CHAPTER 1

PROBABILITY SAMPLING FROM A
FINITE UNIVERSE

1.1 INTRODUCTION

A large fraction of the guantitative information that we receive about our econ-
omy and our community comes from sample surveys. Statistical agencies of
national governments regularly report estimates for items such as unempioy-
ment, poverty rates, crop production, retail sales, and median family income.
Some statistics may come from censuses, but the majority are based on a
sample of the relevani population. Less visible statistics are collected by
other entities for business decisions, city planning, and political campaigns.
National polls on items beyond politics are regularly reported in newspapers.
These reports are so common that few reflect on the fact that almost all people
believe that something interesting and {or) useful can be said about a nation
of 300 million people on the basis of a sample of a few thousand. In fact,
the concept that a probability sampie can be so used has only been accepted
by the scientific community for about 60 years. In this book we study the
statistical basis for obtaining information from samples.
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In this chapter we develop a probabilistic framework for the study of
samples selected from a finite population. Because the study of estimators
often requires the use of large-sample approximations, we define sequences
of populations and samples appropriate for such study.

1.2 PROBABILITY SAMPLING

Consider a finite set of elements identified by the integers U = {1, 2, ..., N}.
The set of identifiers, sometimes called labels, can be thought of as forming

a list. The existence of such a list, a list in which every element is associated

with one and only one element of the list, is the comerstone of probability

sampling. The list is also called the sampling frame. In practice, the frame

takes many forms. For example, it may be a list in the traditional sense, such

as the list of employees of a firm or the list of patients in a hospital. It is

sometimes the set of subareas that exhaust the geographic area of a political

unit such as a city or state.

Associated with the jth element of the frame is a vector of characteristics
denoted by y;. In all of our applications, the y; are assumed to be real
valued. The entire set of IV vectors is denoted by F. The set is called a finite
population or a finite universe. A sample is a subset of the elements. Let 4
denote the set of indices from U that are in the sample. In statistical sampling
the interest is in the selection of samples using probability rules such that the
probability characteristics of the set of samples defined by the selection rules
can be established. Let .4 denote the set of possible samples under a particular
probability procedure. A person who wishes to obtain information about a
population on the basis of a sample must develop a procedure for selecting
the sample.

The terms random samples and probability samples are both used for
samples selected by probability rules. Some people associate the term random
sampling with the procedure in which every sample has the same probability
and every element in the population has the same probability of appearing in
the sample.

1.2.1 Basic properties of probabllity samples

In this section we present some basic properties of statistics constructed
from probability samples. In the methods of this section, the probabilistic
properties depend only on the sampling procedure. The population from
which the samples are selected is fixed. Let A be a subset of U/ and let .4 be
the collection of subsets of U/ that contains all possible samples. Let P[A = q]
denote the probability that a, ¢ € A, is selected.
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Definition 1.2.1. A sampling design is a function p(-) that maps « to [0, 1]
such that p{a) = P[A = a] for any a € A.

A set of samples of primary irmportance is the set of all possible samples
containing a fixed number of distinct units. Denote the fixed size by n. Then
the number of such samples is

NY N
( n ) (N =n)n!’ (2.1

where N!=1x2x---x N,

A probability sampling scheme for samples of fixed size n assigns a prob-
ability to each possible sample. Simple random nonreplacement sampling
assigns equal probability to each possible sample. We may occasionally refer
to such samples as simple random samples. The inclusion probability tor
element ¢ is the sum of the sample probabilities for all samples that contain
element #; that is,

mo= PicA) = 3. pla)

G-E.‘fl(”

where Ay, is the set of samples that contain element ¢.
The terms selection probability, probability of selection, and observation
probability are also used. In simple random nonreplacement sampling, ele-

ment ¢ appears in
1 N-1

samples. If every sample has equal probability, the probability of selecting

element % is )
N B N-1 7
[T () -5 e

In discussing probabitity sampling schemes, we define indicator variables
to identify those elements appearing in the sample. Let f; be the indicator
variable for element ¢. Then

L | if element 7 is in the sample

0 otherwise,

(1.2.4)

Letd = ([1, I, ..., Iy) be the vector of random variables. The probabilis-
tic behavior of functions of the sample depends on the probability distribution
of d. The sampling design specifies the probability structure of d, where the
inclusion probability for element ¢ is the expectation of I;,

m = E{L}. (1.2.5)
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With this notation, the sum of characteristic y for the elements in the sample
is

N
sample sum = Zfiy,;. (1.2.6)
i=1

The set A is the set of indices appearing in the sample. Thus,
A = {ielU:I;=1}. (1.2.7)
Then the sample sum of (1.2.6) can be written
N
D Lwi=) w (1.2.8)
i=1 €A

The joint inclusion probability, denoted by ;i for elements ¢ and & is the
sum of sample probabilities for all samples that contain both elements 7 and &.
In terms of the indicator variables, the joint inclusion probability for elements
iand k is

i = E{I@Ik}. (129)

For simple random nonreplacement sampling, the number of samples that
contain elements ¢ and & is

(i)(})(ﬁr:g) (12.10)

T = [N(N-=1)]"nn-1). (1.2.11)

and

The number of units in a particular sample is

N

n o= Y I (1.2.12)

=1

and because each I; is a random variable with expected value 7;, the expecied
sample size is

N N
E{n} = Y E{L} = > m. (1.2.13)
i=1 i=1



PROBABILITY SAMPLING B
Also, the variance of the sample size is
N

N N
Vin} =V {Z Iﬁ} = Z Z(’ﬂ'ﬁk — mme),
i=1 k=
N N N 2
EE (B o

i=1 k=1 i=1

e,
—
[y

where m;; = ;. If V{n} = 0, we say that the design is a fixed sample size or
Jixed-size design. It follows from (1.2.14) that

N N
ZZ‘H’% =n2—n =nn-1) (1.2.15)
i=1 k=1

i#k

for fixed-size designs. Also, for fixed-size designs,

N
> k=Y B{IL}-m = (n—m (1.2.16)

kel itk k=1

Discussions of estimation for finite population sampling begin most easily
with estimation of linear functions such as finite population totals. This is
because it is possible to construct estimators of totals for a wide range of
designs that are unbiased conditionally on the particular finite population.
Such estimators are said to be design unbiased.

Definition 1.2.2. A statistic f is design unbiased for the finite population
parameter 8y = #{yy, ¥2, ..., ¥yu)if

E{f| F}

for any vector {y1, ¥2, ..., ¥n), where & {9 | F}, the design expectation,
denotes the average over all samples possible under the design for the finite
population F.

Probability sampling became widely accepted in the 1940s. For a number
of years thereafter, sampling statisticians who considered estimation problems
approached design and estimation problems by treating the IV unknown values
of the finite population as fixed values. All probability statements were with
respect to the distribution created by the sample design probabilities. Thus,
in many discussions in the sampling literature the statement that an estimator

s “unbiased” means design unbiased for a parameter of the finite universe.
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The concept of a linear estimator is also very important in estimation theory.
Often, modifiers are required to fully define the construct. If an estimator ¢
can be written as

o = > wiy, (1.2.17)

ieA

where the w; are not functions of the sample y’s, we say that the estimator
6 is linear in y. In the statistical theory of linear models, estimators of the
form (1.2.17) are called linear estimators provided that the w; are fixed with
respect to the random mechanism generating the y values. Thus, the model
specification for the random process and the set of samples under consideration
define the statistical linearity property. We will have use for the concept of
linearity relative to the design.

Definition 1.2.3. An estimator is design linear if it can be written in the form
(1.2.17) or, equivalently, as

0 = thw-iyi;

el

where the w; are fixed with respect to the sampling design.

Observe that for a given finite population, the vector (wiy1, ways, ...,
Wiy ) 18 a fixed vector and the elements of the vector are the coefficients of
the randorn variables I;.

The design mean and design variance of design linear estimators are func-
tions of the selection probabilities. In Definition 1.2.2 we introduced the
concept of the expectation over all possible samples for a particular finite
population F. We use V{6 | 1 to denote the analogous design variance.

Theorem 1.2.1.  Let (y1, ¥2, ..., ¥x) be the vector of values for a
finite universe of real-valued elements. Let a probability sampling procedure
be defined, where m; denotes the probability that element ¢ is included in the
sample and 7;; denotes the probability that elements ¢ and k are in the sample.

