
1

Kernel Adaptive Filtering, By Weifeng Liu, José C. Príncipe, and Simon Haykin
Copyright © 2010 John Wiley & Sons, Inc.

 1.1 SUPERVISED, SEQUENTIAL, AND ACTIVE LEARNING

 Learning is a process by which the free parameters and the topology of a
neural network are adapted through a process of stimulation by the environ-
ment in which the network is embedded [Haykin, 2009].

 Adjustments on the free parameters are well studied in the adaptive fi lter-
ing and neural network fi elds, whereas adaptation of the topology still has
much room for investigation. Traditionally, the growing and pruning tech-
niques for multilayer perceptrons are viewed as a heuristic network designing
tool rather than as an integral part of learning itself. However, learning a
network topology may be equally important, if not more important, than
adjusting the free parameters in the network, as exemplifi ed in biological
learning where new synaptic connections in the human brain can grow or die.
If the environment is changing over time, then the design of an “ optimal ”
network topology beforehand by conventional methods such as Akaike infor-
mation criterion, Bayesian information criterion, and minimum description
length is not possible. 1 Therefore, it will make more sense to adapt the network
structure over time as part of the learning process. 2

 Learning may be performed in three basic ways:

 • Supervised learning , which requires the availability of a collection of
desired (target) responses.

BACKGROUND AND
PREVIEW

 1
CO

PYRIG
HTED

 M
ATERIA

L

2 BACKGROUND AND PREVIEW

 • Unsupervised learning , which is performed in a self - organized manner,
bypassing the need for a desired response.

 • Reinforcement learning , which learns through a sequence of state – action –
 reward and has no explicit input – output available.

 In this book, we focus on supervised learning. In conceptual terms, we may
think there is a teacher (supervisor) who has knowledge of the environment,
where that knowledge is represented by input – desired examples (training
data). Well - known supervised learning rules include error - correction learning
like the Widrow – Hoff rule [Widrow and Hoff, 1960] and memory - based learn-
ing exemplifi ed by k nearest - neighbor classifi ers [Cover and Hart, 1967] and
radial - basis function networks [Broomhead and Lowe, 1988].

 Historically, machine learning has focused on nonsequential learning tasks,
where the training data set can be constructed a priori and learning stops once
this set is duly processed. Despite its wide applicability, there are many situ-
ations where learning takes place over time. A learning task is sequential if
the training examples become available over time, usually one at a time. A
learning algorithm is sequential if, for any given training examples

 u u u1 1 2 2() (){ } () (){ } () (){ }, , , , , , ,d d i d i… …

it produces a sequence of hypotheses

 � � …� …1 2() () (), , ,i

such that ħ (i) depends not only on the previous hypothesis ħ (i − 1), but also on
the current example { u (i), d (i)} [Giraud - Carrier, 2000]. Note that sometimes
one relaxes slightly the above defi nition to allow the next hypothesis to depend
on the previous one and a small subset of new training examples (rather than
a single one) to trade off complexity and performance. It has been long argued
that learning involves the ability to improve performance over time [Simon,
 1983]. Clearly, humans acquire knowledge over time and knowledge is con-
stantly revised, based on newly acquired information. In the study of robotic
and intelligent agents, one fi nds that sequential learning is a must to deal with
complex operating environments, which are usually changing and unpredict-
able [Brazdil, 1991 , Tan, 1993]. Moreover, sequential learning algorithms
typically require less computation and memory resources to update the hypoth-
esis, and these algorithms may be the only possibility for large applications.

 Active learning is another important concept in machine learning. There
are possibly two scenarios where active learning fi nds applications. In the fi rst
case, unlabeled data (input without target) are abundant, but labeling data are
expensive. For example, it is easy to get raw speech samples for a speech
recognizer, whereas labeling these samples is tedious. The idea of active learn-
ing here is to construct an accurate recognizer with signifi cantly fewer labels
than you would need in a conventional supervised learning framework. For

LINEAR ADAPTIVE FILTERS 3

these problems, no desired signal (or label) is available to quantify the impor-
tance of the candidate data sample.

 In the second scenario, a large amount of data have already been gathered
in pairs of input and target, but a subset of data must be selected for effi cient
training and sparse representation. This kind of problem commonly occurs in
kernel methods and Gaussian process (GP) modeling. 3 For example, in support
vector machines, only data that are close to the boundary are important. The
rationale is that training data are not equally informative. Especially in a
sequential learning setting, depending on the hypothesis (state) of a learning
system, the same data may convey a different amount of information. This is
understandable by our daily experience. A message conveys the most amount
of information when it is fi rst perceived, and its amount of information dimin-
ishes with repeated presentations. These kinds of problems are termed “ active
data selection ” or “ sparsifi cation ” to distinguish them from the fi rst scenario.
We use active learning as a general term referring to both cases.

 Active sequential learning is natural. For instance, human beings assess
incoming data every day based on knowledge and then decide how much
resource should be allocated to process it. Intuitively, for a learning machine,
one can expect that after processing suffi cient samples from the same source,
there is little need to learn, because of redundancy. It has been demonstrated
that active learning can signifi cantly reduce the computational complexity with
equivalent performance. And it can even provide a more accurate and more
stable solution in some situations. 4

 1.2 LINEAR ADAPTIVE FILTERS

 Linear adaptive fi lters built around a linear combiner are designed for sequen-
tial learning. When we speak of adaptive fi lters, we have in mind a class of
fi ltering structures, which are equipped with a built - in mechanism that enables
such a fi lter to adjust its free parameters automatically in response to statistical
variations in the environment in which the fi lter operates. This capability is
behind a wide range of applications of adaptive fi lters in such diverse fi elds as
adaptive equalization in communication receivers, adaptive noise cancellation
in active noise control, adaptive beamforming in radar and sonar, system
identifi cation, and adaptive control, just to mention a few. 5

 The traditional class of supervised adaptive fi lters rely on error - correction
learning for their adaptive capability. To illustrate what we mean by this form
of learning, consider the fi ltering structure depicted in Figure 1.1 ; a tapped -
 delay - line (transversal) is most commonly used as the fi lter, on which the
adaptation is performed. The fi lter embodies a set of adjustable parameters
(weights), which is denoted by the vector w (i − 1), where i denotes discrete
time. An input signal vector, u (i), applied to the fi lter at time i , produces the
actual response y (i). This actual response is compared with an externally sup-
plied desired response d (i) to produce the error signal e (i). This error signal

4 BACKGROUND AND PREVIEW

is, in turn, used to produce an adjustment to the parameter vector w (i − 1)
of the fi lter by an incremental amount denoted by Δ w (i). Accordingly, the
 updated parameter vector of the fi lter assumes the new value

 w w wi i i() = −() + ()1 Δ (1.1)

 On the next iteration at time i + 1, w (i) becomes the latest value of the param-
eter vector to be updated. The adaptive fi ltering process is continually repeated
in this manner until the fi lter reaches a condition, whereafter the parameter
adjustments become small enough to stop the adaptation. As is clear, the
weights here embody the hypothesis in the defi nition of sequential learning.

