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Financial Time Series
and Their Characteristics

Financial time series analysis is concerned with the theory and practice of asset
valuation over time. It is a highly empirical discipline, but like other scientific
fields theory forms the foundation for making inference. There is, however, a
key feature that distinguishes financial time series analysis from other time series
analysis. Both financial theory and its empirical time series contain an element of
uncertainty. For example, there are various definitions of asset volatility, and for a
stock return series, the volatility is not directly observable. As a result of the added
uncertainty, statistical theory and methods play an important role in financial time
series analysis.

The objective of this book is to provide some knowledge of financial time
series, introduce some statistical tools useful for analyzing these series, and gain
experience in financial applications of various econometric methods. We begin
with the basic concepts of asset returns and a brief introduction to the processes
to be discussed throughout the book. Chapter 2 reviews basic concepts of linear
time series analysis such as stationarity and autocorrelation function, introduces
simple linear models for handling serial dependence of the series, and discusses
regression models with time series errors, seasonality, unit-root nonstationarity, and
long-memory processes. The chapter also provides methods for consistent estima-
tion of the covariance matrix in the presence of conditional heteroscedasticity and
serial correlations. Chapter 3 focuses on modeling conditional heteroscedasticity
(i.e., the conditional variance of an asset return). It discusses various econometric
models developed recently to describe the evolution of volatility of an asset return
over time. The chapter also discusses alternative methods to volatility modeling,
including use of high-frequency transactions data and daily high and low prices of
an asset. In Chapter 4, we address nonlinearity in financial time series, introduce
test statistics that can discriminate nonlinear series from linear ones, and discuss
several nonlinear models. The chapter also introduces nonparametric estimation

Analysis of Financial Time Series, Third Edition, By Ruey S. Tsay
Copyright © 2010 John Wiley & Sons, Inc.

1

CO
PYRIG

HTED
 M

ATERIA
L



2 financial time series and their characteristics

methods and neural networks and shows various applications of nonlinear models
in finance. Chapter 5 is concerned with analysis of high-frequency financial data, the
effects of market microstructure, and some applications of high-frequency finance.
It shows that nonsynchronous trading and bid–ask bounce can introduce serial cor-
relations in a stock return. It also studies the dynamic of time duration between
trades and some econometric models for analyzing transactions data. In Chapter 6,
we introduce continuous-time diffusion models and Ito’s lemma. Black–Scholes
option pricing formulas are derived, and a simple jump diffusion model is used
to capture some characteristics commonly observed in options markets. Chapter 7
discusses extreme value theory, heavy-tailed distributions, and their application to
financial risk management. In particular, it discusses various methods for calculat-
ing value at risk and expected shortfall of a financial position. Chapter 8 focuses
on multivariate time series analysis and simple multivariate models with empha-
sis on the lead–lag relationship between time series. The chapter also introduces
cointegration, some cointegration tests, and threshold cointegration and applies the
concept of cointegration to investigate arbitrage opportunity in financial markets,
including pairs trading. Chapter 9 discusses ways to simplify the dynamic struc-
ture of a multivariate series and methods to reduce the dimension. It introduces
and demonstrates three types of factor model to analyze returns of multiple assets.
In Chapter 10, we introduce multivariate volatility models, including those with
time-varying correlations, and discuss methods that can be used to reparameterize
a conditional covariance matrix to satisfy the positiveness constraint and reduce the
complexity in volatility modeling. Chapter 11 introduces state-space models and
the Kalman filter and discusses the relationship between state-space models and
other econometric models discussed in the book. It also gives several examples
of financial applications. Finally, in Chapter 12, we introduce some Markov chain
Monte Carlo (MCMC) methods developed in the statistical literature and apply
these methods to various financial research problems, such as the estimation of
stochastic volatility and Markov switching models.

The book places great emphasis on application and empirical data analysis.
Every chapter contains real examples and, in many occasions, empirical character-
istics of financial time series are used to motivate the development of econometric
models. Computer programs and commands used in data analysis are provided
when needed. In some cases, the programs are given in an appendix. Many real
data sets are also used in the exercises of each chapter.

1.1 ASSET RETURNS

Most financial studies involve returns, instead of prices, of assets. Campbell, Lo,
and MacKinlay (1997) give two main reasons for using returns. First, for average
investors, return of an asset is a complete and scale-free summary of the investment
opportunity. Second, return series are easier to handle than price series because
the former have more attractive statistical properties. There are, however, several
definitions of an asset return.
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Let Pt be the price of an asset at time index t . We discuss some definitions of
returns that are used throughout the book. Assume for the moment that the asset
pays no dividends.

One-Period Simple Return
Holding the asset for one period from date t − 1 to date t would result in a simple
gross return:

1 + Rt = Pt

Pt−1
or Pt = Pt−1(1 + Rt). (1.1)

The corresponding one-period simple net return or simple return is

Rt = Pt

Pt−1
− 1 = Pt − Pt−1

Pt−1
. (1.2)

Multiperiod Simple Return
Holding the asset for k periods between dates t − k and t gives a k-period simple
gross return:

1 + Rt [k] = Pt

Pt−k

= Pt

Pt−1
× Pt−1

Pt−2
× · · · × Pt−k+1

Pt−k

= (1 + Rt)(1 + Rt−1) · · · (1 + Rt−k+1)

=
k−1∏
j=0

(1 + Rt−j ).

Thus, the k-period simple gross return is just the product of the k one-period simple
gross returns involved. This is called a compound return. The k-period simple net
return is Rt [k] = (Pt − Pt−k)/Pt−k.

In practice, the actual time interval is important in discussing and comparing
returns (e.g., monthly return or annual return). If the time interval is not given,
then it is implicitly assumed to be one year. If the asset was held for k years, then
the annualized (average) return is defined as

Annualized {Rt [k]} =
⎡⎣k−1∏

j=0

(1 + Rt−j )

⎤⎦1/k

− 1.

This is a geometric mean of the k one-period simple gross returns involved and
can be computed by

Annualized {Rt [k]} = exp

⎡⎣1

k

k−1∑
j=0

ln(1 + Rt−j )

⎤⎦ − 1,
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where exp(x) denotes the exponential function and ln(x) is the natural logarithm
of the positive number x. Because it is easier to compute arithmetic average than
geometric mean and the one-period returns tend to be small, one can use a first-order
Taylor expansion to approximate the annualized return and obtain

Annualized {Rt [k]} ≈ 1

k

k−1∑
j=0

Rt−j . (1.3)

Accuracy of the approximation in Eq. (1.3) may not be sufficient in some applica-
tions, however.

