
 Fundamentals

 SCJP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

 Given a code example and a scenario, write code

that uses the appropriate access modifiers, package

declarations, and import statements to interact with

(through access or inheritance) the code in the example.

 Given an example of a class and a command line,

determine the expected runtime behavior.

 Determine the effect upon object references and primitive

values when they are passed into methods that perform

assignments or other modifying operations on the

parameters.

 Given a code example, recognize the point at which an

object becomes eligible for garbage collection, determine

what is and is not guaranteed by the garbage collection

system, and recognize the behaviors of the Object
.finalize() method.

 Given the fully - qualified name of a class that is deployed

inside and/or outside a JAR file, construct the appropriate

directory structure for that class. Given a code example

and a classpath, determine whether the classpath will

allow the code to compile successfully.

 Write code that correctly applies the appropriate

operators including assignment operators (limited to: = ,
+=, - =), arithmetic operators (limited to: +, - , *, /, %,
++, - -), relational operators (limited to: < , < =, > , > =, ==,
!=), the instanceof operator, logical operators (limited to:

 & , |, ^, !, & & , ||), and the conditional operator (? :),

to produce a desired result. Write code that determines

the equality of two objects or two primitives.

�

�

�

�

�

�

Chapter

1

c01.indd 1c01.indd 1 2/11/09 7:15:35 PM2/11/09 7:15:35 PM

CO
PYRIG

HTED
 M

ATERIA
L

 Java is an interpretive, object - oriented programming language
that Sun Microsystems developed. A considerable benefi t of
writing Java applications is that they run in a Java Runtime

Environment (JRE) that is well defi ned. As a Java programmer, you know your Java
program is going to run on a Java Virtual Machine (JVM), regardless of the device or
operating system. Consequently, you know an int is 32 bits and signed, a boolean is true
or false , method arguments are passed by value, and the garbage collector cleans up your
unreachable objects whenever it feels like it. (Okay, not every aspect of Java is an exact
science!) The point is that Java runs in a precise environment, and passing the SCJP exam
requires a strong knowledge of these well - defi ned Java fundamentals.

 This chapter covers the fundamentals of Java programming, including writing Java
classes, running Java applications, creating packages, defi ning classpath, and using the Java
operators. We will also discuss the details of garbage collection and call by value.

 Writing Java Classes
 The exam objectives state that you need to be able to “ write code that uses the appropriate
access modifi ers, package declarations, and imports statements. ” In other words, you
need to be able to write Java classes, which makes sense because Java is an object - oriented
programming (OOP) language and writing classes is an essential aspect of OOP. Your
executable Java code will appear within the defi nition of a class. A class describes an
object, which is a noun in your program. The object can either represent something
tangible, like a television or an employee, or it can represent something less obvious but just
as useful in your program, like an event handler or a stream of data being read from a fi le.

 An object is an instance of a class. Think of a class as a blueprint for a house, and the
object as the house. Another common analogy is to think of a class as a recipe for cookies,
and the objects are the cookies. (We will discuss the details of instantiating objects in
Chapter 2 , “ Declarations, Initialization, and Scoping. ”) Because classes are a fundamental
aspect of Java programming, the certifi cation exam assumes you are familiar with the rules
for writing them, and in this section we cover these details.

 For starters, a Java class must be defi ned in a text fi le with a .java extension. In
addition, if the class is declared public , then the name of the fi le must match the name of
the class. Consequently, a .java fi le can only contain at most one top - level public class.
For example, the following class defi nition must appear in a fi le named Cat.java :

c01.indd 2c01.indd 2 2/11/09 7:15:36 PM2/11/09 7:15:36 PM

public class Cat {

 public String name;

 public int weight;

}

 Compiled Java code is referred to as bytecode , and the name of the bytecode fi le matches
the name of the class. Compiling the Cat.java source fi le creates a bytecode fi le named
 Cat.class .

Line Numbers

Java source fi les do not contain line numbers. However, the classes on the exam display
line numbers. If the numbering starts with a 1, then the entire defi nition of a source fi le
is being displayed. If the numbering starts with some other value, then only a portion
of a source fi le is being displayed. You will see this explanation in the instructions at the
beginning of the SCJP exam.

 Java allows multiple classes in a single .java fi le as long as no more than one of the top -
 level classes is declared public . The compiler still generates a separate .class fi le for each
class defi ned in the .java fi le. For example, suppose a fi le named Customer.java contains
the following two class defi nitions:

1. public class Customer {

2. public String name;

3. public String address;

4. }

5.

6. class Order {

7. public int partNumber;

8. public int quantity;

9. public boolean shipped;

10. }

 Compiling Customer.java generates two fi les: Customer.class and Order.class . Note
that the Order class cannot be public because Customer is already public , nor can Order
be protected or private because Java does not allow top - level classes to be protected or
 private . Therefore, Order must have the default access, often referred to as friendly
or package - level access, meaning only classes within the same package can use the Order
class. (We discuss packages in the next section.)

Writing Java Classes 3

c01.indd 3c01.indd 3 2/11/09 7:15:37 PM2/11/09 7:15:37 PM

4 Chapter 1 � Fundamentals

Access Specifi ers for Top - Level Classes

A top - level class has two options for an access modifi er: public or package - level access
(often called the default access). Keep an eye out for exam questions that declare a top -
 level class as private or protected . For example, the following code will not compile:

//Generates a compiler error: “modifier private not allowed here”

private class HelloWorld {

 public static void main(String [] args) {

 System.out.println(args[1] + args[2]);

 }

}

 Multiple Classes in a Single File

 Java allows multiple top - level classes to be defi ned in a single fi le, but in the real world
this is rarely done. We typically want our classes to be public, and only top - level classes
can be public. That being said, the exam might contain questions that defi ne multiple
classes in a single source fi le because it is convenient and many questions on the exam
involve more than one class.

 Packages
 The exam objectives state that you need to be able to “ write code that uses the appropriate
package declarations and import statements, ” and I can assure you there will be more than
one question on the exam testing your knowledge of the package keyword and its effect
on a Java class. This section discusses the details you need to know about Java packages.
A package is a grouping of classes and interfaces. It can also contain enumerations and
annotated types, but because these are special types of classes and interfaces, I will refer
to items in a package as simply classes and interfaces for brevity. This grouping of classes
and interfaces is typically based on their relationship and usage. For example, the java.io
package contains classes and interfaces related to input and output. The java.net package
contains the classes and interfaces related to networking. There are two key benefi ts of
using packages in Java:

� Packages organize Java programs by grouping together related classes and interfaces.

� Packages create a namespace for your classes and interfaces.

 The Application Programming Interface (API) for the Java Platform, Standard Edition
(Java SE) contains hundreds of packages that you can use in any Java SE application. As

c01.indd 4c01.indd 4 2/11/09 7:15:37 PM2/11/09 7:15:37 PM

a Java programmer, you will create your own packages for the classes that you develop.
Packages are often drawn as tabbed folders, as shown in Figure 1.1 .

F IGURE 1.1 When designing a Java application, packages are drawn as tabbed folders.

String
Object
System
Thread

java.lang

File
InputStream

OutputStream
PrintWriter

java.io

JButton
JFrame
Timer

ImageIcon

javax.swing

Item
Order

ShippingAddress

my.company.inventory

 To view all of the packages in the Java SE API, visit the API documentation at
http://java.sun.com/javase/6/docs/api/ . This web page contains three frames. The upper -
 left frame is a list of all the packages. Clicking a package displays its classes and interfaces in the
lower - left frame. Clicking a class or interface in the lower - left frame displays its documentation
page in the main frame. You should spend time browsing the Java API documentation! I fi nd it
extremely useful, especially when using a Java class or interface for the fi rst time.

 If you are developing a Java program with hundreds of classes and interfaces, grouping
related types into packages provides a much - needed organization to the project. In
addition, the namespace provided by a package is useful for avoiding naming confl icts.

 This section discusses these two benefi ts of packages in detail. I will start with a
discussion on the package keyword and then cover the details of imports, the CLASSPATH
environment variable, and the directory structure required for packages.

 The package Keyword

 The package keyword puts a class or interface in a package, and it must be the fi rst line of
code in your source fi le (aside from comments, which can appear anywhere within a source
fi le). For example, the following Employee class is declared in the com.sybex.payroll package:

package com.sybex.payroll;

public class Employee {

 public Employee() {

 System.out.println(

 “Constructing a com.sybex.payroll.Employee”);

 }

}

Packages 5

c01.indd 5c01.indd 5 2/11/09 7:15:38 PM2/11/09 7:15:38 PM

6 Chapter 1 � Fundamentals

 Putting a class in a package has two important side effects that you need to know
for the exam:

 1. The fully qualified name of a class or interface changes when it is in a package. The
package name becomes a prefix for the class name. For example, the fully qualified
name of the Employee class shown earlier is com.sybex.payroll.Employee .

 2. The compiled bytecode file must appear in a directory structure on your file system
that matches the package name. For example, a .class file for any class or interface
in the com.sybex.payroll package must appear in a directory structure matching
\com\sybex\payroll\ . You can either create this directory structure yourself or use
the - d flag during compilation and the compiler will create the necessary directory
structure for you. We discuss the - d flag in detail later in this section.

 The fully qualifi ed name of the Employee class is com.sybex.payroll.Employee . Other
classes that want to use the Employee class need to refer to it by its fully qualifi ed name.
For example, the following program creates an instance of the Employee class:

public class CreateEmployee {

 public static void main(String [] args) {

 com.sybex.payroll.Employee e =

 new com.sybex.payroll.Employee();

 }

}

 Here ’ s the output of the CreateEmployee program:

Constructing a com.sybex.payroll.Employee

The Unnamed Package

 If a class is not specifi cally declared in a package, then that class belongs to the unnamed
package . Classes and interfaces in the unnamed package cannot be imported into a
source fi le. You should only use the unnamed package when writing simple classes and
interfaces that are not being used in a production application. In the real world, you will
rarely write a Java class or interface that is not declared in a package. Your classes will
appear in a package name that contains your company ’ s Internet domain name, which
the next section discusses.

 The import Keyword

 As you can see by the CreateEmployee program, using the fully qualifi ed name of a class
can be tedious and makes for a lot of typing! The import keyword makes your life as
a coder easier by allowing you to refer to a class in a source fi le without using its fully
qualifi ed name.

c01.indd 6c01.indd 6 2/11/09 7:15:38 PM2/11/09 7:15:38 PM

 The import keyword is used to import a single class or, when used with the wildcard (*),
an entire package. A source fi le can have any number of import statements, and they must
appear after the package declaration and before the class declaration. Importing classes
and packages tells the compiler that you are not going to use fully qualifi ed names for
classes. The compiler searches your list of imports to determine the fully qualifi ed names of
the classes referenced in the source fi le.

 Here is the CreateEmployee program again, except this time the com.sybex.payroll
.Employee class is imported, allowing the Employee class to be referred to without using its
fully qualifi ed name:

import com.sybex.payroll.Employee;

public class CreateEmployee2 {

 public static void main(String [] args) {

 Employee e = new Employee();

 }

}

 The output is the same as before:

Constructing a com.sybex.payroll.Employee

 In fact, the compiled bytecode fi les CreateEmployee.class and CreateEmployee2.class
are completely identical (except for the number 2 that appears in CreateEmployee2.class).
The import statement does not affect the compiled code. Behind the scenes, the compiler
removes the import statement and replaces each occurrence of Employee with com.sybex
.payroll.Employee .

 What Does Import Mean?

The term import sounds like something is being brought into your source fi le, but nothing
is physically added to your source code by importing a class or package. An import state-
ment is strictly to make your life as a programmer easier. The Java compiler removes all
 import statements and replaces all the class names in your source code with their fully
qualifi ed names. For this reason, you never need to use import statements. Instead, you
can use fully qualifi ed names throughout your source fi les. However, you will quickly
discover the benefi t of import statements, especially when you work with long package
names.

 The CreateEmployee and CreateEmployee2 programs both refer to the String class.
 String is defi ned in the java.lang package, but this package was not imported. The java
.lang package is unique in that the compiler automatically imports all the public classes and

Packages 7

c01.indd 7c01.indd 7 2/11/09 7:15:39 PM2/11/09 7:15:39 PM

8 Chapter 1 � Fundamentals

interfaces of java.lang into every source fi le, so there is never any need to import types from
 java.lang (although it is perfectly valid to do so).

 The following program demonstrates an import statement that uses the wildcard to
 import an entire package. The program uses the File , FileReader , BufferedReader , and
 IOException classes, all found in the java.io package. The program reads a line of text
from a fi le named mydata.txt .

1. import java.io.*;

2.

3. public class ReadFromFile {

4. public static void main(String [] args) {

5. File file = new File(“mydata.txt”);

6. FileReader fileReader = null;

7. try {

8. fileReader = new FileReader(file);

9. BufferedReader in = new BufferedReader(fileReader);

10. System.out.println(in.readLine());

11. }catch(IOException e) {

12. e.printStackTrace();

13. }

14. }

15. }

 Because nothing is actually included into your source fi le by the import keyword, using
the wildcard does not impact the size of your bytecode fi les. However, common practice
in Java is to avoid using the wildcard because it may lead to ambiguity when two packages
are imported that share a common class name. For example, the following code does not
compile because there is a class called AttributeList in both the javax.swing.text.html
.parser package and the javax.management package:

1. import javax.swing.text.html.parser.*;

2. import javax.management.*;

3.

4. public class ImportDemo {

5. public AttributeList a;

6. }

 The ImportDemo class generates the following compiler error:

reference to AttributeList is ambiguous, both class

 javax.management.AttributeList in javax.management and class

 javax.swing.text.html.parser.AttributeList in

 javax.swing.text.html.parser match

 public AttributeList a;

c01.indd 8c01.indd 8 2/11/09 7:15:39 PM2/11/09 7:15:39 PM

 If you ever are in a situation where you need to use two classes with the same name but
in different packages, then using imports does not work. You will need to refer to each class
by their fully qualifi ed name in your source fi le. The following code compiles successfully:

1. public class FullyQualifiedDemo {

2. public javax.management.AttributeList a1;

3. public javax.swing.text.html.parser.AttributeList a2;

4. }

 The FullyQualifiedDemo program demonstrates why packages are often referred to as
namespaces because package names are used to avoid naming confl icts. Without packages,
there is no way for the compiler or the JVM to distinguish between the two AttributeList
classes. However, because the two AttributeList classes are declared in different
packages, they can be referred to by their fully qualifi ed names to avoid any ambiguity.

