

respectively, and assume that the distribution of (ξ, η) in R
d+d ′

is normal and
Var(η) is nonsingular. Then, for any bounded function f : R

d → R, we have

E(f (ξ)|η = y) = E(f (ζ + Cy)) (1.5)

for almost every y, where

C = Cov(ξ, η)[Var(η)]−1 (1.6)

and ζ is a random vector with values in Rd , having a normal distribution with
parameters(

E(ξ) − CE(η), Var(ξ) − Cov(ξ, η)[Var(η)]−1[Cov(ξ, η)]T). (1.7)

Proof. The proof consists of choosing the matrix C so that the random vector

ζ = ξ − Cη

becomes independent of η. For this purpose, we need the fact that

Cov(ξ − Cη, η) = 0,

and this leads to the value of C given by (1.6). The parameters (1.7) follow
immediately. �

In what follows, we call the version of the conditional expectation given by
formula (1.5), Gaussian regression . To close this brief list of basic properties,
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we mention that a useful property of the Gaussian distribution is stability under
passage to the limit (see Exercise 1.5).

Let r : T × T → R be a positive semidefinite function and m : T → R a
function. In this more general context, that r is a positive semidefinite function,
means that for any n = 1, 2, . . . and any choice of distinct t1, . . . , tn ∈ T , the
matrix ((r(tj , tk)))j,k=1,...,n is positive semidefinite. [This is consistent with the
previous definition, which corresponds to saying that r(s, t) = μ̂(s − t), s, t ∈ R

d

is positive semidefinite.]
Take now for Pt1,...,tn the Gaussian probability measure in Rn with mean

mt1,...,tn := (m(t1), . . . , m(tn))
T

and variance matrix

�t1,...,tn := ((r(tj , tk)))j,k=1,...,n.

It is easily verified that the set of probability measures {Pt1,...,tn} verifies the
consistency condition, so that Kolmogorov’s theorem applies and there exists
a unique probability measure P on the measurable space (RT , σ (C)), which
restricted to the cylinder sets depending on t1, . . . , tn is Pt1,...,tn for any choice
of distinct parameter values t1, . . . , tn. P is called the Gaussian measure gener-
ated by the pair (m, r). If {X(t) : t ∈ T } is a real-valued stochastic process with
distribution P, one verifies that:

• For any choice of distinct parameter values t1, . . . , tn, the joint distribution
of the random variables X(t1), . . . , X(tn) is Gaussian with mean mt1,...,tn

and variance �t1,...,tn .
• E(X(t)) = m(t) for t ∈ T .
• Cov(X(s), X(t)) = E((X(s) − m(s))(X(t) − m(t))) = r(s, t) for s, t ∈ T .

A class of examples that appears frequently in applications is the d-parameter
real-valued Gaussian processes, which are centered and stationary, which means
that

T = R
d, m(t) = 0, r(s, t) = �(t − s).

A general definition of strictly stationary processes is given in Section 10.2.
If the function � is continuous, �(0) �= 0, one can write

�(τ) =
∫

Rd

exp(i〈τ, x〉)μ(dx),

where μ is a Borel measure on R
d with total mass equal to �(0). μ is called the

spectral measure of the process. We usually assume that �(0) = 1: that is, that
μ is a probability measure which is obtained simply by replacing the original
process {X(t) : t ∈ R

d} by the process {X(t)/(�(0))1/2 : t ∈ R
d}.
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Example 1.1 (Trigonometric Polynomials). An important example of stationary
Gaussian processes is the following. Suppose that μ is a purely atomic probability
symmetric measure on the real line; that is, there exists a sequence {xn}n=1,2,.. of
positive real numbers such that

μ({xn}) = μ({−xn}) = 1
2cn for n = 1, 2, . . . ; μ({0}) = c0;

∞∑
n=0

cn = 1.

Then a centered Gaussian process having μ as its spectral measure is

X(t) = c
1/2
0 ξ0 +

∞∑
n=1

c1/2
n (ξn cos txn + ξ−n sin txn) t ∈ R, (1.8)

where the {ξn}n∈Z is a sequence of independent identically distributed random
variables, each having a standard normal distribution. In fact, the series in (1.8)

converges in L2(�,F, P ) and

E(X(t)) = 0 and E(X(s)X(t)) = c0 +
∞∑

n=1

cn cos[(t − s)xn] = μ̂(t − s).

We use the notation

λk :=
∫

R

xkμ(dx) k = 0, 1, 2, . . . (1.9)

whenever the integral exists. λk is the kth spectral moment of the process.
An extension of the preceding class of examples is the following. Let

(T , T , ρ) be a measure space, H = L2
R
(T , T , ρ) the Hilbert space of real-valued

square-integrable functions on it, and {ϕn(t)}n=1,2,... an orthonormal sequence
in H . We assume that each function ϕn : T → R is bounded and denote
Mn = supt∈T |ϕn(t)|. In addition, let {cn}n=1,2,.. be a sequence of positive
numbers such that

∞∑
n=1

cn < ∞,

∞∑
n=1

cnM
2
n < ∞

and {ξn}n=1,2,... a sequence of independent identically distributed (i.i.d.) random
variables, each with standard normal distribution in R.

Then the stochastic process

X(t) =
∞∑

n=1

c1/2
n ξnϕn(t) (1.10)
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is Gaussian, centered with covariance

r(s, t) = E(X(s)X(t)} =
∞∑

n=1

cnϕn(s)ϕn(t).

Formulas (1.8) and (1.10) are simple cases of spectral representations of
Gaussian processes, which is an important subject for both theoretical purposes
and for applications. A compact presentation of this subject, including the
Karhunen–Loève representation and the connection with reproducing kernel
Hilbert spaces, may be found in Fernique’s lecture notes (1974).

1.3. 0–1 LAW FOR GAUSSIAN PROCESSES

We will prove a 0–1 law for Gaussian processes in this section without attempting
full generality. This will be sufficient for our requirements in what follows. For
a more general treatment, see Fernique (1974).

Definition 1.3. Let X = {X(t) : t ∈ T } and Y = {Y (t) : t ∈ S} be real-valued
stochastic processes defined on some probability space (�,A, P ). X and
Y are said to be independent if for any choice of the parameter values
t1, . . . , tn ∈ T ; s1, . . . , sm ∈ S, n, m ≥ 1, the random vectors

(X(t1), . . . , X(tn)), (Y (s1), . . . , Y (sm))

are independent.

Proposition 1.4. Let the processes X and Y be independent and E (respectively,
F ) belong to the σ -algebra generated by the cylinders in R

T (respectively, R
S).