Let
§ = Z'wiyi = Zfiwztyf;

ted iell

be a design linear estimator. Then

N
E{0|F} = > wimys (1.2.18)
i=1
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and

N N
V{é | F} = ZZ Tk — TTh WY WEY L, (1.2.19)
i=1 k=1

where iy = mif i = k.
KEV(n) =0, then V{8 | ]—'} can be expressed as

A 1
Vgl Fy = 3 Z 2 m,c — ma ) (wiys — wrye)®. (1.2.20)
Proof. Because E{I;} = m; and because wiy;, ¢ = 1, 2, ..., N, are fixed,

we have
R }\“' ‘i\."
E(0|F} = Y B{L|Flwy = Y mawiy
i=1 i=1

and (1.2.18) is proven. In a similar manner, and using E{I;I} = m;, we
have

AF
V{g|F} = V Zru:z%m}

;
|

1 N ,
(ZI Wiy - (Z ’sz"wi’y-;.)
i=1 F=1
N N
D (ma — mimg ywigiweys

i=1 k=1
and (1.2.19) is proven. Also see Exercise 1.
To prove (1.2.20) for fixed-size designs, expand the square in (1.2.20) to
obtain

it

N N
— Z Z(mﬂ'k — ) (w0 -yf — Qw ey + w%y%)

a_l k=1
N N
2.2
= 3 (mmp — T wly;
i=1 k=1
N N

Z Z Tyl — ik )WY Wh Yk

i=1 k=1
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The result follows because Z}fv\":l(m—k —miwy) = 0 for fixed-size designs. See
(1.2.14). n

We have stated Theorem 1.2.1 for scalars, but the results extend immedi-
ately to vectors. If y; is a column vector and

GA = Z Wi¥i,
itcA

the covariance matrix of 8 is

N N
V{8 F} =) (m — mim)wiyiwe -

i=1 k=1

Two finite population parameters of particular interest are the finite popu-
lation total,

N
Ty = Y % = D % (1.2.21)
t=1

el
and the finite population mean,
gy = NI, (1.2.22)
If w; > 0 for all £, the design linear estimator of the total,
T, = Z 7y, (1.2.23)
icA

is design unbiased. The estimator (1.2.23) is known as the Horvitz—Thompson
estimator and is sometimes called the & estimator. See Horvitz and Thompson
(1952) and Narain (1951). The corresponding design-unbiased estimator of
the mean is

Jur = N1, (1.2.24)

The properties of the Horvitz—Thompson estimator follow from Theorem
1.2.1.

Corollary 1.2.1.1. Let the conditions of Theorem 1.2.1 hold, let 7; > 0 for
all ¢, and let the design linear estimator of T, be T}, of (1.2.23). Then

E(Ty| F} = Ty (1.2.25)
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and

N N

VT, - T, | F} = 33 (i~ mm)as ey by (1.2.26)
i=1 k=1

If V{n} =0, then V{(Ty — T} | F} can be expressed as

N N
(rip — mome) (' — 0 T (g e — 0T IT) (1.227)
t=1 k=1
Oor as
1NN
§Z Z (g — ?Tik)(?ﬂ‘;lyg - ﬂ;lyk)Q. (1.2.28)
i=1 k=1
itk

Proof, Results (1.2.25), (1.2.26), and (1.2.28) follow from (1.2.18), (1.2.19),
and (1.2.20), respectively, by substituting w; = m; L

To show that (1.2.27) is equal to (1.2.26) for fixed-size designs, observe
that

N N
Z Zﬂmk(ﬂ;l% - n_lTy)(ﬁ,zl Y —n1T,)

i=1 k=1
N 2
= (Z:(yﬂl - n—]mTy)) = 0
i=1

From (1.2.16), Ef:lﬂék = nwy;. Thus,

N N N
Z(ﬂ{lyi - 27T ngkn"lTy = Ty Z(yg - tmT,) = 0

and (1.2.27}) is equal to

N
IO maem; ety — T2

i=1 k=1

The Horvitz-Thompson estimator is an unbiased estimator of the total,
but it has some undesirable features. The estimator is scale invariant but not
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location invariant. That is, for real ¢y, 3 not zero,

Z?‘Q_l.@’yi = ﬁzﬂfl%

1EA ieA

but

Soal i) = Yalmrad w1229

icA icA ied

The second term of (1.2.29) is Na for many designs, including equal-
probability fixed-sample-size designs. However, ), , ! is, in general,
a nondegenerate random variable.

The lack of location invariance restricts the number of practical situations
in which the Horvitz—Thompson estimator and unequal probability designs
are nsed. One important use of unequal probability sampling is the situation
in which the ; are proportional to a measure of the number of observation
units associated with the sampling unit.

Example 1.2.1, Assume that one is interested in the characteristics of
households in Des Moines, lowa. A recent listing of the city blocks and the
number of dwelling units in each block is available. On the presumption that
the number of households is strongly correlated with the number of dwelling
units, we might select a sample of blocks with probability proportional to
the number of dwelling units. Assume that all households in the block are
observed. In this situation, the fact that the Horvitz-Thompson estimator
is not location invariant is relatively unimportant because we are interested
in the properties of households, not in the properties of linear functions of
blocks. Tt was in a context such as this that unequal probability sampling was
first suggested. See Hansen and Hurwitz (1943). am

The fact that the Horvitz-Thompson estimator is not location invariant has
another consequence. Associated with each sampling unit is the characteristic,
which is always 1. The population total for this characteristic is the number
of sampling units in the population. The Horvitz—Thompson estimator of the
population size is the coefficient of «vin (1.2.29),

N="1=>n1 (1.2.30)
with variance

N N
V{T1|.7'_} = ZZ(ﬁik—ﬂiﬂk)?T?:_lﬂ‘;l. (1.2.31)

=1 k=1
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Although there are situations in which NV is unknown, in many situations N is
known. Therefore, the fact that the estimator of the population size is not equal
to the true size suggests the possibility of improving the Horvitz—Thompson
estimator. We pursue this issue in Section 1.3 and Chapter 2.

Under the conditions that m; > 0 for all < and 7, > O for all ¢ and %, it is
possible to construct a design-unbiased estimator of the variance of a design
linear estimator. Designs with the properties m; > 0 for all ¢ and 7, > O for
all ik are sometimes said o be measurable.

Theorem 1.2.2. Let the conditions of Theorem 1.2.1 hold with 7, > 0 for
alli, k, € U, Let 8 be a design linear estimator of the form (1.2.17). Then

VIOIFE = DO mpt (mu — mm) wigswpye (1.232)
LkEA

is a design-unbiased estimator of V{8 | F}. If V{n} = 0,
. 1 _ ,
V{g|F} = 5 Z Z w3t (g, — ma ) (wiy — weyr)® (1.2.33)
i REA
is a design-unbiased estimator of V{8 | F}.

Proof. Let g(y;, ux) be any real-valued function of (y;, ). Becaunse
7y > 0 for all (4, k), it follows by direct analogy to (1.2.18) that

N N
EC> milalo ) | F oo o= DD gy, w). (12.34)

ikEA i=1 k=1
Result (1.2,32) is obtained from (1.2.34) and (1.2,19) by setting
9y yk) = (Tig — W)WY WYk
Result (1.2.33) follows from (1.2.34) and (£.2.20) by setting
9y, yi) = (mip ~ mime) (wiys — wpye)®s
|
The estimator (1.2.32) for estimator (1.2.19) is due to Horvitz and Thomp-
son (1952), and the estimator (1.2.33) was suggested by Yates and Grundy
(1953) and Sen (1953) for estimator (1.2.20).

Theoretically, itis possible to obtain the variance of the estimated variance.
The squared differences in (1.2.33) are a sample of all possible differences.
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If we consider differences (w;y; — wyyy )2, for i # k there is a population of
N(N — 1) differences. The probability of selecting any particular difference
is m;5. The variance of the estimated difference is a function of the 7 and
of the probability that any pair of pairs occurs in the sample. Clearly, this
computation can be cumbersome for general designs. See Exercise 12.

Although design unbiased, the estimators of variance in Theorem 1.2.2
have the unpleasant property that they can be negative. If at least two values
of m; ly?; differ in the sample, the variance must be positive and any other
value for an estimator is unreasonable.

The Horvitz—Thompson variance estimator also has the undesirable prop-
erty that it can give a positive estimate for an estimator known to have zero
variance. For example, if y; is proportional to ;, the variance of Ty is zero for
fixed-size designs, but estimator (1.2.32) can be nonzero for some designs.

Theorem 1.2.2 makes it clear that there are some designs for which design-
unbiased variance estimation is impossible because unbiased variance esti-
mation requires that ;. > 0 for all (4, k). A sufficient condition for a design
to yield nonnegative estimators of variance is my, < mymg. See (1,2.33).

For simple random nonreplacement sampling, 7; = N ~ln and

me = [NV -=1)]""n{n—1)fori#k.
Then the estimated total (1.2.23) is
Ty = Nn'> 4 = Npa, (1.2.35)
€4
where
Jn = 'Y
icA
Similarly, the variance (1.2.26) reduces to
V{(T,-T,) | F} = N(N-n)n~'8?

yJN,
N*(1— fu)n 182, (1.2.36)
where
N
Sz = (N=1DD (y; — o)’
j=1

and fy = N~ ln. The quantity Sg, - also written without the /V subscript
and with different subscripts, is called the finite population variance. A few
texis define the finite population variance with a divisor of N and change the
definition of V{T,, | F} appropriately. The term (1 — fy) is called the finite
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population correction (fpc) or finite correction term. It is common practice
to ignore the term if the sampling rate is less than 5%. See Cochran (1977, p.
24).
The estimated variance (1.2.33) reduces to
IA/{Ty [ F} = Nn YN - n).s;,n (1.2.37)
for simple random sampling, where
S = (=171 (- ga)
jeA
The quantity sg’n is sometimes called the sample variance and may be writ-

ten with different subscripts. The results for simple random sampling are
summarized in Corollary 1.2.2.1.

