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FOURIER SERIES

1.1 INTRODUCTION

In this chapter, we examine the trigonometric expansion of a function f (x)

defined on an interval such as −π ≤ x ≤ π . A trigonometric expansion is a sum
of the form

a0 +
∑

k

ak cos(kx) + bk sin(kx), (1.1)

where the sum could be finite or infinite. Why should we care about expressing
a function in such a way? As the following sections show, the answer varies
depending on the application we have in mind.

1.1.1 Historical Perspective

Trigonometric expansions arose in the 1700s, in connection with the study of
vibrating strings and other, similar physical phenomena; they became part of a
controversy over what constituted a general solution to such problems, but they
were not investigated in any systematic way. In 1808, Fourier wrote the first
version of his celebrated memoir on the theory of heat, Théorie Analytique de
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la Chaleur , which was not published until 1822. In it, he made a detailed study
of trigonometric series, which he used to solve a variety of heat conduction
problems.

Fourier’s work was controversial at the time, partly because he did make
unsubstantiated claims and overstated the scope of his results. In addition, his
point of view was new and strange to mathematicians of the day. For instance, in
the early 1800s a function was considered to be any expression involving known
terms, such as powers of x, exponential functions, and trigonometric functions.
The more abstract definition of a function (i.e., as a rule that assigns numbers from
one set, called the domain, to another set, called the range) did not come until
later. Nineteenth-century mathematicians tried to answer the following question:
Can a curve in the plane, which has the property that each vertical line intersects
the curve at most once, be described as the graph of a function that can be
expressed using powers of x, exponentials, and trigonometric functions. In fact,
they showed that for “most curves,” only trigonometric sums of the type given
in (1.1) are needed (powers of x, exponentials, and other types of mathematical
expressions are unnecessary). We shall prove this result in Theorem 1.22.

The Riemann integral and the Lebesgue integral arose in the study of Fourier
series. Applications of Fourier series (and the related Fourier transform) include
probability and statistics, signal processing, and quantum mechanics. Nearly two
centuries after Fourier’s work, the series that bears his name is still important,
practically and theoretically, and still a topic of current research. For a fine his-
torical summary and further references, see John J. Benedetto’s book (Benedetto,
1997).

1.1.2 Signal Analysis

There are many practical reasons for expanding a function as a trigonometric
sum. If f (t) is a signal, (for example, a time-dependent electrical voltage or
the sound coming from a musical instrument), then a decomposition of f into
a trigonometric sum gives a description of its component frequencies. Here, we
let t be the independent variable (representing time) instead of x. A sine wave,
such as sin(kt), has a period of 2π/k and a frequency of k (i.e., vibrates k times
in the interval 0 ≤ t ≤ 2π). A signal such as

2 sin(t) − 50 sin(3t) + 10 sin(200t)

contains frequency components that vibrate at 1, 3, and 200 times per 2π interval
length. In view of the size of the coefficients, the component vibrating at a
frequency of 3 dominates over the other frequency components.

A common task in signal analysis is the elimination of high-frequency noise.
One approach is to express f as a trigonometric sum

f (t) = a0 +
∑

k

ak cos(kt) + bk sin(kt)
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and then set the high-frequency coefficients (the ak and bk for large k) equal to
zero.

Another common task in signal analysis is data compression. The goal here
is to describe a signal in a way that requires minimal data. One approach is
to express the signal, f , in terms of a trigonometric expansion, as previously,
and then retain only those coefficients, ak and bk, which are larger (in absolute
value) than some specified tolerance. The coefficients that are small and do
not contribute substantially to f can be thrown away. There is no danger that
an infinite number of coefficients stay large, because we will show (see the
Riemann–Lebesgue Lemma, Theorem 1.21) that ak and bk converge to zero as
k → ∞.

1.1.3 Partial Differential Equations

Trigonometric sums also arise in the study of partial differential equations.
Although the subject of partial differential equations is not the main focus of
this book, we digress to give a simple yet important example. Consider the heat
equation

ut (x, t) = uxx(x, t), t > 0, 0 ≤ x ≤ π,

u(x, 0) = f (x), 0 ≤ x ≤ π,

u(0, t) = A, u(π, t) = B.

The solution, u(x, t), to this differential equation represents the temperature
of a rod of length π at position x and at time t with initial temperature (at t = 0)
given by f (x) and where the temperatures at the ends of the rod, x = 0 and
x = π , are kept at A and B, respectively. We will compute the solution to this dif-
ferential equation in the special case where A = 0 and B = 0. The expansion of f

into a trigonometric series will play a crucial role in the derivation of the solution.

Separation of Variables. To solve the heat equation, we use the technique of
separation of variables which assumes that the solution is of the form

u(x, t) = X(x)T (t),

where T (t) is a function of t ≥ 0 and X(x) is a function of x, 0 ≤ x ≤ π .
Inserting this expression for u into the differential equation ut = uxx yields

X(x)T ′(t) = X′′(x)T (t)

or
T ′(t)
T (t)

= X′′(x)

X(x)
.

The left side depends only on t and the right side depends only on x. The only
way these two functions can equal each other for all values of x and t is if both
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functions are constant (since x and t are independent variables). So, we obtain
the following two equations:

T ′(t)
T (t)

= c,
X′′(x)

X(x)
= c,

where c is a constant. From the equation T ′ = cT , we obtain T (t) = Cect , for
some constant C. From physical considerations, the constant c must be negative
(otherwise |T (t)| and hence the temperature |u(x, t)| would increase to infinity as
t → ∞). So we write c = −λ2 < 0 and we have T (t) = Ce−λ2t . The differential
equation for X becomes

X′′(x) + λ2X(x) = 0, 0 ≤ x ≤ π, X(0) = 0, X(π) = 0.

The boundary conditions, X(0) = 0 = X(π) arise because the temperature
u(x, t) = X(x)T (t) is assumed to be zero at x = 0, π . The solution to this
differential equation is

X(x) = a cos(λx) + b sin(λx).

The boundary condition X(0) = 0 implies that the constant a must be zero. The
boundary condition 0 = X(π) = b sin(λπ) implies that λ must be an integer,
which we label k. Note that we do not want to set b equal to zero, because if
both a and b were zero, the function X would be zero and hence the temperature
u would be zero. This would only make sense if the initial temperature of the
rod, f (x), is zero.

To summarize, we have shown that the only allowable value of λ is an inte-
ger k with corresponding solutions Xk(x) = bk sin(kx) and Tk(t) = e−k2t . Each
function

uk(x, t) = Xk(x)Tk(t) = bke
−k2t sin(kx)

is a solution to the heat equation and satisfies the boundary condition u(0, t) =
u(π, t) = 0. The only missing requirement is the initial condition u(x, 0) = f (x),
which we can arrange by considering the sum of the uk:

u(x, t) =
∞∑

k=1

uk(x, t) (1.2)

=
∞∑

k=1

bke
−k2t sin(kx). (1.3)

Setting u(x, t = 0) equal to f (x), we obtain the equation

f (x) =
∞∑

k=1

bk sin(kx). (1.4)
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Equation (1.4) is called a Fourier sine expansion of f . In the coming sections,
we describe how to find such expansions (i.e. how to find the bk). Once found,
the Fourier coefficients (the bk) can be substituted into Eq. (1.3) to give the final
solution to the heat equation.

Thus, the problem of expanding a function in terms of sines and cosines is
an important one, not only from a historical perspective, but also for practical
problems in signal analysis and partial differential equations.

1.2 COMPUTATION OF FOURIER SERIES

1.2.1 On the Interval −π ≤ x ≤ π

In this section, we will compute the Fourier coefficients, ak and bk, in the Fourier
series

f (x) = a0 +
∞∑

k=1

ak cos(kx) + bk sin(kx).

We need the following result on the orthogonality of the trigonometric functions.

Theorem 1.1 The following integral relations hold.

1

π

∫ π

−π

cos(nx) cos(kx) dx =
⎧⎨
⎩

1 if n = k ≥ 1,

2 if n = k = 0,

0 otherwise,
(1.5)

1

π

∫ π

−π

sin(nx) sin(kx) dx =
{

1 if n = k ≥ 1,

0 otherwise,
(1.6)

1

π

∫ π

−π

cos(nx) sin(kx) dx = 0 for all integers n, k. (1.7)

An equivalent way of stating this theorem is that the collection{
. . . ,

cos(2x)√
π

,
cos(x)√

π
,

1√
2π

,
sin(x)√

π
,

sin(2x)√
π

, . . .

}
(1.8)

is an orthonormal set of functions in L2([−π, π]).

Proof. The derivations of the first two equalities use the following identities:

cos((n + k)x) = cos nx cos kx − sin nx sin kx, (1.9)

cos((n − k)x) = cos nx cos kx + sin nx sin kx. (1.10)

Adding these two identities and integrating gives∫ π

−π

cos nx cos kx dx = 1

2

∫ π

−π

(cos((n + k)x + cos((n − k)x)) dx.
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The right side can be easily integrated. If n �= k, then∫ π

−π

cos nx cos kx dx = 1

2

[
sin(n + k)x

n + k
+ sin(n − k)x

n − k

]
|π−π = 0.

If n = k ≥ 1, then∫ π

−π

cos2 nx dx =
∫ π

−π

(1/2)(1 + cos 2nx) dx = π.

If n = k = 0, then Eq. (1.5) reduces to (1/π)
∫ π

−π
1 dx = 2. This completes the

proof of Eq. (1.5).
Equation (1.6) follows by subtracting Eqs. (1.9) and (1.10) and then integrating

as before. Equation (1.7) follows from the fact that cos(nx) sin(kx) is odd for
k > 0 (see Lemma 1.7). �

Now we use the orthogonality relations given in (1.5)–(1.7) to compute the
Fourier coefficients. We start with the equation

f (x) = a0 +
∞∑

k=1

ak cos(kx) + bk sin(kx). (1.11)

To find an for n ≥ 1, we multiply both sides by cos nx and integrate:

1

π

∫ π

−π

f (x) cos nx dx = 1

π

∫ π

−π

(
a0 +

∞∑
k=1

ak cos(kx) + bk sin(kx)

)
cos nx dx.

From Eqs. (1.5)–(1.7), only the cosine terms with n = k contribute to the right
side and we obtain

1

π

∫ π

−π

f (x) cos nx dx = an, n ≥ 1.

Similarly, by multiplying Eq. (1.11) by sin nx and integrating, we obtain

1

π

∫ π

−π

f (x) sin nx dx = bn, n ≥ 1.

As a special case, we compute a0 by integrating Eq. (1.11) to give

1

2π

∫ π

−π

f (x) dx = 1

2π

∫ π

−π

(
a0 +

∞∑
k=1

ak cos(kx) + bk sin(kx)

)
dx.

Each sin and cos term integrates to zero and therefore

1

2π

∫ π

−π

f (x) dx = 1

2π

∫ π

−π

a0 dx = a0.
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We summarize this discussion in the following theorem.