 Starting from some initial condition denoted by w (0), the ensemble -
averaged square error

 J i e i i() = ()[] =E 2 1 2, , ,� (1.2)

plotted versus time i , traces the learning curve of the adaptive fi ltering process.
The expectation in equation (1.2) , which is denoted by E [⋅], is carried out for
an ensemble of different training sets.

 An important issue in the design of adaptive fi lters is to ensure that the
learning curve is convergent with an increasing number of iterations. Under
this condition, we may defi ne the speed of adaptation as the number of
iterations i needed for the ensemble - averaged square error, J (i), to reach a
relatively “ steady - state ” value. We may then say that the adaptive fi lter is
 convergent in the mean - square - error sense .

 1.2.1 Least - Mean - Square Algorithm

 The simplest and most commonly used form of an adaptive fi ltering algorithm
is the so - called least - mean - square (LMS) algorithm . Basically, the LMS algo-
rithm operates by minimizing the instantaneous cost function

 Figure 1.1. Basic structure of a linear adaptive fi lter.

Transversal filter w (i)
u (i) y (i)

d (i)

e (i)
Σ

–

+

Adaptive weight-
control mechanism

LINEAR ADAPTIVE FILTERS 5

 J i e i() = ()1
2

2 (1.3)

where the factor 1/2 is introduced to simplify the mathematical formulation.
Given that the parameter vector of the fi lter is w (i − 1), the prediction error
e (i) is defi ned by

 e i d i i iT() = () − −() ()w u1 (1.4)

 Correspondingly, the instantaneous gradient vector is given by

∂

∂ −()
() = − () ()

w
u

i
J i e i i

1
 (1.5)

 Following the instantaneous version of the method of gradient descent , the
adjustment Δ w (i) applied to the algorithm at time i is defi ned by

 Δw ui e i i() = () ()η (1.6)

where η is the step - size parameter . Thus, using equation (1.6) in equation (1.1)
yields the following update rule for the fi lter ’ s parameter vector:

 w w ui i e i i() = −() + () ()
Updated estimate Old estimate Adj
� ��� ��1 η

uustment
� �� �� (1.7)

where the prediction error e (i) is itself defi ned in equation (1.4) .
 Examining the computations described above, we readily view the basic

 simplicity of the LMS algorithm. Nonetheless, the algorithm can deliver an
effective performance, provided that the step - size parameter η is properly
chosen. Most importantly, the LMS algorithm is model independent , in that
no structural restriction was imposed on how the training data were generated.
Consequently, the LMS algorithm is known for its robustness. For best per-
formance, the step - size parameter η should be assigned a relatively small
value. However, from a practical perspective, such a choice has a serious dis-
advantage: A small η makes the LMS algorithm converge slowly.

 1.2.2 Recursive Least - Squares Algorithm

 To overcome the slow rate of adaptation of the LMS algorithm, we may look
to another adaptive fi ltering algorithm: the recursive least - squares (RLS)
algorithm.

 In a sense, the RLS algorithm follows a rationale similar to the LMS algo-
rithm, in that they are both examples of error - correction learning but with a
basic difference:

6 BACKGROUND AND PREVIEW

 At every iteration i , the LMS algorithm aims at minimizing the instantaneous
value of the squared estimation error J (i) as in equation (1.3) , the RLS algorithm
aims at minimizing the sum of squared estimation errors up to and including the
current time i .

 Mathematically, the cost function for the RLS algorithm is defi ned by

 J i d j jT

j

i

() = () − ()[]
=
∑ w u

2

1
 (1.8)

 Typically, the RLS algorithm converges to a relatively stable condition an
order of magnitude faster than the LMS algorithm. However, this improve-
ment in performance is achieved at some cost, as discussed later in this section.

 Considering the operation of the RLS algorithm at time i , let w (i − 1) denote
the old estimate of the parameter vector computed at the preceding time
instant i − 1. In an information - theoretic sense, the state of the adaptive fi lter,
which is symbolized by the estimate w (i − 1), provides a summary of all the
data processed by the RLS algorithm, starting from the initial condition i = 0
up to and including time i − 1. We may, therefore, view the prediction error

 e i d i i iT() = () − −() ()w u1 (1.9)

as the new information supplied to the algorithm at time i by the pair of input
vector and desired response: { u (i), d (i)}. Indeed, it is in light of this statement
that the prediction error is referred to as innovation .

 In the course of working through the derivation of the RLS algorithm, we
fi nd that the adjustment supplied to the old estimate w (i − 1) is now defi ned
by

 Δw ki i e i() = () () (1.10)

where k (i) is called the gain vector of the RLS algorithm. To be specifi c, k (i)
is defi ned by

 k P ui i i() = () () (1.11)

where P (i) is the state - error correlation matrix . In fact, the matrix P (i) is the
inverse of the time - averaged correlation matrix, R (i), of the input vector u (i),
as shown by

 P Ri i() = ()−1 (1.12)

with R (i) itself being defi ned by

 R u ui j jT

j

i

() = () ()
=
∑

1
 (1.13)

LINEAR ADAPTIVE FILTERS 7

 Accordingly, the updated estimate of the actual parameter vector w (i) in the
RLS algorithm is defi ned by

 w w ki i i e i() = −() + () ()
Updated estimate Old estimate Adju
� ��� ��1

sstment
��� �� (1.14)

 In closing this brief discussion of the LMS and RLS algorithms, we may
compare their individual characteristics as follows:

 1. Computational complexity of the LMS algorithm scales linearly with the
dimension of the parameter vector w , whereas the computational com-
plexity of the RLS algorithm follows a square law.

 2. Being model independent, the LMS algorithm is typically more robust
than the RLS algorithm.

 3. The convergence rate of the RLS algorithm is typically an order of
magnitude faster than the LMS algorithm.

 4. Last, but by no means least, the LMS algorithm propagates the estima-
tion error from one iteration to the next, whereas the RLS algorithm
propagates the error - covariance matrix. This statement is a further tes-
timony to the simplicity of the LMS algorithm.

 1.2.3 Extended Recursive Least - Squares Algorithm

 The extended recursive least - squares (EX - RLS) algorithm is a special case of
a more general algorithm called the Kalman fi lter [Kalman, 1960 , Haykin,
 2002]. Compared with RLS and LMS, a distinctive feature of the extended
recursive least - squares algorithm is that its mathematical formulation is
described in terms of state - space concepts . Although RLS also embodies the
concept of state, the state in RLS is time invariant. Consider a linear dynamic
system described by the signal - fl ow graph shown in Figure 1.2 . The state vector

 Figure 1.2. Signal - fl ow graph representation of a linear dynamic system.

Σ Σz
-1I u (i)

A

Process noise
n (i)

Observation
d (i)

x (i +1)
x (i)

Measurement
noise v (i)

Process equation Measurement equation

8 BACKGROUND AND PREVIEW

denoted by x (i) in Figure 1.2 is defi ned as the minimal set of data that is suf-
fi cient to describe the unforced dynamic behavior of the system uniquely. In
other words, the state comprises the fewest data on the past of the system that
are needed to predict its future behavior. Typically, the state x (i) is unknown
and we need to use a set of observations to estimate it.