Continuous Compounding
Before introducing continuously compounded return, we discuss the effect of com-
pounding. Assume that the interest rate of a bank deposit is 10% per annum and
the initial deposit is $1.00. If the bank pays interest once a year, then the net value
of the deposit becomes $1(1 + 0.1) = $1.1 one year later. If the bank pays inter-
est semiannually, the 6-month interest rate is 10%/2 = 5% and the net value is
$1(1 + 0.1/2)2 = $1.1025 after the first year. In general, if the bank pays interest
m times a year, then the interest rate for each payment is 10%/m and the net value
of the deposit becomes $1(1 + 0.1/m)m one year later. Table 1.1 gives the results
for some commonly used time intervals on a deposit of $1.00 with interest rate of
10% per annum. In particular, the net value approaches $1.1052, which is obtained
by exp(0.1) and referred to as the result of continuous compounding. The effect of
compounding is clearly seen.

In general, the net asset value A of continuous compounding is

A = C exp(r × n), (1.4)

where r is the interest rate per annum, C is the initial capital, and n is the number
of years. From Eq. (1.4), we have

C = A exp(−r × n), (1.5)

TABLE 1.1 Illustration of Effects of Compounding: Time Interval Is 1 Year and
Interest Rate Is 10% per Annum

Type Number of Payments Interest Rate per Period Net Value

Annual 1 0.1 $1.10000
Semiannual 2 0.05 $1.10250
Quarterly 4 0.025 $1.10381
Monthly 12 0.0083 $1.10471
Weekly 52 0.1/52 $1.10506
Daily 365 0.1/365 $1.10516
Continuously ∞ $1.10517
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which is referred to as the present value of an asset that is worth A dollars n

years from now, assuming that the continuously compounded interest rate is r per
annum.

Continuously Compounded Return
The natural logarithm of the simple gross return of an asset is called the continu-
ously compounded return or log return:

rt = ln(1 + Rt) = ln
Pt

Pt−1
= pt − pt−1, (1.6)

where pt = ln(Pt ). Continuously compounded returns rt enjoy some advantages
over the simple net returns Rt . First, consider multiperiod returns. We have

rt [k] = ln(1 + Rt [k]) = ln[(1 + Rt)(1 + Rt−1) · · · (1 + Rt−k+1)]

= ln(1 + Rt) + ln(1 + Rt−1) + · · · + ln(1 + Rt−k+1)

= rt + rt−1 + · · · + rt−k+1.

Thus, the continuously compounded multiperiod return is simply the sum of con-
tinuously compounded one-period returns involved. Second, statistical properties
of log returns are more tractable.

Portfolio Return
The simple net return of a portfolio consisting of N assets is a weighted average
of the simple net returns of the assets involved, where the weight on each asset is
the percentage of the portfolio’s value invested in that asset. Let p be a portfolio
that places weight wi on asset i. Then the simple return of p at time t is Rp,t =∑N

i=1 wiRit , where Rit is the simple return of asset i.
The continuously compounded returns of a portfolio, however, do not have the

above convenient property. If the simple returns Rit are all small in magnitude, then
we have rp,t ≈ ∑N

i=1 wirit , where rp,t is the continuously compounded return of
the portfolio at time t . This approximation is often used to study portfolio returns.

Dividend Payment
If an asset pays dividends periodically, we must modify the definitions of asset
returns. Let Dt be the dividend payment of an asset between dates t − 1 and t and Pt

be the price of the asset at the end of period t . Thus, dividend is not included in Pt .
Then the simple net return and continuously compounded return at time t become

Rt = Pt + Dt

Pt−1
− 1, rt = ln(Pt + Dt) − ln(Pt−1).

Excess Return
Excess return of an asset at time t is the difference between the asset’s return and
the return on some reference asset. The reference asset is often taken to be riskless
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such as a short-term U.S. Treasury bill return. The simple excess return and log
excess return of an asset are then defined as

Zt = Rt − R0t , zt = rt − r0t , (1.7)

where R0t and r0t are the simple and log returns of the reference asset, respectively.
In the finance literature, the excess return is thought of as the payoff on an arbitrage
portfolio that goes long in an asset and short in the reference asset with no net
initial investment.

Remark. A long financial position means owning the asset. A short position
involves selling an asset one does not own. This is accomplished by borrowing the
asset from an investor who has purchased it. At some subsequent date, the short
seller is obligated to buy exactly the same number of shares borrowed to pay back
the lender. Because the repayment requires equal shares rather than equal dollars,
the short seller benefits from a decline in the price of the asset. If cash dividends are
paid on the asset while a short position is maintained, these are paid to the buyer
of the short sale. The short seller must also compensate the lender by matching
the cash dividends from his own resources. In other words, the short seller is also
obligated to pay cash dividends on the borrowed asset to the lender. �

Summary of Relationship
The relationships between simple return Rt and continuously compounded (or log)
return rt are

rt = ln(1 + Rt), Rt = ert − 1.

If the returns Rt and rt are in percentages, then

rt = 100 ln

(
1 + Rt

100

)
, Rt = 100

(
ert /100 − 1

)
.

Temporal aggregation of the returns produces

1 + Rt [k] = (1 + Rt)(1 + Rt−1) · · · (1 + Rt−k+1),

rt [k] = rt + rt−1 + · · · + rt−k+1.

If the continuously compounded interest rate is r per annum, then the relationship
between present and future values of an asset is

A = C exp(r × n), C = A exp(−r × n).

Example 1.1. If the monthly log return of an asset is 4.46%, then the corre-
sponding monthly simple return is 100[exp(4.46/100) − 1] = 4.56%. Also, if the
monthly log returns of the asset within a quarter are 4.46%, −7.34%, and 10.77%,
respectively, then the quarterly log return of the asset is (4.46 − 7.34 + 10.77)% =
7.89%.
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1.2 DISTRIBUTIONAL PROPERTIES OF RETURNS

To study asset returns, it is best to begin with their distributional properties.
The objective here is to understand the behavior of the returns across assets
and over time. Consider a collection of N assets held for T time periods, say,
t = 1, . . . , T . For each asset i, let rit be its log return at time t . The log returns
under study are {rit ; i = 1, . . . , N; t = 1, . . . , T }. One can also consider the sim-
ple returns {Rit ; i = 1, . . . , N; t = 1, . . . , T } and the log excess returns {zit ; i =
1, . . . , N; t = 1, . . . , T }.

