
CHAPTER 1

BRAIN BEHAVIOR POINTS THE WAY

INTRODUCTION

The mysterious brain, underneath its understated facade, is just another
computer, only with unimaginable parallelism and efficiency. It is a memory-
based associative computer that works not with addresses, such as street
numbers, but with features such as shape and shade. The end result is a
sequence of mental pictures to light our way through life.

This book takes a fresh new look at artificial intelligence from the
perspective of modeling human memory as a system, an all-digital system
based on current knowledge about memory and cognition. At the bottom,
neurons and their membranes are modeled with analog circuits to create
arbitrary Boolean logic. At the top, memory system operations, including
memorization, memory search, cognition, and learning, are modeled using
digital circuits. The process of modeling is grounded in basic physics as
expressed using standard analog and digital circuits. Standard analog and
digital circuits offer a special advantage over the more abstract forms of
modeling. Circuits may be integrated into silicon or simulated in software for
systems that require some degree of artificial intelligence. Equally significant,
brain models are a wellspring for new ideas and inventions.

For example, presented later in this book is a novel computer taken from
brain memory models. As in neural circuits, signals switch in the kilohertz
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range, which is relatively slow, but logic is massively parallel, and therefore the
end result is actually more efficient than a modern dissipative machine. Once
started, the logic requires practically no power, a feature suggested by the
neural models in this book, and hence this novel design may rightly be claimed
to be an adiabatic computer. An adiabatic computer is one whose heat
dissipation approaches zero while executing programs, permitting a package
smaller than would otherwise be possible.

It is hoped that this book will inspire applications, not just in computer
design, but in related fields such as medicine, logic devices, robotics, artificial
intelligence, neuroscience, and last but not least, education. Modeling is
important to any science, but it is especially important to neuroscience, because
these areas have a vast and exponentially growing quantity of data, the taking
of which has immeasurably outpaced the development of models to explain and
digest this explosion of information. Without adequate models, scientific
progress would be difficult to impossible.

MODELING

It is amazing to realize that the performance of integrated circuits continues to
increase exponentially, seemingly without bound. For example, the capacity of
memory chips continues to double approximately every two years, thanks to
the focused work of thousands of dedicated but nameless engineers and
technicians. These people are involved in technology, which is really quite
different from science. The two should never be confused. Science creates
models in an attempt to understand nature; technology creates practical
inventions to make life easier.

Simple accurate models are an indication of scientific maturity. For example,
physics has a quantum model to explain observed behavior of particles.
Unfortunately, this model is more mathematical than physical, but it accurately
explains physical data. In the words of Werner Heisenberg (1901–1976), a
founder of quantum mechanics, ‘‘the laws of nature which we formulate
mathematically in quantum theory deal no longer with the particles themselves
but with our knowledge of elementary particles.’’

Electrical science has James Clerk Maxwell (1831–1879), whose equations
predict the behavior of electrical signals conducted through wires and radiated
through space. It is perhaps obvious that electromagnetic waves are incorpor-
eal, although they interact with matter in familiar ways. In modern physics,
when describing waves and particles it may be concluded that for the most part,
only the model is tangible; what is being modeled is not. Waves and particles, of
course, make up everything that is possible in the physical world.

In the words of Herbert Alexander Simon (1916–2001), computer science is a
science of the ‘‘artificial,’’ that is, machines designed by engineers. Engineered
computers are much simpler than brains evolved in nature. Modeling as
pursued in this book is an attempt to create an emergent model of an evolved
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biological system that is concealed, well protected, and pretty much impene-
trable. As long as human knowledge is finite no model in any field should be
taken as a final measure of absolute truth. An important goal in working with
all scientific models is that they may be changed and upgraded.

Modeling Goals of the Past

Models with standard analog and digital circuits have an advantage: They
translate readily into engineering practice. In contrast, fashionable brain
models usually do not have engineering practice as a goal. Consider three
historical goals:

1. To study the sensitivities of a particular neural network to its parameters.
For example, the output of a small rhythmic circuit in response to the
timing of synaptic signals: Understanding can be increased this way,
which in itself is considered worthwhile.

2. To discover some yet unknown relationship between a neural structure
and its function. For example, why does the cerebral cortex have exactly
six layers of neural gray matter? Modeling and simulation might reveal an
answer to this question.

3. To discover which direction experimental investigation ought to take.
Quite often, neural data are incomplete or nonexistent. For example,
when a person makes a decision, there is some evidence that the brain
makes the decision before the person is aware of the decision. Could it be
that the brain tells you what to do, and not the other way around? This
might be an interesting area of research.

Molecular biologists have strived to model neural systems molecule by
molecule in what might be termed bottom-up modeling. Unfortunately, mole-
cular models are very far removed from a brain system. Results can be pointless
when building from the bottom up, with no master plan. Complex systems,
both biological and artificial, necessitate not only bottom-up but also top-down
modeling. Top-down modeling strives to synthesize known behaviors into a
model, one that supports, or at least does not contradict, what we think we know.

Like computer systems, human memory systems necessitate both bottom-up
and top-down modeling; standard analog and digital elements are an excellent
choice for human memory. In this type of modeling it is useful to employ
analog circuits to model the behavior of neurons, and digital circuits to model
memory systems and cognition. Higher-level blocks in this text, in contrast to
alternative models, are intended ideally to represent a particular interconnec-
tion of neurons, not just a floating abstraction defined by tables and calculus.

Brain modeling often involves higher levels of abstraction as supported by
such simulators as the Genesis neural simulator and by the publicly available
Neural Simulation Language. Unfortunately, as higher functions are modeled,
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the block properties of the components used in the simulation can depart from
reality. For example, a block labeled ‘‘amygdala’’ might have no realistic
structure at all, having instead a set of equations with no physical basis. On the
other hand, if a ‘‘realistic’’ model based on individual molecules and ion
channels is employed, computational complexity increases beyond reason, if
not today’s technology. Modeling like this is opposite the positive philosophy
pursued herein: to illuminate a topic, not obscure it.

Standard circuit elements were never intended for modeling the paths of
individual ions or electrons. An individual neuron can be modeled quite
satisfactorily by assigning collective properties to electrical flow: for example,
average current per unit time through a cross section of area. Whenever
possible in this book, electrical models are derived from physical models. A
simplified physical model, for example, may involve the average properties of
thermally excited particles at temperatures known to exist biologically.

All models are, of course, based on a given body of knowledge. This implies
that some information is excluded either deliberately or unintentionally. For
example, the stochastic properties of ion channels are excluded as not being
particularly useful in the model of a system. Modeling in this book is based
primarily on the knowledge expressed in the appendixes and in the publications
recommended for further study.