Theorem 1.2 If f (x) = a0 +∑∞
k=1 ak cos(kx) + bk sin(kx), then

a0 = 1

2π

∫ π

−π

f (x) dx, (1.12)

an = 1

π

∫ π

−π

f (x) cos(nx) dx, (1.13)

bn = 1

π

∫ π

−π

f (x) sin(nx) dx. (1.14)

The an and bn are called the Fourier coefficients of the function f .

Remark. The crux of the proof of Theorem 1.2 is that the collection in (1.8) is
orthonormal. Thus, Theorem 0.21 guarantees that the Fourier coefficients an and
bn are obtained by orthogonally projecting f onto the space spanned by cos nx

and sin nx, respectively. In fact, note that an and bn are (up to a factor of 1/π)
the L2 inner products of f (x) with cos nx and sin nx, respectively, as provided
by Theorem 0.21. Thus, the preceding proof is a repeat of the proof of Theorem
0.21 for the special case of the L2-inner product and where the orthonormal
collection (the ej ) is given in (1.8).

Keep in mind that we have only shown that if f can be expressed as a
trigonometric sum, then the coefficients an and bn are given by the preceding
formulas. We will show (Theorem 1.22) that most functions can be expressed as
trigonometric sums. Note that Theorem 1.2 implies that the Fourier coefficients
for a given function are unique.

1.2.2 Other Intervals

Intervals of Length 2π . In Theorem 1.2, the interval of interest is [−π, π]. As
we will show in this section, Theorem 1.2 also holds for any interval of length
2π . We will need the following lemma.

Lemma 1.3 Suppose F is any 2π-periodic function and c is any real number,
then

∫ π+c

−π+c

F (x) dx =
∫ π

−π

F (x) dx. (1.15)
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−p −p+c p p+c

Figure 1.1. Region between −π and −π + c has the same area as between π and π + c.

Proof. A simple proof of this lemma is described graphically by Figure 1.1. If
F ≥ 0, the left side of Eq. (1.15) represents the area under the graph of F from
x = −π + c to x = π + c, whereas the right side of Eq. (1.15) represents the
area under the graph of F from x = −π to x = π . Since F is 2π-periodic, the
shaded regions in Figure 1.1 are the same. The process of transferring the left
shaded region to the right shaded region transforms the integral on the right side
of Eq. (1.15) to the left.

An analytical proof of this lemma is outlined in exercise 25. �

Using this lemma with F(x) = f (x) cos nx or f (x) sin nx, we see that the
integration formulas in Theorem 1.2 hold for any interval of the form [−π +
c, π + c].

Intervals of General Length. We can also consider intervals of the form −a ≤
x ≤ a, of length 2a. The basic building blocks are cos(nπx/a) and sin(nπx/a),
which are 2a/n-periodic. Note that when a = π , these functions reduce to cos nx

and sin nx, which form the basis for Fourier series on the interval [−π, π] con-
sidered in Theorem 1.2.

The following scaling argument can be used to transform the integral formu-
las for the Fourier coefficients on the interval [−π, π] to the interval [−a, a].
Suppose F is a function defined on the interval −π ≤ x ≤ π . The substitution
x = tπ/a, dx = πdt/a leads to the following change of variables formula:

1

π

∫ π

−π

F (x) dx = 1

a

∫ a

−a

F

(
πt

a

)
dt.

By using this change of variables, the following theorem can be derived from
Theorem 1.2. (see exercise 15).
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Theorem 1.4 If f (x) = a0 +∑∞
k=1 ak cos(kπx/a) + bk sin(kπx/a) on the

interval −a ≤ x ≤ a, then

a0 = 1

2a

∫ a

−a

f (t) dt

an = 1

a

∫ a

−a

f (t) cos(nπt/a) dt,

bn = 1

a

∫ a

−a

f (t) sin(nπt/a) dt.

Example 1.5 Let

f (x) =
{

1 if 0 ≤ x ≤ 1,

0 otherwise.

We will compute the formal Fourier series for f valid on the interval −2 ≤ x ≤ 2.
With a = 2 in Theorem 1.4, the Fourier cosine coefficients are

a0 = 1

4

∫ 2

−2
f (t) dt = 1

4

∫ 1

0
1 dt = 1

4

and for n ≥ 1

an = 1

2

∫ 2

−2
f (t) cos nπt/2 dt = 1

2

∫ 1

0
cos nπt/2 dt = sin(nπ/2)

nπ
.

When n is even, these coefficients are zero. When n = 2k + 1 is odd, then
sin(nπ/2) = (−1)k . Therefore

an = (−1)k

(2k + 1)π
(n = 2k + 1).

Similarly,

bn = 1

2

∫ 2

−2
f (t) sin nπt/2 dt = 1

2

∫ 1

0
sin nπt/2 dt = −1

nπ
(cos nπ/2 − 1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

when n = 4j, bn = 0,

when n = 4j + 1, bn = 1

(4j + 1)π
,

when n = 4j + 2, bn = 1

(2j + 1)π
,

when n = 4j + 3 get
1

(4j + 3)π
.
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Thus, the Fourier series for f is

F(x) = a0 +
∞∑

n=1

an cos(nπx/2) + bn sin(nπx/2)

with an, bn given as above. �

In later sections, we take up the question of whether or not the Fourier series
F(x) for f equals f (x) itself.

1.2.3 Cosine and Sine Expansions

Even and Odd Functions.
Definition 1.6 Let f : R → R be a function; f is even if f (−x) = f (x); f is
odd if f (−x) = −f (x).

The graph of an even function is symmetric about the y axis as illustrated in
Figure 1.2. Examples include f (x) = x2 (or any even power) and f (x) = cos x.
The graph of an odd function is symmetric about the origin as illustrated in
Figure 1.3. Examples include f (x) = x3 (or any odd power) and f (x) = sin x.

The following properties follow from the definition.

Even × Even = Even,

Even × Odd = Odd,

Odd × Odd = Even.

–a

(–x, f (–x)) (x, f (x))

–x x a

Figure 1.2. Even function f (−x) = f (x).
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–a

(–x, f (–x))

(x, f (x))

–x
x a

Figure 1.3. Odd function f (−x) = −f (x).

For example, if f is even and g is odd, then g(−x)f (−x) = −g(x)f (x) and so
fg is odd.

Another important property of even and odd functions is given in the next
lemma.

Lemma 1.7

• If F is an even function, then∫ a

−a

F (x) dx = 2
∫ a

0
F(x) dx.

• If F is an odd function, then∫ a

−a

F (x) dx = 0.

This lemma follows easily from Figures 1.2 and 1.3. If F is even, then the
integral over the left half-interval [−a, 0] is the same as the integral over the
right half interval [0, a]. Thus, the integral over [−a, a] is twice the integral over
[0, a]. If F is odd, then the integral over the left half interval [−a, 0] cancels
with the integral over the right half-interval [0, a]. In this case, the integral over
[−a, a] is zero.

If the Fourier series of a function only involves the cosine terms, then it must
be an even function (since cosine is even). Likewise, a Fourier series that only
involves sines must be odd. The converse of this is also true, which is the content
of the next theorem.
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Theorem 1.8

• If f (x) is an even function, then its Fourier series on the [−a, a] will only
involve cosines; i.e., f (x) = a0 +∑∞

k=1 ak cos(kπx/a), with

a0 = 1

a

∫ a

0
f (x) dx,

ak = 2

a

∫ a

0
f (x) cos(kπx/a) dx, k ≥ 1.

• If f (x) is an odd function, then its Fourier series will only involve sines.
That is, f (x) = ∑∞

k=1 bk sin(kπx/a), with

bk = 2

a

∫ a

0
f (x) sin(kπx/a) dx.

Proof. This theorem follows from Lemma 1.7 and Theorem 1.4. If f is even,
then f (x) cos nπx/a is even and so its integral over [−a, a] equals twice the
integral over [0, a]. In addition, f (x) sin nπx/a is odd and so its integral over
[−a, a] is zero. The second part follows similarly. �

Fourier Cosine and Sine Series on a Half Interval. Suppose f is defined on the
interval [0, a]. By considering even or odd extensions of f , we can expand f

as a cosine or sine series. To express f as a cosine series, we consider the even
extension of f :

fe(x) =
{

f (x) if 0 ≤ x ≤ a,

f (−x) if − a ≤ x < 0 .

The function fe is an even function defined on [−a, a]. Therefore, only cosine
terms appear in its Fourier expansion:

fe(x) = a0 +
∞∑

k=1

ak cos kπx/a, −a ≤ x ≤ a, (1.16)

where ak is given in Theorem 1.8. Since fe(x) = f (x) for 0 ≤ x ≤ a, the integral
formulas in Theorem 1.8 only involve f (x) rather than fe(x) and so Eq. (1.16)
becomes

f (x) = a0 +
∞∑

k=1

ak cos kπx/a, 0 ≤ x ≤ a

with

a0 = 1

a

∫ a

0
f (x) dx,

ak = 2

a

∫ a

0
f (x) cos(kπx/a) dx, k ≥ 1.



50 FOURIER SERIES

Likewise, if f is odd, then we consider the odd extension of f :

fo(x) =
{

f (x) if 0 ≤ x ≤ a,

−f (−x) if − a ≤ x < 0.

The odd function, fo, has only sine terms in its Fourier expansion. Since fo(x) =
f (x) for 0 ≤ x ≤ a, we obtain the following sine expansion for f

f (x) =
∞∑

k=1

bk sin kπx/a, 0 < x ≤ a,

where bk is given in Theorem 1.8:

bk = 2

a

∫ a

0
f (x) sin(kπx/a).

The examples in the next section will clarify these ideas.

1.2.4 Examples

Let f be a function and let F(x) be its Fourier series on [−π, π]:

F(x) = a0 +
∞∑

n=1

an cos nx + bn sin nx

= a0 + lim
N→∞

N∑
n=1

an cos nx + bn sin nx,

where an and bn are the Fourier coefficients of f . We say that the Fourier series
converges if the preceding limit exists (as N → ∞). Theorems 1.2 and 1.4 only
compute the Fourier series of a given function. We have not yet shown that
a given Fourier series converges (or what it converges to). In Theorems 1.22
and 1.28, we show that under mild hypothesis on the differentiability of f , the
following principle holds:

Let f be a 2π-periodic function.

• If f is continuous at a point x, then its Fourier series, F(x), converges and

F(x) = f (x). (1.17)

• If f is not continuous at a point x, then F(x) converges to the average of
the left and right limits of f at x, that is,

F(x) = 1

2

(
lim

t→x−
f (t) + lim

t→x+
f (t)

)
. (1.18)
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The second statement includes the first because if f is continuous at x, then the
left and right limits of f are both equal to f (x) and so in this case, F(x) = f (x).

Rigorous statements and proofs of Theorems 1.22 and 1.28 are given in the fol-
lowing sections. In this section, we present several examples to gain insight into
the computation of Fourier series and the rate at which Fourier series converge.