1.2.1 Review of Statistical Distributions and Their Moments

We briefly review some basic properties of statistical distributions and the
moment equations of a random variable. Let Rk be the k-dimensional Euclidean
space. A point in Rk is denoted by x ∈ Rk . Consider two random vectors
X = (X1, . . . , Xk)

′ and Y = (Y1, . . . , Yq)
′. Let P (X ∈ A, Y ∈ B) be the proba-

bility that X is in the subspace A ⊂ Rk and Y is in the subspace B ⊂ Rq . For
most of the cases considered in this book, both random vectors are assumed to be
continuous.

Joint Distribution
The function

FX,Y (x, y; θ) = P (X ≤ x, Y ≤ y; θ),

where x ∈ Rp, y ∈ Rq , and the inequality ≤ is a component-by-component oper-
ation, is a joint distribution function of X and Y with parameter θ . Behavior of X

and Y is characterized by FX,Y (x, y; θ). If the joint probability density function
fx,y(x, y; θ) of X and Y exists, then

FX,Y (x, y; θ) =
∫ x

−∞

∫ y

−∞
fx,y(w, z; θ) dz dw.

In this case, X and Y are continuous random vectors.

Marginal Distribution
The marginal distribution of X is given by

FX(x; θ) = FX,Y (x, ∞, · · · , ∞; θ).

Thus, the marginal distribution of X is obtained by integrating out Y . A similar
definition applies to the marginal distribution of Y .

If k = 1, X is a scalar random variable and the distribution function becomes

FX(x) = P (X ≤ x; θ),
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which is known as the cumulative distribution function (CDF) of X. The CDF of a
random variable is nondecreasing [i.e., FX(x1) ≤ FX(x2) if x1 ≤ x2] and satisfies
FX(−∞) = 0 and FX(∞) = 1. For a given probability p, the smallest real number
xp such that p ≤ FX(xp) is called the 100pth quantile of the random variable X.
More specifically,

xp = inf
x

{x|p ≤ FX(x)}.

We use the CDF to compute the p value of a test statistic in the book.

Conditional Distribution
The conditional distribution of X given Y ≤ y is given by

FX|Y≤y(x; θ) = P (X ≤ x, Y ≤ y; θ)

P (Y ≤ y; θ)
.

If the probability density functions involved exist, then the conditional density of
X given Y = y is

fx|y(x; θ) = fx,y(x, y; θ)

fy(y; θ)
, (1.8)

where the marginal density function fy(y; θ) is obtained by

fy(y; θ) =
∫ ∞

−∞
fx,y(x, y; θ) dx.

From Eq. (1.8), the relation among joint, marginal, and conditional distributions is

fx,y(x, y; θ) = fx|y(x; θ) × fy(y; θ). (1.9)

This identity is used extensively in time series analysis (e.g., in maximum-
likelihood estimation). Finally, X and Y are independent random vectors if and
only if fx|y(x; θ) = fx(x; θ). In this case, fx,y(x, y; θ) = fx(x; θ)fy(y; θ).

Moments of a Random Variable
The �th moment of a continuous random variable X is defined as

m′
� = E(X�) =

∫ ∞

−∞
x�f (x) dx,

where E stands for expectation and f (x) is the probability density function of X.
The first moment is called the mean or expectation of X. It measures the central
location of the distribution. We denote the mean of X by μx . The �th central
moment of X is defined as

m� = E[(X − μx)
�] =

∫ ∞

−∞
(x − μx)

�f (x) dx
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provided that the integral exists. The second central moment, denoted by σ 2
x , mea-

sures the variability of X and is called the variance of X. The positive square root,
σx , of variance is the standard deviation of X. The first two moments of a random
variable uniquely determine a normal distribution. For other distributions, higher
order moments are also of interest.

The third central moment measures the symmetry of X with respect to its mean,
whereas the fourth central moment measures the tail behavior of X. In statistics,
skewness and kurtosis , which are normalized third and fourth central moments
of X, are often used to summarize the extent of asymmetry and tail thickness.
Specifically, the skewness and kurtosis of X are defined as

S(x) = E

[
(X − μx)

3

σ 3
x

]
, K(x) = E

[
(X − μx)

4

σ 4
x

]
.

The quantity K(x) − 3 is called the excess kurtosis because K(x) = 3 for a nor-
mal distribution. Thus, the excess kurtosis of a normal random variable is zero.
A distribution with positive excess kurtosis is said to have heavy tails, implying
that the distribution puts more mass on the tails of its support than a normal distri-
bution does. In practice, this means that a random sample from such a distribution
tends to contain more extreme values. Such a distribution is said to be leptokur-
tic. On the other hand, a distribution with negative excess kurtosis has short tails
(e.g., a uniform distribution over a finite interval). Such a distribution is said to be
platykurtic.

In application, skewness and kurtosis can be estimated by their sample counter-
parts. Let {x1, . . . , xT } be a random sample of X with T observations. The sample
mean is

μ̂x = 1

T

T∑
t=1

xt , (1.10)

the sample variance is

σ̂ 2
x = 1

T − 1

T∑
t=1

(xt − μ̂x)
2, (1.11)

the sample skewness is

Ŝ(x) = 1

(T − 1)σ̂ 3
x

T∑
t=1

(xt − μ̂x)
3, (1.12)

and the sample kurtosis is

K̂(x) = 1

(T − 1)σ̂ 4
x

T∑
t=1

(xt − μ̂x)
4. (1.13)
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Under the normality assumption, Ŝ(x) and K̂(x) − 3 are distributed asymptoti-
cally as normal with zero mean and variances 6/T and 24/T , respectively; see
Snedecor and Cochran (1980, p. 78). These asymptotic properties can be used to
test the normality of asset returns. Given an asset return series {r1, . . . , rT }, to
test the skewness of the returns, we consider the null hypothesis H0 : S(r) = 0
versus the alternative hypothesis Ha : S(r) �= 0. The t-ratio statistic of the sample
skewness in Eq. (1.12) is

t = Ŝ(r)√
6/T

.

The decision rule is as follows. Reject the null hypothesis at the α significance
level, if |t |> Zα/2, where Zα/2 is the upper 100(α/2)th quantile of the standard
normal distribution. Alternatively, one can compute the p value of the test statistic
t and reject H0 if and only if the p value is less than α.

