
Keeping It Simple

‘‘Keep It Simple’’ is really a synonym for ‘‘Get a Grip.’’

If you are reading this book, you probably have some degree of responsibility in getting a website
application up and running. If you are reading this chapter and you are searching for a series of
steps you can actually assimilate and follow toward fulfilling that goal, then you are in the right
place.

First of all, in a software project (and because of its complexity, that is what a website application
is), you are either controlled by circumstances or you succeed — but only if you can maintain your
grip on things. That’s only if, after receiving all the advice, you are able to fashion your own means
of zooming into detail, return to the overview, keep it going, and know at all times where your
bookmarks are . . .and if you can pilot the process of each layer making up the project, on every
front: the purpose, the design, the usability, the navigation, the function, the data, the push and pull
and flow of actions and results, the emission and reception of messages, the completion of tasks, the
updating, the classification, and relation of content.

Which is to say, if you keep it simple and keep it all in view, or at least know where to look for
it, then you can marshal your own approach to truly leveraging a powerful, open-ranging, and
dynamically productive framework such as Drupal, the ‘‘Community Plumbing’’ Content Manage-
ment System framework middleware powerhouse, featuring:

Significant off-the-shelf functionality

Tremendous extensibility through nearly 3,500 contributed modules

Based on one of the most active Open Source communities in existence

Drupal is all of these things.

Add to the mix that Drupal itself is evolving at a fairly brisk pace, as you’ll see in later chapters, and
you definitely need to come to Drupal with your own approach.

CO
PYRIG

HTED
 M

ATERIA
L

Chapter 1: Keeping It Simple

Because you are using Drupal for world domination (a favorite geek metaphor among Drupaleros),
then you had better have a program. And you had better make sure that everyone involved gets on that
program and stays there.

Getting with the “Program”
The ‘‘program’’ means that you must start out with a clear idea of how your client defends her interests
with the website application in the works. In the program, keeping it simple does not mean splitting it
apart and losing the richness of vision, nor does it mean oversimplifying.

This chapter lays out a method that you follow throughout the rest of the book. Then, you can either
adopt it lock-stock-and-barrel or roll your own. But we definitely recommend following some kind of
Agile approach and have developed a lean, mean methodology checklist. We find that this means, at a
bare minimum, maintaining a policy for:

Vision and Scope — The business vision and scope

Visitors and Users — Who’s going to use the website?

User Stories — Narratives telling us what the users are going to use the website for

Analysis and Design — What needs to be done so they can do that?

Planning and Risk Management — When should you do that?

Design and Usability — What should it look like?

Tracking and Testing — Making sure you’re getting what you really want

Technology Transfer and Deployment — Turning over the helm to those who will be managing
the website application each and every day

Figure 1-1 shows a basic main process workflow for this book’s example project. The workflow is strongly
influenced by Mike Cohn’s book User Stories Applied (http://amazon.com/User-Stories-Applied-
Development-Addison-Wesley/dp/0321205685).

The Perl programming language, in common with Drupal, has been one of the major Open Source success
stories of all time, answering a burning need in an intelligent and synthetic way, backed by an extremely
active community led by very smart people. And, like Drupal, given a problem, it provides an enormous
number of alternatives offering themselves as solutions. ‘‘There’s more than one way to do it’’ has always
been their slogan, and the same holds true with Drupal: there is always more than one way to do it. So, of
course, you can substitute your own process workflow and find your own solutions along the way. The
important thing is to recognize that the development of a website application is a complex process. To get
it done right and to leverage a powerful, dynamic, and productivity-enhancing framework like Drupal,
you need to develop your own independent approach and method as you gain experience yourself. The
method you’ll use throughout this book is a ‘‘starter set’’ you will adapt and tailor to your own needs, as
you develop the Literary Workshop community website.