Corollary 1.2.2.1, LetU = {1, 2, ..., N}andlet F = (y1, %2, ..., Un)
be the values of a finite universe. Let a simple random sample of size n be
selected from F, let 3, be defined by (1.2.35), and let 35,«1 be as defined for
(1.2.37). Then

E{gn | F} = @,
V{ga | F} = NTYN-—m)n™'S, ,, (1.2.38)
and
EV(ga | P F} = V| F}, (1.2.39)
where 4 is defined in (1.2.22), SiN is defined in (1.2.36), and
V{ga | F} = (L-fa)n sy,

Proof. For simple random nonreplacement sampling, m; = N ~!n and 7, =
[N(N — 1)) n(n — 1) for i # k. Thus, by (1.2.25) of Corollary 1.2.1.1,

E{T,|F} = E{N%)} = Nix

and we have the first result. The result (1.2.38) is obtained by inserting the
probabilities into (1.2.26) to obtain

. 1 N N
V{ly -1, | F} = §ZZﬂJ_I(N_”)(N - 1)_1(%“%)2

i=1 k=1
N
= N NV )N - D7D (i — )
=1

- NZTL_I(I - fN)ngN‘
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By the same algebraic argument, the estimator (1.2.33) for the estimated total
is

VT, | F} = Na YN -mn)sp,

with expectation Nn=1 (N — 'n)Si ~ by Theorem 1.2.2. [ |

In some situations, such as the investigation of alternative designs, it is use-
ful to consider the finite population to be generated by a stochastic mechanism.
For example, the {y;}, i = 1, 2, ..., N, might be independent identically
distributed (i¢d) random variables with a distribution function F'(y). We then
say that the finite population is a sample from the superpopulation F(y).

A simple and useful specification is that of Theorem 1.2.3. The combination
of a sample design and an estimator is called a strafegy.

Theorem 1.2.3.  Let {41, yo, ..., yx} be a set of éid(y, ¢?) random
variables. Let the sample design have probabilities m;, w; > 0, and
such that & 7; = ». Assume that the vector d of selection indicators is
independent of {#1. 2, ..., yn}. Let the estimated total be

> r (1.2.40)
€A
Then m; = N7 ln and my, = [N(N — 1)]"n(n — 1) for i # k minimize the
variance of T, — T},.

Proof. Under the assumptions, B{T, — T, | ¥} = 0 and d is independent
of the g,;. Therefore, the unconditional vanancc of Ty T, is the expectation
of the conditional variance. Using E{y}} = o2 + p* and E {yiye} = 2 for

i £k,

N N
Vi,-T,} = E {ch{ﬁa I} ﬂ'i_lyw'-ﬂ;:lyk}

i=] k=1

N N
= "_1.2 Z Z(?‘[‘ik — m?rk):rrgl?r;;l

i=1 k=1
+ 0y (m—w)m 2 (1.2.41)

where C'{x, 2} is the covariance of z and z.
Given that E L m; = 1, the second term of (1.2.41) 1s minimized if all m;
are equal because T -1 is convex in 7;. The first term of (1.2.41) is nonnegative
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because it equals 12V {N | w1}, Therefore, the minimum possible value
for the first term is zero, which is attained if the 7; are equal to N~!n and
i = [N(N — D} n{n—1) forall i # k. [

The formulation of Theorem 1.2.3 deserves further discussion. The result
pertains to a property of an estimator of the finite population total. How-
ever, the property is an average over all possible finite populations. The
result does not say that simple random sampling is the best procedure for the
Horvitz—Thompson estimator for a particular finite population. We cannot
find a design-unbiased procedure that is minimum variance for all fixed un-
known finite populations because the design variance is a function of the N
unknown values, See Godambe (1955), Godambe and Joshi (1965}, and Basu
(1971). On the other hand, if our information about the finite population is
such that we are willing to act as if the finite population is a set of iid ran-
dom variables, simple random sampling is the best sampling strategy for the
Horvitz-Thompson estimator, where “best” is with respect to the superpop-
ulation specification. If the finite population is assumed to be a sample from
a nomal distribution, the sample mean is optimal for the finite population
mean.

Theorem 1.2.4. Let {11, %2, ..., ¥~} be a set of normal independent
random variables with mean p and variance o2, denoted by NI(u, o2)
random variables. In the class of sample selection procedures for samples of
size n that are independent of {1, ¥2, ..., ¥~}, the procedure of selecting
a simple random nonreplacement sample of size n from U and using the
estimator g, to estimate the finite population mean, g, is an optimal strategy
in that there is no strategy with smaller mean square error.

Proof. By Theorem 1.3.1, the n elements in the sample are NI(y, o2)
random variables. Therefore, the sample mean is the minimum mean square
error estimator of i, See, for example, Stuart and Ord (1991, p. 617).
Furthermore, the minimum mean square error predictor of §y_, 18 §y. Thus,

o = N7'nga+ (N —n)jnl

is the best predictor of 3. ]

Because the elements of the original population are identically distributed,
any nonreplacement sampling scheme thatis independentof {y1, ¥z, ---, Un}
would lead to the same estimation scheme and the same mean square error.
However, probability sampling and the Horvitz—Thompson estimator are ro-
bust in the sense that the procedure is unbiased for any set {y1, y2, ..., Un}-
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If the normality assumption is relaxed, the mean is optimal in the class of
linear unbiased estimators (predictors).

Corollary 1.2.4.1. Let {1, %2, ..., yn} be a set of ¢id random variables
with mean g and variance o2, Then the procedure of selecting a simple
random nonreplacement sample of size » from /V and using the estimator g,
is a minimum mean square error procedure for ¢ in the design-estimator class
composed of designs that are independent of {y1, y2, ..., yn} combined
with linear estimators.

Proof. Under the iid assumption, the sample mean is the minimum mean
square error linear predictor of §y_yp, and the result follows. See Goldberger
(1962) and Grayhill (1976, Section 12.2) for discussions of best linear unbi-
ased prediction.

|

The consideration of unequal probabilities of selection opens a wide range
of options and theoretical difficulties. The very fact that one is able to
associate unequal mr; with the elements means that we know something that
differentiates element ¢ from element j. It is no longer reasonable to treat the
elements as exchangeable, that is, as a set for which the joint distribution does
not depend on the indexing. However, it may be possible to transform the
observations to achieve exchangeability. For example, it might be possible
to define «; such that it is reasonable to treat the y.;rrz-_l as exchangeable.
The nature of auxiliary information and the manner in which it should enter
selection and estimation is the subject of survey sampling.

1.2.2 Poisson sampling

A sample design with simple theoretical properties is that in which samples are
created by conducting N independent Bernoulli trials, one for each element in
the population. If the result of the trial is a success, the element is included in
the sample. Otherwise, the element is not part of the sample. The procedure
is called Poisson sampling or Bernoulli sampling or sieve sampling.

Theorem 1.2.5. Let (41, ¥2, ..., y~) be a finite universe of real-valued
elements, and let (w1, w2, ..., wy) be a corresponding set of probabilities
with m; > 0 for all 2 € V. For Poisson samples,

N
V{T, - T, | Fy = > = '(1—my, (1.2.42)
i=1
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where Ty, is the total defined in (1.2.21) and T is the Hor\a'ltz—Thompbon
estimator {1.2.23).
The expected sample size is

N
E{n} = ) m (1.2.43)
i=1
and
N
Vin} = > m(1l-m) (1.2.44)
i=1
A design-unbiased estimator for the variance of Ty is
V{T, | F} = > (0 —mm 2y, (1.2.45)
€A
Ifr, =,
E {n‘l S wl(Fon), n> U} = Uv (1.2.46)
i€ A
and

Vv {“rl Zyi | (F, n}, n> U} = NN —nmn 'S (1247

=4

Proof. Resulis (1.2.42), {1.2.43), and {1.2.44) follow from the fact that the
Lofd = (I, I,...,Iy) are independent Bernoulli random variables. If
7; = T, the sample size is a binomial random variable because it is the sum
of N ¢id Bernoulli random variables. The set of samples with size n = ng is
the set of simple random nonreplacement samples of size ng, because every
sample of size 7 has the same probability of selection. Results (1.2.46) and
(1.2.47) then follow. [ |

Theorem 1.2.5 gives another example of difficulties associated with un-
considered use of the Horvitz—Thompson estimator. If ; = «, the Horvitz—
Thompson estimator of the total of y for a Poisson sample is

Ty = =) w (1.2.48)
igA
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with variance
A N
VT, | F} = o 2> n(l—mf (1.2.49)

By (1.2.46), another estimator of the total of a Poisson sample with m; = 7
is N

T, = N, itn>0

— 0 if = 0, (1.2.50)

where §i, = n~ ' Z;c 4y;. The estimator N7, is conditionally unbiased for T,
for each positive n, and if n = 0, Ty = T}, = 0. The mean square error of T,
is
NE{(n~' = N"YS2 | (F,n), n> 0} P{n > 0} + TZP{n=0}.
(1.2.51)

Now E{n} = p, = N and the variance of the Horvitz-Thompson estimator
can be written

N¥(pa' ~ NN [NTHN - 1)S) v + 53] -

While E{n~!| n > 0} > u,?, it is difficult to think of a situation in which
one would choose the Horvitz—Thompson estimator over estimator (1.2.50).
Note also that given m; = 7,

V{T, | (F, n),n>1} = Nin™!- N1 (1.2.52)

Y,

where sy » 18 as defined in (1.2.37), is a conditionally unbiased estimator of
the conditional variance of Ty, conditional on n > 1.