Similarly, one can test the excess kurtosis of the return series using the hypothe-
ses H0 : K(r) − 3 = 0 versus Ha : K(r) − 3 �= 0. The test statistic is

t = K̂(r) − 3√
24/T

,

which is asymptotically a standard normal random variable. The decision rule is to
reject H0 if and only if the p value of the test statistic is less than the significance
level α. Jarque and Bera (1987) (JB) combine the two prior tests and use the test
statistic

JB = Ŝ2(r)

6/T
+ [K̂(r) − 3]2

24/T
,

which is asymptotically distributed as a chi-squared random variable with 2 degrees
of freedom, to test for the normality of rt . One rejects H0 of normality if the p

value of the JB statistic is less than the significance level.

Example 1.2. Consider the daily simple returns of the International Business
Machines (IBM) stock used in Table 1.2. The sample skewness and kurtosis of
the returns are parts of the descriptive (or summary) statistics that can be obtained
easily using various statistical software packages. Both R and S-Plus are used in
the demonstration, where d-ibm3dx7008.txt is the data file name. Note that in
R the kurtosis denotes excess kurtosis. From the output, the excess kurtosis is high,
indicating that the daily simple returns of IBM stock have heavy tails. To test the
symmetry of return distribution, we use the test statistic

t = 0.0614√
6/9845

= 0.0614

0.0247
= 2.49,

which gives a p value of about 0.013, indicating that the daily simple returns of
IBM stock are significantly skewed to the right at the 5% level.
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TABLE 1.2 Descriptive Statistics for Daily and Monthly Simple and Log Returns of
Selected Indexes and Stocksa

Standard Excess
Security Start Size Mean Deviation Skewness Kurtosis Minimum Maximum

Daily Simple Returns (%)
SP 70/01/02 9845 0.029 1.056 −0.73 22.81 −20.47 11.58
VW 70/01/02 9845 0.040 1.004 −0.62 18.02 −17.13 11.52
EW 70/01/02 9845 0.076 0.814 −0.77 17.08 −10.39 10.74
IBM 70/01/02 9845 0.040 1.693 0.06 9.92 −22.96 13.16
Intel 72/12/15 9096 0.108 2.891 −0.15 6.13 −29.57 26.38
3M 670/01/02 9845 0.045 1.482 −0.36 13.34 −25.98 11.54
Microsoft 86/03/14 5752 0.123 2.359 −0.13 9.92 −30.12 19.57
Citi-Grp 86/10/30 5592 0.067 2.602 1.80 55.25 −26.41 57.82

Daily Log Returns (%)

SP 70/01/02 9845 0.023 1.062 −1.17 30.20 −22.90 10.96
VW 70/01/02 9845 0.035 1.008 −0.94 21.56 −18.80 10.90
EW 70/01/02 9845 0.072 0.816 −1.00 17.76 −10.97 10.20
IBM 70/01/02 9845 0.026 1.694 −0.27 12.17 −26.09 12.37
Intel 72/12/15 9096 0.066 2.905 −0.54 7.81 −35.06 23.41
3M 70/01/02 9845 0.034 1.488 −0.78 20.57 −30.08 10.92
Microsoft 86/03/14 5752 0.095 2.369 −0.63 14.23 −35.83 17.87
Citi-Grp 86/10/30 5592 0.033 2.575 0.22 33.19 −30.66 45.63

Monthly Simple Returns (%)

SP 26/01 996 0.58 5.53 0.32 9.47 −29.94 42.22
VW 26/01 996 0.89 5.43 0.15 7.69 −29.01 38.37
EW 26/01 996 1.22 7.40 1.52 14.94 −31.28 66.59
IBM 26/01 996 1.35 7.15 0.44 3.43 −26.19 47.06
Intel 73/01 432 2.21 12.85 0.32 2.70 −44.87 62.50
3M 46/02 755 1.24 6.45 0.22 0.98 −27.83 25.80
Microsoft 86/04 273 2.62 11.08 0.66 1.96 −34.35 51.55
Citi-Grp 86/11 266 1.17 9.75 −0.47 1.77 −39.27 26.08

Monthly Log Returns (%)

SP 26/01 996 0.43 5.54 −0.52 7.93 −35.58 35.22
VW 26/01 996 0.74 5.43 −0.58 6.85 −34.22 32.47
EW 26/01 996 0.96 7.14 0.25 8.55 −37.51 51.04
IBM 26/01 996 1.09 7.03 −0.07 2.62 −30.37 38.57
Intel 73/01 432 1.39 12.80 −0.55 3.06 −59.54 48.55
3M 46/02 755 1.03 6.37 −0.08 1.25 −32.61 22.95
Microsoft 86/04 273 2.01 10.66 0.10 1.59 −42.09 41.58
Citi-Grp 86/11 266 0.68 10.09 −1.09 3.76 −49.87 23.18

aReturns are in percentages and the sample period ends on December 31, 2008. The statistics are defined
in eqs. (1.10)–(1.13), and VW, EW and SP denote value-weighted, equal-weighted, and S&P composite
index.
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R Demonstration
In the following program code > is the prompt character and % denotes explana-

tion:

> library(fBasics) % Load the package fBasics.
> da=read.table("d-ibm3dx7008.txt",header=T) % Load the data.
% header=T means 1st row of the data file contains
% variable names. The default is header=F, i.e., no names.

> dim(da) % Find size of the data: 9845 rows and 5 columns.
[1] 9845 5
> da[1,] % See the first row of the data

Date rtn vwretd ewretd sprtrn % column names
1 19700102 0.000686 0.012137 0.03345 0.010211

> ibm=da[,2] % Obtain IBM simple returns
> sibm=ibm*100 % Percentage simple returns

> basicStats(sibm) % Compute the summary statistics
sibm

nobs 9845.000000 % Sample size
NAs 0.000000 % Number of missing values
Minimum -22.963000
Maximum 13.163600
1. Quartile -0.857100 % 25th percentile
3. Quartile 0.883300 % 75th percentile
Mean 0.040161 % Sample mean
Median 0.000000 % Sample median
Sum 395.387600 % Sum of the percentage simple returns
SE Mean 0.017058 % Standard error of the sample mean
LCL Mean 0.006724 % Lower bound of 95% conf.

% interval for mean
UCL Mean 0.073599 % Upper bound of 95% conf.