Then

P(X(·) ∈ E, Y (·) ∈ F) = P(X(·) ∈ E)P(Y (·) ∈ F). (1.11)

Proof. Equation (1.11) holds true for cylinders. Uniqueness in the extension
theorem provides the result. �

Theorem 1.5 (0–1 Law for Gaussian Processes). Let X = {X(t) : t ∈ T }
be a real-valued centered Gaussian process defined on some probability space
(�,A, P) and (E, E) a measurable space, where E is a linear subspace of R

T

and the σ -algebra E has the property that for any choice of the scalars a, b ∈ R,
the function (x, y) � ax + by defined on E × E is measurable with respect
to the product σ -algebra. We assume that the function X : � → E defined as
X(ω) = X(·, ω) is measurable (�,A) → (E, E). Then, if L is a measurable
subspace of E, one has

P(X(·) ∈ L) = 0 or 1.
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Proof. Let {X(1)(t) : t ∈ T } and {X(2)(t) : t ∈ T } be two independent processes
each having the same distribution as that of the given process {X(t) : t ∈ T }.
For each λ, 0 < λ < π/2, consider a new pair of stochastic processes, defined
for t ∈ T by

Z
(1)
λ (t) = X(1)(t) cos λ + X(2)(t) sin λ

Z
(2)
λ (t) = −X(1)(t) sin λ + X(2)(t) cos λ.

(1.12)

Each of the processes Z
(i)
λ (t)(i = 1, 2) has the same distribution as X .

In fact, E(Z
(1)
λ (t)) = 0 and since E(X(1)(s)X(2)(t)) = 0, we have E(Z

(1)
λ (s)

Z
(1)
λ (t)) = cos2 λ E(X(1)(s)X(1)(t)) + sin2 λ E(X(2)(s)X(2)(t)) = E(X(s)X(t)).
A similar computation holds for Z

(2)
λ .

Also, the processes Z
(1)
λ and Z

(2)
λ are independent. To prove this, note that for

any choice of t1, . . . , tn; s1, . . . , sm, n,m ≥ 1, the random vectors

(Z
(1)
λ (t1), . . . , Z

(1)
λ (tn)), (Z

(2)
λ (s1), . . . , Z

(2)
λ (sm))

have a joint Gaussian distribution, so it suffices to show that

E(Z
(1)
λ (t)Z

(2)
λ (s)) = 0

for any choice of s, t ∈ T to conclude that they are independent. This is easily
checked.

Now, if we put q = P(X(·) ∈ L), independence implies that for any λ,

q(1 − q) = P(Eλ) where Eλ = {Z(1)
λ ∈ L, Z

(2)
λ /∈ L}.

If λ, λ′ ∈ (0, π/2), λ �= λ′, the events Eλ and Eλ′ are disjoint. In fact, the matrix(
cos λ sin λ

cos λ′ sin λ′

)

is nonsingular and (1.12) implies that if at the same time Z
(1)
λ ∈ L, Z

(1)

λ′ ∈ L,
then X(1)(·), X(2)(·) ∈ L also, since X(1)(·), X(2)(·) are linear combinations of
Z

(1)
λ and Z

(1)

λ′ . Hence, Z
(2)
λ , Z

(2)

λ′ ∈ L and Eλ, Eλ′ cannot occur simultaneously.
To finish, the only way in which we can have an infinite family {Eλ}0<λ<π/2 of
pairwise disjoint events with equal probability is for this probability to be zero.
That is, q(1 − q) = 0, so that q = 0 or 1. �

In case the parameter set T is countable, the above shows directly that
any measurable linear subspace of R

T has probability 0 or 1 under a centered
Gaussian law. If T is a σ -compact topological space, E the set of real-valued
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continuous functions defined on T , and E the σ -algebra generated by the topol-
ogy of uniform convergence on compact sets, one can conclude, for example, that
the subspace of E of bounded functions has probability 0 or 1 under a centered
Gaussian measure. The theorem can be applied in a variety of situations similar
to standard function spaces. For example, put a measure on the space (E, E) and
take for L an Lp of this measure space.

1.4. REGULARITY OF PATHS

1.4.1. Conditions for Continuity of Paths

Theorem 1.6 (Kolmogorov). Let Y = {Y (t) : t ∈ [0, 1]} be a real-valued
stochastic process that satisfies the condition

(K) For each pair t and t + h ∈ [0, 1],

P{|Y (t + h) − Y (t)| ≥ α(h)} ≤ β(h),

where α and β are even real-valued functions defined on [−1, 1], increasing
on [0, 1], that verify

∞∑
n=1

α(2−n) < ∞,

∞∑
n=1

2nβ(2−n) < ∞.

Then there exists a version X = {X(t) : t ∈ T } of the process Y such that the
paths t � X(t) are continuous on [0, 1].

Proof. For n = 1, 2, . . .; k = 0, 1, . . . , 2n − 1, let

Ek,n =
{∣∣∣∣Y (k + 1

2n

)
− Y

(
k

2n

)∣∣∣∣ ≥ α(2−n)

}
, En =

2n−1⋃
k=0

Ek,n.

From the hypothesis, P(En) ≤ 2nβ(2−n), so that
∑∞

n=1 P(En) < ∞. The
Borel–Cantelli lemma implies that P(lim supn→∞ En) = 0, where

lim sup
n→∞

En = {ω : ω belongs to infinitely many En’s}.

In other words, if ω /∈ lim supn→∞ En, one can find n0(ω) such that if n ≥ n0(ω),
one has∣∣∣∣Y (k + 1

2n

)
− Y

(
k

2n

)∣∣∣∣ < α(2−n) for all k = 0, 1, . . . , 2n − 1.
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Denote by Y (n) the function whose graph is the polygonal with vertices
(k/2n, Y (k/2n)), k = 0, 1, . . . , 2n; that is, if k/2n ≤ t ≤ (k + 1)/2n, one has

Y (n)(t) = (k + 1 − 2nt)Y

(
k

2n

)
+ (2nt − k)Y

(
k + 1

2n

)
.

The function t � Y (n)(t) is continuous. Now, if ω /∈ lim supn→∞ En, one easily
checks that there exists some integer n0(ω) such that∥∥Y (n+1) − Y (n)

∥∥
∞ ≤ α

(
2−(n+1)

)
for n + 1 ≥ n0(ω)

(here ‖ · ‖∞ denotes the sup norm on [0, 1]). Since
∑∞

n=1 α(2−(n+1)) < ∞ by
the hypothesis, the sequence of functions {Y (n)} converges uniformly on [0, 1]
to a continuous limit function that we denote X(t), t ∈ [0, 1].

We set X(t) ≡ 0 when ω ∈ lim supn→∞ En. To finish the proof, it suffices to
show that for each t ∈ [0, 1], P(X(t) = Y (t)) = 1.

• If t is a dyadic point, say t = k/2n, then given the definition of the sequence
of functions Y (n), it is clear that Y (m)(t) = Y (t) for m ≥ n. Hence, for
ω /∈ lim supn→∞ En, one has X(t) = limm→∞ Y (m)(t) = Y (t). The result
follows from P((lim supn→∞ En)

C) = 1 (AC is the complement of the set
A).

• If t is not a dyadic point, for each n, n = 1, 2, . . . , let kn be an integer such
that |t − kn/2n| ≤ 2−n, kn/2n ∈ [0, 1]. Set

Fn =
{∣∣∣∣Y (t) − X

(
kn

2n

)∣∣∣∣ ≥ α(2−n)

}
.