Uses of Models

Models involving circuits can be employed to reach historical goals, but models
do more than this: They affect thinking. For example, it has been proposed that
explicit long-term memory within the brain depends on synaptic growth. The
problem is that growth takes time, whereas explicit long-term memories form
rapidly, practically instantly, as can be demonstrated by those gifted with
photographic memory. This fact brings the synaptic growth model into
question, because it does not agree with what is seen in special cases.

In this book we present a model of long-term memory that does not require
biological growth. Under this model, impressions may be captured by neural
latches. Neural latches are not an enhanced form of short-term memory that
eventually ‘‘time’’ out, but are completely different, latching instantly and
holding indefinitely.

As another instance of models affecting thinking, it has been proposed that
an action potential for cognition is coded not as a single bit, but with additional
information. But a single bit from a single axon is sufficient for memory system
logic, as demonstrated herein. So whatever burst duration, frequency, and
amplitude may mean, they are not really needed for brain logic.

Natural philosophers, including Socrates (470–399 B.C.) have suggested that
nature acts by the most economical means. Maupertuis (1698–1759) garnered
attention with his principle of least action by observing that ‘‘Nature is thrifty in
all its actions.’’ This principle is apt for evolved systems, including neurons and
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brains. Under this principle, from the point of view of efficiency some models
are better than others.

Relating to the synaptic growth model is the one-neuron model, in which a
single large neuron is proposed to hold a given long-term memory. The
problem is that no efficient circuit exists to send the contents of a single neuron
into conscious short-term memory, which apparently is an integration of a
great many features for a single image and a great many neural connections.
This is an example of how the lack of an efficient circuit raises questions.

As another instance of the lack of an efficient circuit, consider a word of
long-term memory. A word in this context is not a component of a language,
but a collection of memory cells linked together by interneurons so that a
memory can be recalled as a single image. It has been proposed that memories
are added contiguously, implying that memory words keep expanding to some
randomly long length. But the resulting model leads to an inefficient circuit
with technical problems for searching, recall, and memorization, not to
mention excessive duplication of feature-detecting neurons as common features
are used over and over. Far more efficient for circuit-modeling purposes are
words of approximately the same length, each with parallel connections to a
common set of features. Thus, the lack of an efficient circuit model brings into
question the idea of ever-expanding, randomly long memory words.

To summarize, simple models are important to simulation and prediction of
behavior, and to general education. Models affect thinking in at least three
ways:

1. Credibility increases when there is a model that predicts known facts.

2. Theories with simple models tend to be favored over those with complex
models, all else being the same.

3. Some models are better than others from the point of view of circuit
efficiency.

WHY THINKING DISSIPATES SO FEW CALORIES

Why does thinking use so few calories? Standard data suggest that a brain
consumes roughly 10% of the net energy expenditure of the body and that it
does so essentially without regard to level of mental effort. As evidence that
brain neurons take precious little energy compared to muscles, consider the
kilocalories dissipated for various activities, as shown in Figure 1-1. Note that
these are ‘‘large’’ or ‘‘food’’ calories. One kilocalorie equals 4.184 kj of energy.

Averages in the data were taken over gender, age, ethnicity, and weight. The
category of ‘‘reading’’ would include calories for eye movement and page
turning, so the values above are for the entire body, not just for the brain and
not just for thinking. Clearly, ordinary mental activities such as reading are
nearly as efficient as sleeping. The brain rests very little, if any, even during
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sleep, as evidenced in part by dreams. Apparently, brain neurons, like those for
breathing and heartbeats, need no rest.

An hourly use of 50 kcal/h translates into about 60W of power. Applying
the 10% rule, that leaves 6W, more or less, for the entire brain. All joking
aside, maintenance and all other brain activity absorbs less power than is
expended be a dim light. If overhead energy is discounted, subtracting the
calories used for maintenance, growth, and health in every cell of the body, few
remain for the logical operations of neurons. There are nearly a trillion neurons
in which virtually no energy is needed per neuron for ordinary mental activities,
too few calories to measure easily.

It is remarkable that thinking uses so few calories, given that billions and
billions of neurons are involved. Relatively simple man-made computers with
only a miniscule fraction of the brain’s computing elements, perhaps only a
million gates, dissipate hundreds of watts and run very hot indeed. To convince
yourself, simply touch a working computer chip. As a result, computers need
heat sinks and cooling fans, and chips must be slow enough to minimize heat
generation. Temperature poses a serious engineering limitation for computers.

Functional magnetic resonance imaging (fMRI) is an example of a modern
tool (described in Appendix C) that appears to produce an image of the energy,
or calories, consumed by different parts of the brain for given human actions.
fMRI aims to observe oxygenated hemoglobin, related to calories consumed
by neurons, but requires averages taken over several seconds to image signals
that are extremely weak. The fact that fMRI signals are very weak is indirect
evidence that calories expended in thinking are few.

fMRI probably does not image the extremely small energies dissipated for
action potentials but may show a secondary effect related directly to action
potentials. During an action potential one expects a brief reduction in heating
within the neural membrane, the heating that occurs constantly for main-
tenance, growth, and health in any human cell. There normally is about
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�70mV across the membrane, which has a small conductance and so dissipates
a small amount of energy. During an action potential the average voltage across
a neural membrane is slightly lower because membrane voltage alternates
between about �70 and +40mV. This reduces dissipation in the membrane
and probably changes the amount of oxygenated hemoglobin being processed,
as fMRI purports to observe.

Common sense tells us that mental exercise is not a way to lose weight.
Mental activity does not cause one to work up a sweat, nor does it get the heart
racing. It appears that no energy at all is required for ordinary mental activity,
including such items as recall, memorization, reasoning, reading, and listening.
Mental activity is way down on the kilocalorie scale, not counting energy for
cellular maintenance, growth, and health. Learning in the memory system
model falls into a different category since energy is expected to be required for
synaptic growth.

The lack of energy dissipation for ordinary mental activity is more than an
interesting topic for dinner table conversation, because it points to the
adiabatic model of neurons as logic devices, those that operate with little or
no dissipation of energy. Aside from the adiabatic neuron, other adiabatic
models for computation may be found in the theory of quantum mechanics.

Computer engineers may be interested to know that adiabatic logic is
theoretically possible using common solid-state circuits. Once charged with
electrical energy, such circuits transfer charge back and forth without loss,
eventually returning all charge and its associated energy back to the power
supplies from whence it came. With careful design, adiabatic logic leads to
adiabatic computers for packaging into very small volumes. Small volumes are
feasible because adiabatic logic runs cool. If the brain is any inspiration, we
need to greatly expand our use of adiabatic logic for everyday life.

THE MIRACLE OF PARALLEL PROCESSING

The human brain is unique in nature in that it supports millions and millions of
channels computing simultaneously. They are serviced by a large number of
sensory inputs and deliver a large number of motor nerve outputs, all in
parallel. The strength of a system like this is easily overlooked, since it operates
effortlessly. How does one comprehend millions of little computers in parallel?
We humans are lucky to juggle two or three things at once.

