
Part I: Introduction to
Practical Enterprise
Development

Chapter 1: What is Enterprise Design?

Chapter 2: The Enterprise Code

c01.indd 1c01.indd 1 6/15/11 3:26:16 PM6/15/11 3:26:16 PM

CO
PYRIG

HTED
 M

ATERIA
L

c01.indd 2c01.indd 2 6/15/11 3:26:17 PM6/15/11 3:26:17 PM

 What is Enterprise Design ?

“ Mr. Arking, your experience, certifications, and references are terrific, but unfortunately we can ’ t
hire you. Your resume just doesn ’ t have enough enterprise experience ”

 That was the first time I had ever heard the word “ enterprise. ” Wrapped subtly within a casserole
of deprecating niceties and empty affirmations, assailing my staunch sense of geek - honor as
I wrestled with the gravity of the moment. That was the first time I was ever turned away from a
job in software development. Like most fallen nerds, I went through the normal stages of post -
 interview withdrawal. Similar to the departing of a close friend or relative, I felt denial, then
outrage, then moved slowly into a state of grief. As the eccentric side of me skimmed through the
torrent of emotions that accompany job overreaction, I began to evaluate what I did wrong. I have
no enterprise experience? What does that mean? Didn ’ t my interviewers read my resume?
Weren ’ t they impressed with my vast experience with different APIs? Didn ’ t they appreciate
my deep knowledge of different platforms and languages? I mean, look at all of the companies
I worked for . . . all of the different applications I had built! Surely some of that demonstrated
hands - on practice with enterprise!

 After my failed interview I was determined to figure out what I had missed. I prided myself on
being the consummate interviewee. I had all the right answers, knew all the best programming
tricks. I had stacks of code samples and lots of great references to back up my work. I had to know
where it all went wrong. My investigations inevitably led me back the job description which,
among a great many requirements, listed the following work experience:

 Ideal candidate will have extensive exposure to enterprise architecture, with a back-
ground in designing large systems for multifaceted, heterogeneous platform support.

 At first glance, this requirement didn ’ t seem like much. Yet there must be something more to it
than I was grasping. Multifaceted, heterogeneous platform support? What was that all about? I
began to investigate what the employer meant by “ enterprise patterns, ” expecting to find some
subtlety of coding that I had likely touched on in one way or another. However, when I looked up
enterprise architectures online, I was stunned to find a whole new level of design, one that had
completely eluded me for over 8 years of computer programming. I took a good look at my resume

c01.indd 3c01.indd 3 6/15/11 3:26:17 PM6/15/11 3:26:17 PM

Part I: Introduction to Practical Enterprise Development

4

and began to understand that I was a horrible fit for the position. I had built some great applications, but
that ’ s all they were : applications. Some of the things I had developed were very impressive, requiring a
lot of knowledge in coding and multi - tiered design. Still, I had never actually developed an enterprise
 system . I had never designed an infrastructure or set of processes for other developers in other areas to
support. I had never participated in an architectural process, never wrote tests before I wrote my code.
I hadn ’ t ever established patterns and practices to support a broad context of business needs. In fact, I had
little or no experience in all of the key concepts behind all things enterprise.

 I had no enterprise experience. Despite the fancy software that I had spent my career building, I hadn ’ t
even so much as dabbled in the enterprise fray. Like a great many before me, I had fallen prey to the
enterprise assumption that haunts even the fanciest computer programmer. I presumed that if I ’ ve
programmed enough powerful software, and learned everything there is to learn about platform
libraries, APIs and SDKs, then I have earned the right to call myself an enterprise developer. Not only is
this assumption wrong, it is a widely accepted assumption in Microsoft programming community.
Unfortunately, I had to learn that the hard way.

 And so it began, my long journey into the world of enterprise architecture and development. Wiping
away all preconceived notions of what software development was supposed to be, I immersed myself
into the very culture of enterprise architecture. I read books on different development processes.
I purchased trade magazines and followed articles dedicated to large system development. I subscribed
to countless blogs and forums published by some of the biggest players in the enterprise community.
I went enterprise native, if you will. The result was a complete retooling of my skills, and a revision of
my approach to software design.