We have the inequalities

P(Fn) ≤ P

(∣∣∣∣Y (t) − X

(
kn

2n

)∣∣∣∣ ≥ α

(∣∣∣∣t − kn

2n

∣∣∣∣) ≤ β

(∣∣∣∣t − kn

2n

∣∣∣∣) ≤ β(2−n) ,

and a new application of the Borel–Cantelli lemma gives P(lim supn→∞ Fn)

= 0. So if ω /∈ [lim supn→∞ En] ∪ [lim supn→∞ Fn], we have at the same
time, X(kn/2n)(ω) → X(t)(ω) as n → ∞ because t � X(t) is continu-
ous, and X(kn/2n)(ω) → Y (t)(ω) because |Y (t) − X(kn/2n)| < α(2−n) for
n ≥ n1(ω) for some integer n1(ω).

This proves that X(t)(ω) = Y (t)(ω) for almost every ω. �

Corollary 1.7 Assume that the process Y = {Y (t) : t ∈ [0, 1]} satisfies one of the
following conditions for t, t + h ∈ [0, 1]:
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(a)
E(|Y (t + h) − Y (t)|p) ≤ K|h|

| log |h||1+r
, (1.13)

where p,r , and K are positive constants, p < r .
(b) Y is Gaussian, m(t) := E(Y (t)) is continuous, and

Var(Y (t + h) − Y (t)) ≤ C

| log |h||a (1.14)

for all t , sufficiently small h, C some positive constant, and a > 3.

Then the conclusion of Theorem 1.6 holds.

Proof
(a) Set

α(h) = 1

| log |h||b 1 < b <
r

p

β(h) = |h|
| log |h||1+r−bp

and check condition (K) using a Markov inequality.
(b) Since the expectation is continuous, it can be subtracted from Y (t), so that

we may assume that Y is centered. To apply Theorem 1.6, take

α(h) = 1

| log |h||b with 1 < b < (a − 1)/2 and β(h) = exp

[
− 1

4C
| log |h||a−2b

]
.

Then

P(|Y (t + h) − Y (t)| ≥ α(h)) = P

(
|ξ | ≥ α(h)√

Var(Y (t + h) − Y (t))

)
,

where ξ stands for standard normal variable. We use the following usual bound
for Gaussian tails, valid for u > 0:

P(|ξ | ≥ u) = 2P(ξ ≥ u) =
√

2

π

∫ +∞

u

e−(1/2)x2
dx ≤
√

2

π

1

u
e−(1/2)u2

.

With the foregoing choice of α(·) and β(·), if |h| is small enough, one has
α(h)/

√
Var(Y (t + h) − Y (t)) > 1 and

P(|Yt+h − Y (t)| ≥ α(h)) ≤ (const) β(h).

where (const) denotes a generic constant that may vary from line to line. On the
other hand,

∑∞
1 α(2−n) < ∞ and

∑∞
1 2nβ(2−n) < ∞ are easily verified. �



REGULARITY OF PATHS 23

Some Examples

1. Gaussian stationary processes. Let {Y (t) : t ∈ R} be a real-valued Gaus-
sian centered stationary process with covariance �(τ) = E(Y (t) Y (t + τ)). Then
condition (1.14) is equivalent to

�(0) − �(τ) ≤ C

| log |τ ||a
for sufficiently small |τ |, with the same meaning for C and a.

2. Wiener process. Take T = R
+. The function r(s, t) = s ∧ t is positive

semidefinite. In fact, if 0 ≤ s1 < · · · < sn and x1, . . . , xn ∈ R, one has

n∑
j,k=1

(sj ∧ sk) xjxk =
n∑

k=1

(sk − sk−1)(xk + · · · + xn)
2 ≥ 0, (1.15)

where we have set s0 = 0.
Then, according to Kolmogorov’s extension theorem, there exists a centered

Gaussian process {Y (t) : t ∈ R
+} such that E(Y (s)Y (t)) = s ∧ t for s, t ≥ 0. One

easily checks that this process satisfies the hypothesis in Corollary 1.7(b), since
the random variable Y (t + h) − Y (t), h ≥ 0 has the normal distribution N(0, h)

because of the simple computation

E([Y (t + h) − Y (t)]2) = t + h − 2t + t = h.

It follows from Corollary 1.7(b) that this process has a continuous version on
every interval of the form [n, n + 1]. The reader will verify that one can also
find a version with continuous paths defined on all R+. This version, called the
Wiener process , is denoted {W(t) : t ∈ R

+}.
3. Ito integrals. Let {W(t) : t ≥ 0} be a Wiener process on a probability space

(�,A, P). We define the filtration {Ft : t ≥ 0} as Ft = σ̃ {W(s) : s ≤ t}, where
the notation means the σ -algebra generated by the set of random variables
{W(s) : s ≤ t} (i.e., the smallest σ -algebra with respect to which these random
variables are all measurable) completed with respect to the probability measure P.

Let {at : t ≥ 0} be a stochastic process adapted to the filtration {Ft : t ≥ 0}.
This means that at is Ft -measurable for each t ≥ 0. For simplicity we assume
that {at : t ≥ 0} is uniformly locally bounded in the sense that for each T > 0
there exists a constant CT such that |at (ω)| ≤ CT for every ω and all t ∈ [0, T ].
For each t > 0, one can define the stochastic Ito integral

Y (t) =
∫ t

0
as dW(s)

as the limit in L2 = L2(�,A, P) of the Riemann sums

SQ =
m−1∑
j=0

ãtj (W(tj+1) − W(tj ))
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when NQ = sup{(tj+1 − tj ) : 0 ≤ j ≤ m − 1} tends to 0. Here Q denotes the par-
tition 0 = t0 < t1 < · · · < tm = t of the interval [0, t] and {̃at : t ≥ 0} an adapted
stochastic process, bounded by the same constant as {at : t ≥ 0} and such that

m−1∑
j=0

ãtj 1I{tj ≤s<tj+1}

tends to {at : 0 ≤ s ≤ t} in the space L2([0, t] × �, λ × P) as NQ → 0. λ is a
Lebesgue measure on the line.

Of course, the statements above should be proved to be able to define Y (t)

in this way (see, e.g., McKean, 1969). Our aim here is to prove that the process
{Y (t) : t ≥ 0} thus defined has a version with continuous paths. With no loss of
generality, we assume that t varies on the interval [0, 1] and apply Corollary
1.7(a) with p = 4.

We will prove that

E((Y (t + h) − Y (t))4) ≤ (const)h2.

For this, it is sufficient to see that if Q is a partition of the interval [t, t + h],
h > 0,

E(S4
Q) ≤ (const)h2, (1.16)

where (const) does not depend on t, h, and Q, and then apply Fatou’s lemma
when NQ → 0.

Let us compute the left-hand side of (1.16). Set �j = W(tj+1) − W(tj ). We
have

E(S4
Q) =

m−1∑
j1,j2,j3,j4=0

E(̃atj1
ãtj2

ãtj3
ãtj4

�j1�j2�j3�j4). (1.17)

If one of the indices, say j4, satisfies j4 > j1, j2, j3, the corresponding term
becomes

E

(
4∏

h=1

(̃atjh
�jh

)

)
= E

(
E

(
4∏

h=1

(̃atjh
�jh

)|Ftj4

))

= E

(
3∏

h=1

(̃atjh
�jh

)̃atj4
E(�j4 |Ftj4

)

)
= 0

since

E(�j |Ftj ) = E(�j ) = 0 and
3∏

h=1

(̃atjh
�jh

)̃atj4
isFtj4

− measurable.