Example 1.9 Consider the function f (x) = x on −π ≤ x < π . This function
is odd and so only the sine coefficients are nonzero. Its Fourier coefficients are

bk = 1

π

∫ π

−π

x sin(kx) dx

= 2(−1)k+1

k
(using integration by parts)

and so its Fourier series for the interval [−π, π] is

F(x) =
∞∑

k=1

2(−1)k+1

k
sin(kx).

The function f (x) = x is not 2π-periodic. Its periodic extension, f̃ , is given
in Figure 1.4. According to the principle in Eq. (1.17), F(x) converges to f̃ (x)

at points where f̃ is continuous. At points of discontinuity (x = · · · − π, π, . . . ),
F(x) will converge to the average of the left and right limits of f̃ (x), see Eq.
(1.18). For example, F(π) = 0 (since sin kπ = 0), which is the average of the
left and right limit of f̃ at x = π .

To see how fast the partial sums of this Fourier series converges to f̃ (x), we
graph the partial sum

SN(x) =
N∑

k=1

2(−1)k+1

k
sin(kx)

for various values of N . The graph of

S10(x) =
10∑

k=1

2(−1)k+1

k
sin(kx)

x−p p

Figure 1.4. The periodic extension of f (x) = x.
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−p p

Figure 1.5. Gibbs phenomenon for S10.

−p p

Figure 1.6. Gibbs phenomenon for S50 in Example 1.9.

is given in Figure 1.5 together with the graph of f̃ (x) (the squiggly curve is the
graph of S10).

First, notice that the accuracy of the approximation of f̃ (x) by S10(x) gets
worse as x gets closer to a point of discontinuity. For example, near x = π , the
graph of S10(x) must travel from about y = π to y = −π in a very short interval
resulting in a slow rate of convergence near x = π .

Second, notice the blips in the graph of the Fourier series just before and just
after the points of discontinuity of f (x) (near x = π for example). This effect is
called the Gibbs phenomenon . An interesting fact about the Gibbs phenomenon
is that the height of the blip is approximately the same no matter how many terms
are considered in the partial sum. However, the width of the blip gets smaller as
the number of terms increase. Figure 1.6 illustrates the Gibbs phenomenon for
S50 (the first 50 terms of the Fourier expansion) for f̃ . Exercise 32 explains the
Gibbs effect in more detail. �

Example 1.10 Consider the sawtooth wave illustrated in Figure 1.7. The for-
mula for f on the interval 0 ≤ x ≤ π is given by

f (x) =
{

x if 0 ≤ x ≤ π/2,

π − x if π/2 ≤ x ≤ π

and extends to the interval −π ≤ x ≤ 0 as an even function (see Figure 1.7).
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−p p

Figure 1.7. Sawtooth wave.

Since f is an even function, only the cosine terms are nonzero. Using Theorem
1.8, their coefficients are

a0 = 1

π

∫ π

0
f (x) dx

= π

4
(no integration is needed)

For j > 0, aj = 2

π

∫ π

0
f (x) cos(jx) dx

= 2

π

∫ π
2

0
x cos(jx) dx + 2

π

∫ π

π
2

(π − x) cos(jx) dx.

After performing the necessary integrals, we have

aj = 4 cos(jπ/2) − 2 cos(jπ) − 2

πj 2
for j > 0.

Only the a4k+2 are nonzero. These coefficients simplify to

a4k+2 = −2

π(2k + 1)2
.

So the Fourier series for the sawtooth wave is

F(x) = π

4
− 2

π

∞∑
k=0

1

(2k + 1)2
cos((4k + 2)x).

The sawtooth wave is already periodic and it is continuous. Thus its Fourier
series F(x) equals the sawtooth wave, f (x), for every x by the principle stated
at the beginning of this section, see (1.17). In addition, the rate of convergence
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is much faster than for the Fourier series in Example 1.9. To illustrate the rate
of convergence, we plot the sum of the first two terms of its Fourier series

S2(x) = π

4
− 2 cos(2x)

π

in Figure 1.8.
The sum of just two terms of this Fourier series gives a more accurate approx-

imation of the sawtooth wave than 10 or 50 or even 1000 terms of the Fourier
series in the previous (discontinuous) example. Indeed, the graph of the first 10
terms of this Fourier series (given in Figure 1.9) is almost indistinguishable from
the original function. �

Example 1.11 Let f (x) = sin(3x) + cos(4x). Since f is already expanded in
terms of sines and cosines, no work is needed to compute the Fourier series of f ;
that is, the Fourier series of f is just sin(3x) + cos(4x). This example illustrates
an important point. The Fourier coefficients are unique (Theorem 1.2 specifies
exactly what the ak and bk must be). Thus by inspection, b3 = 1, a4 = 1 and
all other ak and bk are zero. By uniqueness, these are the same values as would
have been obtained by computing the integrals in Theorem 1.2 for the ak and bk

(with much less work). �

Example 1.12 Let f (x) = sin2(x). In this example, f is not a linear combi-
nation of sines and cosines, so there is some work to do. However, instead of

−p p

Figure 1.8. Sum of first two Terms of the Fourier series of the sawtooth.

−p p

Figure 1.9. Ten terms of the Fourier series of the sawtooth.
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computing the integrals in Theorem 1.2 for the ak and bk, we use a trigonometric
identity

sin2(x) = 1

2
(1 − cos(2x)).

The right side is the desired Fourier series for f since it is a linear combination
of cos(kx) (here, a0 = 1/2, a2 = −1/2 and all other ak and bk are zero). �

Example 1.13 To find the Fourier sine series for the function f (x) = x2 + 1
valid on the interval 0 ≤ x ≤ 1, we first extend f as an odd function:

fo(x) =
{

f (x) = x2 + 1 for 0 ≤ x ≤ 1,

−f (−x) = −x2 − 1 for − 1 ≤ x < 0.

Then we use Theorem 1.8 to compute the Fourier coefficients for fo.

bn = 2
∫ 1

0
f (x) sin(nπx) dx

= 2
∫ 1

0
(x2 + 1) sin(nπx) dx.

Note that the formula of the odd extension of f to the interval −1 ≤ x ≤ 0 is
not needed for the computation of bn. Integration by parts (twice) gives

bn = −2
2n2π2(−1)n − 2(−1)n + 2 − n2π2

π3n3
.

When n = 2k is even, this simplifies to

b2k = − 1

kπ

and when n = 2k − 1 is odd:

b2k−1 = 2
12k2π2 − 12π2k + 3π2 − 4

π3(2k − 1)3
.

Thus the Fourier sine series for x2 + 1 on the interval [0, 1] is

F(x) =
∞∑

k=1

−
(

1

kπ

)
sin 2kπx

+ 2

(
12k2π2 − 12π2k + 3π2 − 4

π3(2k − 1)3

)
sin(2k − 1)πx. (1.19)

Now fo is defined on the interval [−1, 1]. Its periodic extension, f̃o is graphed
on the interval [−2, 2] in Figure 1.10. Its Fourier series, F(x), will converge to
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–2

–1

1

2

–2 –1 1 2

Figure 1.10. Periodic odd extension of f (x) = x2 + 1.

–1 1

Figure 1.11. Graph of F , the Fourier sine series of f (x) = x2 + 1.

f̃0(x) at each point of continuity of fo. At each integer, f̃o is discontinuous. By
the principle stated at the beginning of this section [see Eq. (1.18)], F(x) will
converge to zero at each integer value (the average of the left and right limits
of fo). This agrees with the value of F computed by using Eq. (1.19) (since
sin kπx is zero at each integer). A graph of F(x) is given in Figure 1.11. Note
that since f̃o(x) = f (x) for 0 < x < 1, the Fourier sine series F(x) agrees with
f (x) = x2 + 1 on the interval 0 < x < 1. A partial sum of the first 30 terms of
F(x) is given in Figure 1.12. �
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−2

–1

0

1

2

−2 −1 1 2

Figure 1.12. Graph of sum of first 30 terms of F(x).

Example 1.14 Solve the heat equation

ut (x, t) = uxx(x, t), t > 0, 0 ≤ x ≤ π,

u(x, 0) = f (x), 0 ≤ x ≤ π,

u(0, t) = 0, u(π, t) = 0.

where f (x) is the sawtooth wave in Example 1.10, that is,

f (x) =
{

x if 0 ≤ x ≤ π/2,

π − x if π/2 ≤ x ≤ π .

From the discussion in Section 1.1.3, the solution to this problem is

u(x, t) =
∞∑

k=1

bke
−k2t sin(kx). (1.20)

Setting t = 0 in (1.20) and using u(x, 0) = f (x), we obtain

f (x) = u(x, 0) =
∞∑

k=1

bk sin(kx).

Therefore, the bk must be chosen as the Fourier sine coefficients of f (x), which
by Theorem 1.8 are

bk = 2

π

∫ π

0
f (t) sin(kt) dt.
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Inserting the formula for f and computing the integral, the reader can show
bk = 0 when k is even. When k = 2j + 1 is odd, then

b2j+1 = 4(−1)j

π(2j + 1)2
.

Substituting bk into Eq. (1.20), the final solution is

u(x, t) =
∞∑

j=0

4(−1)j

π(2j + 1)2
sin((2j + 1)x)e−(2j+1)2t .

�

1.2.5 The Complex Form of Fourier Series

Often, it is more convenient to express Fourier series in its complex form
using the complex exponentials, einx, n ∈ Z, where Z denotes the integers
{. . . − 2, −1, 0, 1, 2, . . .}. The complex exponential has the following definition.

Definition 1.15 For any real number t , the complex exponential is

eit = cos(t) + i sin(t),

where i = √−1.

This definition is motivated by substituting x = it into the usual Taylor series
for ex :

ex = 1 + x + x2

2!
+ x3

3!
+ x4

4!
+ · · ·

with x = it : eit = 1 + (it) + (it)2

2!
+ (it)3

3!
+ (it)4

4!
+ · · · .

Collecting the real and imaginary parts, we obtain

eit =
(

1 − t2

2!
+ t4

4!
+ · · ·

)
+ i

(
t − t3

3!
+ t5

5!
− · · ·

)

= cos t + i sin t using the Taylor expansions of sin and cos.

The next lemma shows that the familiar properties of the real exponential also
hold for the complex exponential. These properties follow from the definition
together with basic trigonometric identities and will be left to the exercises (see
exercise 16).

Lemma 1.16 For all t, s ∈ R, we have

ei(t+2π) = eit ,

|eit | = 1,
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eit = e−it ,

eit eis = ei(t+s),

eit /eis = ei(t−s),

d

dt

{
eit
} = ieit .

The next theorem shows that the complex exponentials are orthonormal in
L2([π, π]).

Theorem 1.17 The set of functions { eint√
2π

, n = . . . ,−2, −1, 0, 1, 2, . . . } is

orthonormal in L2([−π, π]).