Mental activity is generally sequential: that is, one thing at a time. But memory
searches are not sequential. Effectively, a human being can poll all memories in
parallel and recall a particular episode from millions of events experienced long
ago. This is a type of parallel processing. A style of man-made parallel processing
known as associative memoryworks along these lines but on a much smaller scale.
Associative memory finds items not by addresses, but by attributes such as
patterns in the data. Modern computers employ associative memory only to an
extremely limited extent: for example, to quickly find the most recent addresses
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used by the microprocessor. To emulate brains for use in robots and artificial
intelligence, we need to greatly expand our use of associative memory.

The possibilities for problem solving increase dramatically if millions of
basic computations can be carried out simultaneously. Unfortunately, many
people fail to see the possibilities of massive parallelism, because it requires a
different type of thinking. As an example of a new way of thinking, consider
finding prime factors. If a given large number is copied many times, and
concurrently, if each copy is divided by a different prime number, the prime
factors of that large number can be identified instantly. Simply flag those results
whose remainder is zero.

Autistic savants perform amazing mental feats, including the immediate
recognition of a prime number (one that cannot be divided evenly except by
itself and unity). We do not know how they do it, exactly. One theory is that
they simply memorize. However, given all that a savant can do, simple
memorization is unlikely. Parallel processing must be occurring.

It may be noted that parallel processing is not limited to arithmetic. Finding
the shortest path through a given maze, for example, is possible using a massively
parallel processor, but only if the maze is not too large. Although not yet involved
in everyday applications, the idea of massively parallel processing is certainly not
new. Figure 1-2 is a snapshot of historical efforts at parallel processing.

The size of parallel processors tends to be increasing, yet parallel processing
remains a topic of research and has run into serious problems. People generally
prefer sequential procedures, which brings us back to the statement that
parallel programming requires thinking in unaccustomed ways.

SINGULARITY

Machine intelligence approaching the human level is expected to produce a step
in the economic growth rate of the past, as nicely exposed in an article by Robin
Hanson (1959– ). According to Hanson (IEEE Spectrum, June 2008, pp. 44–50)
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and others, a societal discontinuity is imminent, brought about by robots with
artificial intelligence, similar to the original industrial revolution. The date of
this new robotic revolution is uncertain, but it is known as the singularity. This
word comes from an idealization of economic output as shown in Figure 1-3.
Mathematically, the rate of change of economic growth, the slope of the curve,
will experience an abrupt step. Going even further mathematically, the rate of
change of the ‘‘rate of change’’ will be singular, that is, go to infinity at this
magical point.

The original industrial revolution has been going on for quite some time,
since about 1750, a general result of the pervasive application of machines.
Since then the world economy has doubled roughly every 15 years or so. The
switch from an agricultural society to an industrial society resulted in a speedup
of roughly 100. Assuming a similar speedup as a result of the singularity, the
economy would double not in 15 years, but in a month or two, assuming no
setbacks due to war, plague, or cosmic disaster.

We see the original industrial revolution, but do we understand it? Machines
are partially responsible. Machines like the steam engine, were possible because
of advances across a broad front in metallurgy, metalworking, and engineering
knowledge. No single spectacular gain in one area is responsible, since a
complex machine has thousands of parts, each of which might depend on
dozens of technologies. A gain in one technology causes only a slight
improvement overall. This is the law of diminishing returns. To have an
economic revolution there must be exponential growth.

Exponential growth was provided in the eighteenth century by capitalism, in
which incremental improvements and novel applications were accomplished by
countless hands-on builders. The original industrial revolution continues today
sustained with higher-capacity memory chips, improved computers, and the
World Wide Web, as promoted by thousands of innovative capitalists.

What is there today sufficiently broad-based as to induce a singularity? We
know that improvement in just one sector of technology is insufficient, owing to
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the law of diminishing returns. But what if there were something that corrected
a chronic shortage in all sectors: human attention and intelligence. Most
financial gain in rich countries today goes for direct and indirect costs of
labor. An innovation that drastically reduces this cost could very well start an
economic revolution.

Machine were involved in the original industrial revolution; intelligent
machines may be involved in the second, this being a cornerstone of the
singularity hypothesis. But how can a machine be intelligent? One answer is
that machine intelligence will follow shortly after computer hardware ap-
proaches the performance of a human brain. In an attempt to approach what
the brain does, one approach is to ‘‘reverse engineer’’ the brain with the aid of
scans and modeling. When such processes are perfected, a particular brain
might be manufactured. The duplicated brain, of course, can always be
unplugged, unless it is adiabatic and requires no external power.

Modeling efforts are currently under way. Project BlueBrain is a joint effort
by IBM (International Business Machines) and École Polytechnique Fédérale
de Lausanne in Switzerland to reverse-engineer a brain, but not a human brain.
Their goal is mapping and modeling the roughly 10,000 neurons and 30 million
synapses in a rat’s neocortical column. The real goal, by the way, is a human
brain. If the mental powers of a human could be approached, it would be more
than a scientific curiosity. The chief factor of economic production that has
been chronically scarce throughout history, human intelligence, would sud-
denly become widely available with mass production.

Imagine that machines approach human cognition and are able to perform
most human jobs. With a growing workforce of intelligent computers created
more quickly than it takes to breed, raise, and educate humans, the economy
would explode. The cost of producing such a workforce will drop at an
accelerating rate. Intelligent computers may even learn to design and manu-
facture other computers, all of which suggests a step in economic growth rate.

What does the future hold? To quote Robin Hanson: ‘‘Stuffed into sky-
scrapers by the billion, brainy bugbots will be the knowledge workers of the
future.’’ Operating at machine subsistence levels, their main cost will be rent for
their miniature volumes, occasional parts for repair, and hopefully, no air-
conditioning bills. The singularity is a plausible view of the not-too-distant
future—and it is not all bad. Humans would labor less for income while gaining
by renting real estate for intelligent machines and by investing in the
maintenance of computers. They would have ample time to labor for pressing
matters such as exploring the universe.

THE BENEFITS OF READING THIS BOOK

This book is written primarily for those with interests in artificial intelligence,
computer science, neuroscience, robotics, and peripheral fields such as artificial
neural networks, psychology, and medicine. The book views the brain from a
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circuits and systems perspective, circuits and systems being the author’s major
at the University of California–Los Angeles in the 1970s. Knowledge in the
aforementioned fields is enhanced by models of human memory using standard
analog and digital circuits. Beyond formal knowledge, there is much in this
book to help a reader personally. For example, when trying to spark the
retrieval of something that has been forgotten, it is helpful to think of a wide
variety of cues. When attempting to recall a person’s name, we use such clues as
the name of his or her spouse or the type of car the person drives. Sometimes,
for example, a forgotten name pops forth immediately upon seeing the person
from whom you first heard the name.