 In mathematical terms, the signal - fl ow graph of Figure 1.2 embodies the
following pair of equations:

 1. A process equation

 x Ax ni i i+() = () + ()1 (1.15)

 In this equation, the L - by - 1 vector n (i) represents process noise , modeled
as a zero - mean, white - noise process whose correlation matrix is defi ned
by

 E n n
Q

0
i j

i j

i j
T() ()⎡⎣ ⎤⎦ =

=
≠

⎧
⎨
⎩

1,

,
 (1.16)

 The process equation (1.15) models an unknown physical stochastic
phenomenon denoted by the L - by - 1 state vector x (i) as the output of a
linear dynamic system excited by the white noise n (i), as depicted in the
left - hand portion of Figure 1.2 . The linear dynamic system is uniquely
characterized by the feedback connection of two units: the L - by - L tran-
sition matrix , denoted by A , and the memory unit , denoted by z − 1 I , where
 z − 1 is the unit time delay and I is the L - by - L identity matrix. In general,
 A can be time variant.

 2. A measurement equation , which describes the observation as

 d i i i v iT() = () () + ()u x (1.17)

where u (i) is known and called a measurement vector in this setting. The
 measurement noise is modeled as a zero - mean, white noise process with
a fi xed variance q 2 . The measurement equation (1.17) relates the observ-
able output of the system d (i) to the state x (i), as depicted in the right -
 hand portion of Figure 1.2 . Equation (1.17) bears some resemblance to
the linear regression setting in RLS with u (i) as the input and d (i) as the
output. The distinctive difference is that the input – output mapping x (i)
in equation (1.17) is time variant and governed by the process equation
 (1.15) , whereas in RLS, it is time invariant .

 It is assumed that x (1), which is the initial value of the state, is uncorrelated
with both n (i) and v (i) for i ≥ 1. Two noise processes n (i) and v (i) are statisti-
cally independent. Parameters A , Q 1 , and q 2 are known a priori. With all those
assumptions, the EX - RLS algorithm is required to solve the following problem:

LINEAR ADAPTIVE FILTERS 9

 Use the entire observations { u (1), d (1)}, { u (2), d (2)}, … , { u (i), d (i)}, to fi nd the
minimum mean - square estimate of the state x (i + 1).

 We use w (i − 1) to denote the optimal estimate of x (i) given the observa-
tions starting at time j = 1 and extending up to and including time i − 1, i.e.,
{ u (1), d (1)}, { u (2), d (2)}, … , { u (i − 1), d (i − 1)}, and w (i) to denote the optimal
estimate of x (i + 1) given the observations starting at time j = 1 and extending
up to and including time i . As in RLS, we defi ne the innovations process asso-
ciated with d (i) as

 e i d i i iT() = () − −() ()w u1 (1.18)

where e (i) is the prediction error for the observed d (i) and represents the new
information in d (i). The variance of the innovations process e (i) is defi ned by

 r i e i i i i qT() = ()⎡⎣ ⎤⎦ = () −() () +E u P u2
21 (1.19)

where P (i − 1) is the state - error correlation matrix . To proceed further, we
need to introduce an important concept called Kalman gain or simply gain
vector here, and a fundamental relation between the current optimal estimate
and the previous optimal estimate

 w A w ki i i e i() = −() + () ()
Updated estimate Old estimate Adj
� ��� ��1

uustment
��� �� (1.20)

 This equation shows that we can compute the minimum mean - square estimate
 w (i) of the state of a linear dynamic system by adding to the previous estimate
 w (i − 1), which is premultiplied by the transition matrix A , a correction term
equal to k (i) e (i). The correction term equals the prediction error e (i) premul-
tiplied by the gain vector k (i). This equation is similar to equation (1.14)
except for the step of premultiplying the estimate w (i − 1) by the transition
matrix A . Furthermore, we can express the gain vector k (i) as

 k AP ui i i r i() = −() () ()1 (1.21)

 The problem remains of fi nding a recursive way of computing the state - error
correlation matrix P (i − 1). By using the famous Riccati equation , we have

 P A P A k u P A Qi i i i iT T() = −() − () () −()⎡⎣ ⎤⎦ +−1 11
1 (1.22)

 Therefore, by initializing w (0) = 0 and P (0) = λ − 1 I , we can compute r (1),
 k (1) and then update w (1), P (1) with { u (1), d (1)} supplied. The recursion
can go on as long as observations are available. Here, λ is a positive number
called the regularization parameter , which will be discussed in the subsequent
chapters.

10 BACKGROUND AND PREVIEW

 As mentioned, EX - RLS is a special case of a Kalman fi lter that is used in
a wide range of engineering applications from radar to aerospace engineering,
and it is one of the foundations in modern control theory and control systems
engineering. In addition, EX - RLS provides a unifying framework for the
derivation of the family of RLS fi lters using the state - space model. For
example, by setting A = β − 1/2 I and ignoring n (i), we have the exponentially
weighted RLS algorithm. Furthermore, by setting β = 1, we have the RLS
algorithm itself.

 Despite the simple structure of the linear adaptive fi lters (and probably
because of it), they enjoy wide applicability and successes in diverse fi elds
such as communications, control, radar, sonar, seismology, and biomedical
engineering, among others. The theory of linear adaptive fi lters has reached
a highly mature stage of development [Haykin, 2002]. However, the same
cannot be said about nonlinear adaptive fi lters, as discussed next.

 1.3 NONLINEAR ADAPTIVE FILTERS

 The limited computational power of linear learning machines was highlighted
by Minsky and Papert [1969] in their famous work on Perceptrons . In general,
complex real - world applications require more expressive hypothesis spaces
than linear functions. Now suppose we lift the linearity assumption, and the
goal is to learn a continuous arbitrary input – output mapping f : U → R based
on a sequence of examples. Apparently the problem of designing a nonlinear
adaptive fi lter is much harder. 6 One simple way to implement a nonlinear
adaptive fi lter is by cascading a static nonlinearity with a linear fi lter such as
in Hammerstein and Wiener models [Wiener, 1958 , Billings and Fakhouri,
 1982]. However, in this approach, the modeling capability is limited, the choice
of the nonlinearity is highly problem dependent, and there are local minima
during training. Gabor [1968] tried using the Volterra series 7 to bypass the
mathematical diffi culties of nonlinear adaptive fi ltering, whereas it is clear that
the complexity of the Volterra series explodes exponentially as its modeling
capacity increases. An improvement of the Volterra series is the Wiener series,
but slow convergence and high complexity still hinder its wide application.
Later on, time - lagged multilayer perceptrons, radial - basis function networks,
or recurrent neural networks were used to replace the linear combiner and
trained in a real - time fashion by stochastic gradient [Lang and Hinton, 1988 ,
Pr í ncipe et al., 1992] (see Figure 1.3). They have a history of successes, but
their nonconvex optimization nature prevents their widespread use in online
applications.