 In this first chapter, we will cover the following areas:

 Discuss enterprise architecture and what it means

 Discuss enterprise development and how it complements enterprise architecture

 Talk about tools, patterns, and features that enforce the key goals of an enterprise design
for .NET

 Enterprise design can be confusing. It requires knowledge of many different languages and disciplines.
It requires both low - level programming skills and higher level, comprehensive design experience. Most
of all, it requires patience and tolerance for new ideas. Enterprise design patterns and methodologies
come in many different forms, each of which has slowly worked its way into the Microsoft development
platform. A platform almost exclusively dedicated to rapid application development (RAD), Microsoft
applications have long been riddled with poor design, exchanging extensibility and flexibility for quick
time - to - market. As enterprise methodologies become more widely embraced by a new generation of
Microsoft developers, many find themselves faced with the daunting task of learning these new patterns,
and incorporating them into their existing skill sets and applications.

 But what do we mean when we talk about enterprise architecture? What exactly is enterprise
development? The term enterprise is used widely in today ’ s technical vernacular. Most software
programmers throw the term around far too casually, applying it to almost any type of application
design or framework. Yet enterprise software is anything but application - or system - specific. To clarify
the matter, it ’ s best to begin with a common understanding of what enterprise means and how it
changes the way you develop.

❑

❑

❑

c01.indd 4c01.indd 4 6/15/11 3:26:17 PM6/15/11 3:26:17 PM

Chapter 1: What is Enterprise Design?

5

 What Is Enterprise Architecture?
 Enterprise architecture is typically used to describe an agency - wide or organization - wide framework for
portraying and incorporating the business processes, information flows, systems, applications, data, and
infrastructure to effectively and efficiently support the organization ’ s needs. At the heart of this
definition lies a very broad context aimed at including many different portions of an organization ’ s
participating branches, chief among them the business and information technology departments. We
could wax intellectual all day long on the merits of these descriptions, but seeing as how this is a book
for developers, let ’ s cut to the chase. What does enterprise architecture mean from a developer ’ s point of
view? It means defining a process, framework, and set of patterns to design, develop, build, and
maintain all of the software that an agency or company needs to operate. The operative phrase here is
all of the software . It is a unified development platform for creating all elements of software at all levels of
design. It includes reusable tools for building client applications, websites, databases, office applications,
business automation tools, scripts, and just about anything else that a company may use to get things
done. Enterprise architecture also endeavors to break down each of an application ’ s layers into modular
pieces for reusability. These reusable elements can then be used to feed or drive other applications with
similar needs. Here ’ s where the picture starts to get a bit fuzzy. Most developers take on projects with a
finite set of business goals, goals that satisfy a specific need or company requirement. Within that scope,
there is little consideration for modularity or reusability outside of the system that is being built. On the
contrary, project goals rarely allot the time and resources needed to accommodate what is in essence the
 possibility of component reuse. Instead, typical projects focus development on the end goal only,
marginalizing or downright ignoring the larger enterprise picture. Understanding enterprise
development means first realizing that this kind of myopic, and often cavalier, development is ultimately
counterproductive.

 Enterprise architecture is also about defining a solid foundation of code and practices that eventually
(and inevitably) facilitate interoperability in a heterogeneous software environment. This foundation
provides both a toolset for creating software application, as well as a set of boundaries and rules within
which those writings said applications need to work. The combination of both process and toolset is one
of the key concepts to creating enterprise software. It expands on the otherwise traditional concepts of
computer programming that concentrated on what one coded and mostly ignored how one coded. The
incorporation of software development methodologies and lifecycle management becomes as important
a part of building an application as the code itself.

 Of course, chances are that if you ’ re reading this book, you ’ ve already come to know some sort of
development methodology. From the iterative and flexible like Agile and Extreme Programming, to the
evolving and maturing like Six Sigma and the Capability Maturity Model, software development
methodologies have worked their way into mainstream software development. Still, methodologies
alone do not define an enterprise architecture. Plenty of shops that build applications apply these
methodologies rigidly, and many of them do not have enterprise software. An organization that
embraces enterprise architecture endeavors to combine a broad - context framework with a development
approach, ultimately yielding code that conforms to a level of quality and design that suits the
organization ’ s core needs. Ideally, this approach can do wonders for a company, ensuring quality and
uniformity throughout all tiers of design. Yet anyone who ’ s participated or contributed to more than one
enterprise shop would agree that the ideal is difficult to attain. Business needs and company politics
often work counter to the spirit of enterprise planning. They force stringent timelines and tight project
budgets, and don ’ t easily allow for the sort of flexibility that a good enterprise architecture requires. The
result is a hackneyed combination of some processes and standards that add little more than
cumbersome meetings and a few tidy lifecycle diagrams that barely placate the folks in charge. Thus, a

c01.indd 5c01.indd 5 6/15/11 3:26:18 PM6/15/11 3:26:18 PM

Part I: Introduction to Practical Enterprise Development

6

successful implementation of an enterprise system requires a comprehensive “ buy - in ” from both
members of the business side and from the IT side.