% interval for mean
Variance 2.864705 % Sample variance
Stdev 1.692544 % Sample standard error
Skewness 0.061399 % Sample skewness
Kurtosis 9.916359 % Sample excess kurtosis.

% Alternatively, one can use individual commands as follows:
> mean(sibm)
[1] 0.04016126
> var(sibm)
[1] 2.864705
> sqrt(var(sibm)) % Standard deviation
[1] 1.692544
> skewness(sibm)
[1] 0.06139878
attr(,"method")
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[1] "moment"
> kurtosis(sibm)
[1] 9.91636
attr(,"method")
[1] "excess"

% Simple tests
> s1=skewness(sibm)
> t1=s1/sqrt(6/9845) % Compute test statistic
> t1
[1] 2.487093
> pv=2*(1-pnorm(t1)) % Compute p-value.
> pv
[1] 0.01287919

% Turn to log returns in percentages
> libm=log(ibm+1)*100
> t.test(libm) % Test mean being zero.

One Sample t-test
data: libm
t = 1.5126, df = 9844, p-value = 0.1304
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.007641473 0.059290531

% The result shows that the hypothesis of zero expected return
% cannot be rejected at the 5% or 10% level.

> normalTest(libm,method=’jb’) % Normality test
Title:
Jarque - Bera Normality Test

Test Results:
STATISTIC:

X-squared: 60921.9343
P VALUE:

Asymptotic p Value: < 2.2e-16
% The result shows the normality for log-return is rejected.

S-Plus Demonstration
In the following program code > is the prompt character and % marks explanation:

> module(finmetrics) % Load the Finmetrics module.
> da=read.table("d-ibm3dx7008.txt",header=T) % Load data.
> dim(da) % Obtain the size of the data set.
[1] 9845 5
> da[1,] % See the first row of the data

Date rtn vwretd ewretd sprtrn
1 19700102 0.000686 0.012137 0.03345 0.010211
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> sibm=da[,2]*100 % Obtain percentage simple returns of
% IBM stock.

> summaryStats(sibm) % Obtain summary statistics

Sample Quantiles:
min 1Q median 3Q max

-22.96 -0.8571 0 0.8833 13.16
Sample Moments:

mean std skewness kurtosis
0.04016 1.693 0.06141 12.92

Number of Observations: 9845
% simple tests
> s1=skewness(sibm) % Compute skewness
> t=s1/sqrt(6/9845) % Perform test of skewness
> t
[1] 2.487851
> pv=2*(1-pnorm(t)) % Calculate p-value.
> pv
[1] 0.01285177

> libm=log(da[,2]+1)*100 % Turn to log-return
> t.test(libm) % Test expected return being zero.

One-sample t-Test
data: libm
t = 1.5126, df = 9844, p-value = 0.1304
alternative hypothesis: mean is not equal to 0
95 percent confidence interval:
-0.007641473 0.059290531

> normalTest(libm,method=’jb’) % Normality test
Test for Normality: Jarque-Bera
Null Hypothesis: data is normally distributed

Test Stat 60921.93
p.value 0.00

Dist. under Null: chi-square with 2 degrees of freedom
Total Observ.: 9845

Remark. In S-Plus, kurtosis is the regular kurtosis, not excess kurtosis. That
is, S-Plus does not subtract 3 from the sample kurtosis. Also, in many cases R and
S-Plus use the same commands. �

1.2.2 Distributions of Returns

The most general model for the log returns {rit ; i = 1, . . . , N; t = 1, . . . , T } is its
joint distribution function:

Fr(r11, . . . , rN1; r12, . . . , rN2; . . . ; r1T , . . . , rNT ; Y ; θ), (1.14)
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where Y is a state vector consisting of variables that summarize the environment
in which asset returns are determined and θ is a vector of parameters that uniquely
determines the distribution function Fr(·). The probability distribution Fr(·) gov-
erns the stochastic behavior of the returns rit and Y . In many financial studies, the
state vector Y is treated as given and the main concern is the conditional distri-
bution of {rit } given Y . Empirical analysis of asset returns is then to estimate the
unknown parameter θ and to draw statistical inference about the behavior of {rit }
given some past log returns.

The model in Eq. (1.14) is too general to be of practical value. However, it
provides a general framework with respect to which an econometric model for
asset returns rit can be put in a proper perspective.

Some financial theories such as the capital asset pricing model (CAPM) of
Sharpe (1964) focus on the joint distribution of N returns at a single time index
t (i.e., the distribution of {r1t , . . . , rNt }). Other theories emphasize the dynamic
structure of individual asset returns (i.e., the distribution of {ri1, . . . , riT } for a
given asset i). In this book, we focus on both. In the univariate analysis of Chapters
2–7, our main concern is the joint distribution of {rit }Tt=1 for asset i. To this end,
it is useful to partition the joint distribution as

F(ri1, . . . , riT ; θ) = F(ri1)F (ri2|ri1) · · ·F(riT |ri,T −1, . . . , ri1)

= F(ri1)

T∏
t=2

F(rit |ri,t−1, . . . , ri1), (1.15)

where, for simplicity, the parameter θ is omitted. This partition highlights the
temporal dependencies of the log return rit . The main issue then is the specification
of the conditional distribution F(rit |ri,t−1, ·), in particular, how the conditional
distribution evolves over time. In finance, different distributional specifications
lead to different theories. For instance, one version of the random-walk hypothesis
is that the conditional distribution F(rit |ri,t−1, . . . , ri1) is equal to the marginal
distribution F(rit ). In this case, returns are temporally independent and, hence, not
predictable.

It is customary to treat asset returns as continuous random variables, especially
for index returns or stock returns calculated at a low frequency, and use their
probability density functions. In this case, using the identity in Eq. (1.9), we can
write the partition in Eq. (1.15) as

f (ri1, . . . , riT ; θ) = f (ri1; θ)

T∏
t=2

f (rit |ri,t−1, . . . , ri1; θ). (1.16)

For high-frequency asset returns, discreteness becomes an issue. For example, stock
prices change in multiples of a tick size on the New York Stock Exchange (NYSE).
The tick size was 1

8 of a dollar before July 1997 and was 1
16 of a dollar from July

1997 to January 2001. Therefore, the tick-by-tick return of an individual stock listed
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on the NYSE is not continuous. We discuss high-frequency stock price changes
and time durations between price changes later in Chapter 5.