 Naming Convention for Packages

 The namespace ambiguity situation can still occur if programmers happen to use the
same package names in different programs. If you and I both write a class called Dog and
we both defi ne Dog in a package named pets , then a naming confl ict still occurs. How-
ever, the standard Java naming convention for a package name is to use your company ’ s
domain name (in reverse) as a prefi x to your package names. For example, a class written
by an employee of Sybex uses a package name that starts with com.sybex .

 Subsequent components of the package name may include your department and project
name, followed by a descriptive name for the package. For example, com.sybex
.scjpbook.pets is a good package name for a class named Dog that appears in this book.
It is extremely unlikely that someone else would use this package name, although I am
sure there are other Dog classes in the world.

 If everyone who writes Java code follows this naming convention for package names,
then naming confl icts can only occur within a single company or project, making it easier
to resolve the naming confl ict.

 Package Directory Structure

 The exam objectives state that “ given the fully - qualifi ed name of a class that is deployed
inside and/or outside a JAR fi le, ” you need to be able to “ construct the appropriate
directory structure for that class. ” This objective refers to the required directory structure
that results from using packages. In addition to creating a namespace, packages organize
your programs by grouping related classes and interfaces together. One result of using
packages is that the bytecode of a class or interface must appear in a directory structure
that matches its package name. If you do not put your bytecode in the proper directory
structure, the compiler or the JVM will be unable to fi nd your classes.

Packages 9

c01.indd 9c01.indd 9 2/11/09 7:15:40 PM2/11/09 7:15:40 PM

10 Chapter 1 � Fundamentals

 Suppose we have the following class defi nition:

package com.sybex.payroll;

public class Employee {

 public Employee() {

 System.out.println(

 “Constructing a com.sybex.payroll.Employee”);

 }

}

 This Employee class is in the com.sybex.payroll package, so its compiled fi le Employee
.class must be in a directory with a pathname \com\sybex\payroll . This requires a
directory named \com , which can appear anywhere on your fi le system. Inside \com you
must have a \sybex subdirectory, which must contain a \payroll subdirectory.

 The \com directory can appear anywhere on your fi le system. A common technique is
to put your source fi les in a directory named \src and your bytecode fi les in a directory
named \build . For example, suppose the Employee source fi le is in the following directory:

c:\myproject\src\com\sybex\payroll\Employee.java

 Suppose you want the compiled code to be in the c:\myproject\build directory. You
can use the - d fl ag of the compiler to achieve this. The - d fl ag has two effects:

� The compiled code will be output in the directory specified by the - d flag.

� The appropriate directory structure that matches the package names of the classes is
created automatically in the output directory.

 Consider the following compiler command, executed from the c:\myproject\src
directory:

javac -d c:\myproject\build .\com\sybex\payroll\Employee.java

 The - d fl ag specifi es the output directory as c:\myproject\build . Assuming the class
compiles successfully, the compiler creates the fi le Employee.class in the following
directory:

c:\myproject\build\com\sybex\payroll\Employee.class

 Keep in mind the directory c:\myproject\build is arbitrary; we could have output the
bytecode into the directory of our choosing. After you start putting bytecode in arbitrary
directories on your fi le system, the compiler and the JVM need to know where to look to
fi nd it. They look for the bytecode fi les in your classpath, an important concept that the
next section discusses in detail.

c01.indd 10c01.indd 10 2/11/09 7:15:40 PM2/11/09 7:15:40 PM

 The CLASSPATH Environment Variable

 The exam objectives state that “ given a code example and a classpath, ” you need to be
able to “ determine whether the classpath will allow the code to compile successfully. ” The
 classpath refers to the path on your fi le system where your .class fi les are saved, and the
classpath is defi ned by the CLASSPATH environment variable. The CLASSPATH environment
variable specifi es the directories and JAR fi les where you want the compiler and the JVM to
search for bytecode. Using CLASSPATH allows your bytecode to be stored in the directory of
your choosing, as well as in multiple directories or Java archive (JAR) fi les.

 For example, suppose you have a class named com.sybex.payroll.Employee . The
compiler and the JVM look for the \com\sybex\payroll directory structure by searching
your CLASSPATH environment variable. For example, if Employee.class is in the following
directory:

c:\Documents and Settings\Rich\workspaces\build\com\sybex\payroll

 then your CLASSPATH needs to include the directory:

c:\Documents and Settings\Rich\workspaces\build

 The CLASSPATH environment variable can contain any number of directories and JAR
fi les. Setting CLASSPATH on Windows can be done from a command prompt using a
semicolon to separate multiple values:

set CLASSPATH=”c:\Documents and Settings\Rich\workspaces\build”;

 c:\myproject\build;c:\tomcat\lib\servlet.jar;.;

 In this example, the compiler and the JVM look for bytecode fi les in the two \build
directories specifi ed, the servlet.jar fi le in c:\tomcat\lib , and the current working
directory (represented by the dot). The double quotes are necessary in the fi rst directory
because of the spaces in the pathname.

 On Unix, you use the setenv command and colons to separate multiple values. For
example:

setenv CLASSPATH /usr/build:/myproject/build:/tomcat/lib/servlet.jar

 A common mistake new Java programmers make is to include part of the package
pathname in the CLASSPATH . If you are struggling with classes not being found, you might
be tempted to try the following command line:

set CLASSPATH=c:\myproject\build\com\sybex\payroll;

 Including \com\sybex\payroll in your CLASSPATH does not work! Do not add any of the
package directories to your CLASSPATH , only the parent directory. The compiler and the JRE
will look for the appropriate subdirectories.

 CLASSPATH plays a key role in compiling and running your Java applications, which
we discuss in the next section.

Packages 11

c01.indd 11c01.indd 11 2/11/09 7:15:41 PM2/11/09 7:15:41 PM

12 Chapter 1 � Fundamentals

 Running Java Applications
 The SCJP certifi cation exam tests your knowledge of running a Java program from the
command line using an appropriate CLASSPATH . If you are using Sun ’ s Java Development Kit
(JDK), then java.exe in the \bin folder of the JDK directory is the executable used to run
your Java applications. The sample commands in this book assume java.exe is in your path.

 The entry point of a Java program is main , which you can defi ne in any class. The
signature of main must look like this:

public static void main(String [] args)

 The only changes you can make to this signature are the name of the parameter args ,
which can be arbitrary, and the order of public and static . For example, the following
declaration is a valid signature of main :

static public void main(String [] x)

 In addition, you can specify the array of String objects using the syntax for variable -
 length arguments:

public static void main(String... args)

Variable - Length Arguments

As of Java 5.0, a method in Java can declare a variable - length argument list denoted by
the ellipsis (. . .). Variable - length arguments are discussed in detail in Chapter 2 .

 The args array contains the command - line arguments, discussed in detail later in this
section. The main method has to be public so that the JVM has access to it, and making it
 static allows the JVM to invoke this method without having to instantiate an instance of
the containing class.

 Let ’ s start with a simple example. Suppose the following class is saved in the
c:\myproject directory. First, does the following SaySomething class compile, and does it
successfully declare the main method?

1. public class SaySomething {

2. private static String message = “Hello!”;

3.

4. public static void main() {

5. System.out.println(message);

6. }

7. }

c01.indd 12c01.indd 12 2/11/09 7:15:41 PM2/11/09 7:15:41 PM

 The answers are yes and no. Yes, this class compiles, but no, it does not defi ne main
properly. A static method can access a static fi eld in the same class, so there is no
problem with the message fi eld. Also, you can write a method called main that does not
have an array of String objects, so the compiler will not complain about the main method
defi ned on line 4. However, this class cannot be executed as a Java application because it
does not successfully declare the proper main method for a Java application.

 Let ’ s try it again, this time with the following SayHello class. Does this class compile
and successfully declare the main method?

1. public class SayHello {

2. private static String message = “Hello!”;

3.

4. public static void main(String [] args) {

5. System.out.println(message);

6. }

7. }

 The answer is yes to both: SayHello compiles and declares the proper version of main so
that it can be executed as a stand - alone Java application. The following command line runs
the SayHello application:

java SayHello

 This command line assumes that you run the command from the directory that contains
the fi le SayHello.class , which in our case is c:\myproject . If you want to run this Java
application from any directory (instead of just c:\myproject), you need to include
c:\myproject in your CLASSPATH . Figure 1.2 shows SayHello being executed from
c:\myproject , and then being executed from c:\ after the CLASSPATH is correctly set.

F I GU R E 1. 2 Compiling and running the SayHello program from a command prompt

Running Java Applications 13

c01.indd 13c01.indd 13 2/11/09 7:15:42 PM2/11/09 7:15:42 PM

14 Chapter 1 � Fundamentals

 Specifying the Class Name

 The command line for java.exe requires the name of the class that contains main . Notice
that the name of the class is not the same as the name of the bytecode fi le, which in the
 SayHello example is SayHello.class . The following command line does not work:

java SayHello.class

 The JVM looks for a class named class in the SayHello package (which it will not fi nd)
and throws a NoClassDefFoundError . The JVM only needs the name of the class; it will
fi nd the corresponding bytecode fi le by scanning all the directories and JAR fi les set in
your CLASSPATH environment variable. If you do not set a CLASSPATH , the JVM looks in the
current working directory.

 The exam will likely test your knowledge with a more complex example where the class
containing main is in a package. Let ’ s look at another example, starting with a class called
 ColorChanger in the com.sybex.events package:

1. package com.sybex.events;

2.

3. import java.awt.Component;

4. import java.awt.Color;

5. import java.awt.event.*;

6.

7. public class ColorChanger implements ActionListener {

8. private Component container;

9.

10. public ColorChanger(Component c) {

11. container = c;

12. }

13.

14. public void actionPerformed(ActionEvent e) {

15. String color = e.getActionCommand();

16. if(color.equals(“red”)) {

17. container.setBackground(Color.RED);

18. } else if(color.equals(“blue”)) {

19. container.setBackground(Color.BLUE);

20. } else {

21. container.setBackground(Color.WHITE);

22. }

23. }

24. }

c01.indd 14c01.indd 14 2/11/09 7:15:42 PM2/11/09 7:15:42 PM

 The source fi le ColorChanger.java is saved in c:\myproject\src\com\sybex\events
and the class is compiled using the following command executed from c:\myproject\src :

javac -d c:\myproject\build .\com\sybex\events\ColorChanger.java

 This command line creates ColorChanger.class in the c:\myproject\build\com\sybex\
events directory. The following program contains main and tests the ColorChanger class:

1. package com.sybex.demos;

2.

3. import com.sybex.events.ColorChanger;

4. import java.awt.Button;

5. import java.awt.Color;

6. import java.awt.event.ActionEvent;

7.

8. public class TestColors {

9.

10. public static void main(String [] args) {

11. Button b = new Button(“Testing...”);

12. b.setBackground(Color.GREEN);

13. System.out.println(“Color is “ + b.getBackground());

14.

15. ColorChanger cc = new ColorChanger(b);

16. ActionEvent action = new ActionEvent(b,

17. ActionEvent.ACTION_PERFORMED,

18. “blue”);

19. cc.actionPerformed(action);

20. System.out.println(“Now the color is “

21. + b.getBackground());

22. }

23. }

 TestColors.java is saved in the c:\myproject\src\com\sybex\demos directory.
Because TestColors is not in the same package as ColorChanger , it imports the
 ColorChanger class. TestColors is compiled using the following command executed from
the c:\myproject\src directory:

javac -d c:\myproject\build .\com\sybex\demos\TestColors.java

 This command line creates TestColors.class in the directory c:\myproject\build\com\
sybex\demos . Figure 1.3 shows the directory structure after compiling the source fi les with - d .

Running Java Applications 15

c01.indd 15c01.indd 15 2/11/09 7:15:43 PM2/11/09 7:15:43 PM

16 Chapter 1 � Fundamentals

 A typical exam question at this point is to ask what the CLASSPATH needs to be for you to
run the TestColors program at the command prompt from any working directory. Do you
know the answer? I will reveal it in a moment, but fi rst here is the command prompt that
runs the TestColors application if you execute it from the c:\myproject\build directory:

java com.sybex.demos.TestColors

 Notice the fully qualifi ed class name of TestColors must be specifi ed to execute
properly. Using the fully qualifi ed name has nothing to do with CLASSPATH or the current
working directory. The following command does not work and results in a java.lang
.NoClassDefFoundError , no matter what directory you run it from or what your CLASSPATH
is set to :

java TestColors

 Why will this never work? Because there is no class called TestColors . Remember,
putting a class in a package changes the name of the class. Because TestColors is in the
 com.sybex.demos package, the name of the class is com.sybex.demos.TestColors , and that
name must be used on the command line.

 By the way, the answer to the question earlier about CLASSPATH is it needs to contain
 c:\myproject\build :

set CLASSPATH=c:\myproject\build;

 With this CLASSPATH , the command to run the TestColors program can be executed
from any directory.

• c:\myproject\
• +src\
• | +com\
• | +sybex\
• | +demos\
• | | +TestColors.java
• | +events\
• | +ColorChanger.java
• +build\
• +com\
• +sybex\
• +demos\
• | +TestColors.class
• +events\
• +ColorChanger.class

F I GU R E 1. 3 The source code and bytecode are typically stored in separate folders.

c01.indd 16c01.indd 16 2/11/09 7:15:43 PM2/11/09 7:15:43 PM

Don ’ t Panic During the Exam!

 The purpose of the ColorChanger and TestColors example is to demonstrate running
a Java application from a command line, so what the code does is not relevant in this
situation. If you are not familiar with the Container and ActionListener classes, a
 ColorChanger can listen to action events of a GUI component in Java because it
implements ActionListener . When an action event occurs, the actionPerformed
method is invoked, which changes the background color of the given GUI component.

 You might encounter a situation on the exam where you are not familiar with some of the
classes in the given code. Don ’ t panic! Focus on what the exam question is asking before
trying to fi gure out what the code is doing. You might discover that the behavior of the
code is irrelevant because the question is testing you on a different facet of the language.

 You can also set the classpath for the JVM on the command line using the - classpath
fl ag, which is discussed in the next section, followed by a discussion on running Java code
stored in JAR fi les.

 The - classpath Flag

 The java command that starts the JVM has a - classpath fl ag that allows the classpath to
be specifi ed from the command line. This is a common technique for ensuring the classpath
is pointing to the right directories and JAR fi les. Using the - classpath fl ag overrides the
 CLASSPATH environment variable.

 For example, we could run the TestColors program using the following command
prompt executed from any directory:

java -classpath c:\myproject\build com.sybex.demos.TestColors

 If you have multiple directories or JAR fi les, use a semicolon on a Windows machine to
separate them on the - classpath fl ag. For example, the following command line adds the
current directory to the classpath:

java -classpath c:\myproject\build;. com.sybex.demos.TestColors

 On a Unix machine, use a colon to separate multiple directories and JAR fi les:

java -classpath /myproject/build:. com.sybex.demos.TestColors

 The java command can also defi ne the classpath using the - cp fl ag, which is just a
shortcut for the - classpath fl ag.