REGULARITY OF PATHS 25

In a similar way, if j4 < j1 = j2 = j3 (and similarly, if any one of the indices
is strictly smaller than the others and these are all equal), the corresponding term
vanishes since in this case

E

(
4∏

h=1

(̃
atjh

�jh

))
= E

(
E

((̃
atj1

�j1

)3
ãtj4

�j4 |Ftj1

))
= E
(̃
a3

tj1
ãtj4

�j4E
(
�3

j1
|Ftj1

))
= 0

because
E
(
�3

j |Ftj

) = E
(
�3

j

) = 0.

The terms with j1 = j2 = j3 = j4 give the sum

m−1∑
j=0

E
((̃

atj �j

)4) ≤ C4
1

m−1∑
j=0

3 (tj+1 − tj )
2 ≤ 3 C4

1 h2.

Finally, we have the sum of the terms corresponding to 4-tuples of indices
j1, j2, j3, and j4 such that for some permutation (i1, i2, i3, i4) of (1, 2, 3, 4),
one has ji1 , ji2 < ji3 = ji4 . This is

6
m−1∑
j3=1

∑
0≤j1,j2<j3

E
(̃
atj1

ãtj2
ã2

tj3
�j1�j2�

2
j3

)
.

Conditioning on Ftj3
in each term yields for this sum

6
m−1∑
j3=1

∑
0≤j1,j2<j3

(tj3+1 − tj3)E
(̃
atj1

ãtj2
ã2

tj3
�j1�j2

)

= 6E

⎛⎜⎝m−1∑
j3=1

(tj3+1 − tj3 )̃a
2
tj3

⎛⎝j3−1∑
j=0

ãtj �j

⎞⎠2
⎞⎟⎠

≤ 6 C2
1

m−1∑
j3=1

(tj3+1 − tj3)E

⎛⎜⎝
⎛⎝j3−1∑

j=0

ãtj �j

⎞⎠2
⎞⎟⎠

= 6 C2
1

m−1∑
j3=1

(tj3+1 − tj3)

j3−1∑
j=0

E
(̃
a2

tj

)
(tj+1 − tj ) ≤ 3C4

1 h2.

Using (1.17), one obtains (1.16), and hence the existence of a version of the Itô
integral possessing continuous paths.
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Separability. Next, we consider the separability of stochastic processes. The
separability condition is shaped to avoid the measurability problems that we have
already mentioned and to use, without further reference, versions of stochastic
processes having good path properties. We begin with a definition.

Definition 1.8. We say that a real-valued stochastic process {X(t) : t ∈ T }, T a
topological space, is separable if there exists a fixed countable subset D of T such
that with probability 1,

sup
t∈V ∩D

X(t) = sup
t∈V

X(t) and inf
t∈V ∩D

X(t) = inf
t∈V

X(t) for all open sets V.

A consequence of Theorem 1.6 is the following:

Proposition 1.9. Let {Y (t) : t ∈ I }, I an interval in the line, be a separable ran-
dom process that satisfies the hypotheses of Theorem 1.6. Then, almost surely
(a.s.), its paths are continuous.

Proof. Denote by D the countable set in the definition of separability. With no
loss of generality, we may assume that D is dense in I . The theorem states that
there exists a version {X(t) : t ∈ I } that has continuous paths, so that

P(X(t) = Y (t) for all t ∈ D) = 1.

Let
E = {X(t) = Y (t) for all t ∈ D}

and

F =
⋂

J⊂I,J=(r1,r2),r1,r2∈Q

{
sup

t∈J∩D

Y (t) = sup
t∈J

Y (t) and inf
t∈J∩D

Y (t) = inf
t∈J

Y (t)

}
.

Since P(E ∩ F) = 1, it is sufficient to prove that if ω ∈ E ∩ F , then
X(s)(ω) = Y (s)(ω) for all s ∈ I .

So, let ω ∈ E ∩ F and s ∈ I . For any ε > 0, choose r1, r2 ∈ Q such that

s − ε < r1 < s < r2 < s + ε.

Then, setting J = (r1, r2),

Y (s)(ω) ≤ sup
t∈J

Y (t)(ω) = sup
t∈J∩D

Y (t)(ω) = sup
t∈J∩D

X(t)(ω) ≤ sup
t∈J

X(t)(ω).
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Letting ε → 0, it follows that

Y (s)(ω) ≤ lim sup
t→s

X(t)(ω) = X(s)(ω)

since t � X(t)(ω) is continuous.
In a similar way, one proves that Y (s)(ω) ≥ X(s)(ω). �

The separability condition is usually met when the paths have some minimal
regularity (see Exercise 1.7). For example, if {X(t) : t ∈ R} is a real-valued
process having a.s. càd-làg paths (i.e., paths that are right-continuous with left
limits), it is separable. All processes considered in the sequel are separable.

Some Additional Remarks and References. A reference for Kolmogorov’s
extension theorem and the regularity of paths, at the level of generality we have
considered here, is the book by Cramér and Leadbetter (1967), where the reader
can find proofs that we have skipped as well as related results, examples, and
details. For d-parameter Gaussian processes, a subject that we consider in more
detail in Chapter 6, in the stationary case, necessary and sufficient conditions
to have continuous paths are due to Fernique (see his St. Flour 1974 lecture
notes) and to Talagrand (1987) in the general nonstationary case. In the Gaussian
stationary case, Belayev (1961) has shown that either: with probability 1 the paths
are continuous, or with probability 1 the supremum (respectively, the infimum)
on every interval is +∞ (respectively, −∞). General references on Gaussian
processes are the books by Adler (1990) and Lifshits (1995).

1.4.2. Sample Path Differentiability and Hölder Conditions

In this section we state some results, without detailed proofs. These follow the
lines of the preceding section.

Theorem 1.10. Let Y = {Y (t) : t ∈ [0, 1]} be a real-valued stochastic process
that satisfies the hypotheses of Theorem 1.6 and additionally, for any triplet t − h,

t, t + h ∈ [0, 1], one has

P(|Y (t + h) + Y (t − h) − 2Y (t)| ≥ α1(h)) ≤ β1(h),

where α1 and β1 are two even functions, increasing for h > 0 and such that

∞∑
n=1

2n α1(2
−n) < ∞,

∞∑
n=1

2n β1(2
−n) < ∞.

Then there exists a version X = {X(t) : t ∈ T } of the process Y such that almost
surely the paths of X are of class C1.
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Sketch of the Proof. Consider the sequence {Y (n)(t) : t ∈ [0, 1]}n=1,2,... of
polygonal processes introduced in the proof of Theorem 1.6. We know that
a.s. this sequence converges uniformly to X = {X(t) : t ∈ [0, 1]}, a continuous
version of Y . Define:

Ỹ (n)(t) := Y (n)′(t−) for 0 < t ≤ 1 (left derivative)

Ỹ (n)(0) := Y (n)′(0+) (right derivative).