In a nutshell, the main process workflow makes the first task the identification of the customer and,
by extension, the business vision and scope of the project as well as the complete list of stakeholders
involved. Then comes the identification of the roles — the different kinds of users who will use the site.
For each role, you write a series of user stories, identifying all the possible interactions the role will have

4

Chapter 1: Keeping It Simple

with the website application. Doing it this way (asking who will use the site, and, for each of the roles,
what they are going to do when they interact with it) guarantees that you can cover all the functionality
required and come up with a complete list of user stories.

Start project

Main
Process
Flow

Write User
Stories

Plan the
Release Estimate

Velocity

Estimate
Use Stories

Prioritize
Use Stories Allocate

Stories to
Iterations

Identify
Customer

Identify
Roles

Do
Iterations

Continuous
Build

Figure 1-1

At this point, you have all your user stories, perhaps written on 3×5 cards and spread out on a table in
front of you, or on a magnetic board, or taped up to the wall, or whatever. So you can do the planning.
This involves making an initial estimate for each user story, taking advantage of the fact that each user
story is a semi-autonomous chunk of functionality that can be dealt with independently. Then, you
create a way of putting the estimates in context on the basis of the velocity of the team. (Is this our first
time? Any extra-special technical areas of difficulty, like dealing with a text messaging gateway, or with
specialized web services?)

Next, you are ready to prioritize the user stories. If they are indeed 3×5 cards, this means unshuffling
the deck and putting them in order. The two most significant criteria for this should be: which ones does
the client think are the most essential, and which ones need to be tackled first because they involve some
kind of risk that needs to be mitigated at as early a stage as possible.

This process dovetails into the next important planning task, which is allocating the stories to iterations.
You want to have several iterations, at least four to six for a medium site, even more for a large site,
following the Agile principle of ‘‘frequent releases.’’ One reason for this is so that the client, who should
be considered part of the development team, can give really effective feedback in time for the architecture
of the site not to be adversely affected by any ‘‘surprises’’ that may crop up: If implementation is straying
far from the client expectations of what the website is supposed to actually do, you want to find out
about that sooner rather than later. Another is so that work can be expressed as much as possible using
the semantics of the solution domain, rather than the problem domain — which means that people can
think much more clearly when something concrete is up and running, rather than being forced to work
in the abstract.

5

Chapter 1: Keeping It Simple

Discuss
Stories

Write
Acceptance

Test

Disaggregate
Stories into

Tasks

Distribute
Responsibility

for Tasks

Estimate
Tasks

Continuous
Build

Run
Acceptance

Tests

Raise Issues

Do Tasks

Iteration
Process
Flow

Figure 1-2

So now, you have planned your iterations, and you have on the table (and hopefully on the wall), or else
entered into your favorite issue tracking system, essentially four to six piles of no more than five user
stories (more iterations and more user stories per iteration if it is a bigger website, also depending on
estimated team velocity).

Basically, you want to grab the first pile (the first iteration) and implement it. Now, for each planned iter-
ation, or phase (sometimes people group iterations in phases), you use the workflow shown in Figure 1-2.

To do this, you take each story and discuss it, the client takes a major responsibility for writing the
acceptance test for it, and you list all the tasks that need to be carried out in order to actually implement
the functionality involved in the user story. The acceptance test is basically a semi-formal to formal
statement of precise criteria according to which the work has actually been done right.

According to the Extreme Programming website (http://extremeprogramming.org — a great starting
point to finding out more about a lot of the methodology we are talking about and using in this book,
as is Kent Beck’s ground-breaking work on the subject, Extreme Programming Explained: Embrace Change;
http://amazon.com/Extreme-Programming-Explained-Embrace-Change/dp/0201616416):

Acceptance tests are black box system tests. Each acceptance test represents some
expected result from the system. Customers are responsible for verifying the correct-
ness of the acceptance tests and reviewing test scores to decide which failed tests
are of highest priority. Acceptance tests are also used as regression tests prior to a
production release.

Essentially ‘‘getting your site done right’’ means that all the acceptance tests pass for all user stories.
You’ll be learning about acceptance tests and other forms of testing, like unit testing, below in the book.