 JAR Files

 Bytecode can be stored in archived, compressed fi les known as JAR fi les . JAR is short
for Java archive. The compiler and the JVM can fi nd bytecode fi les in JAR fi les without
needing to uncompress the fi les onto your fi le system. JAR fi les are the most common way

Running Java Applications 17

c01.indd 17c01.indd 17 2/11/09 7:15:43 PM2/11/09 7:15:43 PM

18 Chapter 1 � Fundamentals

to distribute Java code, and the exam tests your understanding of JAR fi les and how they
relate to CLASSPATH .

 The JDK comes with the tool jar.exe for creating and extracting JAR fi les. The
following command adds the bytecode fi les of the c:\myproject\build directory to a new
JAR fi le named myproject.jar :

C:\myproject\build > jar -cvf myproject.jar .

added manifest

adding: com/(in = 0) (out= 0)(stored 0%)

adding: com/sybex/(in = 0) (out= 0)(stored 0%)

adding: com/sybex/demos/(in = 0) (out= 0)(stored 0%)

adding: com/sybex/demos/TestColors.class(in = 1209) (out= 671)(deflated 44%)

adding: com/sybex/events/(in = 0) (out= 0)(stored 0%)

adding: com/sybex/events/ColorChanger.class(in = 883) (out= 545)(deflated 38%)

adding: com/sybex/payroll/(in = 0) (out= 0)(stored 0%)

adding: com/sybex/payroll/Employee.class(in = 402) (out= 292)(deflated 27%)

 The - c fl ag is for creating a new JAR fi le. The - v fl ag tells the jar command to be
verbose while it is processing fi les. The - f fl ag is for denoting the fi lename of the new
JAR fi le, which in this example is myproject.jar . After the fi lename, you specify the
fi les or directories to include in the JAR. In our example, because all of our bytecode was
conveniently located in the \build directory, we simply added the entire contents of
c:\myproject\build , using the dot to represent the current directory.

 JAR Files and Package Names

 If a class is in a package, then the JAR fi le must contain the appropriate directory structure
when the .class fi le is included in the JAR. Notice in the verbose output of the jar
command shown earlier, the necessary \com directory and subdirectories matching our
package names are added to the JAR.

 You can add a JAR fi le to your CLASSPATH . In fact, it is common to have lots of JAR
fi les in your CLASSPATH . The following example demonstrates adding myproject.jar to
the CLASSPATH of a Windows machine, then running the TestColors program (which is in
 myproject.jar):

C:\ > set CLASSPATH=c:\myproject\build\myproject.jar;

C:\ > java com.sybex.demos.TestColors

Color is java.awt.Color[r=0,g=255,b=0]

Now the color is java.awt.Color[r=0,g=0,b=255]

c01.indd 18c01.indd 18 2/11/09 7:15:44 PM2/11/09 7:15:44 PM

The JVM
executable

The name of the class
that contains the main

method

args[0]

args[1]

args[2]

args[3]

args[4]

java com.sybex.demos.PrintGreetings hi goodbye see you later

F I GU R E 1. 4 This command line starts the JVM and invokes the main method in the
PrintGreetings class.

Running Java Applications 19

Separating Source Code and Bytecode Files

You might have been wondering why the examples in this chapter separated the source
fi les from the bytecode fi les. In general, when you distribute your code you do not want
the JAR fi les to include your source code. Having the bytecode separate makes it much
easier to create JAR fi les that only contain your bytecode.

You might have also noticed that the source code fi les in \src use the same directory
structure as their package names. This is not a requirement for your .java fi les; they can
be stored in any directory. In most development teams, you will be required to run the
javadoc tool on your source fi les to generate the HTML documentation for your classes
and interfaces. The javadoc tool requires that your source fi le directories match the pack-
age names. The exam does not contain any questions that involve the javadoc tool, but in
the real world you will quickly learn to appreciate the benefi ts of javadoc documentation!

In projects I work on, we put source code in the \src directory, using the package name
subdirectory structure. Bytecode goes in a subdirectory of \build depending on whether
or not the bytecode is in a JAR. JAR fi les appear in the \build\lib directory, and .class
fi les appear in the \build\classes subdirectory that matches the package name structure.

 Command - Line Arguments

 The java.exe executable starts the JVM, and on the command line you provide the name
of the class that contains the main method. The command - line arguments are passed into
the main method as a single array of String objects. For example, suppose PrintGreetings
is a class that contains main and it is executed with the command line in Figure 1.4 .

c01.indd 19c01.indd 19 2/11/09 7:15:44 PM2/11/09 7:15:44 PM

20 Chapter 1 � Fundamentals

 This command has fi ve command - line arguments, so the fi rst element in the String
array is “ hi ” , the second element in the array is “ goodbye ” , and so on. The following
 PrintGreetings class contains a for loop that iterates through the command - line
arguments and outputs them to the console:

1. package com.sybex.demos;

2. public class PrintGreetings {

3. public static void main(String [] args) {

4. for(int i = 0; i < args.length; i++) {

5. System.out.println(args[i]);

6. }

7. }

8. }

 If PrintGreetings is executed with the command line in Figure 1.4 , then the output
looks like this:

hi

goodbye

see

you

later

Command-Line Arguments on the Exam

Notice that the fi rst command-line argument in the array is args[0] because Java uses
zero-based indexes for arrays. The exam creators seem to like questions about arrays
and command-line arguments, so don’t be surprised if you see a question that tests both
topics at the same time. For example, what is the output of the DoSomething class when
executed with the following command?

java DoSomething one two

1. public class DoSomething {

2. public static void main(String args []) {

3. System.out.print(args[1]);

4. System.out.print(args[2]);

5. }

6. }

c01.indd 20c01.indd 20 2/11/09 7:15:45 PM2/11/09 7:15:45 PM

 All command - line arguments are treated as String objects, even if they represent
another data type. The wrapper classes in java.lang contain helpful methods for parsing
strings into other data types. Consider the following ParseDemo program:

1. public class ParseDemo {

2. public static void main(String [] args) {

3. System.out.println(“Processing “ + args.length +

4. “ arguments”);

5. int x = Integer.parseInt(args[0]);

6. System.out.println(x);

7. boolean b = Boolean.parseBoolean(args[1]);

8. System.out.println(b);

9. float f = Float.parseFloat(args[2]);

10. System.out.println(f);

11. char c = args[3].charAt(0);

12. System.out.println(c);

13. }

14. }

 Here is a command line that runs the ParseDemo program, followed by its output:

c:\myproject > java ParseDemo 34567 false 3.14159 R

Processing 4 arguments

34567

false

3.14159

R

 There is no need to parse a String into a char because the String already is an array
of characters. The ParseDemo program simply selects the fi rst character in the String to
 “ convert ” it to a char .

By the way, the square brackets following args instead of preceding args are perfectly
valid in Java, although not common practice. The output of this program is the string
“two” followed by an ArrayIndexOutOfBoundsException on line 4, as shown here:

twoException in thread “main” java.lang.ArrayIndexOutOfBoundsException: 2

 at DoSomething.main(DoSomething.java:4)

The length of args is two, so args[2] is beyond the end of the array.

Running Java Applications 21

c01.indd 21c01.indd 21 2/11/09 7:15:46 PM2/11/09 7:15:46 PM

22 Chapter 1 � Fundamentals

 We now turn our attention to a discussion on garbage collection, which fi rst requires an
understanding of the differences between reference types and primitive types.

 Reference vs. Primitive Types
 Java applications contain two types of data: primitive types and reference types . In this
section, we will discuss the differences between a primitive type and a reference type. The
differences are important when we discuss garbage collection later in this chapter.

 Primitive Types

 Java has eight built - in data types, referred to as the Java primitive types . These eight data
types represent the building blocks for Java objects, because all Java objects are just a
complex collection in memory of these primitive data types. The SCJP exam assumes you
are well versed in the eight primitive data types, their size, and what can be stored in them.
Table 1.1 shows the Java primitive types together with their size in bytes and the range of
values that each holds.

TA B LE 1.1 The Java Primitive Data Types

Primitive Type Size Range of Values (inclusive)

byte 8 bits –128 to 127

short 16 bits –32768 to 32767

int 32 bits –2147483648 to 2147483647

long 64 bits –9223372036854775808 to 9223372036854775807

float 32 bits 2–149 to (2 – 2–23) · 2127

double 64 bits 2–1074 to (2 – 2–52) · 21023

char 16 bits '\u0000' to '\uffff' (0 to 65535)

boolean unspecified true or false

c01.indd 22c01.indd 22 2/11/09 7:15:46 PM2/11/09 7:15:46 PM

Do I Need to Memorize These Sizes?

 Not all of them. Don ’ t try to memorize the range of values in a long , float , or double , but
it is important to know their size in bits. However, you should be able to state the range of
a byte exactly and recognize when a short or int has likely gone beyond its range. Expect a
question involving the size of a char , especially because a char in C/C++ is only 8 bits and
uses the ASCII format, while a Java char is 16 bits and uses the UNICODE format.

 Primitive types are allocated in memory by declaring them in your code. For example,
the following lines of code declare an int and a double :

int x;

double d;

 In memory, the compiler allocates 32 bits for the variable x and 64 bits for the variable d .
A primitive type can only store a value of that same type. For example, the variable x can
only hold an int and d can only hold a double . Suppose we assign values to x and d :

x = 12345;

d = 2.7e45;

 Figure 1.5 shows how these primitive types look in memory. The value 12345 is stored
in the memory where x is allocated. Similarly, the value 2.7e45 is stored in the memory
where d is allocated.

32 bits of memory

12345
x

64 bits of memory

2.7e45
d

F I GU R E 1.5 An int is 32 bits and a double is 64 bits.

 Reference Types

 Reference types are variables that are class types, interface types, and array types.
A reference refers to an object (an instance of a class). Unlike primitive types that hold their
values in the memory where the variable is allocated, references do not hold the value of
the object they refer to. Instead, a reference “ points ” to an object by storing the memory
address where the object is located, a concept referred to as a pointer . However, the Java
language does not allow a programmer to access a physical memory address in any way, so
even though a reference is similar to a pointer, you can only use a reference to gain access
to the fi elds and methods of the object it refers to. It is impossible to determine the actual
address stored in the memory of the reference variable.

Reference vs. Primitive Types 23

c01.indd 23c01.indd 23 2/11/09 7:15:47 PM2/11/09 7:15:47 PM

24 Chapter 1 � Fundamentals

 Let ’ s take a look at some examples that declare and initialize reference types. Suppose
we declare a reference of type java.util.Date and a reference of type String :

java.util.Date today;

String greeting;

 The today variable is a reference of type Date and can only point to a Date object. The
 greeting variable is a reference that can only point to a String object. A value is assigned
to a reference in one of two ways:

� A reference can be assigned to another reference of the same type.

� A reference can be assigned to a new object using the new keyword.

 For example, the following statements assign these references to new objects:

today = new java.util.Date();

greeting = “How are you?”;

 The today reference now points to a new Date object in memory, and today can be
used to access the various fi elds and methods of this Date object. Similarly, the greeting
reference points to a new String object, “ How are you? ” The String and Date objects
do not have names and can only be accessed via their corresponding reference. Figure 1.6
shows how the reference types appear in memory.

A Date reference

today

A Date object

29
day

7
month

2011
year

A String reference

greeting
A String object

How are you?

F I GU R E 1.6 An object in memory can only be accessed via a reference.

c01.indd 24c01.indd 24 2/11/09 7:15:47 PM2/11/09 7:15:47 PM

String Literals and the String Pool

The new keyword is not required for creating the String object “How are you?” because
it is a string literal. String literals get special treatment by the JVM. Behind the scenes,
the JVM instantiates a String object for “How are you?” and stores it in the string pool.
The greeting reference refers to this String object in the pool. Because String objects
in Java are immutable (which means they cannot be changed), the JVM can optimize the
use of string literals by allowing only one instance of a string in the pool. For example,
the following two String references actually point to the same string in the pool, as
shown in the following diagram:

String s1 = “New York”;

String s2 = “New York”;

s2

s1

“New York”

The String pool

You might think if the two references point to the same object, then changing one object
would inadvertently change the value of the other. But String objects are immutable, so
the following statement only changes s2:

s2 = “New Jersey”;

The reference s2 now points to “New Jersey”, but s1 still points to “New York”, as shown
in the following diagram:

s2

s1

“New York”

“New Jersey”

The String pool

Reference vs. Primitive Types 25

c01.indd 25c01.indd 25 2/11/09 7:15:48 PM2/11/09 7:15:48 PM

26 Chapter 1 � Fundamentals

 In addition, arrays in Java are objects and therefore have a reference type. The Java
language implicitly defi nes a reference type for each possible array type: one for each of the
eight primitive types and also an Object array. This allows for references of the following type:

int [] grades;

String [] args;

Runnable [] targets;

 The null Type

 There is a special data type in Java for null . The null type does not have a name, so it is
not possible to declare a variable to be the null type. However, you can assign any refer-
ence to the null type:

String firstName = null;

Runnable [] targets = null;

 Primitive types cannot be assigned to null , only references. The following statement is
not valid:

int x= null; //does not compile

 We can also assign a reference to another reference as long as their data types are
compatible. For example, the following code assigns two ArrayList references to each other:

java.util.ArrayList < Integer > a1 =

 new java.util.ArrayList < Integer > ();

java.util.ArrayList < Integer > a2 = a1;

 The references a1 and a2 both point to the same object, an ArrayList that contains
 Integer objects. (Two references pointing to the same object is a common occurrence in
Java.) The ArrayList object can be accessed using either reference. Examine the following
code and determine if it compiles successfully and, if so, what its output is:

a1.add(new Integer(12345));

a2.add(new Integer(54321));

for(int i = 0; i < a1.size(); i++) {

 System.out.println(a2.get(i));

}

 The code adds an Integer to the ArrayList using a1 , and then adds another Integer
using a2 . Because they point to the same ArrayList , the list now has two Integer objects
in it, as shown in Figure 1.7 .

c01.indd 26c01.indd 26 2/11/09 7:15:48 PM2/11/09 7:15:48 PM

 The for loop compiles successfully and the output looks like this:

12345

54321

 Let ’ s look at a different example. Examine the following code that assigns two
references to each other and determine if it compiles successfully:

java.math.BigDecimal bd = new java.math.BigDecimal(2.75);

String s = bd;

 The reference bd is of type BigDecimal , and s is of type String . These two classes are
not compatible, so assigning s to bd generates the following compiler error:

incompatible types

found : java.math.BigDecimal

required: java.lang.String

 String s = bd;

 Even using the cast operator does not fi x the problem. The following code generates a
similar compiler error, except this time the compiler complains the types are inconvertible:

java.math.BigDecimal bd = new java.math.BigDecimal(2.75);

String s = (String) bd;

a1

a2

12345

An Integer object
The ArrayList<Integer> object

54321

An Integer object

F I GU R E 1.7 The ArrayList object can be accessed using either a1 or a2.