Proof. We must show

1

2π
〈eint , eimt 〉L2 = 1

2π

∫ π

−π

eint eimt dt =
{

1 if n = m,

0 if n �= m.

Using the third, fourth, and sixth properties in Lemma 1.16, we have

∫ π

−π

eint eimt dt =
∫ π

−π

eint e−imt dt

=
∫ π

−π

ei(n−m)t dt

= ei(n−m)t

i(n − m)
|π−π if n �= m

= 0.

If n = m, then eint e−int = 1 and so 〈eint , eint 〉 = 2π . This completes the
proof. �

Combining this theorem with Theorem 0.21, we obtain the following complex
version of Fourier series.

Theorem 1.18 If f (t) = ∑∞
n=−∞ αne

int on the interval −π ≤ t ≤ π , then

αn = 1

2π

∫ π

−π

f (t)e−int dt.

Example 1.19 Consider the function

f (t) =
{

1 if 0 ≤ t<π,

−1 if − π ≤ t<0.
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The nth complex Fourier coefficient is

αn = 1

2π

∫ π

−π

f (t)e−int dt

= 1

2π

∫ π

0
e−int dt − 1

2π

∫ 0

−π

e−int dt

= − i(1 − cos(nπ))

nπ

=
⎧⎨
⎩

−2i

nπ
if n is odd,

0 if n is even.

So the complex Fourier series of f is

∞∑
n=−∞

αne
int =

∞∑
k=−∞

−2i

(2k + 1)π
ei(2k+1)t .

The complex form of Fourier series can be formulated on other intervals as
well. �

Theorem 1.20 The set of functions{
1√
2a

einπt/a, n = · · · − 2, −1, 0, 1, 2, . . .

}

is an orthonormal basis for L2[−a, a]. If f (t) = ∑∞
n=−∞ αne

inπt/a , then

αn = 1

2a

∫ a

−a

f (t)e−inπt/a dt.

Relation Between the Real and Complex Fourier Series. If f is a real-valued
function, the real form of its Fourier series can be derived from its complex
form and vice-versa. For simplicity, we discuss this derivation on the interval
−π ≤ t ≤ π , but this discussion also holds for other intervals as well. We first
decompose the complex form of the Fourier series of f into positive and negative
terms:

f (t) =
−1∑

n=−∞
αne

int + α0 +
∞∑

n=1

αne
int , (1.21)

where

αn = 1

2π

∫ π

−π

f (t)e−int dt.
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If f is real-valued, then α−n = αn because

α−n = 1

2π

∫ π

−π

f (t)eint dt = 1

2π

∫ π

−π

f (t)e−int dt = αn.

Therefore, Eq. (1.21) becomes

f (t) = α0 +
( ∞∑

n=1

αne
int

)
+
⎛
⎝ ∞∑

n=1

αneint

⎞
⎠ .

Since z + z = 2Re(z) for any complex number z, this equation can be written as

f (t) = α0 + 2Re

( ∞∑
n=1

αne
int

)
. (1.22)

Now note the following relations between αn and the real Fourier coefficients,
an and bn, given in Theorem 1.2:

α0 = 1

2π

∫ π

−π

f (t) dt = a0

αn = 1

2π

∫ π

−π

f (t)e−int dt for n ≥ 1

= 1

2π

∫ π

−π

f (t)(cos nt − i sin nt) dt

= 1

2
(an − ibn).

Using Eq. (1.22), we obtain

f (t) = α0 + 2Re

( ∞∑
n=1

αne
int

)

= a0 + Re

( ∞∑
n=1

(an − ibn)(cos nt + i sin nt)

)

= a0 +
∞∑

n=1

an cos nt + bn sin nt,

which is the real form of the Fourier series of f . These equations can also be
stated in reverse order so that the complex form of its Fourier series can be
derived from its real Fourier series.
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1.3 CONVERGENCE THEOREMS FOR FOURIER SERIES

In this section, we prove the convergence of Fourier series under mild assump-
tions on the original function f . The mathematics underlying convergence is
somewhat involved. We start with the Riemann–Lebesgue Lemma, which is
important in its own right.

1.3.1 The Riemann–Lebesgue Lemma

In the examples in Section 1.2.4, the Fourier coefficients ak and bk converge to
zero as k gets large. This is not a coincidence as the following theorem shows.

Theorem 1.21 Riemann–Lebesgue Lemma . Suppose f is a piecewise continu-
ous function on the interval a ≤ x ≤ b. Then

lim
k→∞

∫ b

a

f (x) cos(kx) dx = lim
k→∞

∫ b

a

f (x) sin(kx) dx = 0.

A function is piecewise continuous if on any closed, bounded interval it has
only a finite number of discontinuities, all of which are “jumps,” where the
left-hand and right-hand limits exist but are not equal (cf. Section 1.3.3). For
example, the function shown in Figure 1.10 is piecewise continuous: It has only
jump discontinuities at the points x = 0, ±1,±2, . . ., but it is otherwise continu-
ous. The hypothesis that f is piecewise continuous sufficient for our needs here,
but it can be weakened considerably.

One important consequence of Theorem 1.21 is that only a finite number of
Fourier coefficients are larger (in absolute value) than any given positive number.
This fact is the basic idea underlying the process of data compression. One way
to compress a signal is first to express it as a Fourier series and then discard
all the small Fourier coefficients and retain (or transmit) only the finite number
of Fourier coefficients that are larger than some given threshold. (See exercise
35 for an illustration of this process.) We encounter data compression again in
future sections on the discrete Fourier transform and wavelets.

Proof. The intuitive idea behind the proof is that as k gets large, sin(kx) and
cos(kx) oscillate much more rapidly than does f (see Figure 1.13). If k is large,
f (x) is nearly constant on two adjacent periods of sin kx or cos kx. The graph
of the product of f (x) with sin(kx) is given in Figure 1.14 (the graph of the
product of f with cos kx is similar). The integral over each period is almost zero,
since the areas above and below the x axis almost cancel.

We give the following analytical proof of the theorem in the case of a contin-
uously differentiable function f . Consider the term

∫ b

a

f (x) cos(kx) dx.
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y = f (x)

y = sin (kx)

Figure 1.13. Plot of both y = f (x) and y = sin kx.

y = f (x) sin (kx)

Figure 1.14. Plot of y = f (x) sin kx.
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We integrate by parts with u = f and dv = cos kx to obtain

∫ b

a

f (x) cos(kx) dx = sin(kx)

k
f (x)|ba −

∫ b

a

sin(kx)

k
f ′(x) dx

= sin(kb)f (b) − sin(ka)f (a)

k
−
∫ b

a

sin(kx)

k
f ′(x) dx.

As k gets large in the denominator, the expression on the right converges to zero,
and this completes the proof. �

1.3.2 Convergence at a Point of Continuity

The sum appearing in a Fourier expansion generally contains an infinite number
of terms (the Fourier expansions of Examples 1.11 and 1.12 are exceptions). An
infinite sum is, by definition, a limit of partial sums, that is,

∞∑
k=1

ak cos(kx) + bk sin(kx) = lim
N→∞

N∑
k=1

ak cos(kx) + bk sin(kx)

provided the limit exists. Therefore, we say that the Fourier series of f converges
to f at the point x if

f (x) = a0 + lim
N→∞

N∑
k=1

ak cos(kx) + bk sin(kx).

With this in mind, we state and prove our first theorem on the convergence of
Fourier series.

Theorem 1.22 Suppose f is a continuous and 2π-periodic function. Then for
each point x, where the derivative of f is defined, the Fourier series of f at x

converges to f (x).

Proof. For a positive integer N , let

SN(x) = a0 +
N∑

k=1

ak cos(kx) + bk sin(kx), (1.23)

where ak and bk are the Fourier coefficients of the given function f . Our ultimate
goal is to show SN(x) → f (x) as N → ∞. Before this can be done, we need to
rewrite SN into a different form. This process requires several steps.
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Step 1. Substituting the Fourier Coefficients. After substituting the formulas
for the ak and bk (1.12)–(1.14), we obtain

SN(x) = 1

2π

∫ π

−π

f (t) dt

+ 1

π

N∑
k=1

(∫ π

−π

f (t) cos(kt) cos(kx) dt

+
∫ π

−π

f (t) sin(kt) sin(kx) dt

)

= 1

π

∫ π

−π

f (t)

(
1

2
+

N∑
k=1

cos(kt) cos(kx) + sin(kt) sin(kx)

)
dt.

Using the addition formula for the cosine function, cos(A − B) =
cos(A) cos(B) + sin(A) sin(B), we obtain

SN(x) = 1

π

∫ π

−π

f (t)

(
1

2
+

N∑
k=1

cos(k(t − x))

)
dt. (1.24)

To evaluate the sum on the right side, we need the following lemma.
Step 2. Evaluating the Sum on the Right Side.

Lemma 1.23 For any number u, −π ≤ u ≤ π ,

1

2
+ cos(u) + cos(2u) + · · · + cos(Nu) =

⎧⎨
⎩

sin((N + 1/2)u)

2 sin(u/2)
, u �= 0,

N + 1/2, u = 0.

Proof of Lemma 1.23. Recall the complex exponential is defined as eiu =
cos(u) + i sin(u). Note that

(eiu)n = einu = cos(nu) + i sin(nu).

So, cos nu = Re{(eiu)n}. Therefore

1

2
+ cos(u) + cos(2u) + · · · + cos(Nu)

= −1

2
+ (1 + cos(u) + cos(2u) + · · · + cos(Nu))

and so

1

2
+

N∑
k=1

cos ku = −1

2
+ Re

{
N∑

k=0

(eiu)k

}
. (1.25)



66 FOURIER SERIES

The sum on the right is a geometric series,
∑N

k=0 zk , where z = eiu.
For any number z, we have

N∑
k=0

zk = 1 − zN+1

1 − z
. (1.26)

This formula is established as follows: let

sN =
N∑

k=0

zk.

Then

(1 − z)sN = (1 − z)(1 + z + z2 + · · · + zN)

= (1 + z + · · · + zN) − (z + z2 + · · · + zN+1)

= 1 − zN+1.

Dividing both sides by (1 − z) yields Eq. (1.26).
Applying (1.26) with z = eiu to (1.25), we obtain

1

2
+ cos(u) + cos(2u) + · · · + cos(Nu) = −1

2
+ Re

{
1 − ei(N+1)u

1 − eiu

}
. (1.27)

To compute the expression on the right, we multiply the numerator and denom-
inator by e−iu/2:

Re

{
1 − ei(N+1)u

1 − eiu

}
= Re

{
e−iu/2 − ei(N+1/2)u

e−iu/2 − eiu/2

}
.

The denominator on the right is −2i sin(u/2); so

Re

{
1 − ei(N+1)u

1 − eiu

}
= sin(u/2) + sin((N + 1/2)u)

2 sin(u/2)
.