In any case, it should be clear that the acceptance tests must be written before any work is actually done.
Once written, and all the tasks necessary to implement a given user story are listed, each task can be

6

Chapter 1: Keeping It Simple

taken up by a pair (hopefully) of developers. (It’s much more productive for two people to work together
on a task, but we won’t get involved in any religious wars here; also, you might be working by yourself,
so just be prepared to put on a lot of hats!) The developers will take the task, make an estimate, carry
it out, and immediately integrate their work into the development test site. Later, the client will run the
acceptance tests for the user story, and if they pass, the work just got done! Otherwise, an issue is raised
in whatever issue tracking system you are using (more on this later), and the work is recycled, until the
acceptance tests all pass.

Let’s get our lean-and-mean methodology checklist straight now, starting with the task of mapping the
business vision and scope.

Starting with a Map for Business Vision and Scope
Experience at succeeding has shown that to achieve the benefits of the ‘‘KISS’’ approach, you actually
have to dig down deep to the roots of what is an organic, dynamic process. It is not a question of over-
simplification for the sake of simplification.

To succeed, you need to stand ‘‘commonsense’’ on its pointy head, at least for a while, and acquire a
deep vision: It is not only that those who lack a business plan will not enjoy financial success. While
true, what you are concerned with here is that without first identifying the business plan, there is no
way you can build a website application that meets your clients’ needs and fits right into their regular
activity. Real needs cannot be translated into an analysis and design, analysis and design into implemen-
tation, implementation into a working model for testing, a working tested model into a deployed website
application — the website application the client needs will never be born.

In traditional Information Technology terms, this is called a Business Model (see Wikipedia). The impor-
tance of business rules is present in the context of Agile Modeling, as well. Business Modeling is a difficult
subject to master in its own right, but thankfully, you can cut to the chase here, and draw yourselves a
Web 2.0 picture of the relationship between the business rules, the feature list, and the offerings of a
website application: a meme map.

For more on Business Models, see Wikipedia at http://en.wikipedia.org/wiki/
Business_model. For more on Agile Modeling, see http://agilemodeling.com/artifacts/
businessRule.htm. For more on meme maps, see ‘‘Remaking the Peer-to-Peer Meme,’’
by Tom O’Reilly, http://oreillynet.com/pub/a/495.

A meme map shows the deep relationship between the internal activities of a business or organization,
their strategic positioning, on the one hand, and that business’ outward, public face, on the other, includ-
ing the website applications and their functionality, which is what it is you actually have to develop.
Everything is clear at a glance. This is just what you need to get started. Look at Figure 1-3 (which shows
a meme map for a Drupal-based Literary Workshop website application) and the comments following it.

At the top, there are three bubbles containing the main public functionality of the website appli-
cation.

In the middle, the core is shown as a rectangle housing the positioning strategy and guiding
principles (which may well differ with someone attempting a similar kind of site, but which will
have a big impact on what you will be doing anyway).

7

Chapter 1: Keeping It Simple

Online literary
workshop

Writers write pieces and
show them to others

Writers critique
each others pieces

Writers organize in
affinity groups

Writers share ideas
about writing

Writers submit their
works for publication

publications call for
works to be
published

Online
magazines

Literary Workshop

– Writing is a social process, not an individual process
– The writer flourishes in her community.
– You must produce if you want to be part of the community.
– A literary work only exists if it is published.
– The writer needs to be able to acquire free tools.

Online writer-
publisher connection

Figure 1-3

Below are the regular business activities housing and forming the material basis and personal
interactions supporting the rest.

From this point on, ‘‘Keeping It Simple’’ is going to mean banishing anything that isn’t directly connected
to your business vision, automatically and constantly getting rid of the fluff.

Going to the heart of the matter, and keeping that present, will enable you to get a grip right from the
start.

There is a website where you can make your own meme maps (Do It Yourself Meme Map Generator,
http://web.forret.com/tools/mememap.asp), so you can try it out yourself. Or you can use any dia-
gram drawing tool. Or use pencil and paper (that will work!). In any case, I strongly recommend that you
follow along in this book by actually developing your website application as I develop mine. Practice
makes perfect.