Nearly everyone has tried to remember something, but cannot; hours later
the desired memory emerges, usually at an unexpected moment. This is because
long-term memories are routinely searched in the background, subliminally.
Humans are not particularly aware of this phenomenon of delayed recall, but
once they are, they may take advantage of an everyday process in their own
brains, the process of subliminal memory search. To recall facts, make
decisions, or solve problems, it is wise to allow the unconscious to work for
you, giving it time to do so for a day or two.

Dreams, daydreaming, or brainstorming are common experiences. In
dreaming, a person becomes aware of random episodes from long-term
memory, quite often relating to the solution of a difficult problem. The brain
never quits, it seems, trying to solve a difficult problem, perhaps a problem with
emotional impact that has no logical solution. Such common experiences as
dreaming and delayed recall show that memory searches proceed randomly,
unnoticed. When a sought-after memory is found that matches all available
cues, it pops immediately into your conscious short-term memory with a certain
modest excitmemt.

Once it is decided that something will be placed into unconscious long-term
memory, it also helps to memorize cues for retrieving that information. Also,
one must rehearse in a regular way both information and cues for memory;
rehearsing in a random or irregular way is not expected to be as effective in the
model of this book. Regular rehearsal is necessary to trigger a memorization
enable signal, after which information in short-term memory goes automati-
cally into the next available location in subconscious long-term memory.

Learning is facilitated by understanding the learning models discussed in this
book. Placing information from the senses or from long-term memory into
short-term memory on a regular basis is detected internally as a ‘‘need to
learn.’’ Regular practice is important at first because this enables the brain to
generate a need to learn.

Upon receipt of a need-to-learn signal, there is a decoding of the contents of
short-term memory to spur the growth of neurons and synaptic connections
where they are needed. Over a period of time, this growth fosters new abilities,
such as learning to recognize a new feature without analysis, or learning to
follow a complex procedure automatically in a mindless way. At first, new
synapses are small and could dissolve in a couple of weeks because of thermal
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and chemical activity. Therefore, it is helpful for a person to engage in
overlearning and relearning to resist forgetting. Relearning is usually easier
than the initial learning; it is encouraging to realize this progress.

A person can ‘‘learn how to learn.’’ This is largely a matter of organizing the
material to be learned into a more efficient form. For examples, numbers to be
learned can be imagined as sporting event scores; audio tones and visual
textures can be given names; a message to be learned can be broken into
phrases that rhyme; the steps of a procedure to be learned can be numbered to
facilitate learning.

Of course, one must always keep in mind that learning involves synaptic
growth and is totally different from memorizing, which involves a latching of
neural memory cells. Memorizing is intended for recall through the apparatus
of short-term memory. Learning can essentially bypass short-term memory so
that what is learned can be realized automatically without thinking.

Rehearsal aids learning; if a person wants to learn a skill, he or she must
practice. Synaptic development requires time; so if nothing else, a person must
patiently practice what was learned and to allocate sufficient time to reinforce
what was learned.

Last but not least, neural circuit models might provide a professional benefit
to medical practitioners. By understanding neural circuits, a brain malfunction
might be related to circuit faults, which gives a practitioner the language to
describe the probable cause of a malfunction. Subsequent circuit simulation
might suggest corrective actions and might someday even predict the outcome
of proposed surgery prior to an operation. Better medicine and better
engineering are examples of real physical benefits that many are pursuing.

OVERVIEW OF THE BOOK

Standard circuit models are provided throughout to avoid the usual vagueness
when it comes to describing brain operations verbally. Maupertuis gave us a
principle of least action, interpreted to mean that systems evolve to be efficient.
This principle has been applied to the modeling of neurons as logic devices all
the way up to system models for associative memory. This principle leads us to
a model of the brain as an adiabatic, massively parallel computer that does not
lose information. Just the thought of an adiabatic, massively parallel computer
is enough to suggest revolutionary new ideas in the minds of inventive
engineers. Next we describe how the book evolves.

Chapter 1: Brain Behavior Points the Way In this chapter we introduce
neurons in parallel that require virtually no energy for signals. Their signals are
modeled to exist above the calories dissipated for common maintenance,
growth, and health, common to all cells in a mammalian body. This adiabatic
model creates new possibilities for explaining brain behavior. For example, an
adiabatic model like this, in which action potentials come and go without
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dissipation, creates the possibility of long-term memory based on a simple
circuit.

Chapter 2: Neural Membranes and Animal Electricity A voltage differ-
ential is developed because of charge transfer through a thin neural membrane,
and this differential places it under significant electrical stress. To model a
neural pulse electrically, sensitive regions of a membrane are modeled as
ferroelectric: that is, as sensitive to an electric field. Reducing the electric field
triggers a charge transfer that is driven by thermal energy. The resulting pulse is
regulated by the ferroelectric particles within the membrane in that as internal
voltage accumulates, a reversed electric field forces a reversal of the sensitive
particles within the membrane. This reversal initiates a decrease in internal
voltage. As voltage drops below its original equilibrium value, the pulse is
forced to terminate because ferroelectric particles are driven back into their
original positions. The sensitive particles of interest within the membrane are
reset, and this enables a return to rest conditions. The model is such that an
unlimited number of additional pulses can be triggered in a continuous manner
if necessary.

Chapter 3: Neural Pulses and Neural Memory In this chapter we employ
a simple physical model involving thermally active ions to derive by hand the
waveform of a neural pulse. Underlying this model is the probability that
thermally excited ions and stray electrons can tunnel into the sensitive regions
of a membrane. Tunneling explains the magnitudes of the charge transfers
commonly observed.

To model short-term memory neurons, ionic concentrations are modified to
create and then hold positive charge within dendrites that have been exposed to
excitatory neurotransmitter ions. This causes continuous triggering of the soma
and axon with enhanced frequency but reduced amplitude lasting for a few
hundreds of milliseconds. Connecting neurons respond to this signal. Explicit
long term memory, in contrast, is modeled as a latching that occurs when the
output neurotransmitters of an adiabatic neuron are fed back to dendritic
receivers. Once latched, memory cells hold their features indefinitely without
significant energy dissipation.

Chapter 4: Circuits and Systems for Memorization and Recall An all-
digital model of the memory system is synthesized with an eye toward
explaining the brain technically. Central to this model, which is a rudimentary
cognitive architecture, is short-term memory organized as a long word of
features. Short-term memory, that of which a person is conscious, is connected
to millions of similar words forming a large associative memory which is
assumed to hold all relevant information, including past problem solutions and
decisions. This memory is searched by random selection from short-term
memory, cues that are applied to recall long-term memory words up to tens
per second. Such recalls, alternated with sensory images, are flashed
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subliminally to an interface circuit associated with short-term memory. Here,
an encoder, such as a priority encoder, calculates an index of importance as an
ongoing process. If the index for an image is higher than the current index for
short-term memory, that image is gated immediately into short-term memory.
This establishes a direction of attention, essentially a moving picture in
conscious short-term memory as supported by a model based on standard
digital logic.