One can show that the hypotheses imply:

1. Almost surely, as n → ∞, Ỹ (n)(·) converges uniformly on [0, 1] to a func-
tion X̃(·).

2. Almost surely, as n → ∞, supt∈[0,1]|Ỹ (n)(t+) − Ỹ (n)(t)| → 0.

To complete the proof, check that the function t � X̃(t) a.s. is continuous
and coincides with the derivative of X(t) at every t ∈ [0, 1]. �

Example 1.2 (Stationary Gaussian Processes). Let Y = {Y (t) : t ∈ R} be a cen-
tered stationary Gaussian process with covariance of the form

�(τ) = E(Y (t)Y (t + τ)) = �(0) − 1

2
λ2τ

2 + O

(
τ 2

| log |τ ||a
)

with λ2 > 0, a > 3. Then there exists a version of Y with paths of class C1. For
the proof, apply Theorem 1.10.

A related result is the following. The proof is left to the reader.

Proposition 1.11 (Hölder Conditions). Assume that

E(|Y (t + h) − Y (t)|p) ≤ K|h|1+r for t, t + h ∈ [0, 1], (1.18)

where K , p, and r are positive constants, r ≤ p. Then there exists a version of
the process Y = {Y (t) : t ∈ [0, 1]} with paths that satisfy a Hölder condition with
exponent α for any α such that 0 < α < r/p.

Note that, for example, this proposition can be applied to the Wiener pro-
cess (Brownian motion) with r = (p − 2)/2, showing that it satisfies a Hölder
condition for every α < 1

2 .
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1.4.3. Higher Derivatives

Let X = {X(t) : t ∈ R} be a stochastic process and assume that for each t ∈ R,
one has X(t) ∈ L2(�,A, P).

Definition 1.12. X is differentiable in quadratic mean (q.m.) if for all t ∈ R,

X(t + h) − X(t)

h

converges in quadratic mean as h → 0 to some limit that will be denoted X′(t).

The stability of Gaussian random variables under passage to the limit implies
that the derivative in q.m. of a Gaussian process remains Gaussian.

Proposition 1.13. Let X = {X(t) : t ∈ R} be a stochastic process with mean m(t)

and covariance r(s, t) and suppose that m is C1 and that r is C2. Then X is
differentiable in the quadratic mean.

Proof. We use the following result, which is easy to prove: The sequence
Z1, . . . , Zn of real random variables converges in q.m. if and only if there
exists a constant C such that E(ZmZn) → C as the pair (m, n) tends to infinity.
Since m(t) is differentiable, it can be substracted from X(t) without changing
its differentiability, so we can assume that the process is centered. Then for all
real h and k,

E

(
X(t + h) − X(t)

h

X(t + k) − X(t)

k

)
= 1

hk

[
r(t + h, t + k) − r(t, t + k) − r(t, t + h) + r(t, t)

]
→ r11(t, t) as (k, h) → (0, 0),

where r11(s, t) := ∂2r(s, t)/∂s∂t . This shows differentiability in q.m. �

We assume, using the remark in the proof above, that X is centered and
satisfies the conditions of the proposition. It is easy to prove that

E(X(s)X′(t)) = r01(s, t) := ∂r

∂t
(s, t),

and similarly, that the covariance of X ′ = {X′(t) : t ∈ R} is r11(s, t). Now let X
be a Gaussian process and X ′ its derivative in quadratic mean. If this satisfies,
for example, the criterion in Corollary 1.7(b), it admits a continuous version
Y ′ = {Y ′(t) : Y ′(t); t ∈ R}. Set

Y (t) := X(0) +
∫ t

0
Y ′(s) ds.
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Clearly, Y has C1-paths and E(X(s), Y (s)) = r(s, 0) + ∫ s

0 r01(s, t) dt = r(s, s).
In the same way, E(Y (s)2) = r(s, s), so that E([X(s) − Y (s)]2) = 0. As a con-
sequence, X admits a version with C1 paths.

Using this construction inductively, one can prove the following:

• Let X be a Gaussian process with mean Ck and covariance C2k and such that
its kth derivative in quadratic mean satisfies the weak condition of Corollary
1.7(b). Then X admits a version with paths of class Ck.

• If X is a Gaussian process with mean of class C∞ and covariance of class
C∞, X admits a version with paths of class C∞.

In the converse direction, regularity of the paths implies regularity of the
expectation and of the covariance function. For example, if X has continuous
sample paths, the mean and the variance are continuous. In fact, if tn, n = 1, 2, . . .

converges to t , then X(tn) converges a.s. to X(t), hence also in distribution.
Using the form of the Fourier transform of the Gaussian distribution, one easily
proves that this implies convergence of the mean and the variance. Since for
Gaussian variables, all the moments are polynomial functions of the mean and
the variance, they are also continuous. If the process has differentiable sample
paths, in a similar way one shows the convergence

m(t + h) − m(t)

h
→ E(X′(t))

as h → 0, showing that the mean is differentiable.
For the covariance, restricting ourselves to stationary Gaussian processes

defined on the real line, without loss of generality we may assume that
the process is centered. Put �(t) = r(s, s + t). The convergence in dis-
tribution of (X(h) − X(0))/h to X′(0) plus the Gaussianity imply that
Var
(
(X(h) − X(0))/h

)
has a finite limit as h → 0. On the other hand,

Var

(
X(h) − X(0)

h

)
= 2
∫ +∞

−∞

1 − cos hx

h2
μ(dx),

where μ is the spectral measure.
Letting h → 0 and applying Fatou’s lemma, it follows that

λ2 =
∫ +∞

−∞
x2μ(dx) ≤ lim inf

h→0
Var

(
X(h) − X(0)

h

)
< ∞.

Using the result in Exercise 1.4, � is of class C2.
This argument can be used in a similar form to show that if the process

has paths of class Ck, the covariance is of class C2k. As a conclusion, roughly
speaking, for Gaussian stationary processes, the order of differentiability of the
sample paths is half of the order of differentiability of the covariance.
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1.4.4. More General Tools

In this section we consider the case when the parameter of the process lies in Rd

or, more generally, in some general metric space. We begin with an extension of
Theorem 1.6.

Theorem 1.14. Let Y = {Y (t) : t ∈ [0, 1]d} be a real-valued random field that
satisfies the condition

(Kd) For each pair t, t + h ∈ [0, 1]d ,

P{|Y (t + h) − Y (t)| ≥ α(h̄)} ≤ β(h̄),

where h = (h1, . . . , hd), h̄ = sup1≤i≤d |hi |, and α, β are even real-valued
functions defined on [−1, 1], increasing on [0, 1], which verify

∞∑
n=1

α(2−n) < ∞,

∞∑
n=1

2dnβ(2−n) < ∞.

Then there exists a version X = {X(t) : t ∈ [0, 1]d} of the process Y such
that the paths t�X(t) are continuous on [0, 1]d .

Proof. The main change with respect to the proof of Theorem 1.6 is that
we replace the polygonal approximation, adapted to one-variable functions by
another interpolating procedure. Denote by Dn the set of dyadic points of order
n in [0, 1]d ; that is,

Dn =
{
t = (t1, . . . , td ) : ti = ki

2n
, ki integers , 0 ≤ ki ≤ 2n, i = 1, . . . , d

}
.

Let f : [0, 1]d → R be a function. For each n = 1, 2, . . ., one can construct a
function f (n) : [0, 1]d → R with the following properties:

• f (n) is continuous.
• f (n)(t) = f (t) for all t ∈ Dn.
• ‖f (n+1) − f (n)‖∞ = maxt∈Dn+1\Dn |f (t) − f (n)(t)|, where ‖ · ‖∞ denotes

sup-norm on [0, 1]d .

