
Chapter 1

Putting a Name to Linear Algebra
In This Chapter
▶ Aligning the algebra part of linear algebra with systems of equations

▶ Making waves with matrices and determinants

▶ Vindicating yourself with vectors

▶ Keeping an eye on eigenvalues and eigenvectors

The words linear and algebra don’t always appear together. The word 

linear is an adjective used in many settings: linear equations, linear regres-
sion, linear programming, linear technology, and so on. The word algebra, of 

course, is familiar to all high school and most junior high students. When 

used together, the two words describe an area of mathematics in which some 

traditional algebraic symbols, operations, and manipulations are combined 

with vectors and matrices to create systems or structures that are used to 

branch out into further mathematical study or to use in practical applications 

in various fields of science and business.

The main elements of linear algebra are systems of linear equations, vec-

tors and matrices, linear transformations, determinants, and vector spaces. 

Each of these topics takes on a life of its own, branching into its own special 

emphases and coming back full circle. And each of the main topics or areas is 

entwined with the others; it’s a bit of a symbiotic relationship — the best of 

all worlds.

You can find the systems of linear equations in Chapter 4, vectors in Chap-

ter 2, and matrices in Chapter 3. Of course, that’s just the starting point for 

these topics. The uses and applications of these topics continue throughout 

the book. In Chapter 8, you get the big picture as far as linear transforma-

tions; determinants begin in Chapter 10, and vector spaces are launched in 

Chapter 13.
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Solving Systems of Equations in 
Every Which Way but Loose

A system of equations is a grouping or listing of mathematical statements that 

are tied together for some reason. Equations may associate with one another 

because the equations all describe the relationships between two or more 

variables or unknowns. When studying systems of equations (see Chapter 

4), you try to determine if the different equations or statements have any 

common solutions — sets of replacement values for the variables that make 

all the equations have the value of truth at the same time.

For example, the system of equations shown here consists of three different 

equations that are all true (the one side is equal to the other side) when x = 1 

and y = 2.

The only problem with the set of equations I’ve just shown you, as far as 

linear algebra is concerned, is that the second and third equations in the 

system are not linear.

 A linear equation has the form a
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Note that, in a linear equation, each of the variables has an exponent of 

exactly 1. Yes, I know that you don’t see any exponents on the xs, but that’s 

standard procedure — the 1s are assumed. In the system of equations I show 

you earlier, I used x and y for the variables instead of the subscripted xs. It’s 

easier to write (or type) x, y, z, and so on when working with smaller systems 

than to use the subscripts on a single letter.

I next show you a system of linear equations. I’ll use x, y, z, and w for the vari-

ables instead of x
1
, x

2
, x

3
, and x

4
.



11 Chapter 1: Putting a Name to Linear Algebra

The system of four linear equations with four variables or unknowns does 

have a single solution. Each equation is true when x = 1, y = 2, z = 3, and 

w = 4. Now a caution: Not every system of linear equations has a solution. 

Some systems of equations have no solutions, and others have many or infi-

nitely many solutions. What you find in Chapter 4 is how to determine which 

situation you have: none, one, or many solutions.

Systems of linear equations are used to describe the relationship between 

various entities. For example, you might own a candy store and want to 

create different selections or packages of candy. You want to set up a 

1-pound box, a 2-pound box, a 3-pound box, and a diet-spoiler 4-pound box. 

Next I’m going to describe the contents of the different boxes. After reading 

through all the descriptions, you’re going to have a greater appreciation for 

how nice and neat the corresponding equations are.

The four types of pieces of candy you’re going to use are a nougat, a cream, 

a nut swirl, and a caramel. The 1-pounder is to contain three nougats, one 

cream, one nut swirl, and two caramels; the 2-pounder has three nougats, 

two creams, three nut swirls, and four caramels; the 3-pounder has four nou-

gats, two creams, eight nut swirls, and four caramels; and the 4-pounder con-

tains six nougats, five creams, eight nut swirls, and six caramels. What does 

each of these candies weigh?

Letting the weight of nougats be represented by x
1
, the weight of creams 

be represented by x
2
, the weight of nut swirls be represented by x

3
, and the 

weight of caramels be represented by x
4
, you have a system of equations 

looking like this:

The pounds are turned to ounces in each case, and the solution of the system 

of linear equations is that x
1
 = 1 ounce, x

2
 = 2 ounces, x

3
 = 3 ounces, and x

4
 = 4 

ounces. Yes, this is a very simplistic representation of a candy business, but 

it serves to show you how systems of linear equations are set up and how 

they work to solve complex problems. You solve such a system using alge-

braic methods or matrices. Refer to Chapter 4 if you want more information 

on how to deal with such a situation.