 Other forms of sequential learning can be found in the Bayesian learning
literature [Winkler, 2003]. Recursive Bayesian estimation is a general proba-
bilistic approach for estimating an unknown probability density function
recursively over time using incoming measurements and a mathematical
process model. It has a close connection to the Kalman fi lter in the adaptive

NONLINEAR ADAPTIVE FILTERS 11

fi ltering theory [Kalman, 1960 , Roweis and Ghahramani, 1999] but is usually
complicated for arbitrary data distributions exemplifi ed by sequential Monte
Carlo methods [Doucet et al., 2000a].

 Reinforcement learning [Sutton and Barto, 1998] is another area where
sequential learning prevails. Reinforcement learning differs from supervised
learning in several ways. The most important difference is that there is no
presentation of input – output examples. Instead, after choosing an action
based on the current state, the algorithm has access to an immediate reward
and the subsequent state, but it is not told which action would have been in
its best long - term interest. Online performance is crucial in reinforcement
learning because the system must act on the environment to evaluate actions
(i.e., action evaluation is concurrent with learning). Simply stated, the system
learns through a process of reward and punishment without needing to receive
a specifi cation of how the task is to be achieved.

 In this book, we follow a different course by focusing on a family of non-
linear adaptive fi ltering algorithms, which have the following features:

 • They are universal approximators.
 • They have no local minima.
 • They have moderate complexity in terms of computation and memory.

 In other words, we want to build a nonlinear adaptive fi lter that possesses
the ability of modeling any continuous input – output mapping y = f (u) and
obeys the following sequential learning rule:

 f f i e ii i= + () ()−1 Gain (1.23)

where f i denotes the estimate of the mapping at time i and Gain (i) is a function
in general. This sequential learning, which was fi rst studied by Goodwin
and Sin [1984] for linear fi lters, is attractive in practice because the current

 Figure 1.3. Basic structure of a nonlinear adaptive fi lter .

Adaptive weight-
control mechanism

fi

Σ

–

+

u (i) y (i)

d (i)

e (i)

Universal function
approximator

12 BACKGROUND AND PREVIEW

estimate consists of two additive parts, namely, the previous estimate and a
correction term proportional to the prediction error on new data. This unique
incremental nature distinguishes our methods from all the others. Although
equation (1.23) seems simple, the algorithm can in fact be motivated by many
different objective functions. Also, depending on the precise meanings of
 Gain (i) and e (i), the algorithm can take many different forms. We explore this
in detail in the subsequent chapters. This amazing feature is achieved with the
underlying linear structure of the reproducing kernel Hilbert space where the
algorithms exist, as is discussed next.

 1.4 REPRODUCING KERNEL HILBERT SPACES

 A pre - Hilbert space is an inner product space that has an orthonormal basis
 xk k{ } =

∞
1. Let H be the largest and most inclusive space of vectors for which the

infi nite set xk k{ } =
∞

1 is a basis. Then, vectors not necessarily lying in the original
inner product space represented in the form

 x x=
=

∞

∑ ak k
k 1

are said to be spanned by the basis xk k{ } =
∞

1; the a k are the coeffi cients of the
representation. Defi ne the new vector

 y xn k k
k

n

a=
=

∑
1

 Another vector y m may be similarly defi ned. For n > m , we may express the
squared Euclidean distance between the vectors y n and y m as

y y x x

x

n m k k
k

n

k k
k

m

k k
k m

n

k
k m

n

a a

a

a

− = −

=

=

= =

= +

= +

∑ ∑

∑

∑

2

1 1

2

1

2

2

1

where, in the last line, we invoked the orthonormality condition. Therefore,
to make the defi nition of x meaningful, we need the following to hold:

 1. akk m

n 2
1 0→= +∑ as both n , m → ∞ .

 2. akk

m 2
1 < ∞=∑ .

REPRODUCING KERNEL HILBERT SPACES 13

 In other words, a sequence of vectors yk k{ } =
∞

1 so defi ned is a Cauchy sequence .
Consequently, a vector x can be expanded on the basis xk k{ } =

∞
1 if, and only if,

 x is a linear combination of the basis vectors and the associated coeffi cients
 ak k{ } =

∞
1 are square summable. From this discussion, it is apparent that the space

 H is more “ complete ” than the starting inner product space. We may therefore
make the following important statement:

 An inner product space H is complete if every Cauchy sequence of vectors taken
from the space H converges to a limit in H ; a complete inner product space is called
a Hilbert space.

 A Mercer kernel [Aronszajn, 1950] is a continuous, symmetric, positive -
 defi nite function κ : U × U → R . U is the input domain, a subset of R L . The
commonly used kernels include the Gaussian kernel [equation (1.24)] and the
polynomial kernel [equation (1.25)]:

 κ u u u u, exp′() = − − ′()a 2 (1.24)

 κ u u u u, ′() = ′ +()T p
1 (1.25)

 Let H be any vector space of all real - valued functions of u that are gener-
ated by the kernel κ (u , ⋅). Suppose now two functions h (⋅) and g (⋅) are picked
from the space H that are respectively represented by

 h ai i
i

l

= ⋅()
=
∑ κ c ,

1

and

 g bj j
j

m

= ⋅()
=
∑ κ 	c ,

1

where the a i and the b j are expansion coeffi cients and both c i and c̃ j ∈ U for
all i and j . The bilinear form defi ned as

 h g a bi i j j
j

m

i

l

, ,= ()
==
∑∑ κ c c	

11

satisfi es the following properties:

 1. Symmetry

 h g g h, ,=

 2. Scaling and distributive property

14 BACKGROUND AND PREVIEW

 cf dg h c f h d g h+() = +, , ,

 3. Squared norm

 f f f2 0= ≥,

 By virtue of these facts, the bilinear term < h , g > is indeed an inner product.
There is one additional property that follows directly. Specifi cally, setting
 g (⋅) = κ (u , ⋅), we obtain

h a

h

i i
i

l

, , ,κ κu c u

u

⋅() = ()

= ()
=
∑

1

 This property is known as the reproducing property . The kernel κ (u , u ′), which
represents a function of the two vectors u , u ′ ∈ U , is called a reproducing
kernel of the vector space H if it satisfi es the following two conditions:

 1. For every u ∈ U , κ (u , u ′) as a function of the vector u ′ belongs to H .
 2. It satisfi es the reproducing property.

 These two conditions are indeed satisfi ed by the Mercer kernel, thereby
endowing it with the designation “ reproducing kernel. ” If the inner product
space H , in which the reproducing kernel space is defi ned, is also complete,
then it is called a reproducing kernel Hilbert space (RKHS).

 The analytic power of RKHS is expressed in an important theorem called
the Mercer theorem. The Mercer theorem [Aronszajn, 1950 , Burges, 1998]
states that any reproducing kernel κ (u , u ′) can be expanded as follows:

 κ ς φ φu u u u, ′() = () ′()
=

∞

∑ i i i
i 1

 (1.26)

where ς i and φ i are the eigenvalues and the eigenfunctions, respectively. The
eigenvalues are non - negative. Therefore, a mapping ϕ can be constructed as

j

j

:

, ,

U F→

() = () ()⎡⎣ ⎤⎦u u uς φ ς φ1 1 2 2 … (1.27)

 By construction, the dimensionality of F is determined by the number of
strictly positive eigenvalues, which are infi nite in the Gaussian kernel case.