1.2.3 Stratified sampling

Assume that the elements of a finite population are divided into H groups,
indexed by h = 1, 2, ..., H, called strara. Assume that the hth stratum
contains Ny, elements and it is desired to estimate the finite population mean

H Np

gy = N30y = ZN " Naiwhs (1.2.53)

h=1i=1

where gy = N, 12?_{__ " ypi and yp; is the ith element in the Ath stratum.
Assume that we are willing to treat the elements in each stratum as if they

were a random sample from a population with mean p, and variance or%. That

is, the unknown values in stratum % are considered to be a realization of Ny,
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itd random variables. Thus, if one were selecting a sample to estimate the
mean of an individual stratum, it is reasonable, by Theorems 1.2.3 and 1.2.4,
to select a simple random sample from that stratum. Then, the sample mean of

the stratum sample is an unbiased estimator of the population stratum mean.
That is,

E{gh 1 -7:} = Ynhs

where

o= nyt thi

€A

and Ay, is the set of indices for the sample in stratum h. It follows that

H
g = Y _ NT'Npga (1.2.54)
h=1

is unbiased for the population mean, where §, is the mean of a simple non-
replacement sample of size ny, selected from stratum % and the H stratum
samples are mutually independent.

The procedure of selecting independent samples from A mutually exclusive
and exhaustive subdivisions of the population is called stratified sampling, a
very common technique in survey sampling. The samples within a stratum
need not be simple random samples, but we concentrate on that case.

Because the §, are independent,

H
Vet = Gn | F} = D_(NT'NG)’N NN, — np)ng 'SE, (1.2.55)
h=—1

where ¥, is as defined in (1.2.54) and
Ny
Sko= (Ne—17 (yne — ).
i=1
The estimated variance of the stratum mean 3, is
V{@h—m) | F} = N7 —nainy st
where

o= (a—-1" D (yw — )%

igdy,
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It follows that an unbiased estimator of the variance of {,; is

H

VG — ) | T} = D (NT'NRYEN,H(N; — np)n ' sf. (1.2.56)
h=1

Under the model in which the yp; are realizations of i#id(uy,o3) random
variables, the unconditional variance is the expected value of (1.2.55},
H
VG = Gn} = E{V[fa—9n | FI} =D N72Ny(Ny ~ nn)ny, o

h=1
(1.2.57)

Assume that the objective of the design and estimation operation is to
estimate the population mean, ¥, of the characteristic y. Assume that a
total amount € is available for sample observation and that it costs ¢, to
observe an element 1n stratum A. Under this scenario, one would choose the
iy, to minimize the variance (1.2.55), or the variance {1.2.57), subject to the
condition that

H
npep, < O

The minimization requires knowledge of the S? or of Jﬁ.

In practice, one seldom knows the C’f?; at the time that one is constructing a
sampling design. Thus, it is reasonable for the designer to construct a model
for the population, to postulate parameters for the model, and to use the model
and parameters as the basis for determining a design. The model is called the
design model, and the parameters of the model ave called design parameters
or anticipated parameters.

The expected value of the design variance of the planned estimator calcu-
lated under the designer’s model using the postulated parameters is called the
anticipated variance. Let 8 be an estimator of a finite population parameter
. Then the anticipated variance of § — 8y is

AV{0 — 0y} = E{E[(f - 0,) | F]} — [E{E(@ — 6, | F)})%.
For stratified sampling E{y.;: — g~ | F} = 0 and the anticipated variance
of § 18 minimized by minimizing

H
AV G -G} = D NT2NE(np'— NyhR, (1238
h=1

subject to the cost restriction, where &%_, h=1, 2, ..., H, are the antici-
pated stratum variances. If one uses the method of Lagrange multipliers, one
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obtains
ny = ATV2VANTINGG, (1.2.59)

where ) is the Lagrange multiplier and

H
A2 = 01N NN %o
h=1

In general, the ny, of (1.2.59) are not integers, Also, it is possible for ny, to
exceed Np,. The formal feasible solution could be obtained by using integer
programming. In practice, the n, are rounded to integers with all n;, greater
than or equal to 2 and less than or equal to V. The allocation with n,
proportional to Ny, is optimal for constant costs. and is sometimes called
Neyman allocation, after Neyman (1934).

Our discussion is summarized in the following theorem.

Theorem 1.2.6. Let F be a stratified finite population in which the elements
in stratum b are realizations of #id( g, 0,21) random variables. Let c'iﬁ, h =
1, 2, ..., H,bethe anticipated variances, let C be the total amount available
for sample observation, and assume that it costs ¢;, to observe an element in
stratum f. Then a sampling and estimation strategy for 7, that minimizes the
anticipated variance in the class of linear unbiased estimators and probability
designs is: Select independent simple random nonreplacement samples in
each stratum, selecting nyp in stratum f, where n), is defined in (1.2.59),

subject to the integer and population size constraints, and use the estimator
defined in (1.2.54).

If it is desired to obtain a particular variance for a minimum cost, one
minimizes cost subject to the variance constraint

H
Vs = » N72Ni(n,'— N;h)ot,
h=1

where Vs is the variance specified. In this case,

H -t oy
Tip =~ (VS + ZN*ZNhO'E) (ZNHlNhC}j2ah) N_lNhC;UQ&h-
h=1 h=1

In both cases, ny, is proportional to N‘lth}:Uzb"h.
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1.2.4 Systematic sampling

Systematic sampling is used widely because of the simplicity of the selection
procedure. Assume that it is desired to select a sample of size n from
a population of size N with probabilities =;, ©+ = 1, 2, ..., N, where
0 < m < 1. To introduce the procedure, consider the population of 11
elements displayed in Table 1.1. Assume that it is desired to select a sample
of four elements with probabilities of selection that are proportional to the
measures of size. The sum of the sizes is 39. Thus, w; is the size of the
ith element divided by 39 and multiplied by 4. The third column contains
the cumulated sizes, and the fourth column contains the cumulated sizes,
normalized so that the sum is 4.

To select a systematic random sample of four elements, we select a random
number in the interval (0, 1). For our example, assume that the random number
18 0.4714. Then the elements in the cumulated normalized sum associated
with the numbers 0.4714, 1.4714, 2.4714, and 3.4714 constitute the sample.
Let the cumulated size for element ¢ be (', where the elements are numbered
1, 2. ..., N. Then an element is associated with the number ¢ if

Ci1 < ¢ <Gy

The probability that one of the numbers (RN, RN +1, RN +2, RN +3),
where RN is a random number in (0, 1), falls in the interval (C;_y, C}]is 7.

Table 1.1 Selection of a Systematic Sample

Random
Normalized Number
Element Measure Cumulated Cumulated and
Number of Size Size Size Increments
1 6 6 0.6154 0.4714
2 5 11 1.1282
3 6 17 1.7436 1.4714
4 4 21 2.1538
5 5 26 2.66067 24714
6 4 30 3.0769
7 2 32 3.2821
8 3 35 3.5897 34714
9 2 37 3.7949
10 1 38 3.8974
11 I 39 4.0000
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The selection is particularly simple if N = nk, where k is an integer and
the elements are to be selected with equal probability. Then the selection
consists of selecting a random integer between 1 and & inclusive, say r. The

sample is composed of elements r, r + &, r+2k, ..., r+ (n — 1)k. For
this situation, there are & possible samples and we have
7, = k71 foralli
m; = k71 ifj=itkmorj=i—km
= 0 otherwise, (1.2.60)

where m s an integer. Because m;; = 0 for some pairs, it is not possible to
construct a design-unbiased estimator of the variance of a systematic sample.

If the elements are arranged in random order and if the elements are se-
lected with equal probability, systematic sampling produces a simple random
nonreplacement sample. Sometimes, for populations in natural order, the
variance is estimated as if the sample were a random nonreplacement sample.
Such variance calculation is appropriate if the natural order is equivalent to
random order. More often, adjacent pairs are assigned to pseudo strata and the
variance estimated as if the sample were a two-per-stratum stratified sample.
See Section 3.3,

Systematic samples are sometimes defined with random sample sizes. For
example, we might draw a sample from a population of size N by selecting a
random integer between 1 and & inclusive, say ». Let the sample be elements
r, r+k, ... ,wherethelastelementis r+{g— 1)k and N—k < r+{g—1)k <
N. Let

N = Ekg+ L,

where ¢ and L are integers and 0 < L < k; then L of the samples are of
size ¢ + 1, and k — L of the samples are of size ¢. Because every element
has a probability k! of being selected, the Horvitz—Thompson estimator is
unbiased for the population total. However, the estimator 4,,, where ¥, is the
sample mean, is slightly biased for the population mean.

To consider systematic sampling for the mean of a population arranged in
natural order, assume that the superpopulation satisfies the stationary first-
order autoregressive model

Y+ = pyi-1 t e (1.2.61)
er ~ NI, c?),

where 0 < p < 1 and the symbol ~ means “is distributed as.” Under this
model

V{yf} = (1_102)_1'72:
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Clys, vers} = (11— "pble?,
and the correlation between unit ¢ and unit ¢ + 7, denoted by p(j), is pl.
A systematic sample of size n selected from a population of size N = nk
generated by model (1.2.61) nearly minimizes the variance of the sample mean

as an estimator of the finite population mean. Under the extended model with
correlations that satisfy

p(i) = 2p(i+ 1)+ p(i +2) 20 fori=0,1,2 ...,

Papageorgiou and Karakostas (1998) show that the optimal design for the
population mean using the sample mean as the estimator is the systematic
sample with the index of the first unit equal to the integer approximation of
(2n)"Y(N — n). Blight (1973) pointed out that the optimal linear estimator
of the population mean under the model (1.2.61) is a weighted combination
that gives more weight to the first and last observations than to the middle
observations. Such selection and estimation procedures, although the best
under the model, are not design unbiased.