 What Is Enterprise Development?
 Enterprise development commonly refers to the patterns and practices adopted by programmers
endeavoring to implement enterprise architecture. It is the employment of certain approaches and
methodologies that aim to achieve many of the root goals inherent to a successful enterprise system.
What these goals are specifically changes from organization to organization; however, at the root, they
address five key areas of system development:

 1. Reliability

 2. Flexibility

 3. Separation of concerns

 4. Reusability

 5. Maintainability

 These base tenets are embraced by all developers of enterprise systems, and they help to define the core
of what most modern developers consider to be well - designed software. Enterprise development
embraces these ideals, weaving them subtly into the tools and processes that drive software logic.

 Reliability
 Most would agree that designing systems that are reliable is a must. Yet coding for reliability is a
departure from business as usual. This is especially true in the rapid application development
community. Many enterprise enthusiasts exchange the term reliability for testability, since most modern
enterprise coding patterns aim to facilitate unit testing. Writing code that can be well tested means
changing the way that a system ’ s functionality is modularized. It means flattening out otherwise bloated
classes and removing dependencies, or rather, removing references to other code that prevent a class or
module from being tested. Many of these design patterns are integral to a process known as Test Driven
Development, or TDD. We will cover TDD in depth in Chapters 3 and 4.

 Flexibility
 Requirements can change. As a result, so must the software that supports them. If the code that you
write prevents an application or system from being extensible or pliable, we would say it lacks flexibility.
Many people mistake the need for flexibility for other popular engineering subjects, such as
interoperability. However, enterprise flexibility addresses the ability of code to be broken down and
shared by different systems applications. A program might be functional on different platforms, or
contain logic for lots of different failure scenarios, but that wouldn ’ t mean it was flexible.
A flexible system allows for the changing of core features without violating unrelated services or
attributes.

c01.indd 6c01.indd 6 6/15/11 3:26:18 PM6/15/11 3:26:18 PM

Chapter 1: What is Enterprise Design?

7

 Separation of Concerns
 Separation of concerns is simply the process of breaking a system or application down into distinct
functional layers with limited overlapping of functionality. Like flexibility, separation of concerns
addresses the ability to modularize code and make it more pliable, with the added benefit of logical
division. Much of this division can be achieved through well - known object - oriented tenets, such as
modularization and encapsulation. As we explore new patterns of development, separation of concerns
becomes an all - important piece of the enterprise puzzle.

 Reusability
 Sharing features and services is tantamount to good enterprise design. As code is broken down and
separated into logical pieces, these pieces should be designed to provide a distinct feature or satisfy a
particular requirement of other systems that invoke it. The scope of a class ’ s reusability depends on
the context in which it is used; however, most agree that other modular pieces of code within a similar
context should always be callable. In other words, classes at any one logical level should be reusable by
other classes in the same logical level. Classes that provide data should be consumable by all other
classes that demand data within scope. Classes that implement a user interface (UI) behavior should
deliver the same behavior to all UI - implementing classes on the same UI tier. The notion of reusability is
especially important when designing true enterprise architectures.

 Maintainability
 Maintainability refers to the capacity of a system to be altered or modified. Although most software
engineers think they know what maintainability means, it actually has a distinct meaning in the world of
software design. According to the international standard of software development defined in ISO 9126,
the term maintainability actually means the ease with which a software product can be modified in
order to support:

 Stability

 Analyzability

Changeability

 Testability

 Maintainable code should be the natural result of following these four tenets, provided that the designer
has not introduced unnecessary levels of complexity. The inherent balance between complexity and
maintainability will be explored further in Chapter 2.

