
Chapter 1

A Brief Tour of Cocoa Development
In This Chapter
▶ Programming for Mac OS X

▶ Discovering the Cocoa development process

▶ Exploring the tools for programming Cocoa applications

These are exciting times for Macintosh users. When Apple unleashed Mac 

OS X upon the world, it ushered in a new era of computing for the Mac 

faithful. Besides the rock-solid stability of UNIX, Mac OS X offered functional-

ity and features that Mac users could have only dreamt of a few years earlier. 

Along with this great operating system, Apple saw fit to remember Macintosh 

developers and have done so ever since. Principal among Apple’s achieve-

ments is Cocoa, the subject of this book. This chapter introduces you to the 

world of Mac OS X programming and, in particular, Cocoa programming.

Mac OS X Is a Programmer’s Dream
Macintosh programming has never been as easy or as accessible as it is with 

Mac OS X. For starters, Apple, the friendly folks that they are, thought it’d 

be a great idea to give away the development tools. For free. Apple provides 

the Xcode Developer Tools as a free download on the Apple Developer 

Connection Web site. By installing the Xcode Developer Tools download, 

you instantly gain access to a complete collection of tools, utilities, documen-

tations, and example source codes to get you started programming for the 

Mac OS. In the past, a developer bundle this comprehensive would have cost 

hundreds of dollars. Today, Apple provides it for no additional charge.

 Some older versions of Mac OS X ship with a Developer Tools disc; newer 

versions don’t. If you’re searching for the disc and can’t find it, you may have 

an installation of Mac OS X that doesn’t include the Developer Tools disc. 

You needn’t worry, however, because you can download the Xcode Developer 

Tools by signing up for a free ADC membership at Apple’s developer site 

(https://connect.apple.com). In fact, even if you already have a 

Developer Tools disc, check Apple’s developer site for updates because each 

CO
PYRIG

HTED
 M

ATERIA
L



8 Part I: Developer Tools 

version of Xcode Developer Tools is specific to a particular OS X release. 

Note: Xcode Developer Tools installations can total in the hundreds of mega-

bytes, so you’ll probably want a fast Internet connection to download them.

Apple Developer Connection (ADC) is Apple’s support program for develop-

ers. You can register at different tiers (and pay different prices) for member-

ship, which gives you varying amounts of support and other perks, such 

as Worldwide Developers Conference (WWDC) tickets. The lowest tier is 

completely free, so it doesn’t cost you anything to download the Xcode 

Developer Tools.

Just because the Xcode Developer Tools is a free download doesn’t mean 

that the software is second-rate. On the contrary, Xcode Developer Tools are 

world class. When developing software for the Macintosh with these tools, 

you can take advantage of the following benefits:

 ✓ Write code in a variety of programming and scripting languages: C, 

Objective-C, Python, Ruby, Java, or even AppleScript.

 ✓ Create beautiful interfaces that follow Apple’s Human Interface 

Guidelines.

 ✓ Develop applications with rich features, some of which you can add to 

your project without writing a single line of code.

Further, because Mac OS X has a UNIX flavor at its core, you can take 

advantage of the decades of work by UNIX users. For example, most open-

source software run on different varieties of UNIX, so you can leverage 

thousands of compatible source-code examples for use in your own Mac OS X 

applications as well.

Why Program with Cocoa?
Cocoa is one kind of programming that you can perform with the Apple 

Xcode Developer Tools. Cocoa is a collection of tools and libraries (or 

frameworks) that allows you to get the most out of Mac OS X programming. 

Many features make Cocoa great; some include

 ✓ Modular object-oriented design

 ✓ Use of frameworks

 ✓ Visual interface design



9 Chapter 1: A Brief Tour of Cocoa Development

Object-oriented programming is in common use these days, and for good 

reason. By programming with an object-oriented design, your code can more 

closely model items in the real world. This book isn’t an object-oriented text; 

in fact, you should come to Cocoa with at least an idea of how to program 

in an object-oriented fashion. This book does, however, discuss the object-

oriented nature of Cocoa and examines its primary language: Objective-C. 