Inserting this equation into the right side of Eq. (1.27) gives

1

2
+ cos(u) + cos(2u) + · · · + cos(Nu) = −1

2
+ sin(u/2) + sin((N + 1/2)u)

2 sin(u/2)

= sin((N + 1/2)u)

2 sin(u/2)
.

This completes the proof of Lemma 1.23. �
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Step 3. Evaluation of the Partial Sum of Fourier Series. Using Lemma 1.23
with u = t − x, Eq. (1.24) becomes

SN(x) = 1

π

∫ π

−π

f (t)

(
1

2
+

N∑
k=1

cos(k(t − x))

)
dt

= 1

2π

∫ π

−π

f (t)

(
sin((N + 1/2)(t − x))

sin((t − x)/2)

)
dt

=
∫ π

−π

f (t)PN(t − x) dt,

where we have let

PN(u) = 1

2π

sin((N + 1/2)u)

sin(u/2)
. (1.28)

Now use the change of variables u = t − x in the preceding integral to
obtain

SN(x) =
∫ π−x

−π−x

f (u + x)PN(u) du.

Since both f and PN are periodic with period 2π , the limits of integration
can be shifted by x without changing the value of the integral (see Lemma
1.3). Therefore

SN(x) =
∫ π

−π

f (u + x)PN(u) du. (1.29)

Next, we need the following lemma.
Step 4. Integrating the Fourier Kernel.

Lemma 1.24 ∫ π

−π

PN(u) du = 1.

Proof of Lemma 1.24. We use Lemma 1.23 to write

PN(u) = 1

π

sin((N + 1/2)u)

2 sin(u/2)

= 1

π

(
1

2
+ cos(u) + cos(2u) + · · · + cos(Nu)

)
.

Integrating this equation gives∫ π

−π

PN(u) du =
∫ π

−π

1

2π
du + 1

π

∫ π

−π

(
cos(u) + cos(2u) + · · · + cos(Nu)

)
du.
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The second integral on the right is zero (since the antiderivatives involve the
sine, which vanishes at multiples of π). The first integral on the right is one, and
the proof of the lemma is complete. �

Step 5. The End of the Proof of Theorem 1.22. As indicated at the beginning
of the proof, we must show that SN(x) → f (x) as N → ∞. Inserting
the expression for SN(x) given in Eq. (1.29), we must show

∫ π

−π

f (u + x)PN(u) du → f (x). (1.30)

In view of Lemma 1.24, f (x) = ∫ π

−π
f (x)PN(u) du and so we are

reduced to showing

∫ π

−π

(f (u + x) − f (x))PN (u) du → 0 as N → ∞.

Using Eq. (1.28), the preceding limit becomes

1

2π

∫ π

−π

(
f (u + x) − f (x)

sin(u/2)

)
sin((N + 1/2)u) du → 0. (1.31)

We can use the Riemann–Lebesgue Lemma (see Theorem 1.21) to estab-
lish Eq. (1.31), provided that we show that the function

g(u) = f (u + x) − f (x)

sin(u/2)

is continuous (as required by the Riemann–Lebesgue Lemma). Here,
x is a fixed point and u is the variable. The only possible value of
u ∈ [−π, π] where g(u) could be discontinuous is u = 0. However, since
f ′(x) = limu→0

f (u+x)−f (x)

u
exists by hypothesis, we have

lim
u→0

g(u) = lim
u→0

f (u + x) − f (x)

sin(u/2)

= lim
u→0

f (u + x) − f (x)

u

u/2

sin(u/2)
· 2

= f ′(x) · 1 · 2

(
because lim

t→0

t

sin t
= 1

)

= 2f ′(x).

Thus g(u) extends across u = 0 as a continuous function by
defining g(0) = 2f ′(x). We conclude that Eq. (1.31) holds by the
Riemann–Lebesgue Lemma. This finishes the proof of Theorem 1.22.
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x−p p

Figure 1.15. Periodic extension of f (x) = x.

1.3.3 Convergence at a Point of Discontinuity

Now we discuss some variations of Theorem 1.22. Note that the hypothesis of
this theorem requires the function f to be continuous and periodic. However,
there are many functions of interest that are neither continuous or periodic. For
example, the function in Example 1.9, f (x) = x is not periodic. Moreover, the
periodic extension of f (graphed in Figure 1.15) is not continuous.

Before we state the theorem on convergence near a discontinuity, we need the
following definition.

Definition 1.25 The right and left limits of f at a point x are defined as follows:

Right Limit : f (x + 0) = lim
h→0+

f (x + h).

Left Limit : f (x − 0) = lim
h→0+ f (x − h).

The function f is said to be right differentiable if the following limit exists:

f ′(x + 0) = lim
h→0+

f (x + h) − f (x + 0)

h
.

The function f is said to be left differentiable if the following limit exists:

f ′(x − 0) = lim
h→0+

f (x − 0) − f (x − h)

h
.

Intuitively, f ′(x − 0) represents the slope of the tangent line to f at x con-
sidering only the part of the graph of y = f (t) that lies to the left of t = x. The
value f ′(x + 0) is the slope of the tangent line of y = f (t) at x considering
only the graph of the function that lies to the right of t = x (see Figure 1.16).
These can exist even when f itself is discontinuous, for example when it has a
jump discontinuity, which, in Section 1.3.1, we defined to be a point x for which
f (x + 0) and f (x − 0) both exist, but f (x + 0) �= f (x − 0).
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Slope =  f ′(x – 0)

Slope =  f ′(x + 0)

x

Figure 1.16. Left and right derivatives.

Example 1.26 Let f (x) be the periodic extension of y = x, −π ≤ x < π . Then
f (x) is discontinuous at x = . . . ,−π, π, . . . . The left and right limits of f at
x = π are

f (π − 0) = π, f (π + 0) = −π.

The left and right derivatives at x = π are

f ′(π − 0) = 1 and f ′(π + 0) = 1. �

Example 1.27 Let

f (x) =
{

x if 0 ≤ x ≤ π/2,

π − x if π/2 ≤ x ≤ π.

The graph of f is the sawtooth wave illustrated in Figure 1.7. This function is
continuous, but not differentiable at x = π/2. The left and right derivatives at
x = π/2 are

f ′(π/2 − 0) = 1 and f ′(π/2 + 0) = −1. �

−3p  −p p 3p

Figure 1.17. Graph of the Fourier series for Example 1.29.
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Now we are ready to state the convergence theorem for Fourier series at a
point where f is not necessarily continuous.

Theorem 1.28 Suppose f (x) is periodic and piecewise continuous. Suppose x

is a point where f is left and right differentiable (but not necessarily continuous).
Then the Fourier series of f at x converges to

f (x + 0) + f (x − 0)

2
.

This theorem states that at a point of discontinuity of f , the Fourier series
of f converges to the average of the left and right limits of f . At a point of
continuity, the left and right limits are the same and so in this case, Theorem
1.28 reduces to Theorem 1.22.

Example 1.29 Let f (x) be the periodic extension of y = x, −π ≤ x < π . As
mentioned in Example 1.26, f is not continuous, but left and right differentiable
at x = π . Theorem 1.28 states that its Fourier series, F(x), converges to the
average of the left and right limits of f at x = π . Since f (π − 0) = π and
f (π + 0) = −π , Theorem 1.28 implies F(π) = 0. This value agrees with the
formula for the Fourier series computed in Example 1.9:

F(x) =
∞∑

k=1

2(−1)k+1

k
sin(kx),

whose value is zero at x = π . The graph of F is given in Figure 1.17. Note that
the value of F at x = ±π and x = ±3π (indicated by the solid dots) is equal to
the average of the left and right limits at x = ±π and x = ±3π . �
Proof of Theorem 1.28. The proof of this theorem is very similar to the proof
of Theorem 1.22. We summarize the modifications.

Steps 1 through 3 go through without change. Step 4 needs to be modified as
follows:

Step 4′. ∫ π

0
PN(u) du =

∫ 0

−π

PN(u) du = 1

2
,

where

PN(u) = 1

2π

sin(N + 1/2)u

sin u/2
.

In fact, these equalities follow from Lemma 1.24 and by using the fact
that PN(u) is even (so the left and right half-integrals are equal and sum
to 1).

Step 5 is now replaced by the following.
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Step 5′. To show Theorem 1.28, we need to establish∫ π

−π

f (u + x)PN(u) du → f (x + 0) + f (x − 0)

2
(1.32)

as N → ∞.
We show Eq. (1.32) by establishing the following two limits:∫ π

0
f (u + x)PN(u) du → f (x + 0)

2
,

∫ 0

−π

f (u + x)PN(u) du → f (x − 0)

2
.

Using Step 4′, these limits are equivalent to the following two limits:∫ π

0
(f (u + x) − f (x + 0))PN(u) du → 0, (1.33)

∫ 0

−π

(f (u + x) − f (x − 0))PN(u) du → 0. (1.34)

Using the definition of PN(u), Eq. (1.33) is equivalent to showing

1

2π

∫ π

0

(
f (x + u) − f (x + 0)

sin(u/2)

)
sin((N + 1/2)u) du → 0.

This limit follows from the Riemann–Lebesgue Lemma exactly as in
Step 5. Since u is positive in the preceding integral, we only need to
know that the expression in parentheses is continuous from the right
(i.e., has a right limit as u → 0+). Since f is assumed to be right
differentiable, the same limit argument from Step 5 can be repeated
here (with u > 0).

Similar arguments can be used to establish Eq. (1.34). This completes
the proof of Theorem 1.28.

1.3.4 Uniform Convergence

Now we discuss uniform convergence of Fourier series. As stated in Definition
0.8, a sequence of functions Fn(x) converges uniformly to F(x) if the rate
of convergence is independent of the point x. In other words, given any
small tolerance, ε > 0 (such as ε = .01), there exists a number N that is
independent of x, such that |Fn(x) − F(x)| < ε for all x and all n ≥ N .
If the FN did not converge uniformly, then one might have to choose
different values of N for different x values to achieve the same degree of
accuracy.
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We say that the Fourier series of f (x) converges to f (x) uniformly if the
sequence of partial sums

SN(x) = a0 +
N∑

k=1

ak cos(kx) + bk sin(kx)

converges to f (x) uniformly as N → ∞, where the ak and bk are the Fourier
coefficients of f .

From Figures 1.8 and 1.9, it appears that the Fourier series in Example 1.10
converges uniformly. By contrast, the Fourier series in Example 1.9 does not
appear to converge uniformly to f (x). As the point x gets closer to a point of
discontinuity of f , the rate of convergence gets slower. Indeed, the number of
terms, N , that must be used in the partial sum of the Fourier series to achieve a
certain degree of accuracy must increase as x approaches a point of discontinuity.