 For a great many software engineers this can be a dramatic shift in the way they program. It requires a
rigid manner of programming, employing new concepts and demanding more upfront design than the
typical developer usually executes. At close glance, one might think that simple, non - enterprise
computer code that delivers a particular feature is identical in value to enterprise code that delivers
precisely the same feature. Yet this shortsighted evaluation fails to address the greater needs of the
system, namely core enterprise concepts. While the code may deliver similar results, the enterprise code
takes strides to accommodate better design. So while the enterprise sample might look a bit more
complex (only at first, mind you), the resulting class or module ultimately provides more reliability or is
more maintainable.

❑

❑

❑

❑

c01.indd 7c01.indd 7 6/15/11 3:26:18 PM6/15/11 3:26:18 PM

Part I: Introduction to Practical Enterprise Development

8

 Consider a simple example. Two developers are required to build a web page that displays dynamic
feeds of financial data. These feeds can range from stock quotes to bond prices to billboard articles from
popular financial journals. The non - enterprise developer might write an ASP.NET page with a set of data
grids, each bound to different database calls and online web services. The bindings are created in the
ASP.NET code - behind page directly, placing a good amount of data logic side by side with some of
the user interface behaviors. The enterprise developer would take a slightly different tack. Using the
Model - View - Presenter pattern widely embraced within the enterprise community, they define a class to
garner and hold the data on its own. They then create another class to handle the user interface logic and
events, defining both classes with an abstract interface that defines each of the classes ’ core methods.
Finally, the developer writes a series of unit tests and mock classes to test the code and ensure that all
portions function as intended. The resulting software delivers precisely the same page and the same data,
with much more orchestration and modularity. So the two efforts were a wash, right? Let ’ s take this model
a step further. The sample page hits its mark. Management is happy and they request that the page be
published on the company website. The website requires a level of account authorization in order to query
data from other data sources, but neither developer is aware of this. The non - enterprise developer deploys
the web page directly and takes a quick look at it using a browser running on his/her desktop. They are
logged in as an administrator, so the web page loads just fine. Unfortunately when others try to view the
page they get a horrible system error that crashes the entire web session. On the other hand the enterprise
developer took time to write a unit test that impersonates an anonymously authenticated user in the data
access class. They run the test as a part of the build process and the problem becomes immediately
apparent. The enterprise code is more reliable than the non - enterprise code. What ’ s more, the composition
of the web page code to support the unit tests allows for modularity and separation of concerns. So when
management provides a new data service to use, the data layer can be altered with minimal impact on the
user interface. The code is now more flexible, too. The added flexibility, along with the reliability and
logical separation, makes the enterprise developer ’ s web page far more maintainable than the
non - enterprise developer ’ s page.

Figure 1-1

 An enterprise architecture can be difficult to build in its entirety. Typically speaking, an individual
software engineer has limited say over how a business expends its resources.

c01.indd 8c01.indd 8 6/15/11 3:26:19 PM6/15/11 3:26:19 PM

Chapter 1: What is Enterprise Design?

9

 For most developers this is a game - changing approach to writing code. The vast majority of developers in
the Microsoft world concentrate on developing software for a single system or application. This is completely
understandable when you consider that an overwhelming number of career Microsoft developers began as
business analysts or specialists who, thanks to the proliferation of rapid application development tools in the
Microsoft software space, took on coding as a means of automation. Yet despite the upfront convenience of
rapid application development, the cost in the long run can be, and usually is, very high. Enterprise
development aims to reduce these long - term costs with prudent designs, approaches, and testability.

Where Is All of the Microsoft Enterprise?
 Enterprise development is not new. In fact, many of the core values that drive enterprise architecture
have been around for quite a few years. The problem is, if you ’ re a Microsoft programmer, you probably
haven ’ t encountered any of them. Most enterprise patterns come from the great wide open world of
common developer contribution known by most of us as open source . As a result, most enterprise systems
have been built with platform - independent technologies such as Java or even C++. That ’ s not to say that
Microsoft technologies have never been used to build big systems for large organizations. Remember,
enterprise architecture does not necessarily mean “ made for big companies. ” We simply point out that
the evolution of the patterns and methodologies driving the core values have depended on contributions
from the developer community. Until recently Microsoft technologies were anything but open source.
Since the open source community was the fecund environment from which modern enterprise concepts
emerged, Microsoft software has played a relatively minor role in the evolution of enterprise architecture.