Reference vs. Primitive Types 27

c01.indd 27c01.indd 27 2/11/09 7:15:49 PM2/11/09 7:15:49 PM

28 Chapter 1 � Fundamentals

 The compiler error looks like this:

inconvertible types

found : java.math.BigDecimal

required: java.lang.String

 String s = (String) bd;

 Even though s and bd are both references that behind the scenes are identical in terms
of memory consumption (most likely they are 32 - bit unsigned integers, but this is JVM -
 dependent), it is not possible to assign them to each other because there is no relationship
between a String object and a BigDecimal object. Two references are compatible only
when either the objects they point to are the same type or one of the objects is a child class
of the other. String and BigDecimal have no inheritance relationship.

 Hopefully you have a better understanding of the differences between references and
primitive types. References play a key role in understanding garbage collection, our next
topic.

 Garbage Collection
 All Java objects are stored in your program memory ’ s heap . The heap, which is also
referred to as the free store, represents a large pool of unused memory allocated to your
Java application. The heap may be quite large, depending on your environment, but there is
always a limit to its size. If your program keeps instantiating objects and leaving them on
the heap, eventually it will run out of memory.

 Garbage collection refers to the process of automatically freeing memory on the heap by
deleting objects that are no longer reachable in your program. Every JVM has a garbage
collector, and many different algorithms are used to determine the effi ciency and timing of
garbage collection. The SCJP exam does not test your knowledge of any individual garbage
collection algorithm. However, you do need to know “ what is and is not guaranteed by the
garbage collection system, ” as well as “ recognize the point when an object becomes eligible
for garbage collection. ” This section discusses both of these objectives in detail.

 The new keyword instantiates a new object on the heap and returns a reference to the
object. Typically you will save that object ’ s reference in a variable. An object will remain on
the heap until it is no longer reachable. An object is no longer reachable when one of two
situations occurs:

� The object no longer has any references pointing to it.

� All references to the object have gone out of scope.

c01.indd 28c01.indd 28 2/11/09 7:15:49 PM2/11/09 7:15:49 PM

Objects vs. References

 Do not confuse a reference with the object that it refers to. They are two different enti-
ties. The reference is a variable that has a name and can be used to access the contents
of an object. A reference can be assigned to another reference, passed to a method, or
returned from a method. All references are the same size, no matter what their type is.
A reference is most likely 32 bits, but their actual size depends on your JVM.

 An object sits on the heap and does not have a name. Therefore, you have no way to
access an object except through a reference. Objects come in all different shapes and
sizes and consume varying amounts of memory. An object cannot be assigned to another
object, nor can an object be passed to a method or returned from a method. It is the
object that gets garbage collected, not its reference.

A Reference

A reference may or may
not be created on the heap.
All references are the same
size, no matter what their
data type is, and are accessed
by their variable name. Objects are always on the heap.

They have no name and can only be
accessed via a reference. Objects vary in
size depending on their class definition.

name An Object

The Heap

 Realizing the difference between a reference and an object goes a long way toward
understanding garbage collection, call by value, the new operator, and many other facets
of the Java language.

 Consider the following program that instantiates two GregorianCalendar objects and
assigns them to various references. Study the code and see if you can determine when each
of the two objects either goes out of scope or all references to it are lost.

1. import java.util.GregorianCalendar;

2.

3. public class GCDemo {

4. public static void main(String [] args) {

5. GregorianCalendar christmas, newyears;

Garbage Collection 29

c01.indd 29c01.indd 29 2/11/09 7:15:50 PM2/11/09 7:15:50 PM

30 Chapter 1 � Fundamentals

6. christmas = new GregorianCalendar(2009,12,25);

7. newyears = new GregorianCalendar(2010,1,1);

8.

9. christmas = newyears;

10. GregorianCalendar d = christmas;

11. christmas = null;

12. }

13. }

 The two GregorianCalendar objects are created on lines 6 and 7, resulting in the
references and objects that Figure 1.8 shows.

christmas
25

day

12
month

2009
year

newyears
1

day

1
month

2010
year

F I GU R E 1. 8 Each GregorianCalendar object has a reference pointing to it.

 On line 9, the christmas reference is assigned to newyears , which results in no more
references pointing to the object from line 6, so this object immediately becomes available
for garbage collection after line 9. There is now only one GregorianCalendar object (from
line 7) reachable in memory, and after line 10 there are three references pointing to it, as
Figure 1.9 shows.

c01.indd 30c01.indd 30 2/11/09 7:15:50 PM2/11/09 7:15:50 PM

 Setting christmas to null on line 11 does not cause the object from line 7 to become
eligible for garbage collection because there are still two references pointing to it: d and
 newyears . However, after line 12 the main method ends and both d and newyears go out of
scope. Therefore, the object instantiated on line 7 becomes eligible for garbage collection
after line 12.

 Know When an Object Is Eligible for Garbage Collection

 The GCDemo program is typical of a question that you will encounter on the certifi cation
exam. Make sure you understand exactly when each of the two GregorianCalendar
objects becomes eligible for garbage collection.

 What does it mean to become eligible for garbage collection? Why not simply have the
garbage collector immediately free the memory instead? The answer is that there is no
guarantee in Java as to exactly when an object is actually garbage collected. The JVM

christmas
25

day

12
month

2009
year

newyears

d

1
day

1
month

2010
year

This object is eligible for
garbage collection.

F I GU R E 1. 9 One GregorianCalendar object has no references to it and the other now
has three.

Garbage Collection 31

c01.indd 31c01.indd 31 2/11/09 7:15:51 PM2/11/09 7:15:51 PM

32 Chapter 1 � Fundamentals

specifi cation does not defi ne how a garbage collector accomplishes the task of freeing
memory. The specifi cation only states that when an object is eligible for garbage collection,
the garbage collector must eventually free the memory.

 As a Java coder, you cannot specifi cally free memory on the heap. You can only ensure
that your objects that you no longer want in memory are no longer reachable. In other
words, make sure you don ’ t have any references to the object that are still in scope.

 The following section discusses the System.gc method, which provides a small amount
of control over freeing memory on the heap.

 The System.gc Method

 The java.lang.System class has a static method called gc that attempts to run the garbage
collector. System.gc is the only method in the Java API that communicates with the
garbage collector. Here is what the Java SE API documentation says about the System.gc
method:

 Calling the gc method suggests that the Java Virtual Machine expend
effort toward recycling unused objects in order to make the memory they
currently occupy available for quick reuse. When control returns from the
method call, the Java Virtual Machine has made a best effort to reclaim
space from all discarded objects.

 In other words, the gc method does not guarantee anything! The method might be
useful if you are familiar with the intricate details of your JVM and how it implements
this method. But the end result is that as a Java programmer you cannot free memory
specifi cally in your code. You can only ensure that your objects are eligible for garbage
collection, and then assume the garbage collector will do its job!

 Let ’ s look at another example typical of a question found on the exam. Examine
the following code and determine when the String objects become eligible for garbage
collection and when they actually get garbage collected:

1. public class GCDemo2 {

2. public static void main(String [] args) {

3. String one = “Hello”;

4. String two = one;

5. String three = “Goodbye”;

6.

7. three = null;

8. System.gc();

9. one = null;

10. System.gc();

11. two = null;

12. }

13. }

c01.indd 32c01.indd 32 2/11/09 7:15:51 PM2/11/09 7:15:51 PM

 The “ Goodbye ” object is created on line 5 and assigned to the reference three . Then
 three is set to null and the gc method is invoked. After line 7 the “ Goodbye ” object is
defi nitely eligible for garbage collection, but if the exam question asks you when the object
is garbage collected, the answer can only be “ unknown. ” The call to gc on line 8 might
have caused “ Goodbye ” to get garbage collected, but that is not guaranteed at all.

 Line 9 does not cause “ Hello ” to become eligible because the reference two points to
 “ Hello ” also. Only after line 11 does “ Hello ” become eligible for garbage collection, and
as already discussed we cannot know when the objects are actually garbage collected.

 The finalize Method

 According to the exam objectives, you need to be able to “ recognize the behaviors of
the Object.finalize() method. ” The garbage collector invokes the finalize method
of an object right before the object is actually garbage collected. The finalize method
is declared in Object , and any subclass can override finalize to perform any necessary
cleanup or dispose of system resources. The finalize method is only invoked on an object
once by the garbage collector.

 There won ’ t be any trick questions about finalize . Just remember it gets invoked once
and only when the object is in the process of being removed from memory. Be sure not
to do anything in the finalize method that might somehow cause the object ’ s reference
to come back into scope. It is also a good idea to call super.finalize because you are
overriding the behavior of finalize in the parent classes.

Calling super.finalize

 If you do call super.finalize , which is recommended, you need to declare the
java.lang.Throwable exception thrown by the parent class ’ s finalize method:

public class A extends Object {

 public void finalize() throws Throwable {

 System.out.println(“Finalizing A”);

 }

}

 Let ’ s look at an example. It is diffi cult to simulate garbage collection because you have little
control over the garbage collector, but I came up with an example that demonstrates when
the finalize method is called and also provides an extra level of complexity in

Garbage Collection 33

c01.indd 33c01.indd 33 2/11/09 7:15:52 PM2/11/09 7:15:52 PM

34 Chapter 1 � Fundamentals

determining when an object is eligible for garbage collection. Consider the following class
named Dog that contains a finalize method that prints out a simple message:

1. public class Dog {

2. private String name;

3. private int age;

4.

5. public Dog(String name, int age) {

6. this.name = name;

7. this.age = age;

8. }

9.

10. public void finalize() {

11. System.out.println(name + “ is being garbage collected”);

12. }

13. }

 The following program instantiates two Dog objects and stores them in a java.util
.Vector . Examine this program and see if you can determine when the two Dog objects
become eligible for garbage collection:

1. import java.util.Vector;

2. public class GCDemo3 {

3. public static void main(String [] args) {

4. Vector < Dog > vector = new Vector < Dog > ();

5. Dog one = new Dog(“Snoopy”, 10);

6. Dog two = new Dog(“Lassie”, 12);

7.

8. vector.add(one);

9. vector.add(two);

10.

11. one = null;

12. System.out.println(“Calling gc once...”);

13. System.gc();

14.

15. vector = null;

16. System.out.println(“Calling gc twice...”);

17. System.gc();

18.

19. two = null;

20. System.out.println(“Calling gc again...”);

c01.indd 34c01.indd 34 2/11/09 7:15:52 PM2/11/09 7:15:52 PM

21. System.gc();

22. System.out.println(“End of main...”);

23.

24. }

25. }

 The calls to gc are an attempt to force garbage collection so we can see when finalize
is invoked on the Dog objects. The fi rst step is determining when the objects are eligible for
garbage collection. Adding the two Dog objects to the Vector creates additional references
to the objects. On line 11 the reference one is set to null , but Snoopy is not eligible yet for
garbage collection because of line 8. The Vector still has a reference to the Snoopy object,
as shown in Figure 1.10 .

one null

0

vector

1

two
“Snoopy”

10

“Lassie”
12

Vector<Dog> object

F I GU R E 1.10 The Vector still has a reference to the Snoopy object.

 However, when you set vector to null on line 15, it causes the Snoopy object to
immediately become eligible for garbage collection. The Lassie object still has the
reference two pointing to it, so it does not become eligible until after line 19. Here is a
sample output of the GCDemo3 program. (I use the term “ sample output ” because the output
can change each time the program is executed depending on when the garbage collector
actually invokes the finalize method.)

Calling gc once...

Calling gc twice...

Snoopy is being garbage collected

Calling gc again...

Lassie is being garbage collected

End of main...

Garbage Collection 35

c01.indd 35c01.indd 35 2/11/09 7:15:52 PM2/11/09 7:15:52 PM

36 Chapter 1 � Fundamentals

 No objects are freed after the fi rst call to gc because no objects are eligible at that time.
After the second call to gc , the Snoopy object is eligible, but the call to finalize happens in
the thread of the garbage collector, so the output of Snoopy ’ s finalize method may or may
not appear before the third call to gc . The exact output of running the GCDemo3 program is
indeterminate. The previous output is just one possible result.

 The finalize Method Is Only Invoked Once

 Expect at least one question on the exam about the finalize method. Keep in mind
that it can only be called once on an object, and it only gets called by the garbage
collector after an object is eligible for garbage collection but before the object is
actually garbage collected.

 This ends our discussion on garbage collection, an important topic not just for the SCJP
exam but in our everyday programming of Java. Now we discuss another important topic
in Java: the concept of call by value.

 Call by Value
 The exam objectives state that you need to know “ the effect upon object references and
primitive values when they are passed into methods that perform assignments or other
modifying operations on the parameters. ” A variable that is passed into a method is called
an argument . Java simplifi es the concept of passing arguments into methods by providing
only one way to pass arguments: by value. Passing arguments by value means that a copy
of the argument is passed to the method. Method return values are also returned by value,
meaning a copy of the variable is returned. The SCJP exam requires an understanding of
what call by value means, and we will discuss the details now.

 An argument is passed into a corresponding method parameter. A parameter is the
name of the variable in the method signature that gets assigned the value of the argument.
Let ’ s look at an example. Suppose we have the following method defi nition:

21. public long cubic(int y) {

22. long longValue = (long) y;

23. y = -1;

24. return longValue * longValue * longValue;

25. }

c01.indd 36c01.indd 36 2/11/09 7:15:53 PM2/11/09 7:15:53 PM

 To invoke this method, you must pass in an int argument. For example, the following
code invokes the cubic method:

31. int x = 11;

32. long result = cubic(x);

 The value of x is copied into the parameter y . We now have two int s in memory that
have the value 11: x and y . Changing y to – 1 in cubic has no effect on x . In fact, it is
impossible to change x within the cubic function.

 Passing Primitives vs. Passing References

 Sun seems to enjoy questions on the exam regarding call by value and methods that
attempt to change the value of the argument. If the argument passed into a method
parameter is a primitive type, it is impossible in Java for the method to alter the value of
the original primitive.

 If the argument passed into a method parameter is a reference type, the same rule
applies: it is impossible for a method to alter the original reference . However, because the
method now has a reference to the same object that the argument points to, the method
 can change the object. This is an important difference to understand. Study the upcom-
ing StackDemo program for an example of this situation.