Remark. On August 28, 2000, the NYSE began a pilot program with 7 stocks
priced in decimals and the American Stock Exchange (AMEX) began a pilot pro-
gram with 6 stocks and two options classes. The NYSE added 57 stocks and 94
stocks to the program on September 25 and December 4, 2000, respectively. All
NYSE and AMEX stocks started trading in decimals on January 29, 2001. �

Equation (1.16) suggests that conditional distributions are more relevant than
marginal distributions in studying asset returns. However, the marginal distributions
may still be of some interest. In particular, it is easier to estimate marginal distribu-
tions than conditional distributions using past returns. In addition, in some cases,
asset returns have weak empirical serial correlations, and, hence, their marginal
distributions are close to their conditional distributions.

Several statistical distributions have been proposed in the literature for the
marginal distributions of asset returns, including normal distribution, lognormal dis-
tribution, stable distribution, and scale mixture of normal distributions. We briefly
discuss these distributions.

Normal Distribution
A traditional assumption made in financial study is that the simple returns {Rit |t =
1, . . . , T } are independently and identically distributed as normal with fixed mean
and variance. This assumption makes statistical properties of asset returns tractable.
But it encounters several difficulties. First, the lower bound of a simple return is
−1. Yet the normal distribution may assume any value in the real line and, hence,
has no lower bound. Second, if Rit is normally distributed, then the multiperiod
simple return Rit [k] is not normally distributed because it is a product of one-period
returns. Third, the normality assumption is not supported by many empirical asset
returns, which tend to have a positive excess kurtosis.

Lognormal Distribution
Another commonly used assumption is that the log returns rt of an asset are inde-
pendent and identically distributed (iid) as normal with mean μ and variance σ 2.
The simple returns are then iid lognormal random variables with mean and variance
given by

E(Rt) = exp

(
μ + σ 2

2

)
− 1, Var(Rt ) = exp(2μ + σ 2)[exp(σ 2) − 1]. (1.17)

These two equations are useful in studying asset returns (e.g., in forecasting using
models built for log returns). Alternatively, let m1 and m2 be the mean and variance
of the simple return Rt , which is lognormally distributed. Then the mean and



distributional properties of returns 17

variance of the corresponding log return rt are

E(rt ) = ln

[
m1 + 1√

1 + m2/(1 + m1)2

]
, Var(rt ) = ln

[
1 + m2

(1 + m1)2

]
.

Because the sum of a finite number of iid normal random variables is normal,
rt [k] is also normally distributed under the normal assumption for {rt }. In addition,
there is no lower bound for rt , and the lower bound for Rt is satisfied using
1 + Rt = exp(rt ). However, the lognormal assumption is not consistent with all
the properties of historical stock returns. In particular, many stock returns exhibit
a positive excess kurtosis.

Stable Distribution
The stable distributions are a natural generalization of normal in that they are sta-
ble under addition, which meets the need of continuously compounded returns rt .
Furthermore, stable distributions are capable of capturing excess kurtosis shown
by historical stock returns. However, nonnormal stable distributions do not have
a finite variance, which is in conflict with most finance theories. In addition, sta-
tistical modeling using nonnormal stable distributions is difficult. An example of
nonnormal stable distributions is the Cauchy distribution, which is symmetric with
respect to its median but has infinite variance.

Scale Mixture of Normal Distributions
Recent studies of stock returns tend to use scale mixture or finite mixture of normal
distributions. Under the assumption of scale mixture of normal distributions, the log
return rt is normally distributed with mean μ and variance σ 2 [i.e., rt ∼ N(μ, σ 2)].
However, σ 2 is a random variable that follows a positive distribution (e.g., σ−2

follows a gamma distribution). An example of finite mixture of normal distribu-
tions is

rt ∼ (1 − X)N(μ, σ 2
1 ) + XN(μ, σ 2

2 ),

where X is a Bernoulli random variable such that P (X = 1) = α and P (X = 0) =
1 − α with 0 < α < 1, σ 2

1 is small, and σ 2
2 is relatively large. For instance, with

α = 0.05, the finite mixture says that 95% of the returns follow N(μ, σ 2
1 ) and 5%

follow N(μ, σ 2
2 ). The large value of σ 2

2 enables the mixture to put more mass at the
tails of its distribution. The low percentage of returns that are from N(μ, σ 2

2 ) says
that the majority of the returns follow a simple normal distribution. Advantages
of mixtures of normal include that they maintain the tractability of normal, have
finite higher order moments, and can capture the excess kurtosis. Yet it is hard to
estimate the mixture parameters (e.g., the α in the finite-mixture case).

Figure 1.1 shows the probability density functions of a finite mixture of normal,
Cauchy, and standard normal random variable. The finite mixture of normal is
(1 − X)N(0, 1) + X × N(0, 16) with X being Bernoulli such that P (X = 1) =
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Figure 1.1 Comparison of finite mixture, stable, and standard normal density functions.

0.05, and the density function of Cauchy is

f (x) = 1

π(1 + x2)
, −∞ < x < ∞.

It is seen that the Cauchy distribution has fatter tails than the finite mixture of
normal, which, in turn, has fatter tails than the standard normal.

1.2.3 Multivariate Returns

Let r t = (r1t , . . . , rNt )
′ be the log returns of N assets at time t . The multivariate

analyses of Chapters 8 and 10 are concerned with the joint distribution of {r t }Tt=1.
This joint distribution can be partitioned in the same way as that of Eq. (1.15).
The analysis is then focused on the specification of the conditional distribution
function F(r t |r t−1, . . . , r1, θ). In particular, how the conditional expectation and
conditional covariance matrix of r t evolve over time constitute the main subjects
of Chapters 8 and 10.

The mean vector and covariance matrix of a random vector X = (X1, . . . , Xp)

are defined as

E(X) = μx = [E(X1), . . . , E(Xp)]′,

Cov(X) = �x = E[(X − μx)(X − μx)
′],
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provided that the expectations involved exist. When the data {x1, . . . , xT } of X

are available, the sample mean and covariance matrix are defined as

μ̂x = 1

T

T∑
t=1

x t , �̂x = 1

T − 1

T∑
t=1

(x t − μ̂x)(x t − μ̂x)
′.

These sample statistics are consistent estimates of their theoretical counterparts pro-
vided that the covariance matrix of X exists. In the finance literature, multivariate
normal distribution is often used for the log return r t .