 In the Microsoft world, a great deal of emphasis is placed on the ability to create applications quickly.
Tools that provide quick automation and almost instant results can be found all over the Windows
world. These tools generally fall within a category of software development known as rapid application
development, or RAD. RAD - style programming isn ’ t necessarily meant to deliver production - worthy
code. Rather, its primary goal is to enable developers and analysts to emulate the core behaviors of a
system quickly, intentionally ignoring patterns and process for a quick bang factor. Unfortunately, a
good deal of RAD development is downright counter to the core values of enterprise development.

 RAD culture has worked its way strongly into the large developer base of Microsoft programmers. At
the heart of this pervasive movement lies the simple, easy - to - use language Visual Basic. First given the
moniker “ Project Thunder ” and released as VB 1.0 in mid - 1991, VB has since become the most popular
programming language among Windows developers and one of the most widely used programming
languages in the world. Its verbose, non - C - style syntax is easy for analysts and the less technically
inclined to follow. The language itself has undergone a number of dramatic changes and enhancements
over the years. However, until the language itself was retooled for the managed world and named
VB.NET, its primary focus was to provide RAD tools for building powerful, production applications. At
the height of its popularity, VB was most widely employed in one of two forms: Visual Basic 6.0, or
Visual Basic for Applications (VBA). VB6 was its own development suite. It included tools for quickly
creating object - structured applications using visual designers and wizard - like feature builders
(Figure 1 - 1). VBA was, and still remains, the language of macros and automation within Microsoft Office
applications. Between these two suites, new generations of coders were empowered. Forgoing a great
deal of process and design, applications were churned out at alarming rates, with little planning and
even less testing. Simple Word documents and Excel spreadsheets were fashioned with VB forms that
provided a more flexible user experience than would otherwise have been achievable. Websites that once
required complex Internet Server API (ISAPI) filters and direct Internet Information Server (IIS)
extensions could now use VB6 ActiveX components, giving a website access to the entire Component
Object Model (COM) library with very little development overhead. As usage increased, so did the
power of VB. In time, Visual Basic eclipsed C++ as the Microsoft language of choice, yielding just about
as much power as a complicated C module but without all of the messy planning beforehand.

c01.indd 9c01.indd 9 6/15/11 3:26:19 PM6/15/11 3:26:19 PM

Part I: Introduction to Practical Enterprise Development

10

 Unfortunately, VB development led to some staggeringly bad applications. Once the emphasis was
placed on delivery and away from design and process, a large number of companies found themselves
stuck with unreliable, inflexible systems. They might have been delivered quickly, but the cost of
maintenance over time became staggering. Note that we are not passing blanket judgment on the VB
developer community. On the contrary, we too, found ourselves building systems in VB6 for quite a few
years. We simply mean to demonstrate how this formidable trend in Microsoft development is one of the
big reasons why enterprise design patterns still elude the common Microsoft programmer. The RAD
culture that grew out of Visual Basic development polarized the pattern - minded from the results -
 oriented, ultimately blocking the mainstream Windows developers from participating in the
enterprise effort.

 The COM Factor
 Of course, Visual Basic alone wasn ’ t the only thing preventing enterprise patterns from making their
way into Microsoft code. Some tend to think that Microsoft ’ s previous software development platform
had much to do with this as well. Before we had the neat and clean world of .NET, most C and C++
programmers were forced to use its predecessor, the Component Object Model, or COM. COM is a
Windows - specific technology that allowed for components from different applications to communicate
and interoperate with one another. Specifically, it is an interface standard that facilitates inter - process
communication and object creation within any application, service, or system that supports the
technology. COM patterns drive most objects that were used in Visual Basic programming, many of
which are still in use on the Windows operating system. However, many developers felt that
implementing COM introduced complexity that wasn ’ t well suited to business applications. At the heart
of every COM object lives a single common interface named IUnknown . This interface defines three key
COM method definitions: AddRef , Release , and QueryInterface , each of which is used to manage
objects in memory and communicate between objects.