A way to define f (n) is the following: Let us consider a cube Ct,n of the
nth-order partition of [0, 1]d ; that is,

Ct,n = t +
[

0,
1

2n

]d
,
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where t ∈ Dn with the obvious notation for the sum. For each vertex τ , set

f (n)(τ ) = f (τ).

Now, for each permutation π of {1, 2, . . . , d}, let Sπ be the simplex

Sπ =
{
t + s : s = (sπ(1), . . . , sπ(d)), 0 ≤ sπ(1) ≤ · · · ≤ sπ(d) ≤ 1

2n

}
.

It is clear that Ct,n is the union of the Sπ ’s over all permutations. In a unique
way, extend f (n) to Sπ as an affine function. It is then easy to verify the afore
mentioned properties and that

‖f (n+1) − f (n)‖∞ ≤ d sup
s,t∈Dn+1,|t−s|=2−(n+1)

|f (s) − f (t)|.

The remainder of the proof is essentially similar to that of Theorem 1.6. �

From this we deduce easily

Corollary 1.15. Assume that the process Y = {Y (t) : t ∈ [0, 1]d} verifies one of
two conditions:

(a)

E(|Y (t + h) − Y (t)|p) ≤ Kd |h|d
| log |h||1+r

, (1.19)

where p, r , and K are positive constants, p < r .
(b) If Y is Gaussian, m(t) = E(Y (t)) is continuous and

Var(Y (t + h) − Y (t)) ≤ C

| log |h||a (1.20)

for all t and sufficiently small h and a > 3.
Then the process has a version with continuous paths.

Note that the case of processes with values in R
d ′

need not to be considered
separately, since continuity can be addressed coordinate by coordinate. For Hölder
regularity we have

Proposition 1.16. Let Y = {Y (t) : t ∈ [0, 1]d} be a real-valued stochastic pro-
cess with continuous paths such that for some q > 1, α > 0,

E
(|Y (s) − Y (t)|q) ≤ (const)‖s − t‖d+α.

Then almost surely, Y has Hölder paths with exponent α/2q .
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Until now, we have deliberately chosen elementary methods that apply to
general random processes, not necessarily Gaussian. In the Gaussian case, even
when the parameter varies in a set that does not have a restricted geometric
structure, the question of continuity can be addressed using specific methods.
As we have remarked several times already, we only need to consider centered
processes.

Let {X(t) : t ∈ T } be a centered Gaussian process taking values in R. We
assume that T is some metric space with distance denoted by τ . On T we define
the canonical distance d ,

d(s, t) :=
√

E(X(t) − X(s))2.

In fact, d is a pseudodistance because two distinct points can be at d distance
zero. A first point is that when the covariance r(s, t) function is τ -continuous,
which is the only relevant case (otherwise there is no hope of having continuous
paths), d-continuity and τ -continuity are equivalent. The reader is referred to
Adler (1990) for complements and proofs.

Definition 1.17. Let (T , d) be a metric space. For ε > 0 denote by N(ε) =
N(T , d, ε) the minimum number of closed balls of radius ε with which we can
cover T (the value of Nε can be +∞).

We have the following theorem:

Theorem 1.18 (Dudley, 1973). A sufficient condition for {X(t) : t ∈ T } to have
continuous sample paths is

∫ +∞

0

(
log(N(ε))

)1/2
dε < ∞.

log(N(ε)) is called the entropy of the set T .

A very important fact is that this condition is necessary in some relevant cases:

Theorem 1.19 (Fernique, 1974). Let {X(t) : t ∈ T }, T compact, a subset of R
d ,

be a stationary Gaussian process. Then the following three statements are equiv-
alent:

• Almost surely, X(·) is bounded.
• Almost surely, X(·) is continuous.

•
∫ +∞

0

(
log(N(ε))

)1/2
dε < ∞.
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This condition can be compared with Kolmogorov’s theorem. The reader can
check that Theorem 1.19 permits us to weaken the condition of Corollary 1.7(b)
to a > 1. On the other hand, one can construct counterexamples (i.e., processes
not having continuous paths) such that (1.14) holds true with a = 1. This shows
that the condition of Corollary 1.7(b) is nearly optimal and sufficient for most
applications. When the Gaussian process is no longer stationary, M. Talagrand
has given necessary and sufficient conditions for sample path continuity in terms
of the existence of majorizing measures (see Talagrand, 1987).

The problem of differentiability can be addressed in the same manner as for
d = 1. A sufficient condition for a Gaussian process to have a version with Ck

sample paths is for its mean to be Ck, its covariance C2k, and its kth derivative
in quadratic mean to satisfy some of the criteria of continuity above.

1.4.5. Tangencies and Local Extrema

In this section we give two classical results that are used several times in the book.
The first gives a simple sufficient condition for a one-parameter random process
not to have a.s. critical points at a certain specified level. The second result
states that under mild conditions, a Gaussian process defined on a quite general
parameter set with probability 1 does not have local extrema at a given level.
We will use systematically the following notation: If ξ is a random variable with
values in R

d and its distribution has a density with respect to Lebesgue measure,
this density is denoted as

pξ (x) x ∈ R
d .

Proposition 1.20 (Bulinskaya, 1961). Let {X(t) : t ∈ I } be a stochastic process
with paths of class C1 defined on the interval I of the real line. Assume that for
each t ∈ I , the random variable X(t) has a density pX(t)(x) which is bounded as
t varies in a compact subset of I and x in a neighborhood v of u ∈ R. Then

P(T X
u �= Ø) = 0,

where T X
u = {t : t ∈ I,X(t) = u, X′(t) = 0} is the set of critical points with value

u of the random path X(·).

Proof. It suffices to prove that P(T X
u ∩ J �= Ø) = 0 for any compact subinterval

J of I . Let � be the length of J and t0 < t1 < · · · < tm be a uniform partition
of J (i.e., tj+1 − tj = �/m for j = 0, 1, · · · , m − 1). Denote by ωX′(δ, J ) the
modulus of continuity X′ on the interval J and Eδ,ε the event

Eδ,ε = {ωX′(δ, J ) ≥ ε}.
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Let ε > 0 be given; choose δ > 0 so that P(Eδ,ε) < ε and m so that �/m < δ,
and [u − l/m, u + l/m] ⊂ v. We have

P(T X
u ∩ J �= Ø) ≤ P(Eδ,ε) +

m−1∑
j=0

P({T X
u ∩ [tj , tj+1] �= Ø} ∩ EC

δ,ε)

< ε+
m−1∑
j=0

P

(
|X(tj ) − u| ≤ ε

�

m

)
=ε+

m−1∑
j=0

∫
|x−u|≤ε(�/m)

pX(tj )(x) dx.

If C is an upper bound for pX(t)(x), t ∈ J, |x − u| ≤ ε l/m, we obtain

P(T X
u ∩ J �= Ø) ≤ ε + Cε�.

Since ε > 0 is arbitrary, the result follows. �

The second result is an extension of Ylvisaker’s theorem, which has the fol-
lowing statement:

Theorem 1.21 (Ylvisaker, 1968). Let {Z(t) : t ∈ T } be a real-valued Gaus-
sian process indexed on a compact separable topological space T having con-
tinuous paths and Var(Z(t)) > 0 for all t ∈ T . Then, for fixed u ∈ R, one has
P(EZ

u �= Ø) = 0, where EZ
u is the set of local extrema of Z(·) having value equal

to u.