Chapter 5: Dendritic Processing and Human Learning Dendritic pulses
created by excitatory neurotransmitter ions are recognized to be electrical
solitons that propagate away from their point of creation without dispersion or
attenuation. Simulations indicate that solitons are easily reflected at the soma,
and when they collide with oncoming solitons, they annihilate each other, thus
reducing the number of solitons triggering the soma. It is shown that solitons
are capable of arbitrary Boolean logic. AND–OR logic is possible, as solitons
charge soma capacitance to trigger a neural pulse. Neurons with digital
properties are shown to support an all-digital learning model for humans.
Two types of learning are identified: (1) combinational learning, to recognize a
new feature in sensory data without having to stop and think about it, and
(2) state machine learning, for new procedures that are executed without
concentration, such as dancing or reciting a poem. Circuit models are suggested
in support of all-digital learning for both new features and new procedures.
Both types of learning avoid passing information through short-term memory
for evaluation, thus increasing efficiency as necessary for species survival.
Standard digital logic is modeled in support of the ideal of an intelligent robot
that can actually learn beyond mere memorization.

Chapter 6: Artificial Learning in Artificial Neural Networks In this
chapter we present learning as defined for artificial neural networks. Artificial
neural networks use analog weighting factors and analog summation, so differ
from the all-digital ideal. Learning in an artificial neural network is equivalent
to designing weighting factors, often a tedious iterative process. Overall, the
tremendous success of artificial neural networks demonstrates the importance
of learning in machines.

Chapter 7: The Asset of Reversibility in Humans and Machines After
considering the abilities of gifted savants, we speculate that their advanced
abilities are the result of parallel processing within long-term memory, a type of
processing in which no energy is dissipated. It is shown that no energy is lost in
a system that is electrically reversible, that is, in which a given amount of charge
is applied, all of which is recovered. To be electrically reversible, a computer
must lose no information and so may be logically reversible, although a
logically reversible machine need not be adiabatic. A reversible programming
concept is introduced based on a ‘‘wiring’’ diagram as envisioned for the savant
brain.
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Chapter 8: Electrically Reversible Nanoprocessors In this chapter we
present a case study for the original design of an adiabatic parallel computer
using solid-state technology. Brain-inspired, the design avoids data buses
during a computation—a major bottleneck and a source of heat dissipation
in conventional computers. Central to the design are nanoprocessors, words of
memory with conditional toggling capability within each word. An array of
nanoprocessors constitutes an associative processor that can be designed to be
electrically and logically reversible. Example programs in a wiring diagram are
provided for vector addition and subtraction.

Chapter 9: Multiplications, Divisions, and Hamiltonian Circuits In this
chapter we demonstrate a variety of programs possible for an electrically
reversible parallel computer, including multiplication and division based on
add-shift and subtract-shift algorithms. Solutions to SAT or NP-complete
problems using a reversible parallel computer are introduced. The problem of
finding all Hamiltonian circuits in a small graph is discussed, particularly the
easy part: checking to determine if a given cycle is indeed Hamiltonian.
Electrically and logically reversible computers are limited in practice by the
number of nanoprocessors that can be brought to bear on a problem.
Molecular-sized nanobrains, if they become available, will significantly increase
the number of nanoprocessors, although perhaps not enough to solve SAT
problems with thousands of variables. Qubits can be smaller than nanobrains
and show promise for solving large problems.

Chapter 10: Quantum Versus Classical Computing The goal of this final
chapter is to introduce quantum computers and to identify what the various
biological, electrical, and quantum computing systems have in common. All
such systems may use wiring diagrams, for example, so the transforms implied
by reversible gates such as UN, SCN, DCN, and MCN are held in common.
Wiring diagrams are used to explain savant brains as well as to program
adiabatic parallel computers and quantum algorithms and to manipulate
qubits, these being physically reversible. Such systems have in common that
no information is lost and that basic computations are adiabatic, not counting
energy overhead to maintain a workable environment.

The following appendixes may prove useful for general information.

Appendix A: Human Brain Anatomy This is a summary of basic brain
information, some of which is used by the book’s memory model.

Appendix B: The Psychological Science of Memory This is a summary
of basic memory psychology, some of which is used by the book’s memory model.

Appendix C: Brain Scanning This is a summary of fundamental imaging
and scanning methods used to study the brain.
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Appendix D: Biographies of Persons of Scientific Interest This is a
short collection of biographies of interesting and occasionally unpleasant
characters who contributed to topics discussed in this book.

For Further Study Finally, there is a brief list of published material for
further study.

APPLICATIONS OF THE MODELS IN THE BOOK

Unlike models with abstract symbols, those expressed as standard analog and
digital circuits can be simulated with ordinary software, constructed with
everyday technology, tested by standard methods, and applied in various ways.
The models described in this book bring to mind applications that today’s
students will undoubtedly come across in the course of their careers.

Artificial Membranes

One goal in the field of artificial membranes is to build a membrane that is as
close as possible to a biological membrane using nanotechnology and genetic
engineering. Toward this end, the models in this book provide an interesting
perspective. Here we model membranes as containing sensitive regions with
ferroelectric properties such that membrane particles are held together tightly
by an electric field, but relaxed in a lower field. When relaxed, or triggered, it is
possible to have charge transfers that constitute a neural pulse.

An artificial membrane ideally would behave like this, although such a
membrane has yet to be manufactured. Interestingly, purple membrane films
have been found to display ferroelectric behavior (termed bioferroelectricity in
the literature). Purple membranes, characteristically hexagonal in shape are
two-dimensional structures consisting of a transmembrane protein surrounded
by 10 lipid molecules. They are relatives of man-made liquid crystals (a 5 billion
market) based on ferroelectric properties.

Practical membranes have important applications, such as microfiltration,
reverse osmosis, pervaporation (separation of liquids by vaporization), gas
separation, dialysis, and chromatography. This translates into water purifica-
tion, removal of microorganisms in dairy products, water desalination,
dehydrogenation of natural gas, hemodialysis, and fuel cell components.

For the most part, artificial membranes with ferroelectric properties are not
yet available, although many proposals have been made. For example, one
proposal is to engineer membranes in the form of cells with internal bipolar
charges within the voids, to mimic ferroelectrics. Another interesting proposal
is to build a silicon chip with patches of artificial membrane so that filtration
might be regulated using standard complementary metal–oxide semiconductor
(CMOS) electronics. The neural model in this book is one way to gauge
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artificial membranes. Such membranes may be characterized by the pulses they
generate when immersed in ionic solutions and adjustable electric fields.