 As an object - oriented pattern, COM was well orchestrated and seemed to deliver on some of the goals
that drive enterprise development. However, not everyone embraced COM programming. Implementing
 IUnknown generally meant that you had to write your program in a lower - level programming language
such as C or C++. Since most Microsoft developers preferred to develop with RAD tools and languages,
direct COM usage was hard to come by. Instead, COM - powered technologies such as Object Linking and
Embedding (OLE) and ActiveX were provided to RAD programmers as a means to leverage COM
objects without all of the hassle of the IUnknown plumbing. Unfortunately, COM - powered technologies
were much heavier than straight COM. They introduced overhead and had a tendency to run more
slowly than systems that implanted COM directly. Additionally, integration with other platforms
became mostly impossible. COM objects became synonymous with Microsoft objects. As a pattern it
didn ’ t accommodate interoperability with non - Windows platforms. So, while COM was a fine pattern
for designing enterprise architectures, it was only used as a means to define the Microsoft API itself.
Precious few organizations employed the COM pattern directly within their own code.

 The Shift to Java
 Java, a (mostly) operating system - independent development platform, was released by Sun
Microsystems in 1995 and gained popularity as a powerful alternative to otherwise limited Windows -
 based development. Long before .NET was released, Java developers enjoyed the use of well - designed
APIs, automatic memory management, and just - in - time compilation. The Java community experienced a
ground swell of low - level language programmers interested in porting their skills to more business -
 friendly development platforms. A large number of C and C++ developers were drawn to Java as a

c01.indd 10c01.indd 10 6/15/11 3:26:19 PM6/15/11 3:26:19 PM

Chapter 1: What is Enterprise Design?

11

comfortable flavor of a C - style language that included some tenets of RAD without compromising some
of the more academic portions of software engineering. As a platform, Java has also always been very
community - oriented. It was released as free software under the GNU General Public Agreement and
made freely available via downloading to programmers on different platforms. Other Java compilers
have been released under the same set of public agreements, and although Sun never formalized Java
with the ISO/IEC JTC1 standards body or the ECMA International, it quickly became the de facto
standard for enterprise object - oriented systems. In late 2006, Sun released most of the Java SDK as free
and open source software under the GNU General Public License.

 As a result, the Java community was a fertile ground for the next generation of enterprise architecture.
Large, multifaceted development patterns began to grow, weaving their way into medium - sized
organizations at first and into vastly larger ones as time went on. The Java 2 Enterprise Edition (J2EE)
provided distinct multi - tiered patterns, such as Servlets and Java Server Pages (JSP) for Web and n - tiered
systems. Message Oriented Middleware (MOM) patterns began to form, evolving into Java Message
Service (JMS) and facilitating asynchronous communication between disparate servers. Front - end
orchestration patterns such as Struts paved the way for better decoupling of front - end interfaces from
the code that handles data and application state. To this day, an overwhelmingly large percentage of the
open source community is firmly rooted in Java and J2EE, contributing to public software projects and
providing a loud voice in the enterprise community.

 The .NET Revolution
 In 2002, Microsoft officially released the .NET Framework version 1.0. .NET was a revolutionary
departure from any development platform Microsoft had ever released. It came with a large set of pre -
 coded libraries that exposed or wrapped most of the core functionality within the Microsoft software
development kit (SDK). It included a code management system known as the Common Language
Runtime (CLR) that managed memory, loaded classes, and delivered just - in - time compilation to
applications written in a .NET - enabled language. .NET languages run the gamut from script languages
to older mainframe languages such as Cobol.net. However, the most popular are VB .NET, Microsoft ’ s
next generation of the popular Visual Basic language, and C#, a C - based language created by Microsoft
specifically for building .NET applications. Unlike the COM and ActiveX of old, .NET was designed
from the ground up to be a comprehensive development and runtime environment. Its mature
combination of APIs, development tools, and runtime services makes it a far better candidate for
building enterprise applications. .NET mirrors other managed software platforms in terms of tools and
services provided, and it is still considered by most to be Microsoft ’ s answer to the Java development
platform. However, unlike Java, .NET didn ’ t have the impetus of academic and enterprise developers
driving it. On the contrary, at the time of .NET ’ s release most Microsoft developers were RAD
programmers or automation engineers. Thus, there wasn ’ t a whole lot of enterprise development
happening in the world of Windows.