Systernatic sampling is efficient relative to simple random nonreplacement
sampling for populations with a linear trend. Assume that the population
satisfies the model

¥ = Bo+Pit+ e, (1.2.62)

where e; are iid(0, o2) random variables. Then, for a population of size
N = kn, the variance, under the model, of the random-start systematic
sample mean as an estimator of the population mean is

V{gsys - gw} = (12)_1(k + 1)(k2 - k)1912
+ a7 % k- Do®
= (1)7%%8 + nlo? (1.2.63)

for large k. The variance of the sample mean for a simple random nonre-
placement sample is approximately

Vi{gers —On} = (1207102382 +nla?. (1.2.64)

If the ordered population is divided into n strata of size &k and one element
is selected in each stratum, the variance of the stratified mean as an estimator
of the population mean is

Ve —gn}t = a7k (k- D)7k + 1)K - K)F

+n ek - 1)o?

n 1(12) k3B + o (1.2.65)
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Thus, because the stratified sample mean averages over the local linear trends,
it is more efficient than the systematic sample. It is not possible to construct
a design-unbiased estimator of the variance for either the one-per-stratum or
the systematic designs.

Systematic sampling can also be inefficient relative to simple random non-
replacement sampling. Assume that the y values satisfy

ye = sin2nk it

Then the values in a systematic sample of interval % are identical. Hence,
for this population, the variance of the mean is greater than the variance of
a simple random nonreplacement sample. Furthermore, because the within-
sample variation observed is zero, the estimated variance is zero when the
variance is estimated as if the sample were a simple random sample.

See Bellhouse (1988) for a review of systematic sampling. Variance esti-
mation for systematic samples is considered in Section 5.3.

1.2.5 Replacement sampling

Consider a sampling scheme in which repeated selections of a single element
are made from a population of elements. Let the selection probabilities for
each selection, or draw, for the V elements be p,;, 1 =1, 2, ..., N, where

N
me' = L
=1

Then a replacement sample of size = is that obtained by selecting an element
from the IV elemenis with probability p,; at each of n draws. Such a procedure
may produce a sample in which element ¢ appears more than once. An
estimator of the population total is

Tyﬂ = n_IZp;‘_lyiti = Zn_lpglyd, (1.2,66)
€A d=1

where t; is the number of times that element ¢ is selected in the sample,
and (pg, yq) is the value of (py. ;) for the element selected on the dth
draw. Although simple replacement sampling is seldom used in practice, its
properties are useful in theoretical discussions.

We may omit the descriptor nonreplacement when discussing nonreplace-
ment samples, but we always use the descriptor replacement when discussing
replacement samples. A replacement sample can be considered to be a ran-
dom sample selected from an infinite population with the value p;ly; =: 2
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occurring with frequency pr;, where the symbol =: means “is defined to
equal.” Thus, the variance of the infinite population of 2’s is

AF
o} = B{lzi—p)?} = prilzi — )
i=1

N
=S paloite - T (1.267)
i=1
where

N N
Hz = Zprizi = ZU; = Ty
i=1 g=1

The estimator Ty, is the mean of n s3d random variables with mean g, and
variance crﬁ. Thus,

k3
V{Tye} =V {ﬂ_l Z Zd} = n"lo?, (1.2.68)
d=1
where z; is the value of z obtained on the dth draw. Furthermore,

(24 — Zn)?, (1.2.69)

WE

v{ﬁﬂ} = n Hn-1""

=9
1

1

where

T

T
n = ?1_15 Zd
d=1

is unbiased for V{T}x}. The simplicity of the estimator (1.2.69) has led to
its use as an approximation in nonreplacement wnequal probability sampling
when all of the nyp,; are small.

The faci that some elements can be repeated in the estimator (1.2.66) 1s an
unappealing property. That the estimator is not efficient is seen most easily
when all g, are equal to N~1, Then

Tyn = Nn™'> gyt (1.2.70)

tEA
Because the draws are independent, the sample of unique elements is a simple
random nonreplacement sample. Thus, an unbiased estimator of the mean is

b = 'Y v (1.2.71)

€A
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where 11, is the number of unique elements in the sample. The conditional
variance of the mean associated with (1.2.66) conditionalon (t1, tz, ..., tn,)
is

VIN e | (t1, t2y -0y ta)} = 077 thod,  (1272)
icA
while
V{gul(t, ta, ..o, ta,)} = nglol (1.2.73)
Becaunse Etf > Ty, with equality for n, = n, the mean of unique units is

conditionally superior to the mean associated with (1.2.66) for every 1 <
Ny, < 7.

1.2.6 Rejective sampling

Rejective sampling is a procedure in which a sample is selected by a particular
rule but is accepted only if it meets certain criteria. The selection operation is
repeated until an acceptable sample is obtained. The procedure is sometimes
called restrictive sampling. In most situations, the rejection of certain samples
changes the inclusion probabilities. Héjek (1964, 1981) studied two kinds
of rejective sampling. In the first, a replacement sample is selected and
the sample is kept only if it contains no duplicates. In the second, a Poisson
sample is selected and is kept only if it contains exactly the number of elements
desired.

To illustrate the effect of the restriction on probabilities, consider the selec-
tion of a Poisson sample from a population of size 4 with selection probabilities
(0.2,0.4, 0.6, 0.8) for ¢ =1, 2, 3, 4. Let the sample be rejected unless exactly
two elements are selected. The probabilities of the six possible samples of size
2 are (0.0064, 0.0144, 0.0384, 0.0384, 0.1024, 0.2304) for the samples [(1,
2), (1,3}, (1, 4}, (2, 3), (2, 4), (3, 4)], respectively. It follows that the rejective
procedure gives inclusion probabilities (0.1375, 0.3420, 0.6580, 0.8625) for
t=1,2, 3,4. See Section 1.4 for references on the use of rejective sampling
with unequal probabilities.

To illustrate how the inclusion probabilities are changed by other rejection
rules, consider the selection of a sample of size 3 from a sample of 6, where
the elements are numbered from 1 to 6. Assume that the procedure is to select
a simple random sample of size 3 but to reject the sample if it contains three
adjacent elements. Thus, samples (1, 2, 3), (2, 3, 4), (3, 4, 5), and (4, 5, 6) are
rejected. If the sample is rejected, a new simple random sample is selected
until an acceptable sample is obtained. There are 20 possible simple random
samples and 16 acceptable samples. Therefore, the probabilities of inclusion
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in an acceptable sample are (9/16, 8/16, 7/16, 7/16, 8/16, 9/16) for elements
(1,2, 3, 4, 5, 6), respectively.

As a second example, let  be the ordered identification for a population
of size 8. Assume that we select samples using simple random sampling but
reject any sample with a mean of & less than 2.5 or greater than 6.5. Thus, the
foursamples (1, 2,3), (1,2,4),(5,7,8), and (6, 7, 8} are rejected. The resulting
probabilities of inclusion are (19/52, 19/52, 20/52, 20/52, 20/52, 20/52, 19/52,
19/52) for elements (1, 2, 3, 4, 5, 6, 7, 8), respectively. These two examples
illustrate the general principles that rejecting adjacent items increases the
relative probability of boundary elements, and rejecting samples with large
| o, — T | decreases the relative probability of extreme observations. In
these simple examples, one can construct the Horvitz—Thompson estimator
using the correct inclusion probabilities.

Many practitioners employ modest types of rejective sampling when the
unit identification carries information. For example, let an ordered population
be divided into m strata of size k, with two elements selected in each stratum.
Practitioners would be tempted to reject a sample composed of the two largest
elements in each stratum. The probability of such a sample is [0.5k(k —1)}~™
for m strata of size k. If only this sample and the similar sample of the two
smallest elements are rejected, the inclusion probabilities will be little affected
for large k& and m. On the other hand, if a large fraction of possible samples
are rejected, the inclusion probabilities can be changed by important amounts.

1.2.7 Cluster samples

In much of the discussion to this point we have considered a conceptual list of
units, where the units can be given an identification and the identifications can
be used in sample sefection. In Example 1.2.1 we introduced the possibility
that the units on the frame are not the units of final interest. In that example,
households are of interest and are the units observed, but the units sampled
are blocks, where there will be several households in a block. Samples of this
type are called cluster samples. 1t is also possible for the units of analysis to
differ from the sampling units and from the observation units. Assume that
data are collected for all persons in a household using a single respondent for
the household and that the analyst is interested in the fraction of people who
had flu shots. Then the analysis unit is a person, the observation unit is the
household, and the sampling unit is the block.

In estimation formulas such as {1.2.23) and (1.2.33), the variable y; is the
total for the ith sampling unit. In Example 1.2.1, y; is the total for a block. It
is very easy for analysts to treat analysis units or observatton units incosrectly
as sampling units. One must always remember the nature of the vnits on the
sampling frame,
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From a statistical point of view, no new concepts are involved in the
construction of estimators for cluster samples. If we let Af; be the number of
elements in the ith cluster and let ¥;; be the value for the jth element in the

ith cluster, then
M, i

Y= i
s=1

and the estimator of a total is

T, =Y a7ty (1.2.74)
icA
where m; is the probability of selection for the ith cluster and y; is the total
of the characteristic for all persons in the ith cluster. Similarly, variance
estimators such as (1.2.32) and (1.2.33} are directly applicable.