1.2.4 Likelihood Function of Returns

The partition of Eq. (1.15) can be used to obtain the likelihood function of the
log returns {r1, . . . , rT } of an asset, where for ease in notation the subscript i is
omitted from the log return. If the conditional distribution f (rt |rt−1, . . . , r1, θ) is
normal with mean μt and variance σ 2

t , then θ consists of the parameters in μt and
σ 2

t , and the likelihood function of the data is

f (r1, . . . , rT ; θ) = f (r1; θ)

T∏
t=2

1√
2πσt

exp

[−(rt − μt)
2

2σ 2
t

]
, (1.18)

where f (r1; θ) is the marginal density function of the first observation r1. The value
of θ that maximizes this likelihood function is the maximum-likelihood estimate
(MLE) of θ . Since the log function is monotone, the MLE can be obtained by
maximizing the log-likelihood function,

ln f (r1, . . . , rT ; θ) = ln f (r1; θ) − 1

2

T∑
t=2

[
ln(2π) + ln(σ 2

t ) + (rt − μt)
2

σ 2
t

]
,

which is easier to handle in practice. The log-likelihood function of the data can
be obtained in a similar manner if the conditional distribution f (rt |rt−1, . . . , r1; θ)

is not normal.

1.2.5 Empirical Properties of Returns

The data used in this section are obtained from the Center for Research in Secu-
rity Prices (CRSP) of the University of Chicago. Dividend payments, if any, are
included in the returns. Figure 1.2 shows the time plots of monthly simple returns
and log returns of IBM stock from January 1926 to December 2008. A time plot
shows the data against the time index. The upper plot is for the simple returns.
Figure 1.3 shows the same plots for the monthly returns of value-weighted market
index. As expected, the plots show that the basic patterns of simple and log returns
are similar.
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Figure 1.2 Time plots of monthly returns of IBM stock from January 1926 to December 2008. Upper
panel is for simple returns, and lower panel is for log returns.
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Figure 1.3 Time plots of monthly returns of value-weighted index from January 1926 to December
2008. Upper panel is for simple returns, and lower panel is for log returns.
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Table 1.2 provides some descriptive statistics of simple and log returns for
selected U.S. market indexes and individual stocks. The returns are for daily and
monthly sample intervals and are in percentages. The data spans and sample sizes
are also given in Table 1.2. From the table, we make the following observations.
(a) Daily returns of the market indexes and individual stocks tend to have high
excess kurtoses. For monthly series, the returns of market indexes have higher
excess kurtoses than individual stocks. (b) The mean of a daily return series is close
to zero, whereas that of a monthly return series is slightly larger. (c) Monthly returns
have higher standard deviations than daily returns. (d) Among the daily returns,
market indexes have smaller standard deviations than individual stocks. This is in
agreement with common sense. (e) The skewness is not a serious problem for both
daily and monthly returns. (f) The descriptive statistics show that the difference
between simple and log returns is not substantial.

Figure 1.4 shows the empirical density functions of monthly simple and log
returns of IBM stock from 1926 to 2008. Also shown, by a dashed line, in each
graph is the normal probability density function evaluated by using the sample
mean and standard deviation of IBM returns given in Table 1.2. The plots indicate
that the normality assumption is questionable for monthly IBM stock returns. The
empirical density function has a higher peak around its mean, but fatter tails than
that of the corresponding normal distribution. In other words, the empirical density
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Figure 1.4 Comparison of empirical and normal densities for monthly simple and log returns of IBM
stock. Sample period is from January 1926 to December 2008. Left plot is for simple returns and right
plot for log returns. Normal density, shown by the dashed line, uses sample mean and standard deviation
given in Table 1.2.
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function is taller and skinnier, but with a wider support than the corresponding
normal density.

1.3 PROCESSES CONSIDERED

Besides the return series, we also consider the volatility process and the behavior of
extreme returns of an asset. The volatility process is concerned with the evolution
of conditional variance of the return over time. This is a topic of interest because, as
shown in Figures 1.2 and 1.3, the variabilities of returns vary over time and appear
in clusters. In application, volatility plays an important role in pricing options and
risk management. By extremes of a return series, we mean the large positive or
negative returns. Table 1.2 shows that the minimum and maximum of a return series
can be substantial. The negative extreme returns are important in risk management,
whereas positive extreme returns are critical to holding a short position. We study
properties and applications of extreme returns, such as the frequency of occurrence,
the size of an extreme, and the impacts of economic variables on the extremes, in
Chapter 7.

Other financial time series considered in the book include interest rates, exchange
rates, bond yields, and quarterly earning per share of a company. Figure 1.5 shows
the time plots of two U.S. monthly interest rates. They are the 10-year and 1-year
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Figure 1.5 Time plots of monthly U.S. interest rates from April 1953 to February 2009: (a) 10-year
Treasury constant maturity rate and (b) 1-year maturity rate.
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Figure 1.6 Time plot of daily exchange rate between U.S. dollar and Japanese yen from January 4,
2000, to March 27, 2009: (a) exchange rate and (b) changes in exchange rate.

Treasury constant maturity rates from April 1954 to February 2009. As expected,
the two interest rates moved in unison, but the 1-year rates appear to be more
volatile. Figure 1.6 shows the daily exchange rate between the U.S. dollar and the
Japanese yen from January 4, 2000, to March 27, 2009. From the plot, the exchange
rate encountered occasional big changes in the sampling period. Table 1.3 provides
some descriptive statistics for selected U.S. financial time series. The monthly bond
returns obtained from CRSP are Fama bond portfolio returns from January 1952 to
December 2008. The interest rates are obtained from the Federal Reserve Bank of
St. Louis. The weekly 3-month Treasury bill rate started on January 8, 1954, and
the 6-month rate started on December 12, 1958. Both series ended on March 27,
2009. For the interest rate series, the sample means are proportional to the time to
maturity, but the sample standard deviations are inversely proportional to the time
to maturity. For the bond returns, the sample standard deviations are positively
related to the time to maturity, whereas the sample means remain stable for all
maturities. Most of the series considered have positive excess kurtoses.