If an artificial membrane approached the behavior of a neural membrane, it
would facilitate molecular-sized elements known as nanodevices. Currently, a
variety of these have been proposed to assist with cancer detection, diagnosis,
and treatment. What is needed are general-purpose nanodevices: not just as
nanobots for medicine, but for general applications to computers and
communications.

Imitation Neurons

Imitation neurons approximate biological neurons both physically and electri-
cally and are unrelated to artificial neurons for artificial neural networks.
Artificial neurons are merely electronic amplifiers or computer subroutines to
simulate amplifiers. Imitation neurons are modeled after biological neurons
and might someday be fabricated using the methods of nanotechnology:
engineering on a molecular scale, normally 1 to 100 nm, and to the fabrication
of devices within that size range.

As decades roll by, analog and digital amplifiers are shrinking in size and
increasing in efficiency, slowly approaching the efficiency of the everyday
neuron. Beginning with vacuum tubes early in the twentieth century, amplify-
ing technology evolved to the transistor in midcentury. Today’s transistors are
much smaller and more efficient in terms of heat dissipation, with temperature
increases well below the melting point of silicon thus permitting very large scale
integrations that were impossible a short time ago.

We have now entered an age of nanotechnology that promises further
decreases in device size. Nanotechnology has arrived because of the recent
availability of such novel tools as the atomic force microscope and the scanning
tunneling microscope. Combined with refined processes such as electron beam
lithography and molecular beam epitaxy, the deliberate manipulation of
nanostructures has become possible. The birth of nanotechnology is generally
assumed to be in 1989 when IBM scientist Don Eigler wrote out the company’s
logo using 35 individual xenon atoms arranged on a nickel plate at low
temperature and high vacuum.

Imitation neurons are a goal, and once perfected, would be a superior
choice for nanoprocessors of the future. Imitation neurons are expected to
be small and flexible, like biological neurons. Currently, flexible circuits
are in great demand for devices such as connectors, liquid-crystal displays,
and digital cameras. A minuscule neuron, in principle, can generate any
large-scale Boolean function or any large-scale analog-to-digital conversion
for an astonishingly large number of inputs. Most important, properly
constructed imitation neurons would merely borrow energy from the ionic
solutions in which they are immersed, like the biological models of this book.
They would produce a burst of pulses internally, dissipating neither energy nor
power.
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As a sign of progress in nanotechnology, IBM scientists recently announced
that they have created an embryonic nanoprocessor using a single carbon-
nanotube molecule and a standard semiconductor processes. The circuit, called
a ring oscillator, consists of 12 field-effect transistors laid along a carbon
nanotube 18 mm long, which is about one-fifth the width of a human hair.
Clearly, it is far from molecular sized, but remember, this is only the beginning.
The direction being pursued is to make circuits faster and compatible with
regular silicon technology for everyday integrated circuits.

At the molecular level, random thermal activity would be quite rough on
rigid technology, so flexible wet technology must be considered. In the context
of watery technology, it is conceivable that imitation neurons might someday
replace damaged biological nerve connections. This is not a surprising concept
in view of successes in brain–machine interfacing. Neuroscientists have sig-
nificantly advanced brain–machine interface technology, to the point where
severely handicapped people who cannot contract even one leg or arm muscle
can now compose and send e-mails independently and operate a television set.
They are using only their thoughts to execute these actions. One day these and
other handicapped persons may be able to feed themselves with a robotic hand
that moves according to their mental commands. The hope is that imitation
neurons might enable the muscles of the paralyzed to be useful again.

Artificial Neural Networks

Artificial neural networks are based on artificial neurons, each of which is
composed of a weighted sum and a comparator, giving a true or a false output.
An artificial neural network can be taught to recognize important patterns in a
large field of data using an iterative algorithm to design the weights. The fact
that a machine can learn this way is quite amazing.

Applications of artificial neural networks include system identification and
control (vehicle control, process control), game playing and decision making
(backgammon, chess, racing), pattern recognition (radar systems, face identi-
fication, object recognition), sequence recognition (gesture, speech, handwrit-
ten text recognition), medical diagnosis (tumor recognition), financial
applications (recognition of trends in the prices of stocks), data mining
(knowledge discovery in databases), visualization, and e-mail spam filtering.
Artificial neural networks are undoubtedly an engineering success.

Artificial neural networks employ analog weighting factors and linear
summation and thus depart from the all-digital ideal. Digital circuits are ideal
since they are small, inexpensive, and tolerate noise. The all-digital system
model in this book assumes thousands of neurons uniquely detecting thousands
of features, with each neuron essentially an arbitrary digital circuit with many
inputs. Many billions more constitute an associative memory with processing
ability, an associative processor.

Learning is exceedingly important to the illusion of intelligence. Learning in
the book’s model begins with a need-to-learn signal that permits the directed
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insertion of new digital circuits where they are needed, somewhat as in a field-
programmable gate array.

Beyond artificial neural networks, pattern recognition can be done in other
ways, assuming the availability of parallel nanoprocessors. For example, if
analog information has been converted into a sea of digital data in no
particular order, the data can be searched with ease. Words with a given
pattern can be located instantly by parallel nanoprocessors efficiently
solving ‘‘needle in a haystack’’ problems, provided that the haystack is not
too large. Inspired by models of human memory processing, designs for
electrically and logically reversible parallel nanoprocessors are given later in
the book.

Computer Design

Norbert Wiener (1894–1964) defined the original meaning of the term cyber-
netics to be the study of control and communications in humans and machines.
There seems to be no doubt that the study of control and communications in
people and machines has been an inspiration over the years for various
computer designs. The amazing brain has always been an inspiration for
computer design, beginning with the fact that both brains and computers are
memory based. Louis Couffignal (1902–1966), another pioneer of cybernetics,
characterizes cybernetics as ‘‘the art of ensuring the efficacy of action.’’ This
characterization brings to mind the guiding principle of modeling with
standard analog and digital circuits: Maupertuis’s principle of least action.

Historically, brain models were not all that accurate, but they still served the
field of computer design. Models help inventers in mysterious ways. For
example, neurons and neural systems are modeled as electrically reversible,
implying that no information or energy is lost as a result of cognitive activity.
This interesting model applies readily to computer design. Once an engineer
knows enough to conserve charge, computers are easily designed to be
adiabatic with no power or heat dissipation, as presented in this book, using
CMOS as an example technology. When little or no heat is dissipated, engineers
gain an option to design computers into much smaller packages without
concern for temperature increases resulting from heating.