1.2.8 Two-stage sampling

In many situations it is efficient first to select a sample of clusters and then
select a subsample of the units in each cluster. In this case, the cluster is called
a primary sampling unit (PSU), and the sample of primary sampling units is
called the first-siage sample. The units selected in the subsample are called
secondary sampling units (SSUs), and the sample of secondary sampling
units is called the second-stage sample.

We adopt the convention described by Sarndal, Swensson, and Wretman
(1992, p. 134). If the sample is selected in two steps (stages), if units selected
at the second step are selected independently in each first-step unit, and if the
rules for selection within a first-step unit depend only on that unit and not on
other first step units in the sample, the sample is called a two-stage sample.

The Horvitz—-Thompson estimator of the total for a two-stage sample is

Toe = Y D T (12.75)

icAy je By

where m(;;y = mm(;;)); 18 the probability that second-stage unit 27 18 selected
in the sample, r; is the probability that first-stage unit 7 is selected, m(;;)); i8
the probability that second-stage unit ¢ is selected given that first-stage unit
1is selected, A is the set of indices for first-stage units in the sample, and B;
is the set of second-stage units in first-stage unit 4 that are in the sample.

The estimator {1.2.75) is unbiased for the total by the properties of the
Horvitz—Thompson estimator. The joint probabilities are

T km) = Fil(if)(m)li ifé=kandj#m (1276)
= TET(H| T (k)| & if¢ # k and j % m,
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where 7. is the probability that first-stage units ¢ and % are selected, and
T(i4)(irm)|i 18 the probability that elements ¢ and im are selected given that
PSU i is selected. Given these probabilities, the variances and estimated
variances of the Horvitz—Thompson estimator are defined. We present some
more convenient expressions for the variance and estimated variance.

Consider a sample of n; PSUs selected from a finite population which is,
itself, a sample of N PSUs selected from an infinite population of PSUs. Let
the ith PSU be selected with probability 7; and let the ith PSU contain M;
secondary sampling units. Let a nonreplacement probability sample of m;
units be selected from the A;. Then an alternative expression for the estimator
of (1.2.75) is

Ty, = anlgi, (1.2.77)
i€ A
where

. -1
W= Z ﬂ(,;jniyij

j€B;
and B, is as defined in (1.2.75). The design variance of Tz 5 I8
V{Ty | F} = V{E[Tys | (AL P | F}+ E{V[Tos | (A, F)] | F}
= Vi{Ti, | F} + B{V[T: | (A, F)] | F},  (1.2.78)

where T}, is the estimated total with all m; = M,, Vl{f}s | F} is the
variance of the estimated total with m; = M; for all ¢, and V[T23|(A1, F)is
the conditional design variance, conditional on the first-stage units selected.
Generally, a design consistent estimator of V[T3, | (A1, F)] is available and
can be used to estimate E{V [T, | (A1, F)]}. Estimation of Vi {1}, | F} is
more difficult. Consider a quadratic function of the y;, such as the Horvitz—
Thompson estimator, for Vi {T, | F},

Vi{Tu | 7= Y aywiy,
i€A; jEA

where a;; are fixed coefficients. If 4; is replaced with g;, we have

EXS TS ogdids | (AL F)Yp = D0 D oy

€A JEAL Al jEAL

+ 3" 0V i | (A, P}, (1279
€4
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because
E{9?| (AL, F)} =2+ V {g - w | (41, )}, (1.2.80)
and given that samples are selected independently within each PSU,
E{4:4; | (A1, F)} = wyy fori # j. (1.2.81)

Thus, given a quadratic estimator of variance for the first stage, an estimator
of V{Ty, | F}is

I?{TQS | .F} = 1}1{2:'13 | F} + Z(ﬂ‘;g — (Iﬁ)f/{g;‘i [ (Al,f)}, (1.2.82)
icd

where V; {Tl s | F} is the estimated design variance for the first-stage sample
computed with ; replacing y;.

The coefficient for y? in the design variance of a design linear estimator is
7t (1 — ;). Tt follows that the a; in a design-unbiased quadratic estimator
of the variance of a design linear estimator is ;" 2(1 — m;). Therefore, the
bias in T?l{f“zs | F} as an estimator of V{Tzs | F} is the sum of the
i V{yi | (A1, F)}. and the bias is small if the sampling rates are small.

For a simple random sample of PSUs, the variance of the estimator of the
total for a complete first stage is

Vi{Ti, | F} = N*(1- finy’ S5, (1.2.83)
where fi = N~1n,,

Sty = (N=1)7" (i - 9n)°

el
M;
v = § Hiis
7=1

and 5y = N™13;cpy;. Given that the samples within the first-stage units are
simple random nonreplacement samples,

V{Th, | (43, 7))} = Z m MR (1= M7 my) m' S5, (1.2.34)
icd)
where

M;
S3i = (Mi= 17" (yij — Gan)’
3=1
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and

M;

Yui = Jn*{i_lzyij-
j=1

For simple random sampling at the second stage,

Vg | (ALF)} = ME(1—M7'm)milsh,, (1285
where
S%yi = {(m;i— 1 Z (yi5 — ?@)2
JEB;
and

goo= mit Y uy

jEB;

is design consistent for {V[Tg,,. | (41, F)] | F}. The expected value of the
estimator of the variance (1.2.83) constructed by replacing y; with %; is

E{vl,srs(fls | -7:) | F} = [Cf(”l - 1 Z (yt ynl) I JT]
i€4)
= CySY, +Cpnit Y Mi(M; —my)m; ' S5,
1A
(1.2.86)

where 'y = N2(1 — fljnl_l, fi=N"1ng, and
1l = nl_l Z 1}1]-
€Ay

Therefore, an unbiased estimator of the variance of T 25 18, for simple random
nonreplacement sampling at both stages,
I:r{T?S ' "F} = f/l,srs{j\bs 'f}
+ AN R MP (L - M my) myt s, (1.2.87)

= L]

where f/l,m {ff}s | F} is defined in (1.2.86) and sgyi is defined in (1.2.85).
The first-stage estimated variance in (1.2.86) is a quadratic in y; with ¢;; =
(1 — f1)N?nT? Furthermore, 7,2 = N%n7? and V] 4ro{Ts | F} is the
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dominant term in V{7, | #} when the finite population correction is close
to 1.

To construct estimator (1.2.87), we require that sn; > 2 for all i and require
the assumption of independent simple random nonreplacement samples within
first-stage units. Estimator {1.2.82) only requires that the second-stage design
be such that a reasonable estimator of the second-stage variance is available
for every PSU. o

If the finite population correction can be ignored, the estimator V1 {75, | F}
1s consistent for the variance under any selection scheme for secondary units,
such that 75, is an unbiased estimator and the selection within a PSU is
independent of the selection in other PSUs. This follows from (1.2.80) and
(1.2.81). Thus, for example, one could stratify each of the PSUs and select
stratified samples of secondary units within each PSU.

Example 1.2.2.  We use data from the 1.S. National Resources Inventory
(NRI) in a number of examples. The NRI is conducted by the U.S. Natural
Resources Conservation Service in cooperation with the Towa State University
Center for Survey Statistics and Methodology. The survey is a panel survey
of land use conducted in 1982, 1987, 1992, 1997, and yearly since 2000.
Data are collected on soil characteristics, land use, land cover, wind erosion,
water erosion, and conservation practices. The sample is a stratified area
sample of the United States, where the primary sampling units are areas of
land called segments. Data are collected for the entire segment on such items
as urban lands, roads, and water, Detailed data on soil properties and land use
are collected at a random sample of points within the segment. The sample
for 1997 contained about 300,000 segments with about 800,000 points. The
yearly samples are typically about 70,000 segments. See Nusser and Goebel
(1997) for a more complete description of the survey.

We use a very small subsample of the Missouri NRI sample for the year
1997 to illustrate calculations for a two-stage sample. The true first-stage
sampling rates are on the order of 2%, but for the purposes of illustration, we
use the much higher rates of Table 1.2. In Missouri, segments are defined by
the Public Land Survey System. Therefore, most segments are close to 160
acres in size, but there is some variation in size due to variation in sections
defined by the Public Land Survey System and due to truncation associated
with county boundaries. The segment size in acres is given in the fourth
column of the table. The points are classified using a system called broaduse,
where example broaduses are urban land, cultivated cropland, pastureland,
and forestland. Some of the broaduses are further subdivided into categories
called coveruses, where corn, cotton, and soybeans are some of the coveruses
within the cropland broaduse.
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Table 1.2 Missonri NRI Data

Segment  Total No. Pts.
Strawum PSU Weight  Size  No.Pts  Forest 3, b

1 1 3.00 195 3 2 0.1111 130
2 3.00 165 3 3 0 165
3 3.00 162 3 2 011k 54
4 3.00 168 3 0 0 0
5 3.00 168 3 2 01111 112
6 3.00 100 2 1 0.2500 50
7 3.00 180 3 0 0 0
2 1 5.00 162 3 1 01111 54
2 5.00 174 3 1 01111 38
3 5.00 168 3 2 0.1111 12
4 5.00 174 3 0 0 0

In this example, we estimate the acres of forestland and define

iy = 1 if point 7 in PSU £ is forest
= 0 otherwise.