 The following example of call by value uses references. Suppose we have the following
method signature:

5. public int findByName(String lastName, String firstName) {

6. lastName = “Doe”;

7. firstName = “Jane”;

8. return -1;

9. }

 This method has two parameters, lastName and firstName . To invoke this method, two
 String objects must be passed in as arguments. For example, the following code invokes
the findByName method. What is the output of this code?

14. String first = “Albert”;

15. String last = “Einstein”;

16. int result = findByName(last, first);

17. System.out.println(first + “ “ + last);

Call by Value 37

c01.indd 37c01.indd 37 2/11/09 7:15:53 PM2/11/09 7:15:53 PM

38 Chapter 1 � Fundamentals

 The argument last is copied into the parameter lastName . The argument first is
copied into the parameter firstName . What gets copied? Well, because last and first are
references, they contain memory addresses, and that is what gets copied. The result is that
 lastName points to the same String object as last , which in this example is “ Einstein ” .
Similarly, firstName points to “ Albert ” , as shown in Figure 1.11 . The objects did not get
copied! There is still only one String object with the value “ Einstein ” in memory and only
one String object with the value “ Albert ” in memory.

first

last

firstName

lastName

The memory of the
call stack for main

The memory of the
call stack for findByName

Heap

“Albert”

“Einstein”

F I GU R E 1.11 The arguments from main are copied into the parameters of findByName.

 Because String objects are immutable, the parameters lastName and firstName cannot
change the objects “ Albert ” or “ Einstein ” . Setting the parameters equals to “ Jane ” and “ Doe ”
has no effect on first and last , as Figure 1.12 shows. Therefore, the output of that code is

Albert Einstein

first

last

firstName

lastName

The memory of the
call stack for main

The memory of the
call stack for findByName

Heap

“Albert”

“Einstein”

“Jane”

“Doe”

F I GU R E 1.12 String objects are immutable, so findByName cannot change
first and last.

c01.indd 38c01.indd 38 2/11/09 7:15:54 PM2/11/09 7:15:54 PM

 The only reason firstName and lastName could not change the objects is because the
example uses String types and String objects are immutable. Let ’ s look at an example
where the arguments passed in refer to objects that can be altered by the method. Examine
the following program and try to determine its output. If you are not familiar with the
 java.util.Stack class, the push method adds an element to the top of the stack and the
 pop method removes the top element from the stack.

1. import java.util.Stack;

2.

3. public class StackDemo {

4.

5. public static void modifyStacks(Stack < String > one,

6. Stack < Integer > two) {

7. two.push(50);

8. one.pop();

9. one = new Stack < String > ();

10. }

11.

12. public static void main(String [] args) {

13. Stack < String > names = new Stack < String > ();

14. names.push(“Kim”);

15. names.push(“Edward”);

16. names.push(“Jane”);

17.

18. Stack < Integer > grades = new Stack < Integer > ();

19. grades.push(95);

20. grades.push(87);

21.

22. modifyStacks(names, grades);

23.

24. for(String name : names) {

25. System.out.println(name);

26. }

27.

28. for(int grade : grades) {

29. System.out.println(grade);

30. }

31. }

32. }

 Within main , two Stack objects are instantiated. The reference names refers to a Stack
that contains String objects, and the reference grades refers to a Stack containing Integer

Call by Value 39

c01.indd 39c01.indd 39 2/11/09 7:15:54 PM2/11/09 7:15:54 PM

40 Chapter 1 � Fundamentals

objects. Three strings are pushed onto the names stack, and two ints are pushed onto
 grades . Then names and grades are passed into modifyStacks . The parameter one points
to the stack of Strings and two points to the stack of grades , as Figure 1.13 shows.

names

grades

one

two

The memory of the
call stack for main

The memory of the
call stack for modifyStacks

Heap

87
95

“Jane”
“Edward”

“Kim”

F I GU R E 1.13 The references from main are copied into the parameters of
modifyStacks.

 Pushing 50 onto two is the same as pushing it onto grades because the two references
point to the same stack. Similarly, popping a value off one removes “ Jane ” from the names
stack.

 Note that setting one equal to a new Stack does not affect the Stack that names points
to. We cannot modify the reference names within modifyStacks . Figure 1.14 shows the
references and objects just before the modifyStacks method returns.

F I GU R E 1.14 Assigning the one reference to a new Stack does not affect the names
stack.

names

grades

one

two

The memory of the
call stack for main

The memory of the
call stack for modifyStacks

Heap

87
95

50

“Edward”
“Kim”

c01.indd 40c01.indd 40 2/11/09 7:15:55 PM2/11/09 7:15:55 PM

 When modifyStacks returns, names still points to the Stack containing “ Kim ” and
 “ Edward ” , and grades now points to a Stack containing 95, 87, and 50. The output of
 StackDemo is

Kim

Edward

95

87

50

 Changing the reference one does not change the reference names . Although it is
impossible for the modifyStacks method to alter the names reference, it was quite easy for
the method to modify the object that names points to.

 The concept of call by value also applies to values returned by a method, as we will see
in the next section. As discussed earlier in this chapter, you need to be able to view code
and determine when an object becomes eligible for garbage collection. When does the
object on line 9 of StackDemo become eligible for garbage collection? Because the variable
 one is a parameter, it goes out of scope when the modifyStacks method returns on line 10.
Because one is the only reference pointing to the Stack object from line 9, the object is
eligible for garbage collection after line 10.

Passing References vs. Passing Objects

 You need to be able to distinguish the difference between a reference and an object.
When passing arguments to a method, it is the reference that gets passed, not the object.
It is impossible to pass an object to a method. In fact, the largest amount of data that can
be copied into a parameter (or returned from a method) is a long or a double , both of
which are 64 bits.

 Return values are also passed by value, meaning a copy of the data is sent to the calling
method. A method can return void , one of the eight primitive types, or a reference: there
are no other possibilities. (Of course, the reference can be of any class or interface type,
so the possible values you can return are actually endless, as long as you realize that a
reference is getting returned, never an actual object!)

 Let ’ s look at an example using primitive types. Suppose we have the following method
defi nition:

31. public int max(int a, int b) {

32. int response;

33. if(a < b) {

34. response = b;

35. } else {

Call by Value 41

c01.indd 41c01.indd 41 2/11/09 7:15:55 PM2/11/09 7:15:55 PM

42 Chapter 1 � Fundamentals

36. response = a;

37. }

38. return response;

39. }

 The max method returns a local variable named response . A copy of response is
returned to the calling method. Consider the following invocation of max :

45. public void go() {

46. int x = 20, y = 30;

47. int biggest = max(20, 30);

48. System.out.println(biggest);

49. }

 In this case, the parameter a is 20 and b is 30, resulting in a response of 30. A copy of
30 is passed back to the go method and stored in biggest . Because max is done executing,
its call - stack memory is freed and a , b , and response all get destroyed. It doesn ’ t make
sense to try to modify response in the go method because response no longer exists in
memory.

 The Call Stack

 Every method that gets invoked in a Java thread is pushed onto the thread ’ s method
call stack . The method at the top of the call stack is the currently executing method. Each
method on the call stack gets its own small amount of memory. When a method fi nishes
executing (by running to completion, returning a value, or throwing an exception), the
method gets popped off the call stack and its memory is freed. Any parameters and local
variables are destroyed and no longer exist in the program ’ s memory.

 The next example shows a method that returns a reference to an object. Examine the
code and see if you can determine when the File object instantiated on line 6 is eligible for
garbage collection:

1. import java.io.File;

2.

3. public class ReturnDemo {

4.

5. public File getFile(String fileName) {

6. File f = new File(fileName);

7. return f;

c01.indd 42c01.indd 42 2/11/09 7:15:56 PM2/11/09 7:15:56 PM

8. }

9.

10. public static void main(String [] args) {

11. ReturnDemo demo = new ReturnDemo();

12. File file = demo.getFile(args[0]);

13.

14. if(file.exists()) {

15. System.out.println(file.getName() + “ file exists”);

16. } else {

17. System.out.println(file.getName() + “ doesn’t exist”);

18. }

19.

20. file = null;

21. }

22. }

 The getFile method returns the reference f , which points to a new File object. Keep
in mind that this File object is on the heap, not in the method ’ s call stack memory, so the
 File object is not destroyed when getFile returns. The local variable file in main gets a
copy of f when getFile returns. The File object from line 6 does not become eligible for
garbage collection until after line 20.

 The ReturnDemo program demonstrates a method that instantiates an object and returns
a reference to that object. This is a common occurrence in Java. Just remember that the
object is on the heap (all objects are instantiated on the heap!) and a copy of the reference
is returned to the calling method. As with method arguments, the largest piece of data that
can be returned from any Java method is 64 bits (a long or double). The fact that Java only
allows call by value is an attempt to simplify the language. There is never any confusion
with arguments and parameters: the parameter is always a copy of the argument.

 Now that we have discussed the details of call by value, we turn our attention to another
objective in the “ Fundamentals ” section: the Java operators.

 Java Operators
 You need to be able to “ write code that correctly applies the appropriate operators. ” This
section discusses the Java operators that appear on the exam. Table 1.2 lists all of the 41
operators in Java 6.0, listed in their order of precedence . Order of operations in Java is well
defi ned, and the operators are guaranteed to be evaluated in the order shown. If operators
have the same level of precedence, Java guarantees evaluation in left - to - right order.

Java Operators 43

c01.indd 43c01.indd 43 2/11/09 7:15:56 PM2/11/09 7:15:56 PM

44 Chapter 1 � Fundamentals

 The SCJP exam objectives specifi cally mention the following operators:

� Assignment operators: =, += and - =

� Arithmetic operators: + , - , * , / , % , ++ , and - -

� Relational operators: < , < = , > , > = , = = , and !=

� The instanceof operator

� Bitwise and logical operators: & , | , ̂ , ! , & & , and ||

� The conditional operator (?:)

 The upcoming sections discuss each of these categories of operators and the details that
you need to know about the operators for the SCJP exam.

 The Assignment Operators

 Java has 12 assignment operators : the simple assignment = and 11 compound assignment
operators : += , - = , *= , and so on. An assignment stores the result of the right - hand side of

TA B LE 1. 2 The Java Operators

Operator Symbol and Precedence

Post-increment/post-decrement expression++, expression--

Pre-increment/pre-decrement ++expression, --expression

Unary operators +, -, ~, !

Multiplication/division/modulus *, /, %

Addition/subtraction +, -

Shift operators <<, >>, >>>

Relational operators <, >, <=, >=, instanceof

Equal to/not equal to ==, !=

Bitwise AND, exclusive OR, inclusive OR &, ^, |

Logical AND, OR &&, ||

Ternary operator ? :

Assignment operators = += -= *= /= %= &= ^= |= <<= >>= >>>=

c01.indd 44c01.indd 44 2/11/09 7:15:57 PM2/11/09 7:15:57 PM

the expression into the variable on the left - hand side. Here is an example using a simple
assignment:

4. byte b = 120;

5. int x = b;

 The byte b is assigned the literal value 120, and the int x is assigned the value of b ,
which is also 120. An assignment will not compile if the right - hand operand cannot be
converted to the data type of the left - hand variable. For example, the following line of code
does not compile:

7. int y = 12.5; //does not compile

 The literal 12.5 is a double , and a double cannot implicitly be converted to an int without
loss of data. For this code to compile, you would need to cast the right - side to an int :

8. int y = (int) 12.5; //compiles fine

 The value of y is 12 after this line of code executes. The decimal value is simply
truncated.

 The compound assignment operators perform the given operator fi rst between the left
and right sides of the operand, and then the result is stored in the left - hand variable. What
is the value of z after this line of code?

10. int x = 5;

11. int z = 10;

12. z *= x;

 The compound assignment operator is multiplication, so z is multiplied by x , which
evaluates to 50, and then z is assigned 50. The same result could have been evaluated using
a simple assignment:

13. z = z * x;

 However, sometimes the compound operator can save us from needing to cast a value
before the assignment. For example, the following statements generate a compiler error. Do
you see why?

15. long m = 1000;

16. int n = 5;

17. n = n * m; //compiler error here

 The expression n * m is an int times a long . Before the multiplication can be evaluated,
the int is promoted to a long . The result is therefore a long , so we need a cast to make the
compiler happy:

18. n = (int) (n * m);

Java Operators 45

c01.indd 45c01.indd 45 2/11/09 7:15:57 PM2/11/09 7:15:57 PM

46 Chapter 1 � Fundamentals

 The result is n equal to 5000. However, using the compound operator avoids the cast.
The following statements compile successfully and assign n to 5000:

19. long m = 1000;

20. int n = 5;

21. n *= m;

 In this case, the value of m is implicitly cast to an int before the multiplication occurs.
An int times an int results in an int , so no cast is needed.

 The Assignment Operators

 According to the SCJP exam objectives, knowledge of the assignment operators is
limited to = , += and – = . Of course, if you understand how += and – = work, you understand
how the other compound assignment operators work!

 The Arithmetic Operators

 The exam objectives specifi cally mention having working knowledge of the following
 arithmetic operators :

� + — : addition and subtraction

� * / : multiplication and division

� % : modulus

� ++ — — : increment and decrement

 We will now discuss each of these operators in detail.

 The Additive Operators

 The operators + and – are referred to as additive operators . They can be evaluated on any
of the primitive types except boolean . Additionally, the + operator can be applied to String
objects, which results in string concatenation.

 If the operands are of different types, the smaller operand is promoted to the larger. At a
minimum, the operands are promoted to int s. For example, the following innocent - looking
code does not compile. Can you see why?

short s1 = 10, s2 = 12;

short sum = s1 + s2; //does not compile!

 Because a short is smaller than an int , both s1 and s2 are promoted to int s before the
addition. The result of s1 + s2 is an int , so you can only store the result in a short if you

c01.indd 46c01.indd 46 2/11/09 7:15:58 PM2/11/09 7:15:58 PM

use the cast operator. The compiler complains about a possible loss of precision, but casting
fi xes the problem:

short s1 = 10, s2 = 12;

short sum = (short) (s1 + s2);

 The value of sum is 22 after this code executes.

A Note about Casting

 I want to take a moment to point out something subtle but important about the cast oper-
ator. The sole purpose of casting primitive types is to make the compiler happy. When
you assign a larger data type to a smaller one, the compiler complains about a possible
loss of precision.