Systems of equations don’t always have solutions. In fact, a single equation, 

all by itself, can have an infinite number of solutions. Consider the equation 

2x + 3y = 8. Using ordered pairs, (x,y), to represent the numbers you want, 

some of the solutions of the system are (1,2), (4,0), (−8,8), and (10,−4). But 
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none of the solutions of the equation 2x + 3y = 8 is also a solution of the equa-

tion 4x + 6y = 10. You can try to find some matches, but there just aren’t any. 

Some solutions of 4x + 6y = 10 are (1,1), (4,−1), and (10,−5). Each equation 

has an infinite number of solutions, but no pairs of solutions match. So the 

system has no solution.

Knowing that you don’t have a solution is a very important bit of informa-

tion, too.

Matchmaking by Arranging 
Data in Matrices

A matrix is a rectangular arrangement of numbers. Yes, all you see is a bunch 

of numbers — lined up row after row and column after column. Matrices are 

tools that eliminate all the fluff (such as those pesky variables) and set all the 

pertinent information in an organized logical order. (Matrices are introduced 

in Chapter 3, but you use them to solve systems of equations in Chapter 4.) 

When matrices are used for solving systems of equations, you find the coeffi-

cients of the variables included in a matrix and the variables left out. So how 

do you know what is what? You get organized, that’s how.

Here’s a system of four linear equations:

When working with this system of equations, you may use one matrix to rep-

resent all the coefficients of the variables.
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Notice that I placed a 0 where there was a missing term in an equation. If 

you’re going to write down the coefficients only, you have to keep the terms 

in order according to the variable that they multiply and use markers or 

placeholders for missing terms. The coefficient matrix is so much easier to 

look at than the equation. But you have to follow the rules of order. And I 

named the matrix — nothing glamorous like Angelina, but something simple, 

like A.

When using coefficient matrices, you usually have them accompanied by two 

vectors. (A vector is just a one-dimensional matrix; it has one column and 

many rows or one row and many columns. See Chapters 2 and 3 for more on 

vectors.)

The vectors that correspond to this same system of equations are the vector 

of variables and the vector of constants. I name the vectors X and C.

Once in matrix and vector form, you can perform operations on the matrices 

and vectors individually or perform operations involving one operating on 

the other. All that good stuff is found beginning in Chapter 2.

Let me show you, though, a more practical application of matrices and why 

putting the numbers (coefficients) into a matrix is so handy. Consider an 

insurance agency that keeps track of the number of policies sold by the dif-

ferent agents each month. In my example, I’ll keep the number of agents and 

policies small, and let you imagine how massive the matrices become with a 

large number of agents and different variations on policies.

At Pay-Off Insurance Agency, the agents are Amanda, Betty, Clark, and 

Dennis. In January, Amanda sold 15 auto insurance policies, 10 dwelling/

home insurance policies, 5 whole-life insurance policies, 9 tenant insurance 

policies, and 1 health insurance policy. Betty sold . . . okay, this is already 

getting drawn out. I’m putting all the policies that the agents sold in January 

into a matrix.
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If you were to put the number of policies from January, February, March, and 

so on in matrices, it’s a simple task to perform matrix addition and get totals 

for the year. Also, the commissions to agents can be computed by performing 

matrix multiplication. For example, if the commissions on these policies are 

flat rates — say $110, $200, $600, $60, and $100, respectively, then you create 

a vector of the payouts and multiply.

This matrix addition and matrix multiplication business is found in Chapter 

3. Other processes for the insurance company that could be performed 

using matrices are figuring the percent increases or decreases of sales (of 

the whole company or individual salespersons) by performing operations on 

summary vectors, determining commissions by multiplying totals by their 

respective rates, setting percent increase goals, and so on. The possibilities 

are limited only by your lack of imagination, determination, or need.

Valuating Vector Spaces
In Part IV of this book, you find all sorts of good information and interesting 

mathematics all homing in on the topic of vector spaces. In other chapters, 

I describe and work with vectors. Sorry, but there’s not really any separate 

chapter on spaces or space — I leave that to the astronomers. But the words 

vector space are really just a mathematical expression used to define a par-

ticular group of elements that exist under a particular set of conditions. (You 

can find information on the properties of vector spaces in Chapter 13.)

Think of a vector space in terms of a game of billiards. You have all the ele-

ments (the billiards balls) that are confined to the top of the table (well, they 

stay there if hit properly). Even when the billiard balls interact (bounce off 

one another), they stay somewhere on the tabletop. So the billiard balls are 

the elements of the vector space and the table top is that vector space. You 

have operations that cause actions on the table — hitting a ball with a cue 

stick or a ball being hit by another ball. And you have rules that govern how 

all the actions can occur. The actions keep the billiard balls on the table (in 

the vector space). Of course, a billiards game isn’t nearly as exciting as a 

vector space, but I wanted to relate some real-life action to the confinement 

of elements and rules.
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A vector space is linear algebra’s version of a type of classification plan or 

design. Other areas in mathematics have similar entities (classifications and 

designs). The common theme of such designs is that they contain a set or 

grouping of objects that all have something in common. Certain properties 

are attached to the plan — properties that apply to all the members of the 

grouping. If all the members must abide by the rules, then you can make judg-

ments or conclusions based on just a few of the members rather than having 

to investigate every single member (if that’s even possible).