 In the machine learning literature, ϕ is usually treated as the feature
mapping and ϕ (u) is the transformed feature vector lying in the feature space
 F (which is an inner product space) (Figure 1.4). By doing so, an important
implication is

REPRODUCING KERNEL HILBERT SPACES 15

 j ju u u u() ′() = ′()T κ , (1.28)

 It is easy to check that F is essentially the same as the RKHS induced by
the kernel by identifying ϕ (u) = κ (u , ⋅), which are the bases of the two spaces,
respectively. By slightly abusing the notation, we do not distinguish F and H
in this book if no confusion is involved.

 A concrete example helps here. Let [Cherkassky and Mulier, 1998]

 κ u c u c,() = +()1
2T (1.29)

with u = [u 1 , u 2] T and c = [c 1 , c 2] T . By expressing the polynomial kernel in terms
of monomials of various orders, we have

 κ u c,() = + + + + +1 2 2 21
2

1
2

1 2 1 2 2
2

2
2

1 1 2 2u c u u c c u c u c u c

 Therefore, the image of the input vector u in the feature space may be written
as

 j u() = ⎡⎣ ⎤⎦1 2 2 21
2

1 2 2
2

1 2, , , , ,u u u u u u
T

 And similarly we have

 j c() = ⎡⎣ ⎤⎦1 2 2 21
2

1 2 2
2

1 2, , , , ,c c c c c c
T

 It is easy to verify that

 j ju c u c() () = ()T κ ,

 However, it is hard in general to express ϕ explicitly even for simple
polynomial kernels, because the dimensionality of ϕ scales with O (L p),
where L is the dimension of input vectors and p is the order of the polynomial
kernel.

 Figure 1.4. Nonlinear map ϕ (⋅) from the input space to the feature space.

ϕ (•)

ϕ (u)

•
•

u

16 BACKGROUND AND PREVIEW

 1.5 KERNEL ADAPTIVE FILTERS

 The kernel method is a powerful nonparametric modeling tool. The main
idea can be summarized as follows: Transform the input data into a high -
 dimensional feature space via a reproducing kernel such that the inner product
operation in the feature space can be computed effi ciently through the
kernel evaluations [equation (1.28)]. Then, appropriate linear methods are
subsequently applied on the transformed data. As long as an algorithm
can be formulated in terms of inner products (or equivalent kernel evalua-
tion), there is no need to perform computations in the high - dimensional
feature space. Even though this methodology is called the “ kernel trick, ” we
have to point out that the underlying reproducing kernel Hilbert space plays
a central role in providing linearity, convexity, and universal approximation
capability. Successful examples of this methodology include support vector
machines, kernel principal component analysis, and Fisher discriminant
analysis. 8

 We start with an example to show why projecting the input into a feature
space helps in learning. Consider the target function of a two - dimensional
input u = [u 1 , u 2] T .

 f u u a u a u a u a u1 2 1 1 2 2 3 1
2

4 2
2,() = + + + (1.30)

where a 1 , a 2 , a 3 , and a 4 are some constant coeffi cients. Apparently, a linear
system trying to approximate f by a linear combination of u 1 and u 2 could not
exactly model it as written. However, by using the kernel [equation (1.29)]
and its mapping ϕ , we have a new representation of the input

 u u x x x x x x u u u u u u1 2 1 2 3 4 5 6 1
2

1 2 2
2

1 21 2 2 2, , , , , , , , , , ,() () = ()

j

 Now, f can be represented by a linear system of (x 1 , x 2 , x 3 , x 4 , x 5 , x 6)

 f x x x x x x x a x x a x
a

x
a

x1 2 3 4 5 6 1 3 2 3 4 4
1

5
2

60 0
2 2

, , , , ,() = ⋅ + + ⋅ + + +

 The fact that mapping the input into a feature space can simplify the learn-
ing task has been well known for a long time in machine learning as exempli-
fi ed by polynomial regression 9 and Volterra series. The problem is really how
to construct this mapping. One may be tempted to add as many features as
possible because it is more likely the target functions can be represented using
a standard learning algorithm in high - dimensional feature spaces, but this may
run into the danger of overfi tting . Overfi tting is a phenomenon where a good
fi t to the training data is achieved, but the overlearned system performs badly
when making test predictions. The diffi culties with high - dimensional feature
spaces are mainly as follows:

KERNEL ADAPTIVE FILTERS 17

 1. The computational complexity explodes with the dimensionality.
 2. The generalization performance degrades as the dimensionality

increases.

 Two approaches can be used to overcome these problems. One is called
 feature selection where only useful features are selected and other features are
pruned so that the dimensionality of the feature space is constrained. In our
previous example, apparently x 1 and x 3 are two redundant features that should
be pruned. The other workaround is the kernel method. Because the features
are only implicitly constructed and we do not need to work directly in the
feature space, the explosion of computational complexity is avoided. The
overfi tting problem is taken care of by the use of regularization. These prop-
erties will become clear when we develop the kernel adaptive fi lters in the
subsequent chapters.

 It has been proved [Steinwart, 2001] that in the case of the Gaussian kernel,
for any continuous input – output mapping f : U → R and any ς > 0, there exist
parameters c i i

m{ } =1 in U and real numbers ai i
m{ } =1 such that

 f ai i
i

m

− ⋅() <
=
∑ κ ς, c

1 2

 (1.31)

 If we denote a vector ω in F as

 w j= ()
=
∑ai i
i

m

c
1

then by equations (1.28) and (1.31) , we have

 f T− <w j
2

ς

 This equation implies that the linear model in F has the universal approxima-
tion property . Clearly, this property is established from the viewpoint of strict
function approximation.

 Furthermore, if our problem is to minimize a regularized cost function over
a fi nite data set u i d i i

N() ()(){ } =, 1, then we write

 min
f i

N

J f d i f i f() = () − ()()() +
=
∑ u 2

2
2

1
λ

 It has been shown that the optimal solution can be expressed as

 f a ii
i

N

= ⋅ ()()
=
∑ κ , u

1

18 BACKGROUND AND PREVIEW

for suitable a i . This result is called the representer theorem [Sch ö lkopf et al.,
 2001]. In other words, although we did consider functions that were expan-
sions in terms of arbitrary points c i [see equation (1.31)], it turns out that we
can always express the solution in terms of the training points u (i) only. Hence,
the optimization problem over an arbitrarily large number of variables is
transformed into one over N variables, where N is the number of training
points.

 Recently, it also has been shown that Volterra series and Wiener series can
be treated just as a special case of a kernel regression framework [Franz and
Sch ö lkopf, 2006]. By formulating the Volterra and Wiener series as a linear
regression in RKHS, the complexity is now independent of the input dimen-
sionality and the order of nonlinearity.