 However, if you are aware and comfortable with the possible loss of precision at runtime,
then you simply cast the result, which tells the compiler you know what you are doing. At
runtime, the data may very well be invalid. For example, the following code compiles and
runs, but you might be surprised by the output:

byte b1 = 60, b2 = 60;

byte product = (byte) (b1 * b2);

System.out.println(product);

 This code outputs the number 16, clearly not the result of 60 times 60. The mistake lies in
the limitations of a byte , which can only store values up to 127. Because 60 * 60 = 3600,
the value of 16 is the lower 8 bits of the binary representation of 3600. The signifi cant bits
were lost in the runtime assignment of 3600 to the byte product.

 We will revisit this discussion of casting again when we talk about inheritance and cast-
ing references in Chapter 6 , “ OO Concepts, ” because casting reference types is a differ-
ent story altogether!

 The JVM ensures order of operations is evaluated left - to - right when operators share the
same precedence. For example, what is the value of x after this line of code executes?

String x = 12 - 6 + “Hello” + 7 + 5;

 Following the order from left to right, 12 – 6 is evaluated fi rst and results in 6. The
next + operator is not addition but string concatenation, so the 6 is promoted to a String
and the result is “ 6Hello ” . Following left to right, the next + is also string concatenation,
resulting in “ 6Hello7 ” , and fi nally the value of x after the last string concatenation is
 “ 6Hello75 ” .

Java Operators 47

c01.indd 47c01.indd 47 2/11/09 7:15:58 PM2/11/09 7:15:58 PM

48 Chapter 1 � Fundamentals

 The Multiplicative Operators

 The operators * , / , and % are referred to as the multiplicative operators . They have a higher
precedence of operation than additive operators. The multiplicative operators can only be
performed on the numeric primitive types; otherwise, a compiler error occurs.

 As with + and – , the multiplicative operators promote both operands to the data type of
the larger operand. If both operands are smaller than an int , both operands are converted
to int s before the multiplication occurs. For example, what is the result of the following
statements?

4. int a = 26, b = 5;

5. double d = a / b;

 The expression a / b is integer division, which results in the int 5. Therefore, the value
of d is 5.0. The fact that we store the result in a double does not affect the arithmetic
because the assignment takes place after the arithmetic is already performed.

 If one of the operands is a float or double , the expression is evaluated using fl oating -
 point arithmetic and the result will be a float or double depending on the operand types.
For example, what is the result of the following statements?

8. int a = 26;

9. float f = a / 5.0F;

 Because 5.0 is a float (by virtue of the “ F ” appended to it), the int a is promoted to
a float and fl oating - point division is performed. The value of f is 5.2 after this code
executes.

 The MODULUS Operator

 The modulus operator, also known as the remainder operator, evaluates the remainder
of two numbers when they are divided. For example, what is the result of the following
expression?

int x = 12 % 5;

 The remainder of 12 divided by 5 is 2, so x is 2.
 If the fi rst operand is negative, so is the result of the modulus. The value of y after the

following statement is – 1:

int y = -17 % 4;

 In Java you can evaluate the remainder of fl oating - point numbers as well. While not
as intuitive as integer modulus, there is still a remainder in fl oating - point division. For
example, what is the output of the following code?

System.out.println(12.4 % 3.2);

c01.indd 48c01.indd 48 2/11/09 7:15:59 PM2/11/09 7:15:59 PM

 The answer is 2.8. A calculator won ’ t help you on this one. You need to perform the
division longhand to see where the remainder of 2.8 comes from.

 The multiplication operators are evaluated left - to - right if the expression does not
contain parentheses. What is the value of result after this statement?

int result = 12 + 2 * 5 % 3 - 15 / 4;

 The expression evaluates to an int because all the literal values are int s. Here is how
the expression is evaluated one level of precedence at a time. The parentheses are added for
clarifi cation.

12 + (2 * 5) % 3 - (15 / 4)

 12 + (10 % 3) - 3

 (12 + 1) - 3

 13 - 3
 10

 Therefore the value of result is 10 after the statement executes.

 The Increment and Decrement Operators

 The operators ++ and – – are referred to as the increment and decrement operators because
they increment and decrement (respectively) a numeric type by 1. The operators can be
applied to an expression either prefi x or postfi x. These operators have the highest level of
precedence of all the Java operators. They can only be applied to numeric operands, and
the result is the same data type as the operand.

 For example, the following statements create an int and increment it using ++ . What is
the output of this code?

3. int x = 6;

4. System.out.println(x++);

5. System.out.println(x);

 Adding or subtracting 1 seems simple enough, but these operators can be confusing
because of when they are evaluated! The output of the previous statements is

6

7

 When the operator appears after the operand, the increment or decrement does not
occur until after the operand is used in the current expression. On line 3, x is printed out as
6, then incremented to 7, which is demonstrated by the output of line 5.

 When the increment operator appears before the operand, the operand is incremented
fi rst, and then the result is used in the current expression. The same is true for the
decrement operator.

Java Operators 49

c01.indd 49c01.indd 49 2/11/09 7:15:59 PM2/11/09 7:15:59 PM

50 Chapter 1 � Fundamentals

 Examine the following code and try to determine its output:

10. char c = ‘A’;

11. for(int i = 1; i < = 10; i++) {

12. System.out.print(c++ + “ “);

13. }

14. System.out.print(c);

 The fi rst value printed is ‘ A’ , then c is incremented, which results in ‘ B ’ printed on the
second iteration of the loop. In total, 11 char s are printed and the output is

A B C D E F G H I J K

 The following code demonstrates use of the decrement operator. Examine the code and
try to determine its output:

16. int y = 5;

17. int result = y-- * 3 / --y;

18. System.out.println(“y = “ + y);

19. System.out.println(“result = “ + result);

 I have to admit this is a tricky question! (I hope you never see code like this in the real
world.) Notice y is decremented twice, so the output of y is 3. The value of result is not
as obvious. Order of operations dictates that the multiplication is evaluated fi rst. The value
of y is 5, so 5 * 3 is 15. The multiplication is done, so the post - decrement occurs and y
becomes 4. Now the division is evaluated and y is pre - decremented to 3 before the division,
resulting in 15 / 3 , which is 5. The output of this code is

y = 3

result = 5

Make Sure You Understand the Increment and Decrement Operators

 The exam has plenty of questions that use the prefi x and postfi x increment and decre-
ment operators. In many situations, the exam question is testing a different Java concept,
not the incrementing or decrementing of variables. Make sure you have a good under-
standing of these fundamental (and sometimes tricky) operators.

 The Relational Operators

 The following operators are referred to as the relational operators :

� < : less than

� < = : less than or equal

c01.indd 50c01.indd 50 2/11/09 7:16:00 PM2/11/09 7:16:00 PM

� > : greater than

� > = : greater than or equal

 The relational operators can only be performed on numeric primitive types, and the
result of each relational operator is always a boolean . If the operands are not the same
primitive type, the smaller operand is promoted to the larger operand ’ s type before the
comparison is made.

 To demonstrate the relational operators, let ’ s take a look at some examples. What is the
result of the following statements?

5. int x = 10, y = 20, z = 10;

6. System.out.println(x < y);

7. System.out.println(x < = y);

8. System.out.println(x > z);

9. System.out.println(x > = z);

 Because x and z are the same value, x > z is false . The other statements evaluate to
 true . Therefore, the output of this code is

true

true

false

true

 The boolean Primitive Type

 The result of a relational operator is a boolean , which can only be the values true or
 false . The following line of code does not compile:

int result = x < y;

 The boolean primitive type in Java is not compatible with the int type. In other
languages like C and C++, numeric types are often used for Boolean expressions, where
0 is false and non - zero is true. In Java, a boolean can never be treated as a numeric type,
nor can a numeric type ever be treated as a true or false value.

 The instanceof Operator

 The instanceof operator compares a reference to a class or interface data type. The result
is true if the reference is an instance of the data type; otherwise, the result is false . The
syntax for the instanceof operator looks like this:

 reference instanceof ClassOrInterfaceName

Java Operators 51

c01.indd 51c01.indd 51 2/11/09 7:16:00 PM2/11/09 7:16:00 PM

52 Chapter 1 � Fundamentals

 Let ’ s take a look at an example. See if you can determine the output of the following
statements:

3. String s = “Hello, World”;

4. if(s instanceof String) {

5. System.out.print(“one”);

6. }

7. if(s instanceof Object) {

8. System.out.print(“two”);

9. }

10. if(s instanceof java.io.Serializable) {

11. System.out.print(“three”);

12. }

 The reference s points to a String object, so line 4 is true and “ one ” is printed on line 5.
Every object in Java is of type Object , so line 7 is true for any reference; therefore, “ two ”
is printed. The String class implements the Serializable interface, which makes String
objects Serializable objects as well. Therefore, line 10 is also true and the output of the
previous code is

onetwothree

 One of the main usages of the instanceof operator is when you cast a reference to a
subclass type. If you cast a reference to an invalid data type, a ClassCastException is
thrown by the JVM. For example, the following statements compile, but at runtime an
exception is thrown:

Object x = new String(“a String object”);

Date d = (Date) x;

 The output of this code is

Exception in thread “main” java.lang.ClassCastException:

 java.lang.String cannot be cast to java.util.Date

 Using the instanceof operator, you can avoid this situation:

17. Object x = new String(“a String object”);

18. if(x instanceof Date) {

19. Date d = (Date) x;

20. }

 Because x points to a String object and not a Date object, line 18 is false and the
invalid cast does not occur, avoiding the uncaught ClassCastException . We will see the
 instanceof operator again in Chapter 6 .

c01.indd 52c01.indd 52 2/11/09 7:16:01 PM2/11/09 7:16:01 PM

 The Bitwise and Logical Operators

 The following operators are referred to as the bitwise and logical operators :

� & : the AND operator

� ̂ : the exclusive OR operator

� | : the inclusive OR operator

� & & : the conditional AND operator

� || : the conditional OR operator

 The & , ̂ , and | operate on expressions where both operands are either primitive numeric
types or both are boolean expressions. When operating on numeric types, they are bitwise
operators. When operating on boolean types, they are logical operators. The & & and || operators
require both operands to be boolean expressions, so they are strictly logical operators.

 The term bitwise refers to the & , ̂ , and | operators performing a bitwise AND or OR
of the two operands. Table 1.3 shows the result of the possible outcomes for each of these
three operators.

TA B LE 1. 3 The Bitwise Operators

& (AND) ^ (exclusive OR) | (inclusive OR)

0 & 0 is 0 0 ^ 0 is 0 0 | 0 is 0

0 & 1 is 0 0 ^ 1 is 1 0 | 1 is 1

1 & 0 is 0 1 ^ 0 is 1 1 | 0 is 1

1 & 1 is 1 1 ^ 1 is 0 1 | 1 is 1

 Notice the & operator results in 1 only when both operands are 1, while the | operator
results in 0 only when both operators are 0. The exclusive OR ̂ is 1 when the two operands
are different; otherwise it is 0.

 The bitwise operators are evaluated on integer types. To compute the result, you need
to know the binary representation of the values. For example, what is the result of the
following expression?

int result = 12 ^ 45;

 Begin by converting the 12 and 45 to binary numbers and align them vertically. Then
perform the exclusive OR on each column, as Figure 1.15 shows.

Java Operators 53

c01.indd 53c01.indd 53 2/11/09 7:16:01 PM2/11/09 7:16:01 PM

54 Chapter 1 � Fundamentals

 The result is 00100001 in binary, which is 33 in decimal. Therefore, the value of result
is 33.

 The & , ̂ , and | are also logical operators, meaning they can operate on boolean types.
The result of each operator is identical to Table 1.2 if you were to replace each 0 with false
and each 1 with true . For example, the AND operator & is only true when both operands
are true . The inclusive OR operator | is only false when both operands are false . The
exclusive OR is only true when the two operands are different.

 What is the output of the following logical statements?

3. int a = 5, b = 10, c = 0;

4. boolean one = a < b & c != 0;

5. System.out.println(one);

6. boolean two = true | true & false;

7. System.out.println(two);

8. boolean three = (c != 0) & (a / c > 1);

9. System.out.println(three);

 The variable one on line 4 is the result of true & false , which is false . The result of
 two on line 6 might surprise you. The & operator has a higher precedence than | , so the
 true & false is evaluated fi rst, which results in false . Then true | false is evaluated,
which is true , so two evaluates to true .

 You might think that the Boolean on line 8 evaluates to false , but that line of code
actually throws an ArithmeticException when attempting to compute a / c . The value
of c is 0 and integer division by 0 is undefi ned in Java. Therefore, the last println never
executes.

 The example of a / c is a typical situation where a conditional operator comes in
handy. The conditional operators & & and || short - circuit, meaning the right operand may
not get evaluated if the left hand operand can determine the result.

 For example, when using & & , if the left operand is false , there is no need to check the
right operand. False AND anything is false . In this case, the right - hand expression is not
evaluated. Similarly, when using || , if the left operand is true , there is no need to check the
right operand because true OR anything is true .

 The following statements are a modifi cation of the previous example, except this
time the logical expression short - circuits. What is the value of three after the following
statements?

21. int a = 5, b = 10, c = 0;

22. boolean three = (c != 0) & & (a / c > 1);

12
45

12^45

0000 1100
0010 1101
0010 0001

�
�

�

F I GU R E 1.15 Computing the exclusive or expression12^45

c01.indd 54c01.indd 54 2/11/09 7:16:02 PM2/11/09 7:16:02 PM

 Because c is 0, the expression c != 0 is false and evaluation stops. The variable three
is false and this code does not throw an exception at runtime.

 Short - Circuit Behavior

 Watch for the short - circuit behavior on the exam. The exam question might alter a vari-
able in the right operand. For example, what is the output of the following code?

int x = 6;

boolean answer = (x > = 6) || (++x < = 7);

System.out.println(x);

 Because x > = 6 is true, the incrementing of x does not occur in the right operand, so the
output of this code is 6.

 The Conditional Operator

 Java contains a conditional operator ? : , often referred to as the ternary operator because
it is the only operator in Java that has three operands. The syntax for the conditional
operator is

 boolean_expression ? true_expression : false_expression

 The fi rst operand must be a boolean expression. If this boolean expression is true , then
the second operand is chosen; otherwise, the third operand is chosen. The second and third
operands can be any expressions that evaluate to a value, or any method calls that return a
value.

 The conditional operator is a condensed version of an if/else statement that can be handy
in a lot of different situations, especially when outputting or displaying data. For example,
what is the output of the following statements?

int x = 6;

System.out.println(x != 0 ? 10/x : 0);

 Because x is not 0, the output is the result of 10 / 6 , which is 1.
 Let ’ s look at another example. What is the output of the following statements?

double d = 0.36;

System.out.println(d > 0 & & d < 1 ? d *= 100 : “not a percent”);

 Because d is between 0 and 1, the output is 36.0. There is no requirement that the
second and third operands be the same data types (or even compatible types).