The total number of points in the segment is given in the fifth column and
the number that are forest is given in the sixth column. In a typical data
set there would be a row for each point, and the sum for the segment would
be calculated as part of the estimation program. Treating each point as if it
represents 1 acre, we have

Frlhy

N -1
fni = Mgyt Y ynagy
j=1

where Mp,; represents the acres (SSUs) in segment ¢ of stratum /& and niy; the
number of sample points (SSUs) in the segment. Thus, the estimated total
acres of forest for PSU 1 in stratum 1 is 130, and the estimated variance for
that estimated segment total is

V{j | (41, 7))} = 195(195 — 3)371(0.1111) = 1386.67,

where S%y.l,l = 0.1111 is as defined in (1.2.85).
The estimated acres of forest for this small region is

2
Toe =3 Npnd Y e = 3(514) + 5(222) = 2652,
h=1 iEAyy
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where npy, is the number of sample segments (PSUSs) in stratum A,
Equation (1.2.87} extends immediately to stratified sampling and we have

2
Vil | F} = D Ni(1— fun)ngét,
h=1

2 ik
+ Z NEnG2 fin Z Myi( Mp; — mpymy; s, pa
h=1 i=1
= 340.940 + 29.190 = 370.130,

-1
where fip = N “1iqp,

§p= (=1 > Gri — Iam)’
1A,

and ¥, 1 1s the stratum analog of 1 of (1.2.86). The values of the first-stage
estimated variances are (7 |, 575) = (4130.3,2093.3). There is a sizable
correlation between points within a segment for a broaduse such as forest,
and the between-PSU portion dominates the variance. [ ] ]

1.3 LIMIT PROPERTIES

1.3.1 Sequences of estimators

We define sequences that will permit us to establish large-sample properties
of sample designs and estimators. Owr sequences will be sequences of finite
pepulations and associated probability samples. A set of indices is used to
identify the elements of each finite population in the sequence. To reduce the
number of symbols required, we usually assume that the Nth finite population
contains NV elements. Thus, the set of indices for the Nth finite population is

Uy = {L 2 ..., N}, (1.3.1)

where N =1, 2, ..., Associated with the ith element of the Vth population
is a column vector of characteristics, denoted by y;y. Let

Frv = (¥iwv, Yov. -, YNN)

be the set of vectors for the Nth finite population. The set Fy is often called
simply the N'th finite population or the Nth finite universe.

Two types of sequences {Fx} may be specified. In one, the set Fi
is a set of fixed vectors from a fixed sequence. In the other, the vectors
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vinv, ¢ =1, 2, ..., N, are random variables. For example, the {y;v}, ¢ =
1, 2, ..., N, might be the first N elements of the sequence {y;} of #id
random variables with distribution function F'(y) such that
E{y:y = p (1.3.2)
and
E{(y; — w)*} = o (1.3.3)

If necessary to avoid confusion, we will add subscripts so that, for example,
tt, denotes the mean of  and of, or g, denotes the variance of y.

As defined previously, the finite population mean and variance for scalar y
are

N
I = N7y (13.4)
and
; J\'r
Sew = (N=1)7'> (yiw —n)" (1.3.5)
i=1

The corresponding quantities for vectors are

N
v = N vy (13.6)
and
N
Syuw = (V=17 (yiv —Fn) v = ¥5). (137
=1

Recall that a sample is defined by a subset of the population indices and let
A, denote the set of indices appearing in the sample selected from the Nth
finite population. The number of distinct indices appearing in the sample is
called the sample size and is denoted by n,. We assume that samples are
selected according to the probability rule p, (A) introduced in Section 1.2.

Example 1.3.1. As an example of a sequence of populations, consider
the sequence of sets of ¥V = 107 elements, where 7 = 1, 2, ... . Let
iid Bernoulli random variables be associated with the indexes 1,2, ..., N.
From each set of 10 values realized, a simple random nonreplacement sample
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of size ny = j is seleéted. In this case it is possible to give the exact form of
the relevant distributions. Assume that the Bernoulli variable is such that

x; = 1 with probability p
= 0 with probability (1 — p).

Then the distribution of

N
Xy = E Ty
=1

is that of a binomial random variable with parameters (N, p) and
N\ & _
P{Xy=a} = ( ) )p (1—p)N 2

Because the elements are independent, the unconditional distribution of the
saraple sum, X, is binomial with parameters (n, p},

P{X,=0a} = ( : ) Pl —-p)" "

Now a particular finite population, F, has X, elements equal to 1. The
conditional distribution of X,, given F is the hypergeometric distribution

and
s = () ()]

A fully specified sequence will contain a description of the structure of
the finite populations and of the sampling probability rules. For example, it
might be assumed that the finite population is composed of N iid random
variables with properties (1.3.2) and {1.3.3), and that the samples are simple
nonreplacement samples of size n. selected from the NV population elements.
In that situation, a simple random sample of size ny selected from the finite
universe is a set of ¢4d random variables with common distribution function
F,(y). A proof, due to F. Jay Breidt, is given in Theorem 1.3.1.

Theorem 1.3.1.  Suppose that y1, y2, ..., y~ are sid with distribution
function F(y) and corresponding characteristic function ((¢) = E{e'¥}. Let
d = (5. I, ..., Iy) be arandom vector with each component supported

on {0, 1}. Assume that d is independent of (y1, w2, ..., yn). Let
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U=1{1, 2, ..., N}and define A = {k € U : I;; = 1}. If A is nonempty,
the random variables (y,, k& € A) | d are iid with characteristic function
p(t).

Proof. Let {(#1, €2, ..., ty) be an element of N-dimensional Euclidean
space. Then, given d, the joint characteristic function of {yx, k € A) is

E{e:sp (if;tkyk) d} = E{e;c-p (i%tkfkyk) d}

= £ { H exp(tteTryr) | d}

kell

= H E{exp(itplpye) | d}
keU

=[] #ttee)

kell

— H o(ts), (1.3.8)

keA

since ¢(0) = 1. The result follows because (1.3.8) is the characteristic
function of n = XYy, #id random variables with distribution function
F(y). L

The crucial assumption of the theorem is that the probability rule defining
membership in the sample, the probability function for d, is independent of
(¥1, ¥2, ..., Y} It then follows that given d with component support on
{0, 1}, the sets {yx, k € A} and {yg, k ¢ A} are sets of n and N — n 4id
random variables with distribution function F,(y). Furthermore, the two sets
are independent. The conditional distribution of the two sets is the same for
all d with the same sample size, where the sample size is

N
n = Z Ik.
k=1

Thus, for fixed-sample-size nonreplacement designs and iid random vari-
ables, the unconditional distribution over all samples is the same as the con-
ditional distribution for a particular sample set of indices.

Example 1.3.2.  As a second example of a sequence of populations and
samples, let iy = (41, %2, ..., y¥x) bethe first N elements in a sequence of
independent random variables selected from a normal distribution with mean
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tiy and variance 0'?3. Let ny be the largest integer less than or equat to fN,
where f is a fixed number in (0, 1). Assume that a simple random sample
of size ny 15 selected from Fy, let A, be the set of indices of the sample
selected, and let AY; be the set of indexes of the N — n, elements not in Ay
The n, sample elements are NI{g,, o J) random variables, independent of
the N — ny nonsample NI{u,, o ,y) random variables, It follows that

n o~ N (g, ”;1‘5;)1
In—n ~ Nty (N =ny)lap),

In = Pn ~ N{0, n (1 — fy)ol},
and —1/2
[(l - f’\f)ﬂ*l 3n.] (gﬂ. - g\) ~ tn-—l?
where fn = N~ lny,

S5n = (an =17 Y (i — 5%

AN

In = n;l Z Ui

1Ay
g;‘\.’-—n - j\‘T - n\F Z i,
ieAf;

and ¢, 1 is Student’s ¢-distribution with n, — 1 degrees of freedom. mn

Given a model for the stochastic mechanism generating the finite popula-
tion, we can consider expectations conditional on properties of the random
variables. Most often we are interested in a set of samples with some of the
same characteristics as those observed in the current sample.

Example 1.3.3. LetF, = [(z1, »1), (z2, ¥2)s -... {(Tn, yn )| be the first
N elements in a sequence of independent random variables from a bivariate
normal distribution,

Y o onr[(me ) (o Tzy 3|,
Wi fy ’ Ozy Oy

Let a sequence of simple random samples be selected as described in Example
1.32. Letx, = (71, T2, ..., Tn), letz; = (x;, ¥;), and let

( 52, ey ) = (-0 S (2 20) (2 — %),

Sy S
TY. 1 Y.1 AN



40 PROBABILITY SAMPLING: FINITE UNIVERSE

where Z,, is the simple sample mean. The least squares regression coefficient
for the regression of y on x is

_ -2
)8?]. - S:c,hsli'-'y{-'l'

By Theorem t.3.1, the sample is a realization of 4d normal vectors. It follows
that under the model, we have the conditional mean and variance,

E{/Bnixn} = ﬁ

and
" —1
Vig %} = lzm : a—en)z]
i=1
where § = 0,20,y and o2 = 02 — B0y, mn

In describing rates of convergence for real-valued sequences and for se-
quences of random variables, a notation for order is useful. We use the
conventions given by Fuller (1996, Chapter 5). See Appendix 1A.