Objective-C, as you might induce from its name, is an object-oriented super-

set of the C language. It permits you to program in an object-oriented fashion 

without some of the messy baggage that C++ has. Because Objective-C is a 

superset of C, you can also take advantage of the C that you know. Everything 

that you can do in C is valid code to the Objective-C compiler.

The use of frameworks is another great aspect of Cocoa development. 

Experienced programmers may be tempted to call frameworks by another 

name — libraries. Frameworks are collections of classes that provide you, 

the Cocoa developer, with a specific type of functionality. Mac OS X ships 

with several frameworks for you to choose from, but two big ones stand 

out: AppKit and Foundation. The AppKit Framework provides you with scores 

of classes and functions for working with interfaces, and the Foundation 
Framework gives you utilitarian functions relating to data manipulation and 

program execution. You use them a lot when writing Cocoa software.

The object-oriented nature of Cocoa and its rich set of frameworks form an 

unbeatable code-reuse duo. Computer programmers can be a lazy bunch, not 

wanting to repeat a single task. To aid developers in their pursuit of reusable 

code, Cocoa offers a wide array of reusable classes. After you complete some 

programming tasks, you can even store the results in your own framework 

for use in other projects. Apple gives you reusable code out of the box, and 

you can reuse your own code as well. The object-oriented design of Cocoa 

makes this reuse possible.

Reusable code is good for a variety of reasons: It lets you create software 

quickly, it reduces the number of bugs in your code, and it prevents you from 

reinventing the wheel each time you sit down to program. By reusing the 

frameworks that Apple provides with the Xcode Developer Tools, you gain 

all sorts of great functionality without having to know how it works under 

the hood.

Besides the geekier benefits, you’ll love many other aspects of Cocoa pro-

gramming. For starters, the frameworks that accompany Mac OS X provide 

a rich set of interface elements that you can use to build sophisticated 

interfaces demanded by professional software. Moreover, Cocoa program-

ming gives you instant access to a wide range of free classes. Whether you 

need an About box, a spell-checker, or QuickTime movies in your application, 

Cocoa has a solution for you.



10 Part I: Developer Tools 

The Tools You Need
To facilitate your Cocoa development, Apple was nice enough to provide 

you with a large selection of tools and utilities. With these tools, you can 

begin creating Cocoa software from the ground up. When you’re finished 

programming, the tools will even build the application, prepare it for 

distribution, and put together an installer.

To begin programming with Cocoa, find the development tools. If you 

installed them in the default location, they reside in the following directory 

on your hard drive:

/Developer/Applications

 If you discover that you don’t have the development tools on your system, 

visit developer.apple.com to download the latest version.

You won’t need all the applications that Apple provides in the /Developer/
Applications directory. In fact, for many tasks you can probably get away 

with using only two: Xcode and Interface Builder.

Xcode
Xcode is the main application that you’ll use for all your Cocoa projects. 

Xcode serves a number of roles in the Cocoa development process:

 ✓ Xcode acts as the central repository for all the files in your Cocoa 

projects. Using a familiar document approach, Xcode lets you organize 

the components of a Cocoa project in one easy-to-use document. 

Figure 1-1 shows a Cocoa project opened in Xcode.

 ✓ You also use Xcode to write and edit Cocoa source code. When you 

write code for a project, Xcode guides you by coloring the syntax, 

indenting code automatically, and providing auto-completion features to 

reduce the amount of typing (and remembering) that you have to do. It 

also offers convenient one-click access to all the functions in your code, 

as shown in Figure 1-2.

 ✓ Your Cocoa project may have other types of files beyond code, and 

Xcode is prepared to help you work with them. For example, if you 

want to include images in your project, Xcode lets you view them in the 

main project window without skipping a beat. You don’t need to use 

another application to view those images. Xcode displays them right in 

the code editor, as shown in Figure 1-3.



11 Chapter 1: A Brief Tour of Cocoa Development

 

Figure 1-1: 
Xcode acts 

as your 
primary tool 

for writing 
Cocoa 

software.

 

 

Figure 1-2: 
Edit your 

code in 
Xcode.