With respect to the empirical characteristics of returns shown in Table 1.2,
Chapters 2–4 focus on the first four moments of a return series and Chapter 7 on
the behavior of minimum and maximum returns. Chapters 8 and 10 are concerned
with moments of and the relationships between multiple asset returns, and Chapter 5
addresses properties of asset returns when the time interval is small. An introduction
to mathematical finance is given in Chapter 6.
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TABLE 1.3 Descriptive Statistics of Selected U.S. Financial Time Seriesa

Standard Excess
Maturity Mean Deviation Skewness Kurtosis Minimum Maximum

Monthly Bond Returns: Jan. 1952 to Dec. 2008 , T = 684
1–12 months 0.45 0.35 2.47 13.14 −0.40 3.52
12–24 months 0.49 0.67 1.88 15.44 −2.94 6.85
24–36 months 0.52 0.98 1.37 12.92 −4.90 9.33
48–60 months 0.53 1.40 0.60 4.83 −5.78 10.06
61–120 months 0.55 1.69 0.65 4.79 −7.35 10.92

Monthly Treasury Rates: April 1953 to February 2009 , T = 671

1 year 5.59 2.98 1.02 1.32 0.44 16.72
3 years 5.98 2.85 0.95 0.95 1.07 16.22
5 years 6.19 2.77 0.97 0.82 1.52 15.93
10 years 6.40 2.69 0.95 0.61 2.29 15.32

Weekly Treasury Bill Rates: End on March 27, 2009 .

3 months 5.07 2.82 1.08 1.80 0.02 16.76
6 months 5.52 2.73 0.99 1.53 0.20 15.76

aThe data are in percentages. The weekly 3-month Treasury bill rate started from January 8, 1954, and
the 6-month rate started from December 12, 1958. The sample sizes for Treasury bill rates are 2882
and 2625, respectively. Data sources are given in the text.

APPENDIX: R PACKAGES

R is a free software available from http://www.r-project.org. One can click CRAN
on its Web page to select a nearby CRAN Mirror to download and install the
software and selected packages. For financial time series analysis, the Rmetrics of
Diethelm Wuertz and his associates have produced many useful packages, including
fBasics, timeSeries, fGarch, etc. We use many functions of these packages in
this book. Further information concerning installing R and the commands used can
be found either on the Web page of this book or on the author’s teaching Web page.

R and S-Plus are objective-oriented software. They enable users to create many
objects. For instance, one can use the command ts to create a time series object.
Treating time series data as a time series object in R has some advantages, but
it requires some learning to get used to it. It is, however, not necessary to create
a time series object in R to perform the analyses discussed in this book. As an
illustration, consider the monthly simple returns to the General Motors stock from
January 1975 to December 2008; see Exercise 1.2. The data have 408 observations.
The following R commands are used to illustrate the points:

> da=read.table("m-gm3dx7508.txt",header=T) % Load data
> gm=da[,2] % Column 2 contains GM stock returns
> gm1=ts(gm,frequency=12,start=c(1975,1))
% Creates a ts object.
> par(mfcol=c(2,1)) % Put two plots on a page.
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Figure 1.7 Time plots of monthly simple returns to General Motors stock from January 1975 to
December 2008: (a) and (b) are without and with time series object, respectively.

> plot(gm,type=’l’)
> plot(gm1,type=’l’)
> acf(gm,lag=24)
> acf(gm1,lag=24)

In the ts command, frequency = 12 says that the time unit is year and there
are 12 equally spaced observations in each time unit, and start = c(1975,1) means
the starting time is January 1975. Frequency and start are the two basic arguments
needed in R to create a time series object. For further details, please use help(ts)
in R to obtain details of the command. Here gm1 is a time series object in R, but
gm is not. Figures 1.7 and 1.8 show, respectively, the time plot and autocorrelation
function (ACF) of the returns of GM stock. In each figure, the upper plot is pro-
duced without using time series object, whereas the lower plot is produced by a
time series object. The upper and lower plots are identical except for the horizontal
label. For the time plot, the time series object uses calendar time to label the x

axis, which is preferred. On the other hand, for the ACF plot, the time series object
uses fractions of time unit in the label, not the commonly used time lags.

EXERCISES

1.1. Consider the daily stock returns of American Express (AXP), Caterpillar
(CAT), and Starbucks (SBUX) from January 1999 to December 2008. The
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Figure 1.8 Sample ACFs of the monthly simple returns to General Motors stock from January 1975
to December 2008: (a) and (b) are without and with time series object, respectively.

data are simple returns given in the file d-3stocks9908.txt (date, axp, cat,
sbux).

(a) Express the simple returns in percentages. Compute the sample mean,
standard deviation, skewness, excess kurtosis, minimum, and maximum
of the percentage simple returns.

(b) Transform the simple returns to log returns.

(c) Express the log returns in percentages. Compute the sample mean, stan-
dard deviation, skewness, excess kurtosis, minimum, and maximum of the
percentage log returns.

(d) Test the null hypothesis that the mean of the log returns of each stock is
zero. That is, perform three separate tests. Use 5% significance level to
draw your conclusion.

1.2. Answer the same questions as in Exercise 1.1 but using monthly stock returns
for General Motors (GM), CRSP value-weighted index (VW), CRSP equal-
weighted index (EW), and S&P composite index from January 1975 to Decem-
ber 2008. The returns of the indexes include dividend distributions. Data file
is m-gm3dx7508.txt (date, gm, vw, ew, sp).

1.3. Consider the monthly stock returns of S&P composite index from January
1975 to December 2008 in Exercise 1.2. Answer the following questions:

(a) What is the average annual log return over the data span?
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(b) Assume that there were no transaction costs. If one invested $1.00 on the
S&P composite index at the beginning of 1975, what was the value of the
investment at the end of 2008?

1.4. Consider the daily log returns of American Express stock from January 1999
to December 2008 as in Exercise 1.1. Use the 5% significance level to perform
the following tests: (a) Test the null hypothesis that the skewness measure of
the returns is zero. (b) Test the null hypothesis that the excess kurtosis of the
returns is zero.

1.5. Daily foreign exchange rates (spot rates) can be obtained from the Federal
Reserve Bank in Chicago. The data are the noon buying rates in New York City
certified by the Federal Reserve Bank of New York. Consider the exchange
rates between the U.S. dollar and the Canadian dollar, euro, U.K. pound, and
the Japanese yen from January 4, 2000, to March 27, 2009. The data are
also on the Web. (a) Compute the daily log return of each exchange rate.
(b) Compute the sample mean, standard deviation, skewness, excess kurtosis,
minimum, and maximum of the log returns of each exchange rate. (c) Discuss
the empirical characteristics of the log returns of exchange rates. (d) Obtain a
density plot of the daily long returns of dollar–euro exchange rate.
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