Java Operators 55

c01.indd 55c01.indd 55 2/11/09 7:16:02 PM2/11/09 7:16:02 PM

56 Chapter 1 � Fundamentals

 The Equality Operators

 The = = (equal to) and != (not equal to) operators are referred to as the equality operators.
The equality operators can be used in the following three situations, all of which return a
 boolean :

� The two operands are numerical primitive types.

� The two operands are boolean types.

� The two operands are references types or null types.

 This implies that you cannot compare a byte to a boolean , or an int to a reference type.
The two operands must be compatible. If one operand is a larger type, then the smaller
type is promoted before the comparison. For example, you can compare an int to a float ;
the int is promoted to a float and a fl oating - point comparison is made. You can compare
a char to an int : the char is promoted to an int and integer equality is performed.

 Let ’ s look at some uses of the equality operators. Examine the following code and try to
determine its output:

6. int x = 57;

7. float f = 57.0F;

8. double d = 5.70;

9. boolean b = false;

10.

11. boolean one = x == 57;

12. System.out.println(one);

13. boolean two = (f != d);

14. System.out.println(two);

15. boolean three = (b = true);

16. System.out.println(three);

 Lines 12 and 14 both print out true . The order of operations on line 11 ensures that x
is compared to 57 before the assignment to one , even though parentheses would have made
that statement easier to read (as in line 13). If you glanced over this code too quickly, you
may think that line 16 prints out false , but the actual output is true . On line 15,
(b = true) is an assignment, not a test for equality. Following the order of parentheses, b
is set to true fi rst, then three = b is evaluated, which sets three equal to true . The output
of these statements is

true

true

true

 The equality operators can also be evaluated on reference types. It is important to
understand that evaluating = = and != on two references compares the references, not the
objects they point to. Two references are equal if and only if they point to the same object
(or both point to null); otherwise, the two references are not equal.

c01.indd 56c01.indd 56 2/11/09 7:16:03 PM2/11/09 7:16:03 PM

 The following ReferenceDemo program demonstrates comparing references. Examine the
code and try to determine its output.

1. import java.io.File;

2. import java.util.Date;

3.

4. public class ReferenceDemo {

5. public static void main(String [] args) {

6. File f1 = new File(“mydata.txt”);

7. File f2 = new File(“mydata.txt”);

8. if(f1 != f2) {

9. System.out.println(“f1 != f210.

11. }

12. Date today = new Date();

13. Date now = today;

14. if(today == now) {

15. System.out.println(“today == now”);

16. }

17.

18. String s1 = “Hello”;

19. String s2 = “Hello”;

20. if(s1 == s2) {

21. System.out.println(“s1 == s2”);

22. }

23.

24. String x1 = new String(“Goodbye”);

25. String x2 = new String(“Goodbye”);

26. if(x1 == x2) {

27. System.out.println(“x1 == x2”);

28. }

29. }

30. }

 Let ’ s study this program. The references f1 and f2 point to two different File objects,
so the two references cannot be equal. It is irrelevant that the two File objects look the
same in memory; they are clearly two different objects so their references are not equal. On
the other hand, there is only one Date object in memory and today and now both point to
it, so today == now is true .

 Comparing String references in Java tends to be confusing because of how the JVM
treats string literals. Because String objects are immutable, the JVM can reuse string
literals for effi ciency and to save memory. Because “ Hello ” is a String literal known at
compile time, the JVM only creates one “ Hello ” object in memory, and s1 and s2 both

Java Operators 57

c01.indd 57c01.indd 57 2/11/09 7:16:03 PM2/11/09 7:16:03 PM

58 Chapter 1 � Fundamentals

refer to it. Therefore, s1 == s2 evaluates to true . On the other hand, x1 and x2 are not
literals but actual String objects created dynamically at runtime, making them distinct
objects. Therefore, x1 and x2 point to different objects and cannot be equal. The output of
the ReferenceDemo program is

f1 != f2

today == now

s1 == s2

 The important point to take from this discussion is that evaluating = = and != on reference
types only compares whether or not the two references point to the same object. If you want to
compare the actual contents of two objects, the equals method is used, which we discuss next.

 Equality of Objects
 The exam objectives address the ability to “ determine the equality of two objects or two
primitives. ” As we saw in the previous section, you use the = = operator to determine if
two primitives are equal. We also saw that two references are equal if and only if they
point to the same object. But what does it mean for two objects to be equal? (Don ’ t forget:
references and objects are different entities!) As a Java programmer, you get to decide what
it means for two objects to be equal. The java.lang.Object class contains an equals
method with the following signature:

public boolean equals (Object obj)

 The default implementation in Object tests for reference equality, which we can already
perform with = = . The general rule of thumb is to override equals in all your classes to
defi ne what it means for two objects of your class type to be equal. Equality should be
based on the business logic of your application.

 The equals Method

 Because the equals method is defi ned in Object , you can invoke equals on any object,
passing in any other object. For example, the following statements are valid:

String s = “Hello”;

java.util.Date d = new java.util.Date();

boolean b = s.equals(d);

The value of b is false . Logic would tell us that a String object and a Date object should
never be equal, and that is the case. Typically two objects have to be of the same class
type for them to be equal. However, that doesn ’ t stop you from comparing two objects of
different types, because the equals method can be invoked with any two objects.

c01.indd 58c01.indd 58 2/11/09 7:16:04 PM2/11/09 7:16:04 PM

 Let ’ s look at an example. Suppose we have the following class named Dog :

1. public class Dog {

2. private String name;

3. private int age;

4.

5. public Dog(String name, int age) {

6. this.name = name;

7. this.age = age;

8. }

9. }

 What does it mean for two Dog objects to be equal? Suppose in our application two Dog
objects are equal if they have the same name and age. Then Dog can override equals and
implement this business logic:

1. public class Dog {

2. private String name;

3. private int age;

4.

5. public Dog(String name, int age) {

6. this.name = name;

7. this.age = age;

8. }

9.

10. public boolean equals(Object obj) {

11. if(!(obj instanceof Dog))

12. return false;

13. Dog other = (Dog) obj;

14. if(this.name.equals(other.name) & &

15. (this.age == other.age)) {

16. return true;

17. } else {

18. return false;

19. }

20. }

21. }

 Within equals , we fi rst test to see if the class type of the other object is Dog . If the other
object is not a Dog object, we can quickly deduce the two objects are not equal. Otherwise,
the incoming reference is cast to a Dog reference and the name and age are checked for
equality. Because the name is a String object, we use the equals method of the String class
to compare the two name objects.

Equality of Objects 59

c01.indd 59c01.indd 59 2/11/09 7:16:04 PM2/11/09 7:16:04 PM

60 Chapter 1 � Fundamentals

 The following DogTest program creates three Dog objects and test them for equality.
Examine the code and try to determine its output:

1. public class DogTest {

2. public static void main(String [] args) {

3. Dog one = new Dog(“Fido”, 3);

4. Dog two = new Dog(“Fido”, 3);

5. Dog three = new Dog(“Lassie”, 3);

6.

7. if(one.equals(two)) {

8. System.out.println(“Fido”);

9. }

10.

11. if(one.equals(three)) {

12. System.out.println(“Lassie”);

13. }

14.

15. if(one == two) {

16. System.out.println(“one == two”);

17. }

18. }

19. }

 Because the Dog objects referred to by one and two have the same name and age ,
one.equals(two) is true and “ Fido ” is displayed. The “ Lassie ” object has a different
name, so one.equals(three) is false . The test for one == two is false because one and
 two point to different (but equal) objects.

The hashCode Method

The Object class contains a method named hashCode with the following signature:

public int hashCode()

This method is used by hash table data structures. The hashCode and equals methods
are related in the sense that two objects that are equal should generate the same hash

c01.indd 60c01.indd 60 2/11/09 7:16:05 PM2/11/09 7:16:05 PM

 Summary
 This chapter covered the “ Fundamentals ” objectives of the SCJP exam. Sun lists these
topics last in their offi cial list of objectives, but we needed to discuss these fundamentals
fi rst before tackling the more advanced topics of the exam.

 The goal of this chapter was to discuss the details of running Java applications, including
working with packages and using an appropriate classpath. You should also have a good
understanding of garbage collection and when an object becomes eligible for garbage collection.

 We also discussed the details of using the many operators in Java. As the title of the
chapter suggests, these topics are the “ fundamentals ” of Java that provide the building
blocks for the remainder of this book.

 Be sure to test your knowledge of these fundamentals by answering the Review Questions
that follow. I tried to write questions that refl ect the style and diffi culty level of questions
on the SCJP exam, so attempt to answer the questions seriously without looking back at the
pages of this chapter and do your best. Make sure you have a good understanding of the
following Exam Essentials before attempting the Review Questions, and good luck!

 Exam Essentials
 Understand the effect of putting a class in a package. In the real world, all classes are
declared within a package. Know how to run a Java class from a command prompt when
the class is in a package, and be sure to recognize what the CLASSPATH environment variable
needs to be.

 Get comfortable with looking at code and determining its output. Many of the exam
questions provide either a small program or a snippet of code and ask what the output is.
Practice reading code and determining what it does, including whether or not the given
code compiles successfully.

code. Therefore, any time you override equals in a class, you should also override
hashCode. In the Dog class, the following hashCode method maintains this required
relationship of equals and hashCode:

 public int hashCode() {

 return age;

 }

If two Dog objects are equal in our example, they have the same age and therefore will
have the same hash code.

Exam Essentials 61

c01.indd 61c01.indd 61 2/11/09 7:16:05 PM2/11/09 7:16:05 PM

62 Chapter 1 � Fundamentals

 Understand call by value. I can guarantee at least two or three questions on the exam that
have an argument passed into a method and the method alters the parameter. Understand
that a method cannot change the argument. The only effect a method can have on an argu-
ment is when the argument is a reference, in which case the method can alter the object
that the reference points to.

 Be able to determine when an object becomes eligible for garbage collection. Knowing
when an object is eligible for garbage collection demonstrates an important understanding
of Java and how it creates and destroys objects. You will see at least one question on the
exam that asks you when an object is eligible for garbage collection, and also at least one
question involving the Object.finalize() method.

 Understand the difference between = = and the equals method. Use the == comparison
operator to determine if two primitive types are equal and also to determine if two refer-
ences point to the same object. Use the equals method to determine if two objects are
 “ equal, ” which is whatever equality means in the business logic of the class.

 Familiarize yourself with the Java operators. The Java operators are a fundamental aspect
of the language, and almost all of the exam questions that contain sample code use one or
more of the Java operators.

c01.indd 62c01.indd 62 2/11/09 7:16:05 PM2/11/09 7:16:05 PM

 Review Questions
 1. The following code appears in a file named Plant.java . What is the result of compiling

this source file? (Select one answer.)
1. public class Plant {

2. public boolean flowering;

3. public Leaf [] leaves;

4. }

5.

6. class Leaf {

7. public String color;

8. public int length;

9. }

A. The code compiles successfully and two bytecode files are generated: Plant.class and
Leaf.class

B. The code compiles successfully and one bytecode file is generated: Plant.class .

 C. A compiler error occurs on line 1.

 D. A compiler error occurs on line 3.

 E. A compiler error occurs on line 6.

 2. Suppose a class named com.mycompany.Main is a Java application, and Main.class is in
the following directory:

\projects\build\com\mycompany

 Which of the following commands successfully executes Main ? (Select two answers.)

 A. java - classpath=\projects\build com.mycompany.Main

 B. java - classpath \projects\build\com\mycompany Main

 C. java - classpath \projects\build com.mycompany.Main

 D. java - classpath \projects\build\com mycompany.Main

 E. java - cp \projects\build com.mycompany.Main

 3. A class named Test is in the a.b.c package, defined in a file named Test.java and saved
in the following directory:

c:\abcproject\src\Test.java

 Assuming the code in Test.java uses only classes from java.lang and contains no com-
piler errors, what is the result of the following command line? (Select one answer).

c:\abcproject\src > javac -d c:\abcproject\deploy Test.java

Review Questions 63

c01.indd 63c01.indd 63 2/11/09 7:16:06 PM2/11/09 7:16:06 PM

64 Chapter 1 � Fundamentals

 A. A NoClassDefFoundError occurs.

 B. A ClassNotFoundException occurs.

 C. Test.class is generated in the c:\abcproject\deploy directory.

 D. Test.class is generated in the c:\abcproject\deploy\abc directory.

 E. Test.class is generated in the c:\abcproject\deploy\a\b\c directory.

 4. What is the outcome of the following code?
1. public class Employee {

2. public int employeeId;

3. public String firstName, lastName;

4. public java.util.GregorianCalendar hireDate;

5.

6. public int hashCode() {

7. return employeeId;

8. }

9.

10. public boolean equals(Employee e) {

11. return this.employeeId == e.employeeId;

12. }

13.

14. public static void main(String [] args) {

15. Employee one = new Employee();

16. one.employeeId = 101;

17.

18. Employee two = new Employee();

19. two.employeeId = 101;

20.

21. if(one.equals(two)) {

22. System.out.println(“Success”);

23. } else {

24. System.out.println(“Failure”);

25. }

26. }

27. }

 A. Success

 B. Failure

 C. Line 6 causes a compiler error.

 D. Line 10 causes a compiler error.

 E. Line 10 causes a runtime exception to occur.

c01.indd 64c01.indd 64 2/11/09 7:16:06 PM2/11/09 7:16:06 PM

 5. What is the result of compiling the following class?
1. public class Book {

2. private int ISBN;

3. private String title, author;

4. private int pageCount;

5.

6. public int hashCode() {

7. return ISBN;

8. }

9.

10. public boolean equals(Object obj) {

11. if(!(obj instanceof Book)) {

12. return false;

13. }

14. Book other = (Book) obj;

15. return this.ISBN == other.ISBN;

16. }

17. }

 A. The class compiles successfully.

 B. Line 6 causes a compiler error because hashCode does not return a unique value.

 C. Line 10 causes a compiler error because the equals method does not override the par-
ent method correctly.

 D. Line 14 does not compile because the ClassCastException is not handled or declared.

 E. Line 15 does not compile because other.ISBN is a private field.

 6. What is the outcome of the following statements? (Select one answer.)
6. String s1 = “Canada”;

7. String s2 = new String(s1);

8. if(s1 == s2) {

9. System.out.println(“s1 == s2”);

10. }

11. if(s1.equals(s2)) {

12. System.out.println(“s1.equals(s2)”);

13. }

 A. There is no output.

 B. s1 == s2

 C. s1.equals(s2)

 D. Both B and C

Review Questions 65

c01.indd 65c01.indd 65 2/11/09 7:16:07 PM2/11/09 7:16:07 PM

66 Chapter 1 � Fundamentals

 7. Suppose we have the following class named GC :
1. import java.util.Date;

2.