To compensate for the slowness of adiabatic logic, massive parallelism is
desirable, as in human memory. This implies billions of little nanoprocessors all
operating at once, analogous to words of biological memory, synchronized by
signals from peripheral registers, analogous to short-term memory. Data buses,
essential to conventional random-access and read-only memory (RAM and
ROM), are avoided, since they create bottlenecks and waste energy. Once
developed, massively parallel adiabatic computers will find uses in areas of
space exploration, medical implants, databases, human guides, and computa-
tions that are impossible in any other way. As molecular-sized nanoprocessors
materialize, their numbers will increase beyond belief, helping to solve difficult
problems that have thousands of variables.
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Robotics

Although the appearance and capabilities of robots vary vastly, all robots relate
to a movable mechanical structure under some form of autonomous control. A
sophisticated robot has some degree of artificial intelligence, or ability to make
choices based on the environment, often using a preprogrammed sequence.
This conveys the sense that a robot has intent or agency of its own. Robots that
are more or less intelligent are currently being used in manufacturing, lifting
and moving in distribution centers, household chores, military operations, and
perhaps most important, in toys.

Cognition models may be visualized for robots to enhance their autonomy.
For instance, for good performance, sensory inputs and motor outputs should
operate in parallel. The human memory model in this book uses a word of
short-term memory in conjunction with a very large number of long-term
memory words, equally wide. This structure facilitates associative processing
based on images in short-term memory. Microprocessor serial processing, still
in use for most practical robots, is poorly suited to a multidimensional
environment.

Ideally, sensory information would go into short-term memory as it does in a
human brain. As in the cognitive model presented in this book, cues for an
ongoing memory search may be taken from short-term memory. Pseudoran-
dom combinations of cues may be employed to recall memorized images to a
subliminal level at rates of perhaps tens per second. Each recall may be
analyzed for importance according to specified criteria, where importance is
a digital encoding function. Sensory images are analyzed similarly. When an
index of importance surpasses that of the current contents of short-term
memory, which is fading away, a new short-term memory enters. This creates
a moving picture or a direction of attention in short-term memory.

If a robot is to appear intelligent in a minimal way, it must be able to make
helpful decisions. When a decision is needed in a system of the digital variety, a
memory search recalls similar problems to locate a ready-made decision. If a
problem cannot be solved logically in this way, attempted solutions, taken
randomly, will make a robot seem all too human. A robot that identifies a
problem and recalls a procedure to solve the problem certainly has a degree of
artificial intelligence, but this is minimal intelligence. It is necessary to learn to
behave better. The next step in the evolution of robots is to enable them to
‘‘learn’’ procedures without having to bring every step of a solution into short-
term memory. Humans routinely perform procedures to solve problems with-
out full evaluation in short-term memory; this is possible because of a process
of learning in which neural state-machine learning develops within long-term
memory. Neural state-machine learning permits us to walk, brush our teeth, or
memorize a long poem without an excessive amount of pondering. The ideal
robot could do this, too.

Humans also learn to recognize special combinations of sensory inputs
without having to ponder a number of related combinations. For example, a
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human can learn to recognize a special color such as chartreuse, a mixture of
yellow and green. Humans need not tie up their short-term memory cells with
items relating to yellow and to green, and they do not necessarily need to recall
a dictionary of color names. They can learn to recognize chartreuse immedi-
ately, termed combinational learning in this book. The day is coming when
robots, in the interests of efficiency, will have the capability for combinational
learning.

Using the all-digital model described in this book, a need-to-learn signal is
first created by digital filters associated with short-term memory. Learning is
accomplished with decoders that connect to where additional logic circuits are
required. Unlike the field-programmable gate array, human learning does not
need a download from an outside computer. Learning is self-contained. Suffice
it to say that without learning, robots will always be awkward, and except for
the simplest behaviors will black-out as their memories are tied up unnecessa-
rily with mundane computations.

Artificial Intelligence

Artificial intelligence is a branch of computer science usually involving software
for mainframe computers, to perceive important aspects of the environment
and display a reasoned, humanlike response. Among the topics of interest in
artificial intelligence are reasoning, knowledge, learning, and the ability to
communicate. A high level of artificial intelligence has not yet been achieved
and is considered a goal for the future.

Artificial intelligence has been approached as a programming problem. A
traditional measure of artificial intelligence is to send questions to a computer
via a keyboard and to judge by the answers whether or not there is a human at
the other end. This is the Turing test. As an example of what has been
considered artificial intelligence, Deep Blue was the first computing machine
to win a chess match against a reigning world champion, Garry Kasparov.
Other examples of artificial intelligence are the ability to understand sights,
such as faces, and to understand sounds, such as spoken commands.

The field of artificial intelligence could benefit from the model of human
memory and cognition presented in this book, especially artificial intelligence as
it applies to self-contained robots. Brain circuits operate in parallel, as opposed
to the high-speed serial processing that computer manufacturers prefer to sell
us. Engineers are well paid to increase clock speeds in order to run long
programs of serial instructions. Ironically, the result is a machine that is
sometimes slower than older models, because software always grows faster than
hardware. The point is that parallel processing will be required to match what
humans do routinely.

Of all the aspects of artificial intelligence, the ability to learn is a most
convincing sign of intelligence. One aspect of learning involves the development
of neural state machines directly embedded in associative memory, with the
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capability to execute procedures without evaluation in short-term memory, as
noted above for robots. It would be nice if a machine could learn to fetch a ball,
like a dog does. Better yet, perhaps a machine could, without a lot of additional
programming, learn to walk across a garden while pouring a glass of wine.

Intelligent machines need to recognize sights and sounds without saturating
a central processor. For example, it would be nice if a machine could learn to
recognize a new face that appears often, such as that of a household pet. The
learning involved is called combinational learning, another form of all-digital
learning explored in this book.

Neuroscience

Neuroscience is the scientific study of the structure, function, and development
of the nervous system, so traditionally, it is a branch of biology. Neuroscience
expanded significantly in the second half of the twentieth century and now
includes branches in molecular biology, artificial neural networks, and compu-
tational neuroscience. Here we emphasize electrical models, so apparently
‘‘electrical neuroscience,’’ although seldom mentioned, is another branch of
neuroscience.

The neuron in this book is modeled as an analog circuit. These analog
underpinnings suggest that in its own way, a neuron can calculate arbitrary
Boolean functions. Using many such gates, a memory system can be modeled
to provide neuroscientists with a new perspective. In this book, problem solving
and decision making as well as information retrieval are considered to be
memory related.

Modeling with digital circuits clarifies the actions taken by a memory system
when cues are inadequate or when cues are ambiguous. Modeling offers a novel
point of view for most traditional issues in memory theory, such as strong
memories versus weak memories, accuracy of memory, and threshold-of-effort
for memorization and the meaning of recognition. All of these central issues are
touched upon by the book’s human memory system model based on standard
analog and digital circuits.