Vector spaces contain vectors, which really take on many different forms. 

The easiest form to show you is an actual vector, but the vectors may actu-

ally be matrices or polynomials. As long as these different forms follow the 

rules, then you have a vector space. (In Chapter 14, you see the rules when 

investigating the subspaces of vector spaces.)

The rules regulating a vector space are highly dependent on the operations 

that belong to that vector space. You find some new twists to some famil-

iar operation notation. Instead of a simple plus sign, +, you find +. And the 

multiplication symbol, ×, is replaced with ,. The new, revised symbols are 

used to alert you to the fact that you’re not in Kansas anymore. With vector 

spaces, the operation of addition may be defined in a completely different 

way. For example, you may define the vector addition of two elements, x and 

y, to be x + y = 2x + y. Does that rule work in a vector space? That’s what you 

need to determine when studying vector spaces.

Determining Values with Determinants
A determinant is tied to a matrix, as you see in Chapter 10. You can think of a 

determinant as being an operation that’s performed on a matrix. The determi-

nant incorporates all the elements of a matrix into its grand plan. You 

have a few qualifications to meet, though, before performing the operation 

determinant.

Square matrices are the only candidates for having a determinant. Let me 

show you just a few examples of matrices and their determinants. The matrix 

A has a determinant |A| — which is also denoted det (A) — and so do matri-

ces B and C.
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The matrices A, B, and C go from a 3 × 3 matrix to a 2 × 2 matrix to a 1 × 1 

matrix. The determinants of the respective matrices go from complicated to 

simple to compute. I give you all the gory details on computing determinants 

in Chapter 10, so I won’t go into any of the computations here, but I do want 

to introduce you to the fact that these square matrices are connected, by a 

particular function, to single numbers.

All square matrices have determinants, but some of these determinants don’t 

amount to much (the determinant equals 0). Having a determinant of 0 isn’t a 

big problem to the matrix, but the value 0 causes problems with some of the 

applications of matrices and determinants. A common property that all these 

0-determinant matrices have is that they don’t have a multiplicative inverse.

For example, the matrix D, that I show you here, has a determinant of 0 and, 

consequently, no inverse.

Matrix D looks perfectly respectable on the surface, but, lurking beneath 

the surface, you have what could be a big problem when using the matrix to 

solve problems. You need to be aware of the consequences of the determi-

nant being 0 and make arrangements or adjustments that allow you to pro-

ceed with the solution.

For example, determinants are used in Chapter 12 with Cramer’s rule (for 

solving systems of equations). The values of the variables are ratios of dif-

ferent determinants computed from the coefficients in the equations. If the 

determinant in the denominator of the ratio is zero, then you’re out of luck, 

and you need to pursue the solution using an alternate method.

Zeroing In on Eigenvalues 
and Eigenvectors

In Chapter 16, you see how eigenvalues and eigenvectors correspond to one 

another in terms of a particular matrix. Each eigenvalue has its related eigen-

vector. So what are these eigen-things?
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First, the German word eigen means own. The word own is somewhat 

descriptive of what’s going on with eigenvalues and eigenvectors. An eigen-

value is a number, called a scalar in this linear algebra setting. And an eigen-

vector is an n × 1 vector. An eigenvalue and eigenvector are related to a 

particular n × n matrix.

For example, let me reach into the air and pluck out the number 13. Next, 

I take that number 13 and multiply it times a 2 × 1 vector. You’ll see in 

Chapter 2 that multiplying a vector by a scalar just means to multiply each 

element in the vector by that number. For now, just trust me on this.

That didn’t seem too exciting, so let me up the ante and see if this next step 

does more for you. Again, though, you’ll have to take my word for the multi-

plication step. I’m now going to multiply the same vector that just got multi-

plied by 13 by a matrix.

The resulting vector is the same whether I multiply the vector by 13 or by 

the matrix. (You can find the hocus-pocus needed to do the multiplication in 

Chapter 3.) I just want to make a point here: Sometimes you can find a single 

number that will do the same job as a complete matrix. You can’t just pluck 

the numbers out of the air the way I did. (I actually peeked.) Every matrix has 

its own set of eigenvalues (the numbers) and eigenvectors (that get multiplied 

by the eigenvalues). In Chapter 16, you see the full treatment — all the steps 

and procedures needed to discover these elusive entities.
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