3. public class GC {

4. public static void main(String [] args) {

5. Date one = new Date();

6. Date two = new Date();

7. Date three = one;

8. one = null;

9. Date four = one;

10. three = null;

11. two = null;

12. two = new Date();

13. }

14. }

 Which of the following statements are true? (Select two answers.)

 A. The Date object from line 5 is eligible for garbage collection immediately following
line 8.

 B. The Date object from line 5 is eligible for garbage collection immediately following
line 10.

 C. The Date object from line 5 is eligible for garbage collection immediately following
line 13.

 D. The Date object from line 6 is eligible for garbage collection immediately following
line 11.

 E. The Date object from line 6 is eligible for garbage collection immediately following
line 13.

 8. What is the output of the following code?
1. private class Squares {

2. public static long square(int x) {

3. long y = x * (long) x;

4. x = -1;

5. return y;

6. }

7.

8. public static void main(String [] args) {

9. int value = 9;

10. long result = square(value);

11. System.out.println(value);

12. }

13. }

c01.indd 66c01.indd 66 2/11/09 7:16:07 PM2/11/09 7:16:07 PM

 A. This code does not compile.

 B. 9

 C. - 1

 D. 81

 9. What is the output of the following code?

1. public class TestDrive {

2.

3. public static void go(Car c) {

4. c.velocity += 10;

5. }

6.

7. public static void main(String [] args) {

8. Car porsche = new Car();

9. go(porsche);

10.

11. Car stolen = porsche;

12. go(stolen);

13.

14. System.out.println(porsche.velocity);

15. }

16. }

17.

18. class Car {

19. public int velocity = 10;

20. }

 A. 0

 B. 10

 C. 20

 D. 30

 E. This code does not compile.

 10. What is the output of the following code?

1. import java.util.*;

2.

3. public class DateSwap {

4.

Review Questions 67

c01.indd 67c01.indd 67 2/11/09 7:16:07 PM2/11/09 7:16:07 PM

68 Chapter 1 � Fundamentals

5. public static void swap(GregorianCalendar a, GregorianCalendar b)

6. {

7. GregorianCalendar temp = a;

8. a = new GregorianCalendar(2012, 1, 1);

9. b = temp;

10. }

11.

12. public static void main(String [] args) {

13. GregorianCalendar one = new GregorianCalendar(2010, 1, 1);

14. GregorianCalendar two = new GregorianCalendar(2011, 1, 1);

15.

16. swap(one, two);

17.

18. System.out.print(one.get(Calendar.YEAR));

19. System.out.println(two.get(Calendar.YEAR));

20. }

21. }

 A. 20112010

 B. 20102011

 C. 20122011

 D. 20122010

 E. 20102012

 F. This code does not compile.

 11. When does the String object instantiated on line 4 become eligible for garbage collection?

1. public class ReturnDemo {

2.

3. public static String getName() {

4. String temp = new String(“Jane Doe”);

5. return temp;

6. }

7.

8. public static void main(String [] args) {

9. String result;

10. result = getName();

11. System.out.println(result);

12. result = null;

13. System.gc();

14. }

15. }

c01.indd 68c01.indd 68 2/11/09 7:16:08 PM2/11/09 7:16:08 PM

 A. Immediately after line 4

 B. Immediately after line 5

 C. Immediately after line 10

 D. Immediately after line 12

 E. Immediately after line 13

 F. Immediately after line 14

 12. What is the output of the following code?

4. byte a = 40, b = 50;

5. byte sum = (byte) a + b;

6. System.out.println(sum);

 A. Line 5 generates a compiler error.

 B. 40

 C. 50

 D. 90

 E. An undefined value

 13. What is the output of the following code?

5. int x = 5 * 4 % 3;

6. System.out.println(x);

 A. Line 5 generates a compiler error.

 B. 2
 C. 3

 D. 5

 E. 6

 14. What is the output of the following code?

3. byte y = 14 & 9;

4. System.out.println(y);

 A. Line 3 generates a compiler error.

 B. 15

 C. 14

 D. 9

 E. 8

Review Questions 69

c01.indd 69c01.indd 69 2/11/09 7:16:08 PM2/11/09 7:16:08 PM

70 Chapter 1 � Fundamentals

 15. What is the output of the following code?

1. public class FinalTest {

2.

3. public static void main(String [] args) {

4. House h = new House();

5. h.address = “123 Main Street”;

6. h = null;

7. System.gc();

8. }

9. }

10.

11. class House {

12. public String address;

13.

14. public void finalize() {

15. System.out.println(“Inside House”);

16. address = null;

17. }

18. }

 A. There is no output.

 B. Inside House

 C. The output cannot be determined.

 D. The code generates a compiler error.

 16. Given the following class named House , which of the following statements is true? (Select
two answers.)

1. public class House {

2. public String address = new String();

3.

4. public void finalize() {

5. System.out.println(“Inside House”);

6. address = null;

7. }

8. }

 A. “ Inside House ” is displayed just before a House object is garbage collected.

 B. “ Inside House ” is displayed twice just before a House object is garbage collected.

 C. The finalize method on line 4 never actually gets called.

 D. There is no need to assign address to null on line 6.

 E. The String object from line 2 is guaranteed to be garbage collected after its corre-
sponding House object is garbage collected.

c01.indd 70c01.indd 70 2/11/09 7:16:08 PM2/11/09 7:16:08 PM

 17. Which of the following statements is true about the following BaseballTeam class?

1. public class BaseballTeam {

2. private String city, mascot;

3. private int numberOfPlayers;

4.

5. public boolean equals(Object obj) {

6. if(!(obj instanceof BaseballTeam)) {

7. return false;

8. }

9. BaseballTeam other = (BaseballTeam) obj;

10. return (city.equals(other.city)

11. & & mascot.equals(other.mascot));

12. }

13.

14. public int hashCode() {

15. return numberOfPlayers;

16. }

17. }

 A. The class does not compile.

 B. The class compiles but contains an improper equals method.

 C. The class compiles but contains an improper hashCode method.

 D. The class compiles and has proper equals and hashCode methods.

 18. What is the output of the following code?

3. int x = 0;

4. String s = null;

5. if(x == s) {

6. System.out.println(“Success”);

7. } else {

8. System.out.println(“Failure”);

9. }

 A. Success

 B. Failure

 C. Line 4 generates a compiler error.

 D. Line 5 generates a compiler error.

 19. What is the output of the following code?

3. int x1 = 50, x2 = 75;

4. boolean b = x1 > = x2;

5. if(b = true) {

Review Questions 71

c01.indd 71c01.indd 71 2/11/09 7:16:09 PM2/11/09 7:16:09 PM

72 Chapter 1 � Fundamentals

6. System.out.println(“Success”);

7. } else {

8. System.out.println(“Failure”);

9. }

 A. Success

 B. Failure

 C. Line 4 generates a compiler error.

 D. Line 5 generates a compiler error.

 20. What is the output of the following code?

5. int c = 7;

6. int result = 4;

7. result += ++c;

8. System.out.print(result);

 A. 8

 B. 11

 C. 12

 D. 15

 E. 16

 F. Line 7 generates a compiler error.

 21. Determine the output of the following code when executed with the command:

java HelloWorld hello world goodbye

1. public static class HelloWorld {

2. public static void main(String [] args) {

3. System.out.println(args[1] + args[2]);

4. }

5. }

 A. hello world

 B. world goodbye

 C. null null

 D. An ArrayIndexOutOfBoundsException occurs at runtime.

 E. The code does not compile.

c01.indd 72c01.indd 72 2/11/09 7:16:09 PM2/11/09 7:16:09 PM

Answers to Review Questions
1. A. The code does not contain any compiler errors. It is valid to defi ne multiple classes in a

single fi le as long as only one of them is public and the others have the default access.

2. C and E. C assigns the -classpath fl ag to the appropriate directory. E also set the class
path correctly except -cp is used. The -cp and -classpath fl ags are identical. A uses an
equals sign = with the -classpath fl ag, which is not the correct syntax. B and D set the
class path to the wrong directory and also incorrectly refer to the Main class without its
fully qualifi ed name, which is com.mycompany.Main.

3. E. The -d fl ag creates the appropriate directory structure that matches the package name.
In this case, that directory created is c:\abcproject\deploy\a\b\c. Therefore, C and D
are wrong. A NoClassDefFoundError occurs if the compiler cannot fi nd the source fi le, but
in this example the javac command is executed from the same directory that contains the
source fi le, so this error does not occur. A ClassNotFoundException is a runtime exception
that is not thrown by a compiler, so B is incorrect.

4. A. Based on the defi nition of the equals method, two Employee objects are equal if they
have the same employeeId fi eld, so line 21 evaluates to true and “Success” is output, so
B is incorrect. Line 6 successfully overrides hashCode, so C is incorrect. Line 10 is a valid
overriding of equals, so D and E are incorrect.

5. A. B is incorrect because hashCode does not have to return a unique value (not that the
compiler could determine if the value was unique anyway). C is incorrect because the
equals method correctly overrides equals in Object. D is incorrect because a ClassCast-
Exception does not need to be handled or declared. E is incorrect because although ISBN is
a private fi eld, the equals method is within the class and therefore has access to the pri-
vate fi eld. Therefore, the code compiles successfully and the answer is A.

6. C. The reference s1 points to a String object in the string pool because “Canada” is a
literal string known at compile time. The reference s2 points to a String object created
dynamically at runtime, so this object is created on the heap. Therefore B is incorrect
because s1 and s2 point to different objects. However, C is correct because s1 and s2 are
both String objects that equal “Canada”, so s1.equals(s2) evaluates to true. Because C
is correct, A and D must be incorrect.

7. B and D. The Date object from line 5 has two references to it — one and three —
and becomes eligible for garbage collection after line 10, so B is a true statement. The refer-
ence four is set to null on line 9, which does not affect the object from line 5. The Date
object from line 6 only has a single reference to it — two — and therefore becomes eligible
for garbage collection after line 11 when two is set to null, so D is a true statement.

8. A. A top-level class cannot be declared private, so line 1 causes a compiler error. This
is one of those exam questions where you might waste a couple of minutes if you do not
notice the compiler error right away. Don’t forget to keep an eye out for these subtle types
of compiler errors.

Answers to Review Questions 73

c01.indd 73c01.indd 73 2/11/09 7:16:09 PM2/11/09 7:16:09 PM

74 Chapter 1 � Fundamentals

9. D. The code compiles, so E is incorrect. The Car object on line 8 has an initial velocity of
10 from line 19. The call to go on line 9 changes its velocity to 20. The stolen reference
points to the same Car object, so calling go with the stolen argument changes the Car
object’s velocity to 30, so the correct answer is D.

10. B. The code compiles successfully, so F is incorrect. The two GregorianCalendar
references are passed to the swap method, which does not change either object. In fact, the
only thing swapped in the swap method is b getting assigned to a, but these changes do
not affect the references one and two. Because the objects that one and two refer to are not
changed in the swap method, the output is 20102011 and B is the correct answer.

11. D. The object on line 4 is referred to by the temp reference, which goes out of scope after
line 5. However, the result reference gets a copy of temp, so it refers to the “Jane Doe” object
until line 12 when result is set to null, at which point “Jane Doe” is no longer reachable
and becomes immediately eligible for garbage collection. Therefore, the answer is D.

12. A. Line 5 generates a possible loss of precision compiler error. The cast operator has the
highest precedence, so it is evaluated fi rst, casting a to a byte (which is fi ne). Then the
addition is evaluated, causing both a and b to be promoted to ints. The value 90, stored
as an int, is assigned to sum, which is a byte. This requires a cast, so the code does not
compile and therefore the correct answer is A. (This code would compile if parentheses
were used around (a + b).)

13. B. The * and % operators have the same level or precedence and are therefore evaluated
left-to-right. The result of 5 * 4 is 20 and 20 % 3 is 2 (20 divided by 3 is 18; the
remainder is 2). Therefore, the answer is B.

14. E. To evaluate the & operator, you need to express the numbers in binary and evaluate & on
each column, as shown here:

14 = 0000 1110

9 = 0000 1001

14 & 9 = 0000 1000

 The resulting binary number 00001000 is 8 in decimal, so the answer is E.

15. C. The code compiles successfully, so D is incorrect. Due to the unpredictable behavior of
System.gc, the output cannot be determined. The House object from line 4 is eligible for
garbage collection after line 6, and the call to System.gc may free its memory and cause
“Inside House” to be displayed from the finalize method. However, the System.gc
method may not free the memory of the House object, in which case there would be no
output. Because A or B may occur, the answer is C.

16. A and D. Just before an object is garbage collected, its finalize method is invoked once,
so A is true but B is incorrect. C is incorrect because it is just not a true statement. D is
correct; there is no need to assign address to null because it is about to be deleted from
memory. E is incorrect, though, because address may not be the only reference to the
String object that address refers to.

c01.indd 74c01.indd 74 2/11/09 7:16:10 PM2/11/09 7:16:10 PM

17. C. The class compiles successfully, so A is incorrect. B is incorrect because an equals
method can use any business logic you want to determine if two objects are equal. However,
the rule for proper overriding of equals and hashCode is that if two objects are equal, they
should generate the same hash code. The hashCode method does not properly follow this
rule. Two teams with the same city and mascot but different numberOfPlayers would be
equal but would generate different hash codes. Therefore, D is incorrect and the answer is C.

18. D. The variable x is an int and s is a reference. These two data types are incomparable
because neither variable can be converted to the other variable’s type.
The compiler error occurs on line 5 when the comparison is attempted, so the answer is D.

19. A. The code compiles successfully, so C and D are incorrect. The value of b after line 4 is
false. However, the if statement on line 5 contains an assignment, not a comparison. The
value of b is assigned to true on line 5, and the assignment operator returns true, so line 6
executes and displays “Success”.

20. C. The code compiles successfully, so F is incorrect. On line 7, c is incremented to 8 before
being used in the expression because it is a pre-increment. The 8 is added to result, which
is 4, and the resulting 12 is assigned to result and displayed on line 8. Therefore, the
answer is C.

21. E. The class declaration on line 1 contains the static modifi er, which is not a valid
modifi er for a top-level class. This causes a compiler error, so the correct answer is E.

Answers to Review Questions 75

c01.indd 75c01.indd 75 2/11/09 7:16:11 PM2/11/09 7:16:11 PM

c01.indd 76c01.indd 76 2/11/09 7:16:11 PM2/11/09 7:16:11 PM