The Beginnings of a Cognitive Architecture

Random searches are useful in computers, so here is an idea from computer
science that might be useful in practice. As modeled in this book, but now with
a little more detail, to recall something, a name, for example, cues in short-term
memory are made available. But when a name cannot be remembered, a
memory search proceeds in the background, subliminally, and may continue
for hours. This search has an element of the unpredictable, given that all logical
deductions of the forgotten name have failed. Later, unexpectedly, the correct
name often pops forth.

The possibility of subliminal searches for forgotten facts is significant.
Instead of a forgotten name, one may just as well search for solutions to
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problems, or decisions based on past experiences. Searches with random
variables occur all the time during dreaming and brainstorming. After some
time, potential solutions often emerge for a person who persists in trying to find
a solution. Difficult illogical problems are sometimes solved in this way,
although certain problems have no solutions.

The memory model in this book attempts to calculate a direction of attention,
a topic of immense interest not only to neuroscientists, but also to psycholo-
gists. A memory search begins with a gating of cues taken from among the
features held in short-term memory. Cue subsets are selected pseudorandomly
to address a variety of associated images in long-term memory. Recalled briefly
and subliminally are a great many associated memories, tens per second. Such
recalls alternate with impressions from sensory encoders to minimize sensory
input dead time.

Each impression is flashed unnoticed against interface neurons, where a
digital encoder creates an index of importance for each image. The index of
importance depends on attributes in short-term memory, including bright
features and strong emotions. If a subliminal recall has sufficient importance
compared to what is currently in short-term memory, it is enabled by gates to
become the next impression in short-term memory. This new image constitutes
a direction of attention in conscious short-term memory. Direction of attention
is thus achieved with a self-contained digital circuit model.

What is presented is a model of the human memory system build up from
neurons. Along the way are memory searches, memorizing, and an index of
importance in deciding on the direction of attention. Since the model is cast in
standard analog and digital circuits, a physical structure is implied, not just an
input–output formula. The result is budding cognitive architecture that may be
of value for the development of artificial intelligence and intelligent robots.

General Education

This book is in its own way quite cross-curricular and strives to promote
general education. General education is extremely important because it raises
exponentially the number of people who are able to appreciate basic knowledge
about the human memory system, thus increasing the level of support for
basic research. Models are a powerful educational tool that make a subject
interesting and understandable. In contrast, volumes of random, disconnected
clinical facts, however academically correct, are often confusing and boring.
As a way to keep students awake, the appeal of simple models cannot be
denied.

CONCLUSIONS

Today, tens of thousands of researchers routinely publish what amounts to
hundreds of thousands of papers every year. Seldom are these bits and pieces of
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knowledge reduced to a useful model. Frequently, data are published based on
no model at all. The publication is justified as just another brick in a huge,
overwhelming data structure. Our work here should not be considered as
traditional research because it runs in a totally different direction, a direction in
which existing knowledge is distilled in order to create simple models. Simple
models aid education and spur interest, but they do much more.

Simple models are useful for:

1. Calculating the sensitivities of a particular neural network to its
parameters

2. The discovery of some yet unknown relationship between a neural
structure and its function

3. The discovery of a direction that experimental investigation ought to take

Models affect thinking

� Theories need models that are in agreement with observed facts.

� Theories with simple accurate models tend to replace theories that lack
such models.

� Some theories are better than others from the point of view of model
efficiency.

In this book we describe novel models of neurons, memory systems, and
cognitive architectures justified in part because they point to interesting
engineering applications. Modeling human memory with standard analog
and digital circuits inspires computer design in two major ways:

1. A neuron may be modeled as adiabatic as far as neural signals go. This
implies that the brain is an adiabatic computer: not counting calories for
growth and maintenance. Energy for neural pulses is modeled as being
merely borrowed; subsequently, it is returned to where it came from, the
ionic solutions of the body. Adiabatic models open new possibilities for
the inventive mind. For example, long-term memory circuits can be
understood as neural latches with circulating signals that do not burn
energy. Models like this also suggest man-made computers, electrically
and logically reversible using carefully designed CMOS logic.

2. The brain is modeled as massively parallel. If everyday computers had
this sort of parallelism, the world would be a very different place.
Computer images would appear instantly, for example. Better yet, Web
searches would be instant and accurate, actually responding only to the
subject of a search. Parallelism is essential to an adiabatic computer.
Indeed, without it, a CMOS adiabatic computer would be hopelessly
slow.
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Modeling in this book is governed in part by a principle of least action. This
principle suggests that things in nature tend to operate efficiently, the under-
lying reason being that efficiency is necessary for species survival. Adiabatic
neurons are an important aspect of efficiency. The brain, for example, performs
recalls approaching tens of images per second, yet dissipates practically no
detectable energy in doing so. As a tribute to the efficiency of parallel
processing within the brain, millions of subconscious words of memory are
instantly searched and analyzed subliminally to deliver a recall. With an eye to
efficiency, we now begain to model the workings of the wonderful brain—
inscrutable, but an amazement of nature with complexity beyond
comprehension.

EXERCISES

1-1 A computer may be modeled in two ways: top-down, beginning with
what needs to be accomplished, and bottom-up, beginning with compo-
nents available for the hardware.

(a) As an example of a top-down model, sketch a block diagram of a
word processor.

(b) As an example of a bottom-up model, identify hardware compo-
nents to capture analog signals at the microphone input.

1-2 Compare the human brain to a man-made computer.

(a) List something for which the brain is better than the computer.

(b) List something for which the brain is not as good as the computer.

1-3 Energy and power are closely related, as a little research soon reveals.

(a) Provide an equation that relates energy to power. Define all
variables and units.

(b) Provide an equation that relates power to energy. Define all
variables and units.

(c) Provide conversions into joules for the following units: kilocalories,
calories, electron volts, watthours, and British thermal units.

1-4 Describe an everyday situation in which parallel processing speeds up a
task.

1-5 Consider grade-school arithmetic.

(a) When adding a column of integers, how can parallel operations be
used? Provide a numerical example.

(b) When multiplying, how can parallel operations be used? Provide a
numerical example.

(c) When dividing a smaller integer into a larger integer, can parallel
operations be used? Provide a numerical example.
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1-6 Based on information provided in this chapter, list the names of
massively parallel associative computers from the past. Do research to
describe then technically.

1-7 Name ways in which brain theory affects computer design.

1-8 Based on information provided in this chapter, sketch a block diagram
of a memory system that will provide a direction of attention.

1-9 How does an imitation neuron differ from an artificial neuron as used in
an artificial neural network?

1-10 List potential applications of imitation neurons.

1-11 List practical applications of artificial learning intelligence in robots.

1-12 What are the benefits of human memory system modeling?

1-13 Create, through research, a list of the hopes and fears associated with a
singularity.
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