In order to state the following theorem on uniform convergence, one more
definition is needed. A function is said to be piecewise smooth if it is piecewise
continuous and its first derivative is also piecewise continuous. On any closed,
bounded interval, a piecewise smooth function can have a finite number jump
discontinuities and corners, where its left and right derivatives exist but may not
be equal. Except for these points, f is continuously differentiable. For example,
the 2π-periodic extension of f (x) = x, −π ≤ x < π , shown in Figure 1.4, has
jump discontinuities at multiples of π , and so does its derivative. Otherwise, it
is continuously differentiable. For us, a more important instance is the sawtooth
function in Example 1.10. This function is both continuous and piecewise smooth .
The derivatives involved exist at all points except at multiples of π/2, where
the sawtooth function has corners, which are just jump discontinuities in its
derivative.

We now state the theorem for uniform convergence of Fourier series for the
interval [−π, π]. This theorem also holds with π replaced by any number a.

Theorem 1.30 The Fourier series of a continuous, piecewise smooth
2π-periodic function f (x) converges uniformly to f (x) on [−π, π].

Example 1.31 Consider the sawtooth wave in Example 1.10. The graph of its
periodic extension is piecewise smooth, as is clear from Figure 1.7. Therefore,
Theorem 1.30 guarantees that its Fourier series converges uniformly. �

Example 1.32 Consider the Fourier series for the function f (x) = x on the
interval [−π, π] considered in Example 1.9. Since f (x) = x is not periodic, we
need to consider its periodic extension, which is graphed in Figure 1.4. Note that
although its periodic extension is piecewise smooth, it is not continuous—even
though f (x) = x is everywhere smooth. Therefore, Theorem 1.30 does not apply.
In fact, due to the Gibbs effect in this example (see Figures 1.5 and 1.6), the
Fourier series for this example does not converge uniformly. �
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Proof of Theorem 1.30. We prove this theorem under the simplifying assump-
tion that f is everywhere twice differentiable.

As a first step, we prove the following relationship between the Fourier coef-
ficients of f and the corresponding Fourier coefficients of f ′′: If

f (x) =
∑

n

an cos(nx) + bn sin(nx)

and f ′′(x) =
∑

n

a′′
n cos(nx) + b′′

n sin(nx),

then

an = −a′′
n

n2
, (1.35)

bn = −b′′
n

n2
. (1.36)

To establish the first relation, we use integration by parts on the integral formula
for an (Theorem 1.2) to obtain

an = 1

π

∫ π

−π

f (x) cos(nx) dx

= f (x)
sin(nx)

n

∣∣π−π − 1

π

∫ π

−π

f ′(x)
sin(nx)

n
dx.

The first term on the right is zero since sin nπ = sin(−nπ) = 0. The second term
on the right is −b′

n/n, where b′
n is the Fourier sine coefficient of f ′. Repeating

the same process (this time with dv = (sin nx)/n and u = f ′) gives

an = −1

πn2

∫ π

−π

f ′′(x) cos(nx) dx.

The right side is −a′′
n/n2, as claimed in (1.35). Equation (1.36) for bn is proved

in a similar manner.
If f ′′ is continuous, then both the a′′

n and b′′
n stay bounded by some number

M (in fact, by the Riemann–Lebesgue Lemma, a′′
n and b′′

n converge to zero as
n → ∞). Therefore using (1.35) and (1.36), we obtain

∞∑
n=1

|an| + |bn| =
∞∑

n=1

|a′′
n | + |b′′

n|
n2

≤
∞∑

n=1

M + M

n2
.
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This series is finite by the integral test for series (i.e.,
∑∞

n=1 1/n2 is finite since∫∞
1 dx/x2 is finite).

The proof of the theorem will now follow from the following lemma.

Lemma 1.33 Suppose

f (x) = a0 +
∞∑

k=1

ak cos(kx) + bk sin(kx)

with ∞∑
k=1

|ak| + |bk| < ∞.

Then the Fourier series converges uniformly and absolutely to the function f (x).

Proof. We start with the estimate

|ak cos(kx) + bk sin(kx)| ≤ |ak| + |bk| (1.37)

(valid since | cos t |, | sin t | ≤ 1). Thus the rate of convergence of the Fourier series
of f at any point x is governed by the rate of convergence of

∑
k |ak| + |bk|.

More precisely, let

SN(x) = a0 +
N∑

k=1

ak cos(kx) + bk sin(kx).

Then

f (x) − SN(x) = a0 +
∞∑

k=1

ak cos(kx) + bk sin(kx)

−
(

a0 +
N∑

k=1

ak cos(kx) + bk sin(kx)

)
.

The a0 and the terms up through k = N cancel. Thus

f (x) − SN(x) =
∞∑

k=N+1

ak cos(kx) + bk sin(kx).

By Eq. (1.37), we have

|f (x) − SN(x)| ≤
∞∑

k=N+1

|ak| + |bk| (1.38)

uniformly for all x. Since the series
∑∞

k=1 |ak| + |bk| converges by hypothesis, the
tail end of this series can be made as small as desired by choosing N large enough.
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So given ε > 0, there is an integer N0 > 0 so that if N >N0, then
∑∞

k=N+1 |ak| +
|bk| < ε. From Eq. (1.38), we have

|f (x) − SN(x)| < ε for N > N0

for all x. N does not depend on x; N depends only on the rate of convergence of∑∞
k=1 |ak| + |bk|. Therefore, the convergence of SN(x) is uniform. This completes

the proof of Lemma 1.33 and of Theorem 1.30. �

1.3.5 Convergence in the Mean

As pointed out in the previous section, if f (x) is not continuous, then its Fourier
series does not converge to f (x) at points where f (x) is discontinuous (it con-
verges to the average of its left and right limits instead). In cases where a Fourier
series does not converge uniformly, it may converge in a weaker sense, such as in
L2 (in the mean). We investigate L2 convergence of Fourier series in this section.
Again, we state and prove the results in this section for 2π-periodic functions.
However, the results remain true for other intervals as well (by replacing π by
any number a and by using the appropriate form of the Fourier series for the
interval [−a, a]).

First, we recall some concepts from Chapter 0 on inner product spaces. We will
be working with the space V = L2([−π, π]) consisting of all square integrable
functions (i.e., f with

∫ π

−π
|f (x)|2 dx < ∞). V is an inner product space with

the following inner product:

〈f, g〉 =
∫ π

−π

f (x)g(x) dx.

The norm ‖f ‖ in this space is therefore defined by

‖f ‖2 =
∫ π

−π

|f (x)|2 dx.

We remind you of the two most important inequalities of an inner product space:

〈f, g〉V ≤ ‖f ‖ ‖g‖ and ‖f + g‖ ≤ ‖f ‖ + ‖g‖.
The first of these is the Schwarz inequality and the second is the triangle
inequality .

Let

VN = the linear span of {1, cos(kx), sin(kx), k = 1 . . . N}.
An element in VN is a sum of the form

c0 +
N∑

k=1

ck cos(kx) + dk sin(kx),
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where ck and dk are any complex numbers. Suppose f belongs to L2[−π, π].
Let

fN(x) = a0 +
N∑

k=1

ak cos(kx) + bk sin(kx) ∈ VN

be its partial Fourier series, where the ak and bk are the Fourier coefficients given
in Theorem 1.2. The key point in the proof of Theorem 1.2 is that ak and bk

are obtained by orthogonally projecting f onto the space spanned by cos(kx)

and sin(kx) (see the remark just after Theorem 1.2). Thus, fN is the orthogonal
projection of f onto the space VN . In particular, fN is the element in VN that
is closest to f in the L2 sense. We summarize this discussion in the following
lemma.

Lemma 1.34 Suppose f is an element of V = L2([−π, π]). Let

VN = the linear span of {1, cos(kx), sin(kx), 1 ≤ k ≤ N}.

Let

fN(x) = a0 +
N∑

k=1

ak cos(kx) + bk sin(kx),

where ak and bk are the Fourier coefficients of f . Then fN is the element in VN

which is the closest to f in the L2 norm, that is,

‖f − fN‖L2 = min
g∈VN

‖f − g‖L2 .

The main result of this section is contained in the next theorem.

Theorem 1.35 Suppose f is an element of L2([−π, π]). Let

fN(x) = a0 +
N∑

k=1

ak cos(kx) + bk sin(kx)

where ak and bk are the Fourier coefficients of f . Then fN converges to f in
L2([−π, π]), that is, ‖fN − f ‖L2 → 0 as N → ∞.

Theorem 1.35 also holds for the complex form of Fourier series.

Theorem 1.36 Suppose f is an element of L2([−π, π]) with (complex) Fourier
coefficients given by

αn = 1

2π

∫ π

−π

f (t)e−int dt for n ∈ Z.
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Then the partial sum

fN(t) =
N∑

k=−N

αke
ikt

converges to f in the L2([−π, π]) norm as N → ∞.

Example 1.37 All the examples considered in this chapter arise from func-
tions that are in L2 (over the appropriate interval under consideration for each
example). Therefore, the Fourier series of each example in this chapter converges
in the mean. �

Proof. The proofs of both theorems are very similar. We will give the proof of
Theorem 1.35.

The proof of this involves two key steps. The first step (the next lemma)
states that any function in L2([−π, π]) can be approximated in the L2 norm by
a piecewise smooth periodic function g. The second step (Theorem 1.30) is to
approximate g uniformly (and therefore in L2) by its Fourier series. We start
with the following lemma.

Lemma 1.38 A function in L2([−π, π]) can be approximated arbitrarily closely
by a smooth, 2π-periodic function.

A rigorous proof of this lemma is beyond the scope of this book. However,
we can give an intuitive idea as to why this lemma holds. A typical element f ∈
L2[−π, π] is not continuous. Even if it were continuous, its periodic extension
is often not continuous. The idea is to connect the continuous components of f

with the graph of a smooth function g. This is illustrated in Figures 1.18–1.20.
In Figure 1.18, the graph of a typical f ∈ L2[−π, π] is given. The graph of
its periodic extension is given in Figure 1.19. In Figure 1.20, the graph of a
continuous g that connects the continuous components of f is superimposed on
the graph of f . Rounding the corners of the connecting segments then molds g

into a smooth function. Since the extended f is periodic, we can arrange that g

is periodic as well.
The graph of g agrees with the graph of f everywhere except on the connecting

segments that connect the continuous components of f . Since the horizontal
width of each of these segments can be made very small (by increasing the
slopes of these connecting segments), g can be chosen very close to f in the L2

norm. These ideas are explored in more detail in Exercise 31.
Now we can complete the proof of Theorem 1.36. Suppose f ∈ L2[−π, π].

Using Lemma 1.38, we can (for any ε > 0) choose a differentiable periodic func-
tion g with

||f − g||L2 < ε. (1.39)



CONVERGENCE THEOREMS FOR FOURIER SERIES 79

−p p

Figure 1.18. Typical f in L2.
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Figure 1.19. Periodic extension of f .

Let

gN(x) = c0 +
N∑

k=1

ck cos(kx) + dk sin(kx)

where ck and dk are the Fourier cosine and sine coefficients for g. Since g

is differentiable and periodic, we can uniformly approximate g by gN using
Theorem 1.30. By choosing N0 large enough, we can arrange |g(x) − gN(x)| < ε
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−3p  −p p 3p

Figure 1.20. Approximation of f by a smooth g.

for all x ∈ [−π, π] and for N >N0. We have

‖g − gN‖2 =
∫ π

−π

|g(x) − gN(x)|2 dx ≤
∫ π

−π

ε2 dx if N >N0

= 2πε2.