 



12 Part I: Developer Tools 

 

Figure 1-3: 
You can 

view other 
types of files 

in Xcode.

 

 ✓ When you get stuck, Xcode gives you access to the complete collection 

of Cocoa, Xcode, and other developer documentation. You can view 

and navigate the documentation with Xcode in much the same way as 

you would a Web browser. Figure 1-4 shows what the screen looks like 

when documentation is loaded into Xcode.

After you complete your Cocoa project, you use Xcode to compile, link, 

and build a final application. You can then distribute the application to 

friends, co-workers, and even the world (as long as they use Mac OS X ).

Xcode wears many hats. If you’re accustomed to other development environ-

ments, you may be surprised to discover that Xcode performs tasks 

that require multiple tools in other environments. For example, Xcode 

functions as a

 ✓ Project organizer, managing files and resources in your Cocoa projects

 ✓ Code editor, allowing you to write and edit Cocoa code

 ✓ Browser, displaying built-in documentation or other kinds of resources 

in your Cocoa projects

 ✓ Compiler and linker, spitting out a complete Cocoa application at the 

end of the development process



13 Chapter 1: A Brief Tour of Cocoa Development

 

Figure 1-4: 
You can 

view 
the Cocoa 
documen-

tation in 
Xcode.

 

Interface Builder
Interface Builder is a constant companion to Xcode. As you can probably 

guess, Interface Builder’s main purpose is to create interfaces. With it, you 

can build interfaces that adhere to Apple’s interface guidelines.

Interface Builder provides a complete set of controls that you can add to 

your application. From windows and drawers to buttons and sliders, 

Interface Builder gives you drag-and-drop access to a full suite of interface 

elements to make your software the best it can be. Don’t forget that Interface 

Builder is an Apple product. No one knows the Macintosh user interface 

better than Apple, because they created it, so you can be certain that the 

controls in Interface Builder follow the strictest Apple guidelines.

Figure 1-5 shows an example interface with many different types of controls 

available to you in Interface Builder. The interface won’t win any design 

awards, but it does show you the range of elements that you can use in your 

own Cocoa software.



14 Part I: Developer Tools 

Do you speak the language?
Cocoa programming (like most kinds of com-
puter programming) requires the use of a pro-
gramming language. To create Cocoa 
applications, you need to know Objective-C, 
Python, Ruby, Java, or AppleScript. This book 
uses Objective-C because it’s the “native lan-
guage” of Cocoa. Objective-C is a superset of 
the traditional C programming language. If you 
have experience with C, you’re well on your 
way to understanding Objective-C. All the C 
functions you know and love are available to 

you in Cocoa. Objective-C, however, goes one 
step further and enhances C by adding object-
oriented features to the language.

Objective-C has a syntax that may look a little 
foreign to you at first, unless you’re also familiar 
with SmallTalk. But after you get the hang of it, 
you’ll find that it isn’t hard to understand at all. 
Chapter 6 goes into the details of Objective-C, 
but you start using it in Chapter 2 to build your 
first Cocoa project.

 

Figure 1-5: 
Interface 

Builder has 
a complete 

set of 
interface 

controls for 
you to use in 

your Cocoa 
projects.

 

Interface Builder’s features aren’t limited to WYSIWYG (what you see is what 

you get) interface editing. You can also create classes that have no visual 

representation. Although you don’t actually write the code in Interface 

Builder for your classes, you do define the basic structures and methods for 

them there. You can also connect the interface to your classes with simple 

drag-and-drop techniques, as shown in Figure 1-6.



15 Chapter 1: A Brief Tour of Cocoa Development

 

Figure 1-6: 
Connecting 

an interface 
element to a 

class is 
a simple 

drag-and-
drop 

operation.

 

After you complete an interface, Interface Builder goes the extra mile and 

creates the header and implementation files for you and then inserts them 

into the desired Xcode project. Although Interface Builder’s strongest 

features pertain to designing and creating great-looking interfaces, many 

other features make it much more than an interface-building tool. It plays a 

big part in the Cocoa programming experience.



16 Part I: Developer Tools 