The extension is the following:

Theorem 1.22 Let {Z(t) : t ∈ T } be a real-valued Gaussian process on some
parameter set T and denote by MZ = supt∈T Z(t) its supremum (which takes
values in R ∪ {+∞}). We assume that there exists a nonrandom countable set
D, D ⊂ T , such that a.s. MZ = supt∈D Z(t). Assume further that there exist
σ 2

0 > 0, m− > −∞ such that

m(t) = E(Z(t)) ≥ m−

σ 2(t) = Var(Z(t)) ≥ σ 2
0 for every t ∈ T .

Then the distribution of the random variable MZ is the sum of an atom at +∞
and a (possibly defective) probability measure on R which has a locally bounded
density.

Proof. Step 1. Suppose first that {X(t) : t ∈ T } satisfies the hypotheses of the
theorem, and, moreover,

Var(X(t)) = 1, E(X(t)) ≥ 0
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for every t ∈ T . We prove that the supremum MX has a density pMX , which
satisfies the inequality

pMX(u) ≤ ψ(u) := exp(−u2/2)∫ ∞

u

exp(−v2/2) dv

for every u ∈ R. (1.21)

Let D = {tk}k=1,2,.... Almost surely, MX = sup{X(t1) . . . X(tn) . . .}. We set

Mn := sup
1≤k≤n

X(tk).

Since the joint distribution of X(tk), k = 1, . . . , n, is Gaussian, for any choice
of k, � = 1, . . . , n; k �= �, the probability P{X(tk) = X(t�)} is equal to 0 or 1.
Hence, possibly excluding some of these random variables, we may assume that
these probabilities are all equal to 0 without changing the value of Mn on a set
of probability 1. Then the distribution of the random variable Mn has a density
gn(·) that can be written as

gn(x) =
n∑

k=1

P(X(tj ) < x, j = 1, . . . , n; j �= k|X(tk) = x)

×e−(1/2)(x−m(tk))2

√
2π

= ϕ(x)Gn(x),

where ϕ denotes the standard normal density and

Gn(x) =
n∑

k=1

P(Yj < x − m(tj ), j = 1, . . . , n; j �= k|Yk

= x − m(tk))e
xm(tk )−(1/2)m2(tk)

(1.22)

with
Yj = X(tj ) − m(tj ) j = 1, . . . , n.

Let us prove that x � Gn(x) is an increasing function.
Since m(t) ≥ 0, it is sufficient that the conditional probability in each term of

(1.22) be increasing as a function of x. Write the Gaussian regression

Yj = Yj − cjkYk + cjkYk with cjk = E(YjYk),

where the random variables Yj − cjkYk and Yk are independent. Then the condi-
tional probability becomes

P(Yj − cjkYk < x − m(tj ) − cjk(x − m(tk)), j = 1, . . . , n; j �= k).
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This probability increases with x because 1 − cjk ≥ 0, due to the Cauchy–
Schwarz inequality. Now, if a, b ∈ R, a < b, since Mn ↑ MX,

P{a < MX ≤ b} = lim
n→∞P(a < Mn ≤ b).

Using the monotonicity of Gn, we obtain

Gn(b)

∫ +∞

b

ϕ(x) dx ≤
∫ +∞

b

Gn(x)ϕ(x) dx =
∫ +∞

b

gn(x) dx ≤ 1,

so that

P{a < Mn ≤ b} =
∫ b

a

gn(x) dx ≤ Gn(b)

∫ b

a

ϕ(x) dx

≤
∫ b

a

ϕ(x) dx

(∫ +∞

b

ϕ(x) dx

)−1

.

This proves (1.21).
Step 2. Now let Z satisfy the hypotheses of the theorem without assuming the

added ones in step 1. For given a, b ∈ R, a < b, choose A ∈ R
+ so that |a| < A

and consider the process

X(t) = Z(t) − a

σ(t)
+ |m−| + A

σ0
.

Clearly, for every t ∈ T ,

E
(
X(t)
) = m(t) − a

σ(t)
+ |m−| + A

σ0
≥ −|m−| + |a|

σ0
+ |m−| + A

σ0
≥ 0

and
Var
(
X(t)
) = 1,

so that (1.21) holds for the process X.
On the other hand,

{a < MZ ≤ b} ⊂ {μ1 < MX ≤ μ2},
where

μ1 = |m−| + A

σ0
, μ2 = |m−| + A

σ0
+ b − a

σ0
.

It follows that

P
{
a < MZ ≤ b

} ≤
∫ μ2

μ1

ψ(u) du =
∫ b

a

1

σ0
ψ
(v − a + |m−| + A

σ0

)
dv,

which proves the statement. �
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Theorem 1.21 follows directly from Theorem 1.22, since under the hypotheses
of Theorem 1.21, we can write

{EX
u �= Ø} ⊂

⋃
U∈F

({MU = u} ∪ {mU = u}),

where MU (respectively, mu) is the maximum (respectively, the minimum) of
the process on the set U and F denotes a countable family of open sets being a
basis for the topology of T .

Remark. We come back in later chapters to the subject of the regularity prop-
erties of the probability distribution of the supremum of a Gaussian process.

EXERCISES

1.1. Let T = N be the set of natural numbers. Prove that the following sets
belong to σ(C).

(a) c0 (the set of real-valued sequences {an} such that an → 0). Suggestion:
Note that c0 =⋂∞

k=1

⋃∞
m=1

⋂
n≥m{|an| < 1/k}.

(b) �2 (the set of real-valued sequences {an} such that
∑

n |an|2 < ∞).

(c) The set of real-valued sequences {an} such that limn→∞ an ≤ 1.

1.2. Take T = R, T = BR. Then if for each ω ∈ � the function

t � X(t, ω), (1.23)

the path corresponding to ω, is a continuous function, the process is
bi-measurable. In fact, check that

X(t, ω) = lim
n→+∞X(n)(t, ω),

where for n = 1, 2, . . . , X(n)is defined by

X(n)(t, ω) =
k=+∞∑
k=−∞

Xk/2n(ω)1I{k/2n≤ t <(k+1)/2n},

which is obviously measurable as a function of the pair (t, ω). So the limit
function X has the required property. If one replaces the continuity of the
path (1.23) by some other regularity properties such as right continuity,
bi-measurability follows in a similar way.
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1.3. Let U be a random variable defined on some probability space (�,A, P),
having uniform distribution on the interval [0, 1]. Consider the two stochas-
tic processes

Y (t) = 1It=U

X(t) ≡ 0.

The process Y (t) is sometimes called the random parasite.

(a) Prove that for all t ∈ [0, 1], a.s. X(t) = Y (t).
(b) Deduce that the processes X(t) and Y (t) have the same probability

distribution P on R
[0,1] equipped with its Borel σ -algebra.

(c) Notice that for each ω in the probability space, supt∈[0,1] Y (t) = 1 and
supt∈[0,1] X(t) = 0, so that the suprema of both processes are com-
pletely different. Is there a contradiction with the previous point?