Who’s Going to Use the Site?
This question really goes to the identification of the actual users of the website itself, and also the users
of the website in a business sense.

8

Chapter 1: Keeping It Simple

Perhaps a sector of the back office, for example, will never actually use the site as such, but will be inter-
ested in receiving periodic statistics, say, as a weekly email. They must be included, of course, in the list
of roles. Here’s a list of roles for the Literary Workshop website application:

Role Description

Workshop Leader The person who actually runs the workshop, decides who to accept,
monitors whether members are complying with requirements, and also
participates along with the other members

Workshop Member Someone who has joined the workshop and actively participates in it

Publisher Someone publishing a magazine, on and off the site

Webmaster Technical administrator of the website

The main thing is that every possible user of your website application needs to be taken into consideration
in order to truly capture the complete set of requirements that need to be met in the implementation of
the project. At the same time, a complete list of all interactions with the site (their user stories) for each of
these users completes the picture.

What Are They Going to Use It For?
Let’s make a list of user stories, then, for each of the Roles we have previously identified.

Role User Story

Workshop Leader Can approve applications to join the workshop (from members and
magazine and book publishers)

Can suspend members and publishers

Can manage affinity groups

Can broadcast messages to members

Can do everything workshop members and publishers can do

Workshop Member Can post literary pieces

Can make any post public, private, or visible to an affinity group

Can critique public posts

Can browse public pieces and critiques

Can send and receive messages to and from all members, publishers, and
the workshop leader

Can start an affinity group with its own forums

Can post to forums

Can maintain their own literary blogs

9

Chapter 1: Keeping It Simple

Role User Story

Publishers Can browse public content

Can broadcast a call for pieces to be submitted for a publication

Can select content for inclusion in a publication

Can manage an on-line publication

Can manage an on-line blog

Webmaster Can administer the website configuration

Can install new updates and functionality

What Needs to Be Done So They Can Do That?
You will be taking each user story and doing some analysis and design aimed at discerning what can
be reused from the giant Drupal storehouse of core and contributed functionality, and what needs to be
added on — perhaps contributing back to the community in the process (you’ll learn why this is a great
idea later on in the book).

But that isn’t enough. The answer to this question is actually to be found during the course
of the iteration planning workflow as well as in the user story implementation workflow.
During the planning stage, when we are prioritizing user stories and assigning them to
iterations, we would do well to bear in mind the organization of iterations established
by both the Rational Unified Process (see www-306.ibm.com/software/awdtools/rup as
well as http://ibm.com/developerworks/rational/library/content/03July/1000/1251/
1251_bestpractices_TP026B.pdf) and the Open Unified Process (see http://epf.eclipse.org/
wikis/openup/index.htm) into four phases, or groups of iterations:

Phase Iterations Description

Inception Usually a single
iteration, with a
resulting prototype

Vision, scope, and feasibility study enables the initiation of the
project based on cost and schedule estimates. Initial requirements,
risks, and mitigation strategies are identified, and a technical
approach is agreed on.

Elaboration Usually two
iterations, prototype
confirming
architectural
decisions

During the elaboration phase, the requirements baseline and the
architectural baseline are set. Iterations are planned. Planning,
costs, and schedule are agreed on. A lot of work gets done, and
the test site is up and running with successive development
releases.

Construction Enough iterations to
get the job done

Change management is in force from the onset of this phase.
Alpha and Beta release will be completed, and all Alpha testing
completed by phase end.

10

Chapter 1: Keeping It Simple

Phase Iterations Description

Transition Usually a single
iteration

Release 1.0 of the website application has been deployed on the
live site and accepted by the client and is in production. All
documentation and training have been completed, and an initial
maintenance period has elapsed.

Well, here we are getting to some pretty rigorous language. But, these phases actually occur in any
project, and it is best to be conscious of the whole process, so as to manage it instead of being managed.