 Based on these advantages and arguments, our strategy is clear: to formu-
late the classic adaptive fi lters in RKHS such that we are iteratively solving a
convex least - squares problem there. As long as we can formulate these algo-
rithms in terms of inner products, we obtain nonlinear adaptive fi lters that
have the universal approximation property and convexity at the same time.
Convexity is an important feature that prevents the algorithms from being
stuck in local minima. (See Table 1.1 .)

 In recent years, many efforts of “ kernelizing ” adaptive fi lters have been
published in the literature. Frieb and Harrison [1999] fi rst used this idea to
derive the kernel ADALINE, which is formulated as a deterministic gradient
method based on all the training data (not online). Then, Kivinen et al. [2004]
proposed an algorithm called NORMA by directly differentiating a regular-
ized functional cost to get the stochastic gradient. Although the derivation
involves advanced mathematics, the results are actually equivalent to a kernel
version of the leaky least - mean - square algorithm. At almost the same time,
Engel et al. [2004] studied the case of kernel recursive least squares by using
the matrix inversion lemma. Later on, Liu et al. [2008] investigated the kernel
least - mean - square algorithm and pointed out that the algorithm possesses a
self - regularization property. Kernel affi ne projection algorithms were studied
from different perspectives by Liu and Pr í ncipe [2008b] , Slavakis and
Theodoridis [2008] , and Richard et al. [2009] . More recently, the extended

 Table 1.1. Comparison of different nonlinear adaptive fi lters.

 Algorithms Modeling capacity Convexity Complexity

 Linear adaptive fi lters Linear only Yes Very simple
 Hammerstein, Wiener models Limited nonlinearity No Simple
 Volterra, Wiener series Universal Yes Very high
 Time - lagged neural networks Universal No Modest
 Recurrent neural networks Universal No High
 Kernel adaptive fi lters Universal Yes Modest
 Recursive Bayesian estimation Universal No Very high

KERNEL ADAPTIVE FILTERS 19

kernel recursive least - squares algorithm was presented in Liu et al. [2009] ,
who studied the general state estimation problem in RKHS. After a decade
of efforts from many researchers, kernel adaptive fi ltering is rapidly evolving
into an important fi eld of signal processing. This book serves to address previ-
ous works and incorporate them in a unifying framework (see Figure 1.5). We
present, in detail, the kernel least - mean - square algorithm, the kernel affi ne
projection algorithms, the kernel recursive least - squares algorithm, and the
extended kernel recursive least - squares algorithm. Relations among these
algorithms, which are illustrated in Figure 1.5 , will become clear when we
present them in the subsequent chapters.

 Kernel adaptive fi lters provide a generalization of linear adaptive fi lters
because these become a special case of the former when expressed in the dual
space. Kernel adaptive fi lters exhibit a growing memory structure embedded
in the fi lter weights. They naturally create a growing radial - basis function
network, learning the network topology and adapting the free parameters
directly from data at the same time. The learning rule is a beautiful combina-
tion of the error - correction and memory - based learning, and potentially it will
have a deep impact on our understanding about the essence of kernel learning
theory.

 Figure 1.5. Relation among different adaptive fi ltering algorithms.

Affine projection
algorithm (APA) Newton APALeaky APA

Least-mean-
square (LMS)

Normalized
LMS Leaky LMS

K
 =

 1

K
 =

 1

K
 =

 1

Recursive
least-squares

(RLS)

K
 =

 i

Extended RLS Weighted RLS

Kalman filter

20 BACKGROUND AND PREVIEW

 Historically, most kernel methods use block adaptation and are computa-
tionally expensive using a large Gram matrix of dimensionality given by the
number of data points; therefore, the effi cient online algorithms provide the
useful fl exibility for trading off performance with complexity. And in nonsta-
tionary environments, the tracking ability of online algorithms provides an
extra advantage.

 The combination of sequential learning and memory - based learning
requires and at the same time enables, the network to select informative
training examples instead of treating all examples equally. Empirical evidence
shows that selecting informative examples can reduce drastically the training
time and produce much more compact networks with equivalent accuracy.
Therefore, in the case of a large and redundant data set, performing kernel
online learning algorithms provides a big edge over batch mode methods in
terms of effi ciency.

 The widely used active data selection methods for kernel adaptive fi lters
include the novelty criterion [Platt, 1991] and approximate linear dependency
test [Engel et al., 2004]. Both are based on heuristic distance functions while
we present a principled and unifying approach. Our criterion is based on a
subjective information measure called “ surprise ” . It quantifi es how informa-
tive the candidate exemplar is relative to the knowledge of the learning system.
It turns out that the approximate linear dependency test is a special case and
that the novelty criterion is some approximation in this information theoretic
framework.

 1.6 SUMMARIZING REMARKS

 To put the introductory material covered in this chapter into a historical
context, it is noteworthy that in a classic paper on the separability of patterns
published in 1965, Cover proved that, given a nonlinearly separable pattern -
 classifi cation problem, there is, in general, a practical benefi t to be gained
in mapping the input (data) space into a hidden (feature) space of high enough
dimensionality. Basically, a nonlinearly separable pattern - classifi cation
problem is transformed into a linearly separable one, provided that the
following two conditions are satisfi ed:

 1. The transformation from the input space into the feature space is
nonlinear.

 2. The dimensionality of the feature space is high enough.

 Inspired by Cover ’ s insightful ideas just summarized, the following state-
ment was made in Chapter 7 of the fi rst edition of Neural Networks [Haykin,
 1994 , p. 242]:

 In a similar fashion, we may use a nonlinear mapping to transform a diffi cult
nonlinear fi ltering problem into an easier one that involves linear fi ltering.

ENDNOTES 21

 Unfortunately, the extension of Cover ’ s ideas to nonlinear adaptive fi ltering
problems is more diffi cult because we now have to account for time in an
online manner.

 Much has been written on the theory and design of nonlinear adaptive
fi lters, going back to an early paper from Gabor et al. [1960] . However, an
elegant, unifi ed theory for the algorithmic implementation of nonlinear adap-
tive fi lters, which builds on the well - established linear adaptive fi lters [Widrow
and Stearns, 1985 , Haykin, 1996], has been lacking. In light of the introductory
material presented in this chapter, followed by the detailed expositions pre-
sented in the rest of the book on different procedures of implementing kernel
adaptive fi lters, it can be justifi ably said that at long last we now have the
elegant, unifi ed theory that has been lacking in the literature for much too
long.

 The new theory presented in this book is elegant because it builds on the
Mercer theorem, which is basic to the well - established kernel methods.
Moreover, the theory is unifi ed in that it also exploits all the powerful linear
adaptive fi ltering algorithms, namely, the LMS and RLS algorithms and their
respective modifi ed versions. Simply stated, the new theory of kernel adaptive
fi lters brings together two different subjects under a single umbrella:

 • The Mercer kernel theory, which, in practical terms, manifests itself in
the form of memory

 • Linear adaptive fi lter theory, through which the need for adaptation is
taken care of

 Most importantly, the new theory is developed in a coherent fashion.