By taking square roots, we obtain

‖g − gN‖ <
√

2πε.

Combining this estimate with (1.39), we obtain

‖f − gN‖ ≤ ‖f − g‖ + ‖g − gN‖ (Triangle Inequality)

< ε +
√

2πε for N >N0.

Now gN is a linear combination of sin(kx) and cos(kx) for k ≤ N and therefore
gN belongs to VN . We have already shown that fN is the closest element from
VN to f in the L2 norm (see Lemma 1.34). Therefore, we conclude

‖f − fN‖ ≤ ‖f − gN‖
< (1 +

√
2π)ε for N >N0.

Since the tolerance, ε, can be chosen as small as desired, the proof of Theorem
1.35 is complete.
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One consequence of Theorems 1.35 and 1.36 is the following theorem, which
is known as Parseval’s equation . We will state both the real and complex
versions.

Theorem 1.39 Parseval’s Equation—Real Version . Suppose

f (x) = a0 +
∞∑

k=1

ak cos(kx) + bk sin(kx) ∈ L2[−π, π].

Then

1

π

∫ π

−π

|f (x)|2 dx = 2|a0|2 +
∞∑

k=1

|ak|2 + |bk|2. (1.40)

Theorem 1.40 Parseval’s Equation—Complex Version . Suppose

f (x) =
∞∑

k=−∞
αke

ikx ∈ L2[−π, π].

Then

1

2π
‖f ‖2 = 1

2π

∫ π

−π

|f (x)|2 dx =
∞∑

k=−∞
|αk|2. (1.41)

Moreover, for f and g in L2[−π, π] we obtain

1

2π
〈f, g〉 = 1

2π

∫ π

−π

f (t)g(t) dt =
∞∑

n=−∞
αnβn. (1.42)

Remark. The L2 norm of a signal is often interpreted as its energy. With
this physical interpretation, the squares of the Fourier coefficients of a signal
measure the energy of the corresponding frequency components. Therefore, a
physical interpretation of Parseval’s equation is that the energy of a signal is
simply the sum of the energies from each of its frequency components. (See
Example 1.41.)

Proof. We prove the complex version of Parseval’s equation. The proof of the
real version is similar.

We prove Eq. (1.42). Equation (1.41) then follows from Eq. (1.42) by setting
f = g.
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Let

fN(x) =
N∑

k=−N

αke
ikx,

gN(x) =
N∑

k=−N

βke
ikx

be the partial sum of the Fourier series of f and g, respectively. By Theorem
1.36 , fN → f and gN → g in L2[−π, π] as N → ∞. We have

〈fN, gN 〉 =
〈

N∑
k=−N

αke
ikx,

N∑
n=−N

βne
inx

〉
=

N∑
k=−N

N∑
n=−N

αkβn〈eikx, einx〉.

Since {eikx/
√

2π, k = . . . , −1, 0, 1, . . . } is orthonormal, 〈eikx, einx〉 is 0 if k �= n

and 2π if k = n. Therefore

〈fN, gN 〉 =
N∑

n=−N

αnβn〈einx, einx〉

= 2π

N∑
n=−N

αnβn.

Equation (1.42) follows by letting N → ∞, provided that we show

〈fN, gN 〉 → 〈f, g〉 as N → ∞. (1.43)

To show (1.43), we write

|〈f, g, 〉 − 〈fN, gN 〉| = | (〈f, g, 〉 − 〈f, gN 〉) + (〈f, gN 〉 − 〈fN, gN 〉) |
≤ |〈f, g − gN 〉| + |〈f − fN, gN 〉|
≤ ‖f ‖ ‖g − gN‖ + ‖f − fN‖ ‖gN‖,

where the last step follows by Schwarz’s Inequality. Since ‖fN − f ‖ → 0 and
‖g − gN‖ → 0 in L2, the right side converges to zero as N → ∞ and Eq. (1.43)
follows. �
Note. If the series on the right side of Eq. (1.41) is truncated at some finite value
N , then the right side can only get smaller, resulting in the following inequality:

N∑
k=−N

|αk|2 ≤ 1

2π
‖f ‖2.

This in known as Bessel’s Inequality .
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Example 1.41 As we noted earlier, one interpretation of Parseval’s Theorem is
that the energy in a signal is the sum of the energies associated with its Fourier
components. In Example 1.9, we found that the Fourier coefficients for f (x) = x,
−π ≤ x < π are an = 0 and bn = (2/n)(−1)n+1. By Eq. (1.40), we have

1

π

∫ π

−π

x2 dx =
∞∑

n=1

4

n2
.

Evaluating the integral on the left and dividing both sides by 4, we see that

∞∑
n=1

1

n2
= π2

6
.

This sum is computed another way in Exercise 22. �

EXERCISES

1. Expand the function f (x) = x2 in a Fourier series valid on the interval
−π ≤ x ≤ π . Plot both f and the partial sums of its Fourier series,

SN(x) =
N∑

k=0

ak cos(kx) + bk sin(kx)

for N = 1, 2, 5, 7. Observe how the graphs of the partial sums SN(x) approx-
imate the graph of f . Plot the same graphs over the interval −2π ≤ x ≤ 2π .

2. Repeat the previous exercise for the interval −1 ≤ x ≤ 1. That is, expand
the function f (x) = x2 in a Fourier series valid on the interval −1 ≤ x ≤ 1.
Plot both f and the partial Fourier series

N∑
k=0

ak cos(πkx) + bk sin(πkx)

for N = 1, 2, 5, 7 over the interval −1 ≤ x ≤ 1 and −2 ≤ x ≤ 2.
3. Expand the function f (x) = x2 in a Fourier cosine series on the interval

0 ≤ x ≤ π .
4. Expand the function f (x) = x2 in a Fourier sine series on the interval 0 ≤

x ≤ 1.
5. Expand the function f (x) = x3 in a Fourier cosine series on the interval

0 ≤ x ≤ π .
6. Expand the function f (x) = x3 in a Fourier sine series on the interval 0 ≤

x ≤ 1.
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7. Expand the function f (x) = | sin x| in a Fourier series valid on the interval
−π ≤ x ≤ π .

8. Expand the function

f (x) =
{

1 −1/2 < x ≤ 1/2,

0 −1 < x ≤ −1/2 or 1/2 < x ≤ 1

in a Fourier series valid on the interval −1 ≤ x ≤ 1. Plot the various partial
Fourier series along with the graph of f as in exercise 1 for N = 5, 10, 20,

and 40 terms. Notice how much slower the series converges to f in this
example than in exercise 1. What accounts for the slow rate of convergence
in this example?

9. Expand the function f (x) = cos x in a Fourier sine series on the interval
0 ≤ x ≤ π .

10. Consider the function f (x) = π − x, 0 ≤ x ≤ π .
(a) Sketch the even, 2π-periodic extension of f . Find the Fourier cosine

series for f .
(b) Sketch the odd, 2π-periodic extension of f . Find the Fourier sine series

for f .
(c) Sketch the π-periodic extension of f . Find the Fourier series for f .

11. Let f (x) = e−x/3, −π ≤ π and let g(x) = e−x/3, but now defined on 0 ≤
x ≤ 2π .
(a) Plot the 2π-periodic extension of f . Find the complex form of the Fourier

series for f .
(b) Plot the 2π-periodic extension of g. Find the complex form of the Fourier

series for g. (Hint : Use Lemma 1.3 in connection with finding the com-
plex coefficients.)

12. Expand the function f (x) = erx in a Fourier series valid for −π ≤ x ≤ π .
For the case r = 1/2, plot the partial Fourier series along with the graph of
f as in problem 1 for N = 10, 20 and 30 terms. Plot these functions over
the interval −π ≤ x ≤ π and also −2π ≤ x ≤ 2π .

13. Use Exercise 12 to compute the Fourier coefficients for the function f (x) =
sinh x = (ex − e−x)/2 and f (x) = cosh(x) = (ex + e−x)/2 over the interval
−π ≤ x ≤ π .

14. Show that ∫ 1

0
cos(2nπx) sin(2kπx) dx = 0.

15. Show that {
. . . ,

1√
a

cos

(
2πt

a

)
,

1√
a

cos

(
πt

a

)
,

1√
2a

,
1√
a

sin

(
πt

a

)
,

1√
a

sin

(
2πt

a

)
, . . .

}
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is an orthonormal set of functions in the space L2([−a, a]). Establish the
proof of Theorem 1.4.

16. Prove Lemma 1.16 and Theorem 1.20.
17. Let SN(x) be the real form of the partial sum defined in Eq. (1.23). Show

that if the complex form of the Fourier series is used instead, then SN also
can be expressed as

SN(x) =
N∑

n=−N

αne
inx.

18. Let f and g be 2π-periodic, piecewise smooth functions having Fourier
series f (x) = ∑

n αne
inx and g(x) = ∑

n βne
inx , and define the convolution

of f and g to be f ∗ g(x) = 1
2π

∫ π

−π
f (t)g(x − t) dt . Show that the complex

form of the Fourier series for f ∗ g is

f ∗ g(x) =
∞∑

n=−∞
αnβne

inx.

19. Let F(x) be the Fourier series for the function

f (x) =
{

1, −1/2 < x ≤ 1/2,

0, −1 < x ≤ −1/2 or 1/2 < x ≤ 1.

State the precise value of F(x) for each x in the interval −1 ≤ x ≤ 1.
20. If f (x) is continuous on the interval 0 ≤ x ≤ a, show that its even periodic

extension is continuous everywhere. Does this statement hold for the odd
periodic extension? What additional condition(s) is (are) necessary to ensure
that the odd periodic extension is everywhere continuous?

21. Consider the sawtooth function and the Fourier series derived for it Example
1.10.
(a) Use the convergence theorems in this chapter to explain why the Fourier

series for the sawtooth function converges pointwise to that function.
(b) Use this fact to show that

∞∑
k=0

1

(2k + 1)2
= π2

8
.

22. In exercise 1, you found the Fourier series for the function f (x) = x2, −π ≤
x ≤ π . Explain why this series converges uniformly to x2 on [−π, π]. Use
this to show that

∑∞
n=1

1
n2 = π2

6 . (Hint : What happens at x = π?)
23. Sketch two periods of the pointwise limit of the Fourier series for each of

the following functions. State whether or not each function’s Fourier series
converges uniformly. (You do not need to compute the Fourier coefficients.)
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(a) f (x) = ex , −1 < x ≤ 1

(b) f (x) =
{

1, −1/2 < x ≤ 1/2
0, −1 < x ≤ −1/2 or 1/2 < x ≤ 1

(c) f (x) = x − x2, −1 < x ≤ 1
(d) f (x) = 1 − x2, −1 < x ≤ 1
(e) f (x) = cos x + | cos x|, −π < x ≤ π

(f) f (x) =
{

sin x
x

, −π < x ≤ π, x �= 0
1, x = 0

24. For each of the functions in exercise 23, state whether or not its Fourier sine
and cosine series (for the corresponding half-interval) converge uniformly
on the entire real line, −∞ < x < ∞.