The main thing to understand here is that as the basic workflow is followed, two baselines emerge,
relatively early in the project — a requirements baseline (the sum of all user stories) and an architectural
baseline. Now, the decision to use Drupal in the first place settles a slew of architectural decisions. But
you need to decide exactly how required functionality will be supported. Here are a few examples:

Which modules will support the use of images? Will images be Drupal nodes in their own right,
or fields in a node?

What editing facilities will different kinds of users have at their disposal? Will a wiki-style
markup approach be chosen, or will a rich text editor be necessary? Which one? And once it is
chosen, how will it be configured?

Will part of the site’s content find its origin in external sources? Will those sources be news
feeds? Will specialized multimedia modules be necessary? Will that content simply be listed, or
will it be incorporated into the database also?

To what extent will the website need to scale?

In terms of support for foreign languages, will there be a need for localization (the process of
adapting the user interface, including menus, currency and date formats, to a particular locale,
or language, locality, and their customs, commonly abbreviated as l10n)? Will there be a need
to make the content of the site multilingual through the use of internationalization modules (the
process of making one or more translations into various different languages available for each
content item, commonly abbreviated as i18n)?

What is the basic content model? What classes of content and what content types need to exist,
and what is the relationship between them?

And then there is also a whole other area of things that need to be attended to that are ongoing through-
out the project, namely, setting up development, testing, and production sites; setting up a build and
deployment procedure, including a version control system; and setting up an environment for everyone
working on the project, with all the necessary (compatible) tools and workstations. You guessed it — this
will be dealt with in detail in upcoming chapters.

To delve even further into the whole question of software development process engineer-
ing (really getting it done right!), check out the CMMI website (‘‘What Is CMMI?’’ at
http://sei.cmu.edu/cmmi/general). There are also books on the subject, specifically CMMI
Guidelines for Process Integration and Product Improvement, by Mary Beth Chrissis, Mike
Konrad, and Sandy Scrum (http://amazon.com/CMMI-Guidelines-Integration-Improvement-
Engineering/dp/0321154967), as well as CMMI Distilled (http://amazon.com/CMMI-
Distilled-Introduction-Improvement-Engineering/dp/0321461088). These sources give

11

Chapter 1: Keeping It Simple

a good overview and grounding for this model. This model has been proven totally compatible
with Agile approaches (www.agilecmmi.com/ is just one example), and while it may
definitely be overkill for most readers of this book, it may make all the difference in the world
for some.

When Should You Do That?
The answer to this question is: during the whole project! There will be constant imbalance and balance
struck again between two apparent opposites: the need to decide what to do and then do it, on the one
hand, and the need for change, on the other. So this calls for an incremental and iterative approach,
providing frequent opportunity for client feedback and for taking stock, and providing entry points for
change and its impact to be repeatedly evaluated.

The mistake has been made time and time again, of using the so-called waterfall model approach to website
development as a way of keeping things simple. ‘‘We will decide exactly what we want to do, and then
we will do it.’’ Experience has shown that this is a recipe for disaster and must be replaced with an
incremental and iterative approach.

For more information on the Standard Waterfall Model for Systems Development, see
http://web.archive.org/web/20050310133243 and http://asd-www.larc.nasa.gov/
barkstrom/public/The_Standard_Waterfall_Model_For_Systems_Development.htm.

Now, keeping it simple is actually the opposite of banishing change. Change is actually the mechanism
by means of which clients understand what they really want and make sure the final product embodies
their needs. That is why there need to be frequent iterations.

So, progress in the project means that various models are actually being built at the same time.
The architectural big picture emerges and takes shape on a par with the requirements baseline, sometime
in the third or fourth iteration, which is to say, together with actual deliveries of prototypes. By that
time, all the user stories are written, estimated, and prioritized, and the iterations to implement them are
planned.

But as the team starts plucking the next user story off the wall and starts seeing how to implement it, and
as the client begins to see his or her dream more and more in the flesh, subtle and not so subtle changes
will occur. If the planning has been good, then the user stories with the biggest likelihood of affecting
the architecture will be among the first to be tackled. Then their impact will be positive and will help to
shape the architectural baseline.