 ENDNOTES

 1. Model Selection Criteria. There are mainly three tools for model selection: Akaike
information criterion (AIC), Bayesian information criterion (BIC), and minimum
description length (MDL). Akaike ’ s information criterion was developed by
Hirotsugu Akaike under the name of “ Akaike information criterion ” in 1971 and
proposed in Akaike [1974] . AIC is a measure of the goodness of fi t of an estimated
statistical model, which is defi ned as

 AIC = − ()2 2k Lln max (1.32)

where k is the number of the free parameters in the model and L max is the maximized
value of the likelihood function for the model. Given a data set, several competing
models may be ranked according to their AIC; the one with the lowest AIC is the
best. If the model errors are normally and independently distributed, then AIC may
simplify to

 AIC MSE= + ()2 2k N ln (1.33)

22 BACKGROUND AND PREVIEW

where N is the number of data points and MSE is the mean square error of the data
by using the model. Equation (1.33) consists of two terms: measure of the goodness
of fi t and penalty of the model complexity. In this sense, the AIC methodology
attempts to fi nd the model that best explains the data with a minimum of free
parameters.

 Bayesian information criterion was developed by Schwarz [1978] ; it is closely
related to the Akaike information criterion. The formula for BIC is

 BIC = () − ()k N Lln ln max2 (1.34)

 Under the assumption that the model errors are Gaussian distributed, this equation
becomes

 BIC MSE= () + ()k N Nln ln (1.35)

 The Minimum description length was introduced by Rissanen [1978] and systemati-
cally studied by Gr ü nwald [2007] . The MDL principle is a formalization of Occam ’ s
Razor, in which the best hypothesis for a given set of data is the one that leads to
the largest compression of the data. The ideal MDL approach requires the estima-
tion of the Kolmogorov complexity, which is uncomputable in general. However,
nonideal, practical versions of MDL are widely used in the machine learning com-
munity; see for example Gr ü nwald [2007] , and Haykin [2009] .

 2. Growing and Pruning Neural Networks. The adaptive resonance theory architecture
[Grossberg, 1987 , Carpenter and Grossberg, 1987] is one of the fi rst growing neural
networks. It is a biologically inspired approach rather than a computational design.
However, it is often ineffi cient and the convergence of the iterative processing is
not guaranteed.

 The cascade - correlation learning architecture [Fahlman and Lebiere, 1990] is
another example of the network - growing approach. The procedure begins with a
minimal network that has some input and one or more output nodes as indicated
by input – output considerations, but no hidden nodes. The hidden neurons are
added to the network one by one, thereby obtaining a multilayer structure.

 Another network - growing approach is described in Lee et al. [1990] , where a
third level of computation is added to the forward pass (function - level adaptation)
and the backward pass (parameter - level adaptation). In this third level of computa-
tion, the structure of the network is adapted by changing the number of neurons
and the structural relationship among neurons in the network. This method of
network growing is computationally intensive.

 Platt [1991] proposed a more feasible design called resource allocating networks ,
where the structure of a neural network was dynamically altered to optimize
resource allocation. Since then, many researchers have proposed methods of both
growing and pruning radial - basis function networks reported in Cheng and Lin
 [1994] , Karayiannis and Mi [1997] , and Huang et al. [2005] .

 Martinetz and Schulten [1991] started a new strand of research into growing
networks by inventing the “ neural gas ” models, where the topologies were not
predetermined and connections between nodes were added as needed. These
 “ neural gas ” models are self - organizing systems that use Hebb - like learning rule to
learn the distribution of input data.

ENDNOTES 23

 Two main approaches to network pruning are 1) regularization, of which notable
examples are weight decay [Hinton and Sejnowski, 1986], weight elimination [Weigend
et al., 1990], and approximate smoother [Moody and R ö gnvaldsson, 1997]; and
2) systematic deletion, which includes the optimal brain damage procedure [LeCun
et al., 1990] and the optimal brain surgeon procedure [Hassibi and Stork, 1992].

 3. Sparsifi cation. In kernel methods and Gaussian process modeling, the complexity
is usually directly proportional to the number of training data either at linear scale,
quadratic scale, or even cubic scale. Sparsifi cation is a process of selecting only an
 “ important ” subset of the training data to train the model, and by so doing the
complexity of the algorithm can be reduced greatly. There are two main approaches.
One is by elimination , as in support vector machines [Vapnik, 1995], regularization
networks [Evgeniou et al., 2000], relevance vector machines [Tipping, 2001], and
least - squares support vector machines [Suykens et al., 2000]. These algorithms start
by considering all training samples as potential centers. And part of the samples
are eliminated by solving the optimization problem wherein the associated coeffi -
cients become zero. These algorithms are usually computationally expensive, scaling
with O (N 3) in time and up to O (N 2) in space, where N is the number of training
examples.

 The other approach is by construction . Here, the algorithm starts with an empty
network and gradually adds centers at each step of the construction process. Because
fi nding the best subset is a combinational optimization problem, these algorithms
usually employ various greedy selection strategies, in which at each step the sample
that maximizes the amount of some fi tness criterion is selected [Seeger and Williams,
 2003 , Smola and Bartlett, 2001 , Quinonero - Candela and Rasmussen, 2005]. Still, the
complexity of these algorithms ranges from O (M 2 N) to O (MN 2), where M (<< N) is
the size of the selected subset (or the number of basis functions). It usually requires
multiple passes of the whole training data. If computer memory cannot hold the
whole training data, then disk - read operations would slow down the learning speed
signifi cantly.

 4. Active learning. Active learning has been studied under the names of optimal
experiment design [Lindley, 1956 , Fedorov, 1972], sequential decision making [El -
 Gamal, 1991], query learning [Campbell et al., 2000], and selective sampling
[Lindenbaum, 1999] in such diversifi ed fi elds as economics theory, statistics, and
machine learning. The uses of active learning in neural networks are reported in
MacKay [1992a] , Fukumizu [1996] , and Tong and Koller [2000] . Active learning in
sequential methods has been studied in Platt [1991] , Engel et al. [2004] , and Csato
and Opper [2002] for regression problems and in Bordes et al. [2005] and
Glasmachers [2008] for classifi cation problems.

 5. Linear Adaptive Filters. The earliest work on adaptive fi lters may be traced back
to the late 1950s, during which time many researchers were working independently
on different applications of such fi lters. As a result, the LMS emerged as a simple
and effective algorithm for the operation of adaptive transversal fi lters. The LMS
algorithm was devised by Widrow and Hoff in 1959 in their study of an adaptive
linear element, which is commonly referred to in the literature as the ADALINE
[Widrow and Hoff, 1960].

 Another important algorithm in adaptive fi ltering theory is the RLS algorithm.
The original paper on the standard RLS algorithm is that of Plackett [1950] , although
many other researchers are believed to have derived and rederived various versions

24 BACKGROUND AND PREVIEW

of the RLS algorithm. In 1974, Godard fi rst used Kalman fi lter theory successfully
to solve adaptive fi ltering problems, which is known in the literature as the Godard
algorithm . Then, Sayed and Kailath [1994] established an exact relationship between
the RLS algorithm and Kalman fi lter theory, thereby laying the groundwork for
how to exploit the vast literature on Kalman fi lters for solving linear adaptive fi lter-
ing problems.