25. If F is a 2π-periodic and c is any real number, then show that

∫ −π+c

−π

F (x) dx =
∫ π+c

π

F (x) dx .

Then use this equation to prove Lemma 1.3. Hint: Use the change of variables
x = t − 2π .

26. If f is a real-valued even function on the interval [−π, π], show that the
complex Fourier coefficients are real. If f is a real-valued odd function on
the interval [−π, π], show that the complex Fourier coefficients are purely
imaginary (i.e., their real parts are zero).

27. Suppose f is continuously differentiable (i.e., f ′(x) is continuous for all x)
and 2π-periodic. Without quoting Theorem 1.35, show that the Fourier series
of f converges in the mean. Hint: Use the relationship between the Fourier
coefficients of f and those of f ′ given in the proof of Theorem 1.30.

28. From Theorem 1.8, the Fourier series of an odd function consists only of sine
terms. What additional symmetry conditions on f will imply that the sine
coefficients with even indices will be zero? Give an example of a function
satisfying this additional condition?

29. Suppose that there is a sequence of nonnegative numbers {Mn} such that∑
n Mn is convergent and that

|an|, |bn| ≤ Mn for all n ≥ 0.

Show that the following series is uniformly convergent on −∞ < x < ∞.

a0 +
∞∑

n=1

an cos nx + bn sin nx .

30. Prove the following version of the Riemann–Lebesgue Lemma for
infinite intervals: Suppose f is a continuous function on a ≤ t < ∞ with
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∫∞
a

|f (t)| dt < ∞; show that

lim
n→∞

∫ ∞

a

f (t) cos nt dt = lim
n→∞

∫ ∞

a

f (t) sin nt dt = 0 .

Hint: break up the interval a ≤ t < ∞ into two intervals: a ≤ t ≤ M and
M ≤ t < ∞ where M is chosen so large that

∫∞
M

|f (t)| dt is less than ε/2;
apply the usual Riemann–Lebesgue Lemma to the first interval.

31. This exercise explores the ideas in the proof of Lemma 1.38 with a specific
function. Let

f (t) =
{

0, 0 ≤ t ≤ 1/2,

1, 1/2 < t ≤ 1.

For 0 < δ < 1/2, let

gδ(t) =

⎧⎪⎨
⎪⎩

0, 0 ≤ t ≤ 1/2 − δ,
t

2δ
− 1

4δ
+ 1

2
, 1/2 − δ < t ≤ 1/2 + δ,

1, 1/2 + δ < t ≤ 1.

Graph both f and gδ for δ = 0.1 Show that as δ �→ 0, ||f − gδ||L2[0,1] →
0. Note that gδ is continuous but not differentiable. Can you modify the
formula for gδ so that gδ is C1 (one continuous derivative) and still satisfy
lim
δ→0

||f − gδ||L2[0,1] = 0?

32. This exercise explains the Gibbs phenomenon that is evident in the conver-
gence of Fourier series near a point of discontinuity. We examine the Gibbs
phenomenon for the Fourier series of the function

f (t) =
{

π − x, 0 ≤ x ≤ π,

−π − x, −π ≤ x < 0

on the interval −π ≤ x ≤ π (see Figure 1.21 for the graph of f and its
partial Fourier series). Complete the following outline.
(a) Show that the Fourier series for f is

2
∞∑

n=1

sin nx

n
.

(b) Let

gN(x) = 2
N∑

n=1

sin nx

n
− (π − x) ;

gN represents the difference between the f (x) and the N th partial sum
of the Fourier series of f . In the remaining parts of this problem, you
will show that the maximum value of gN is greater than 0.5 when N is
large and thus represents the Gibbs effect.
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Figure 1.21. Gibbs phenomenon.

(c) Show that g′
N(x) = 2πPN(x), where

PN(x) = 1

π

(
1

2
+ cos x + · · · + cos Nx

)

= 1

2π

sin((N + 1/2)x)

sin(x/2)
, by Lemma 1.23.

(d) Show that θN = π/(N + 1/2) is the first critical point of gN to the right
of x = 0.

(e) Use the Fundamental Theorem of Calculus and part c to show

gN(θN) =
∫ θN

0

sin((N + 1/2)x)

sin(x/2)
dx − π.

(f) Show

lim
N→∞

gN(θN) = 2
∫ π

0

sin x

x
dx − π.

Hint: Make a change of variables φ = (N + 1/2)x and use the fact that
sin t/t → 1 as t → 0.

(g) Show that

2
∫ π

0

sin x

x
dx − π ≈ 0.562

by evaluating this integral numerically. Thus the Gibbs effect or the
amount that the N th partial sum overshoots the function f is about
0.562 when N is large.
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33. Use Parseval’s Theorem and the series from exercise 1 to find the sum of
the series

∑∞
n=1

1
n4 .

The next two problems require a computer algebra system (e.g., Maple or
MATLAB) to compute Fourier coefficients .

34. Consider the function

f (x) = e−x2/10 (cos 2x + 2 sin 4x + 0.4 cos 2x cos 40x) .

For what values of n would you expect the Fourier coefficients a(n) and b(n)

to be significant (say bigger than 0.01 in absolute value)? Why? Compute
the a(n) and b(n) through n = 50 and see if you are right. Plot the partial
Fourier series through n = 6 and compare with the plot of the original f (x).

35. Consider the function

g(x) = e−x2/8 (cos 2x + 2 sin 4x + 0.4 cos 2x cos 10x) .

Compute the partial Fourier series through N = 25. Throw away any coeffi-
cients that are smaller than .01 in absolute value. Plot the resulting series and
compare with the original function g(x). Try experimenting with different
tolerances (other than .01).
The remaining exercises pertain to Fourier series as a tool for solving partial
differential equations, as indicated at the beginning of this chapter.

36. Solve the following heat equation problem:

ut = uxx for t > 0, 0 ≤ x ≤ 1,

u(x, 0) = x − x2 for 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0.

37. If the boundary conditions u(0, t) = A and u(1, t) = B are not homoge-
neous (i.e., A and B are not necessarily zero), then the procedure given in
Section 1.1.3 for solving the heat equation

ut = uxx for t > 0, 0 ≤ x ≤ 1,

u(x, 0) = f (x) for 0 ≤ x ≤ 1,

u(0, t) = A, u(1, t) = B

must be modified. Let L(x) be the linear function with L(0) = A and
L(1) = B and let û(x, t) = u(x, t) − L(x). Show that û solves the following
problem:

ût = ûxx for t > 0, 0 ≤ x ≤ 1,

û(x, 0) = f (x) − L(x) for 0 ≤ x ≤ 1,

û(0, t) = 0, û(1, t) = 0.
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This heat equation can be solved for û using the techniques given in
Section 1.1.3. The solution, u, to the original heat equation problem can
then be found by the equation u(x, t) = û(x, t) + L(x).

38. Use the procedure outlined in the previous exercise to solve the following
heat equation:

ut = uxx for t > 0, 0 ≤ x ≤ 1,

u(x, 0) = 2 − x2 for 0 ≤ x ≤ 1,

u(0, t) = 2, u(1, t) = 1.

39. Another important version of the heat equation is the following Neumann
boundary value problem:

ut = uxx for t > 0, 0 ≤ x ≤ 1,

u(x, 0) = f (x) given for 0 ≤ x ≤ 1,

ux(0, t) = 0, ux(1, t) = 0.

This problem represents the standard heat equation where u(x, t) is the tem-
perature of a rod of unit length at position x and at time t ; f (x) is the initial
(at time t = 0) temperature at position x. The boundary conditions ux = 0
at x = 0 and x = 1, physically means that no heat is escaping from the rod
at its endpoints (i.e., the rod is insulated at its endpoints). Use the procedure
outlined at the beginning of this chapter to show that the general solution to
this problem is given by

∞∑
k=0

ake
−(kπ)2t cos(kπx)

where ak are the coefficients of a Fourier cosine series of f over the interval
0 ≤ x ≤ 1. Use this formula to obtain the solution in the case where f (x) =
x2 − x for 0 ≤ x ≤ 1.

40. The goal of this problem is to prove Poisson’s formula which states that if
f (t) is a piecewise smooth function on −π ≤ t ≤ π , then

u(r, φ) = 1

2π

∫ 2π

0
f (t)

1 − r2 dt

1 − 2 cos(φ − t) + r2
, (1.44)

for 0 ≤ r ≤ 1, 0 ≤ φ ≤ 2π solves Laplace’s equation


u = uxx + uyy = 0 (1.45)

in the unit disc x2 + y2 ≤ 1 (in polar coordinates: {r ≤ 1}) with bound-
ary values u(r = 1, φ) = f (φ), −π ≤ φ ≤ π Follow the outline given to
establish this formula.
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(a) Show that the functions u(x, y) = (x + iy)n and u(x, y) = (x − iy)n

both solve Laplace’s equation for each value of n = 0, 1, 2, . . . . Using
complex notation z = x + iy, these solutions can be written as u(z) = zn

and u(z) = zn.
(b) Show that any finite sum of the form

∑N
n=0 Anz

n + A−nz
n, where An

and A−n are real (or complex) numbers solves Laplace’s equation. It is
a fact that if the infinite series (i.e., as |N | → ∞) converges uniformly
and absolutely for |z| = 1, then the infinite series

∑∞
n=0 Anz

n + A−nz
n

also solves Laplace’s equation inside the unit circle |z| = 1. Write this
function in polar coordinates with z = reiφ and show that we can express
it as

∑∞
n=−∞ Anr

|n|einφ .
(c) In order to solve Laplace’s equation, we therefore must hunt for a solu-

tion of the form u(r, φ) = ∑∞
n=−∞ Anr

|n|einφ with boundary condition
u(r = 1, φ) = f (φ). Show the boundary condition is satisfied if An is
set to the Fourier coefficients of f in complex form.

(d) Using the formula for the complex Fourier coefficients, show that if f

is real-valued, then A−n = An. Use this fact to rewrite the solution in
the previous step as

u(r, φ) = 1

2π
Re

{∫ π

−π

f (t)

[
2

( ∞∑
n=0

rnein(φ−t)

)
− 1

]}
.

(e) Now use the geometric series formula to rewrite the solution in the
previous step as

u(r, φ) = 1

2π

∫ π

−π

f (t)P (r, φ − t) dt,

where

P(r, u) = Re

{
2

1 − reiu
− 1

}
.

(f) Rewrite P as

P(r, u) = 1 − r2

1 − 2r cos u + r2
.

Use this formula together with the previous integral formula for u to
establish Eq. (1.44).