The catastrophe scenario to be avoided (and it is not always so easy to avoid) is a user story that gets
implemented very late in the game and turns out to have a huge impact on architecture. You find out, for
some reason, that the editing user interface simply has to be done in Flash, so we need to solve the
problem of how to integrate Adobe’s Remoting protocol with Drupal via, say, the Drupal Services
module. Well, it’s all good, but you really need to know about things that have that kind of impact
earlier on.

The more the work is planned around iterations that are constructed in terms of a basic architectural
vision and constantly checked by all concerned, the less likelihood there is of that kind of high-cost
impact catastrophe occurring.

12

Chapter 1: Keeping It Simple

What Should It Look Like?
Isn’t it nice that this is just one more little section of this chapter? Too often a project is reduced to its bells
and whistles (see the next section, ‘‘Making Sure You’re Getting What You Really Want’’).

Well, because having a ‘‘Web 2.0 design’’ really is a concern of many clients, a good way of understanding
what that means and what elements go together to constitute it, is the article ‘‘Current Web Design’’
(http://webdesignfromscratch.com/current-style.cfm).

But, most of all, you should be concerned about usability. You should concern yourself about form fol-
lowing content and being dictated by content. The best way to do that is to get the functionality of the site
going first, and then and only then imposing the graphic design. That is the method you will be using in
this book.

The obligatory read here is Steve Krug’s book, Don’t Make Me Think (http://sensible.com).
However, I have recently seen this book cited in the Drupal forums as a reason why people in general,
including developers, shouldn’t have to think. No, for the end-user of a website not to have to think (that
is what it’s about), a lot of thinking has to go on: Drupaleros have to do a lot of thinking to get their
websites done right.

The main lessons are:

The importance of usability testing

The need to start out with a clear home page instead of ending up with a home page that is out
of control

The importance of usability testing

The need to base your site navigation and design on how people really use the Internet

The importance of usability testing

Drupal is great for this kind of approach — first, because, as you shall see, it is its own greatest proto-
typer, and second, because of its great theming system. With Drupal, the functionality is really skinnable,
on a high level of detail and in a very flexible manner. But, of course, you have to know what you are
doing. However, once you learn the secrets, you can leverage an extremely powerful theming system
that has also proven itself to be very SEO friendly.

Making Sure You’re Getting What You Really Want
You should be concerned about testing, with the discipline of avoiding being driven by the bells and
whistles instead of by what you really need. You should also be concerned about ‘‘Feature Creep,’’ with
quality control, and with building, which is understood as the integration of dependable blocks and
units.

There are two basic principles involved here, and getting what you really want depends on both of them
being observed:

Unit testing forms an important part of the responsibility of implementing a piece of function-
ality. Unit tests must be written in such a way that they cover the maximum possible number of
key functional points in the code.

13

Chapter 1: Keeping It Simple

The whole process of development should be test-driven, by which we mean acceptance
test-driven. Acceptance tests are black box tests; they test how the website application should
behave. In website applications, usability testing forms an important part of acceptance
testing.

While there are other forms of testing that should be included, such as stress and load test-
ing, these two — unit tests and acceptance tests — are two you absolutely cannot do without.
Indeed, the PHP SimpleTest framework is becoming part of Drupal. The module page can be
found at http://drupal.org/project/simpletest, while great documentation is centralized at
http://drupal.org/simpletest.

We have already defined acceptance tests, and here simply need to stress that they should be written
and executed by the client, even though he or she will need to count on your assistance throughout the
project in order to do so.

Turning Over the Helm
At some point, the artist must be dragged kicking and screaming from her masterpiece and told:
‘‘It’s done. It’s not yours any longer; it belongs to the final user.’’ This, too, must be planned for and
implemented throughout the project. Its easy accomplishment is another beneficial result from getting
the client involved, early and actively, in the project. Seeing the client as someone to keep at a distance
like a bull in a china store will result in a difficult delivery of the website to those who will be using it
thereafter.