 In time, that began to change. As the .NET Framework became more mature (and as Microsoft was
beefing up its server architecture a bit) more and more people began to recognize some of its enterprise
advantages. .NET languages, particularly C#, were well suited for complex patterns. Language
constructs such as delegates and events, properties, and indexers, made C# a suitable candidate for
writing consumable, decoupled APIs. Microsoft has also taken a more accepting position to the world of
open source. Upon initial release of the framework, Microsoft published the Common Language
Infrastructure (CLI) and submitted it, along with specifications for the C# language and C++/CLI

c01.indd 11c01.indd 11 6/15/11 3:26:20 PM6/15/11 3:26:20 PM

Part I: Introduction to Practical Enterprise Development

12

language, to both ECMA and ISO, making them accessible as open standards. Microsoft at first held tight
to its patents on its core technologies such as its user interface API (Windows Forms) and their data
access API (ADO.NET). However, in October of 2007, Microsoft announced that it would release much of
the source code for the .NET base class libraries under the shared source Microsoft Reference License.
This code was released in the next version of their popular interactive development environment, Visual
Studio.NET 2008 edition. These steps helped to make .NET more attractive to a broader set of software
engineers.

 Over the last few years a number of .NET open source communities have emerged, driving new projects
and embracing enterprise patterns as a means of more complicated system development. The Mono
project (Figure 1 - 2), an initiative to create a suite of .NET tools and services targeting multiple operating
systems, was established in July of 2001 and uses the public CLI specifications within its software.
SourceForge.NET (see Figure 1 - 3), an open source community code repository, has a growing number of
.NET projects.

 Many of the popular Java open source projects, such as LogForJ and Hibernate, have .NET sister projects
that started in SourceForge.NET.

Figure 1-2

c01.indd 12c01.indd 12 6/15/11 3:26:20 PM6/15/11 3:26:20 PM

Chapter 1: What is Enterprise Design?

13

Figure 1-3

 SourceForge.net is a terrific resource for finding and exploring open source projects from all areas of the
software development industry. It also includes community forums, information for system
administrators, and a marketplace for buying and selling projects.

 Perhaps most notable among the open source communities is Codeplex.com (Figure 1 - 4). Codeplex is
Microsoft ’ s open source project hosting site. Launched in June of 2006 and powered by Microsoft ’ s Team
Foundation Server, Codeplex had accumulated over 3500 public .NET projects by early 2008. It remains
one of the primary avenues of code patterns used by Microsoft today.

Figure 1-4

c01.indd 13c01.indd 13 6/15/11 3:26:21 PM6/15/11 3:26:21 PM

Part I: Introduction to Practical Enterprise Development

14

 Today, there are a number of tools and projects available for the .NET developer. Some these tools have
grown out of existing enterprise projects for non - Windows platforms, while others have been created
specifically for .NET development. Throughout this book, we will be exploring those tools and patterns,
familiarizing you with the features they offer, as well as with the processes and frameworks in which
they operate. Some patterns might seem confusing at first, adding layers of complexity to otherwise
simple code samples. As you begin to get used to enterprise patterns within your code, the intrinsic
value provided by enterprise design will become evident. As we cover more and more topics and your
enterprise horizons broaden, this learning curve will become increasingly shallow until the patterns and
processes become a part of your everyday development approach.

 Summary
 In this chapter, we began our journey into the professional enterprise development world by focusing on
some of the key concepts and core values of enterprise development:

 We explored the nature of enterprise development, discussing how enterprise applications are
fundamentally different from standalone applications.

 We defined enterprise architecture as a comprehensive set of tools, features, patterns, and
processes that enable an organization to achieve its goals.

 We distinguished software development from the broader context of enterprise architecture,
defining enterprise development as software programming that aims to achieve and support
enterprise goals.

 We reviewed the core values of enterprise development, underscoring the five base tenets of
well - designed code: reliability, flexibility, separation of concerns, reusability, and maintainability.

 We explored some of the background of Microsoft development.

 We reviewed the history of rapid application development within the Microsoft community,
comparing it to the more rigid and well - defined Java development platform from which a great
number of enterprise patterns emerged.

 Finally, we discussed Microsoft ’ s.NET Framework, exploring some of its key benefits and
explaining how and why .NET is well suited for the next generation of enterprise development.

In the next chapter we will begin to explore some of the code patterns and methodologies inherent to
building enterprise systems. Using the information from this chapter as a theoretical foundation, we will
focus on using programming patterns that help to increase code quality and flexibility.

❑

❑

❑

❑

❑

❑

❑

c01.indd 14c01.indd 14 6/15/11 3:26:21 PM6/15/11 3:26:21 PM