 The EX - RLS algorithm was fi rst presented in Haykin et al. [1997] . It is derived
as an improvement over the RLS algorithm in terms of tracking ability in nonsta-
tionary signal processing. The algorithm is a special case of the Kalman fi lter while
derived from the perspective of adaptive signal processing. The Kalman fi lter is
used in a wide range of engineering applications from radar to navigation, and
it is an important topic in control theory and control systems engineering. The fi lter
is named after Rudolf E. Kalman based on his seminal papers [Kalman, 1960 ,
Kalman and Bucy, 1961], although Thorvald Nicolai Thiele and Peter Swerling are
found to have developed a similar algorithm earlier [Lauritzen, 1981]. A highlight
application of the Kalman fi lter is perhaps its incorporation in the Apollo navigation
computer.

 Two excellent textbooks for linear adaptive fi ltering were authored by Haykin
 [2002] and Sayed [2003] .

 6. Nonlinear Adaptive Filters. The idea of nonlinear adaptive fi lter was proposed
by Gabor in 1954, who was one of the early pioneers of communications theory.
Hammerstein and Wiener models are discussed in Wiener [1958] , Billings and
Fakhouri [1982] , and Marmarelis [1993] . Volterra [1887] and later Gabor [1968]
studied the use of Volterra series for nonlinear adaptive fi ltering. The Wiener series
was proposed and studied in Wiener [1958] and Barrett [1963] as an improvement
over the Volterra series. For the use of time - lagged multilayer perceptrons, radial -
 basis function networks, and recurrent neural networks for nonlinear adaptive fi lter-
ing, see Lang and Hinton [1988] , Wan [1990] , Pr í ncipe et al. [1992] , and Haykin
 [1998] .

 7. Volterra Series. The Volterra series is named after the Spanish mathematician Vito
Volterra, who fi rst introduced the notion in 1887 [Volterra, 1887]. The fi rst major
application of Volterra ’ s work to nonlinear circuit analysis was done by the math-
ematician Norbert Wiener at the Massachusetts Institute of Technology, who used
them in a general way to analyze several problems including the spectrum of an FM
system with a Gaussian noise input [Wiener, 1958].

 The Volterra series is a model for a nonlinear, time - invariant system with
memory. It is similar to the Taylor series in terms of nonlinear modeling but differs
from the Taylor series in its ability to capture “ memory ” effects. The Taylor series
can be used to approximate the nonlinear response of a system to a given input:

 y t a x tn
n

n

() = ()[]
=

∞

∑
0

where the output y (t) depends strictly on the input x (t) at that particular time. In
the Volterra series, the output of the nonlinear system depends on all the input that
has been applied to the system in the past. This provides the ability to capture the
 “ memory ” effect of devices such as capacitors and inductors. A linear, causal system
with memory can be described by the convolution representation:

ENDNOTES 25

 y t h x t d() = () −()
−∞

∞

∫ τ τ τ

where y (t) is the output, x (t) is the input, and h (t) is the impulse response of the
system. The Volterra series combines these two techniques to describe a nonlinear,
dynamic, time - invariant system in the following way:

y t
n

k x t x t x t d d dn n n() = () −() −() −()
−∞

∞

∫
1

1 2 1 2 1 2
!

, , ,� … � �τ τ τ τ τ τ τ τ τnn
n

k

k x t d

k x t

−∞

∞

=

∞

−∞

∞

∫∑

∫

=

+ () −()

+ () −()

0

0

1 1 1 1

2 1 2 1

1
1
1
2

!

!
,

τ τ τ

τ τ τ xx t d d

k x t x t x t

−()

+ () −() −() −(

−∞

∞

−∞

∞

∫∫ τ τ τ

τ τ τ τ τ τ

2 1 2

3 1 2 3 1 2 3
1
3!

, ,))

+
−∞

∞

−∞

∞

−∞

∞

∫∫∫ d d dτ τ τ1 2 3

� (1.36)

where the k n (τ 1 , τ 2 , … , τ n) are called the Volterra kernels of the system. For n = 1,
 k 1 (τ 1) is the conventional impulse response like in the linear system; for n > 1, k n
are regarded as “ higher order impulse responses. ”

 The determination of the Volterra kernels are generally complicated. Common
methods include the harmonic input method , direct expansion method , and powers
of transfer function method . The Volterra series is successful to model systems that
exhibit “ weak nonlinearity. ” If the system to be modeled is “ strongly nonlinear, ”
then the Volterra series either takes a long time to converge or often diverges. For
more details, read Cherry [1994] and Schetzen [2006] .

 8. Kernel Methods. The idea of using kernel functions as inner products in a feature
space was introduced into machine learning by the work of Aizerman et al. [1964]
on the method of potential functions. Then, Boser et al. [1992] combined the idea
with large margin classifi ers, leading to the birth of support vector machines and
the popularity of kernel in the machine learning community. Sch ö lkopf et al. [1998]
derived the fi rst unsupervised learning algorithm in reproducing kernel Hilbert
space by introducing the kernel principal components analysis. The description of
kernel Fisher discriminant analysis can be found in Mika et al. [1999] . The use of
kernels for function approximation dates back to Aronszajn [1950] . Then, Wahba
 [1990] systematically studied reproducing kernels in approximation and regulariza-
tion theory. At the same time, Poggio and Girosi [1990] used reproducing kernels
in the development of regularization networks. Excellent tutorial books on kernel
methods include Cristianini and Shawe - Taylor [2000] , Shawe - Taylor and Cristianini
 [2004] , and Sch ö lkopf and Smola [2002] . More advanced reading on support vector
machines includes Vapnik ’ s books on statistical learning theory [Vapnik, 1995,
1998].

 9. Polynomial Regression. The fi rst use of polynomial regression was published by
Gergonne [Stigler, 1974]. The polynomial regression is a simple generalization of
the linear regression model. The goal of regression analysis is to model the expected
value of a dependent variable y in terms of the value of an independent variable x .
In simple linear regression, the model is

26 BACKGROUND AND PREVIEW

 y a a x= + +0 1 ε

where ε is random noise with zero mean. Similarly a quadratic model is

 y a a x a x= + + +0 1 2
2 ε

 In general, we can use an n th - order polynomial to model the mapping between two
scalar variables y and x :

 y a a x a x a xn
n= + + + + +0 1 2

2 … ε

 The advantage of the method is it is easy to estimate the linear coeffi cients a 0 , a 1 ,
 … , a n using the least - squares analysis. Polynomial regression belongs to a more
general function approximation framework using basis functions, which include
splines, radial - basis functions, and wavelets. The drawbacks of polynomial bases are
1) they are correlated and 2) they are nonlocal. These drawbacks lead to practical
diffi culties in terms of interpretation and stability.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