Again, an iterative approach will help, and is actually indispensable, in order to avoid the all-too-often
witnessed scenario of finishing a site and having no one to deliver it to, or else, delivery constituting itself
as an almost insurmountable obstacle.

From the start, the responsibilities must be clear. One example scheme could be the following:

Client is responsible for testing and acceptance.

Client is responsible for administering website users and setting their permissions.

Developer is responsible for updating Drupal core and modules.

Client is responsible for contracting hosting.

Developer is responsible for initial installation on production site.

This is why the phase is called Transition in the Unified Process approach. The website application itself
must be deployed after all testing is completed. A maintenance plan must be in place. But there must also
be documentation (manuals and/or on-line Help) and training in order to empower the client and the
final users to actually use what they have acquired, for them to really take ownership.

In the case of website applications, the tight schedules they usually have and the fact that the resources
actually required are generally overwhelming compared to what the client may actually have been think-
ing at the outset, so the more gradually this is all done, the better.

In this book, therefore, there will be a fictionalized client who will also be very much present throughout
the project and who will actually motorize everything.

14

Chapter 1: Keeping It Simple

Information Architecture and an Agile
Approach for the Rest of Us

Best practices fans and refugees will discern throughout this chapter a dependency — a ‘‘standing on the
shoulders of giants’’ — in relation both to the Agile approach to software development and to the disci-
pline of information architecture (see http://webmonkey.com/tutorial/Information_Architecture_
Tutorial; see also a more advanced article: http://articles.techrepublic.com.com/5100-22_11-
5074224.html). Here I am drawing from a huge body of materials, and given the practical character of
this book, I run the risk of treating these subjects superficially.

I hope that in the course of working through this book, it will be clear that I am not ‘‘name-dropping’’
buzzwords, but, rather, extracting from vast areas of expertise just what you need, and no more, in order
to succeed at a task that is sold to you as simple and straightforward and that is simple and straightfor-
ward compared to doing everything from scratch, but that is neither simple nor straightforward.

So everything mentioned in this chapter will be used thoroughly, and you will gain a practical familiarity
with all these tools.

So whether you are a project manager with specialized departments working under you, or someone
who practically has to do the whole project alone, your responsibility in getting this site done right will
very much make you a Renaissance person. You will learn much more about CSS and tools like Firebug
than you may care to, more about navigation and menu systems than you may care to, even more about
‘‘templates’’ and PHP than you may care to. Indeed, in using Drupal, you may learn much more about
‘‘Views,’’ ‘‘content types,’’ ‘‘Taxonomy,’’ and ‘‘clean URLs’’ than you ever dreamed of. You may find
yourself checking out from CVS and SVN repositories and apt-get installing whole operating systems, or
organizing and/or supervising others who do that as part of their everyday work.

You will find yourself involved in sending in ‘‘patches’’ to module maintainers. You may even be
involved in theme or module development. You will find yourself concerned about unit test ‘‘coverage’’
and usability tests.

It is hoped that you will end up with a site done right together with a stack of passed acceptance tests
that truly document the system requirements.

The Example Used throughout This Book
As mentioned, you will be developing the Literary Workshop website application as an example project
to illustrate the material presented in this book. Using a version control system and a standardized
deployment procedure, you will be able to move forwards and backwards in time to all stages of devel-
opment as part of your practical exploration.

As well, in the course of working your way through this book, you’ll discover a whole series of what are
termed reusable ‘‘Website Developer Patterns.’’ These are collectible challenges, solutions, and secrets
that crop up time and time again and need to be dealt with in project after project, and a systematic
approach must be found for them in order to get your site done right.

So, let’s get to it.

15

Chapter 1: Keeping It Simple

Summary
In this chapter, you have been introduced to the methodology to be followed in this book in order to
get the most out of the Drupal CMS framework, and to the nontrivial example you will be working with
throughout. The methodology is based on an Agile approach to any kind of software development, and
has been tailored to the development cycle required to develop a Drupal website application. In the next
chapter, you will take your first practical steps and get the functional prototype up and running.

16

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