1.4. Let μ be a Borel probability measure on the real line and � its Fourier
transform; that is,

�(τ) =
∫

R

exp(iτx)μ(dx).

(a) Prove that if

λk =
∫

R

|x|kμ(dx) < ∞

for some positive integer k, the covariance �(·) is of class Ck and

�(k)(τ ) =
∫

R

(ix)k exp(iτx)μ(dx).

(b) Prove that if k is even, k = 2p, the reciprocal is true: If � is of class
C2p, then λ2p is finite and

�(t) = 1 − λ2
t2

2!
+ λ4

t4

4!
+ · · · + (−1)2pλ2p

t2p

(2p)!
+ o(t2p).

Hint: Using induction on p and supposing that λk is infinite, then for
every A > 0, one can find some M > 0 such that

∫ M

M

xkμ(dx) ≥ A.
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Show that it implies that

(−1)k
k!

tk

[
�(t) −

(
1 − λ2

t2

2!
+ · · · + (−1)k−2λk−2

tk−2

(k − 2)!

)]
has a limit, when t tends to zero, greater than A, which contradicts
differentiability.

(c) When k is odd, the result is false [see Feller, 1966, Chap. XVII,
example (c)].

1.5. Let {ξn}n=1,2,... be a sequence of random vectors defined on some prob-
ability space taking values in Rd , and assume that ξn → ξ in probability
for some random vector ξ . Prove that if each ξn is Gaussian, ξ is also
Gaussian.

1.6. Prove the following statements on the process defined by (1.10).

(a) For each t ∈ T the series (1.10) converges a.s.
(b) Almost surely, the function t � X(t) is in H and ‖X(·)‖2

H =∑∞
n=1 cnξ

2
n .

(c) {ϕn}n=1,2,... are eigenfunctions—with eigenvalues {cn}n=1,2,...,
respectively—of the linear operator A : H → H defined by

(Af )(s) =
∫

T

r(s, t)f (t)ρ(dt).

1.7. Let {X(t) : t ∈ T } be a stochastic process defined on some separable topo-
logical space T .

(a) Prove that if X(t) has continuous paths, it is separable.
(b) Let T = R. Prove that if the paths of X(t) are càd-làg, X(t) is sepa-

rable.

1.8. Let {X(t) : t ∈ R
d} be a separable stochastic process defined on some

(complete) probability space (�,A, P).

(a) Prove that the subset of � {X(·) is continuous} is in A.
(b) Prove that the conclusion in part (a) remains valid if one replaces “con-

tinuous” by “upper continuous”, “lower continuous,” or “continuous on
the right” [a real-valued function f defined on Rd is said to be contin-
uous on the right if for each t , f (t) is equal to the limit of f (s) when
each coordinate of s tends to the corresponding coordinate of t on its
right].

1.9. Show that in the case of the Wiener process, condition (1.18) holds for
every p ≥ 2, with r = p/2 − 1. Hence, the proposition implies that a.s.,
the paths of the Wiener process satisfy a Hölder condition with exponent
α, for every α < 1

2 .
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1.10. (Wiener integral ) Let {W1(t) : t ≥ 0} and {W2(t) : t ≥ 0} be two indepen-
dent Wiener processes defined on some probability space (�,A, P), and
denote by {W(t) : t ∈ R} the process defined as

W(t) = W1(t) if t ≥ 0 and W(t) = W2(−t) if t ≤ 0.

L2(R, λ) denotes the standard L2-space of real-valued measurable
functions on the real line with respect to Lebesgue measure and
L2(�,A, P) the L2 of the probability space. C1

K(R) denotes the subspace
of L2(R, λ) of C1-functions with compact support. Define the function
I : C1

K(R) → L2(�,A, P) as

I (f ) = −
∫

R

f ′(t)W(t) dt (1.24)

for each nonrandom f ∈ C1
K(R). Equation (1.24) is well defined for each

ω ∈ � since the integrand is a continuous function with compact support.

(a) Prove that I is an isometry, in the sense that
∫

R
f 2(t) dt = E

(
I 2(f )
)
.

(b) Show that for each f , I (f ) is a centered Gaussian random variable.
Moreover, for any choice of f1, . . . , fp ∈ C1

K(R), the joint distribution
of (I (f1), . . . ., I (fp)) is centered Gaussian. Compute its covariance
matrix.

(c) Prove that I admits a unique isometric extension Ĩ to L2(R, λ) such
that:

(1) Ĩ (f ) is a centered Gaussian random variable with variance equal
to
∫

R
f 2(t) dt ; similarly for joint distributions.

(2)
∫

R

f (t)g(t) dt = E
(
Ĩ (f )Ĩ (g)

)
.

Comment: Ĩ (f ) is called the Wiener integral of f .

1.11. (Fractional Brownian motion) Let H be a real number, 0 < H < 1. We
use the notation and definitions of Exercise 1.10.

(a) For t ≥ 0, define the function Kt : R → R:

Kt(u) = [(t − u)H−1/2 − (−u)H−1/2]1Iu<0 + (t − u)H−1/21I0<u<t .

Prove that Kt ∈ L2(R, λ).
(b) For t ≥ 0, define the Wiener integral Ĩ (Kt ), and for s, t ≥ 0, prove the

formula

E
(
Ĩ (Ks)Ĩ (Kt)

) = CH

2

[
s2H + t2H − |t − s|2H

]
,

where CH is a positive constant depending only on H . Compute CH .
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(c) Prove that the stochastic process {C−1/2
H Ĩ (Kt) : t ≥ 0} has a version

with continuous paths. This normalized version with continuous paths
is usually called the fractional Brownian motion with Hurst exponent
H and is denoted {WH(t) : t ≥ 0}.

(d) Show that if H = 1
2 , then {WH(t) : t ≥ 0} is the standard Wiener pro-

cess.
(e) Prove that for any δ > 0, almost surely the paths of the fractional

Brownian motion with Hurst exponent H satisfy a Hölder condition
with exponent H − δ.

1.12. (Local time) Let {W(t) : t ≥ 0} be a Wiener process defined in a probability
space (�,A, P). For u ∈ R, I an interval I ⊂ [0,+∞] and δ > 0, define

μδ(u, I ) = 1

2δ

∫
I

1I|W(t)−u|<δdt = 1

2δ
λ({t ∈ I : |W(t) − u| < δ}).

(a) Prove that for fixed u and I , μδ(u, I ) converges in L2(�,A, P) as
δ → 0. Denote the limit by μ0(u, I ). Hint: Use Cauchy’s criterion.

(b) Denote Z(t) = μ0(u, [0, t]). Prove that the random process
Z(t) : t ≥ 0 has a version with continuous paths. We call this version
the local time of the Wiener process at the level u , and denote it by
LW (u, t).

(c) For fixed u, LW(u, t) is a continuous increasing function of t ≥ 0.
Prove that a.s. it induces a measure on R

+ that is singular with respect
to Lebesgue measure; that is, its support is contained in a set of
Lebesgue measure zero.

(d) Study the Hölder continuity properties of LW(u, t). For future refer-
ence, with a slight abuse of notation, we will write, for any interval
I = [t1, t2], 0 ≤ t1 ≤ t2:

LW (u, I ) = LW(u, t2) − LW(u, t1).