Example 1.3.4. In previous examples we have considered sequences
of finite populations generated by a random mechanism. To study sampling
properties for a sequence of finite populations generated from a fixed sequence,
let {y; } be a sequence of real numbers and assume that

N
3 -1 . 2 ]
dm N7UY (i ) = (61, 02),

f=1

where (61, #2)} are finite and 6; — #7 > 0. Define a sequence of finite
populations {Fy }, where the Nth finite population is composed of the first N
values of the sequence {y;}. Let a simple random sample of size ny = [fN|
be selected from the Nth finite population, where 0 < f < 1 and [fN] is the
largest integer less than or equal to V. By the results of Section 1.2,

V{Gn = x| Fn} = (1= fu)ny'SE
where fy = N . By assumption,

is a finite positive number. It follows that we can write

V{gn— v | Fv} = O(ny")
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and

o —Un | Fn = Op(nglﬂ)s

where {(§n, — Jn) | Fn} denotes the sequence of §,, — §x calculated from
the sequence of samples selected from the sequence {Fy}. Because the
sampling fraction is fixed, ny and N are of the same order. For a sequence
of finite populations that is generated from a sequence of fixed numbers such
as this example, the notational reference to Fy 1s not required because the
random variation comes only from the design. In complex situations the
notation serves to identify properties derived from the sampling design. Even
in situations where not required, we often employ the notation. (] |

Once the sequence of populations, sample designs, and estimators is spec-
ified, the properties of the sequence of estimators can be obtained. The
unconditional properties of the estimator, the properties conditional on the
particular finite population, and the properties conditional on some attributes
of the particular sample are all of interest. Because of the central importance
of the sampling design, it is comrnon in the survey sampling literature to use
the term design consistent for a procedure that is consistent conditional on the
particular sequence of finite populations. The sequence of populations can
be composed of fixed numbers, as in Example 1.3.4, or can be a sequence of
random variables, as in Example 1.3.2. For a sequence of random variables,
the property is assumed to hold almost surely (a.s.); that is, the property holds
for all sequences except for a set of measure zero.

Definition 1.3.1. Given a sequence of finite populations {F } and an associ-

ated sequence of sample designs, the estimator 8 is design consistent for the
finite population parameter &y, if for every ¢ > 0,

Jim Py G—Oy|>e|Fnd =0 as, (1.3.9)

where the notation indicates that for the sequence of finite populations, the
probability is that determined by the sample design.

Observe that i, of Example 1.3.4 is design consistent for ¥, because
V{Gn — On | Fu}is O(ngt).

Example 1.3.5. For the sequence of populations and samples of Example
1.3.2,

V{gn —On 1 Fu=(1 - fw)n?sg,m



42 PROBABILITY SAMPLING: FINITE UNIVERSE

where f = N~n, and

N

82, =N -1 S (i -5

i=1

The sequence of populations is created from a sequence of N (1, 0’5) random
variables. Therefore,

im 7, =0 as.
N—oo 77 ;

1t follows that
V{ih — Ox | Fut = Op(n3') as.,

o ~1/2
(yn - yN) | Fv = Op(ﬂ,.\.- / ) a.s.
and hence ¥, is design consistent for §,,. (] |

1.3.2 Central limit theorems

Central limit theorems are critical to our ability to make probability statements
on the basis of sample statistics. Our first results are for a stratified finite
population, where the strata are composed of realizations of iid random
variables. Under mild conditions, the properly standardized stratified mean
converges to a normal random variable. In the theorem statement, N (0, o2)
denotes the normal distribution with mean zero and variance &2, and the

c . e .
symbol = is used to denote convergence in distribution (convergence in law).

Theorem 1.3.2. Let {Fy}, where Fy = {ymn}, h =1, 2, ..., Hy;
i =1, 2, ..., Npy, be a sequence of finite populations composed of
Hy strata, where the 3, in stratum A are a sample of édd{up, Jg) random
variables with bounded 2 + 4, § > 0, moments. Let the sample for the Nth
population be a simple random stratified sample with ny > 1 forall h, where
{npy} is a fixed sequence. Let

AN - {h@v = I)TN M Ih.i_'\' — 1} ]
Hy Hy Nuw
nty = E Thy = E E Anine
h=1 h=1 =1
HJ\Y Arh;‘\r
- -1 —1 -
R 5D SIS CL L o
h=1 i=1 hiclly
HJ'\.’

9n = Zi\‘r_lNh-N'gh.m
h=1
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and

N

Yhn = nm\, Z Yhin,

where Uy is the set of indices hi for population N and Ip; is the indicator
for sample membership. Assume that

~T 2

(Npy — ntpn)” + 1
lim  sup My Now = i) - = 0 (1.3.10)
N—-0oo1<h<Hy Z \ Ngw (Ngn — 12gn) ng_Norg

Then
(V{8 — Gn )7 2(6n — 5w) = N(O, 1), (1.3.11)
where
. Hp
V{0, —gn} = Z N_zNhN(JMhN — Npw )n;\lgﬁ
h=1

Furthermore, if the 1,;, have bounded fourth moments, if 113,y > 2 for all A,

and
2

Hy
ZAhNnh\,—o (Z’\M’) : (1.3.12)
h=1

then
V{60 — 3726 — 5n) 5 N (O, 1), (1.3.13)

where Apy = N72Npy (Nyn — nigy) 1 ns

Hy
Viba=Gnt = 3N Nus(Now = mnv)niysf,
h=1
and
Nun
'S%L = (nhN - 1)_1 (yth - ghn)g‘
j=1

Proof. For each NV, the design is a fixed-size design and by Theorem 1.3.1
the sample in each stratum is a set of iid random variables. Therefore, the
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stratified estimator is a weighted average of independent random variables
and we write

0=y = N7 Z (f\ThNnLithéN = 1) Ynin
hicUy
= N7! Z Chnlhinv,
hicly
where
Ch“i\,' = N_l (NhN — nh_lv\r) ﬂ;;, if hz = A‘N
N1 if hi ¢ Ax.

Because the random variables are identically distributed and the n, , are fixed,
we can treat the ¢y as fixed.
The Lindeberg criterion is

Jim vl Ch / (v — 1n)*dFhy (y)
hieln Rnn
< lim Vit Z iy (v — pn) dFpny ()
—ee hieliy Ron

< hli_rynm Vi\:l Z C?LNE(SBJ(‘S\’ / by~ |2+6 thy(y)
hi€Uy Row

S Jm Ve ! cin€ BEE{] yns — pn [P0}, (1.3.14)
hicUy

where V,, = V{é‘n ~ Ynt

2 _
Bpy = '["-J’ |y_auht > EV_&’K |(-'-hN| 1}1
Roy = {y: |y—wm| = eBy'},
and
By = V_.v_lﬂ sup |C.‘1N1-

1<h<Hn

By assumption (1.3.10) B, is converging to zero and {1.3.14) converges to
zero because the 2 + 6 moments are bounded. Thus, the first result is proven.
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If the 4, have fourth moments bounded by, say, My, the variance of the
estimated variance is

H"\r
Vv {Z )\,msi}

Il

Hpy
Z )‘PQ:,N(nhN - 1)-2V Z y%a’.\r - nh,\fgfzi,n

h=1 fi=1 i€y,
Hy
< Y Nl — 1) "2y My + Ms)
h=1

= 0([V{én ~ 7w}

by assumption (1.3.12), where Mg is the bound on V{n,t,_Ng}E}
—2C{npni?. Y 12, ) See Exercise 49. Theretore,

Vi — g7 V{0~ 5} 2 1

and resulit (1.3.13} is proven. (]

By Theorem 1.3.2, the stratified mean is approximately normally dis-
tributed for a large number of small strata or for a small number of large
strata,

Tt is important to note that in Theorem 1.3.2, as in Theorem 1.3.1, results
are obtained by averaging over all possible finite populations under the as-
sumption that the design vector d is independent of (31, 42, ..., y~). The
independence assumption is reasonable for stratified samples because selec-
tion in each stratum is simple random sampling. Simple random sampling is
a special case of stratified sampling and hence the sample mean ot a simple
random sample is normally distributed in the limit.

Corollary 1.3.2.1. Let {Fy}, where Fy = (¥in. Yoy «-+» Ynw), bDE A
sequence of finite populations in which the y;. i = 1,2,..., NV, are realiza-
tions of independent {z1, o2) random variables with bounded 2 + 4,8 > 0,
moments. Let Ay be a simple random nonreplacement sample of size ny
selected from the Nth population. Assume that

lim n, = 20
N—oo

and
lim N —ny =00,
Nooc
Let @, T, SS‘N, and Sin be as defined in (1.2.35), (1.2.22), {1.2.36), and
(1.2.37), respectively. Then
-1 “1g2 142, — v £ o4
[NTUN ~ny)ng'S) 177 (B — gv) = NG, 1) (1.3.15)
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and

[N"UN = nyg)ngts2,,] ™2 (5 — 5in) = N(0,1), (1.3.16)

u.mn

Proof. Because both nz, and N — n, increase without bound as NV increases,
(1.3.10) is satisfied for H = 1, and result (1.3.15) follows. By the assumption
that E{| v |2*°} is bounded,

lim 33 =c? as.
N—oo
See Hall and Heyde (1980, p. 36). Result (1.3.16) then follows. ]

Result (1.3.13) permits one to use the estimated variance to construct
confidence intervals that are appropriate in large samples. That is,

A P{gn — ta[V{Gn}"* <Gy < Gn +talV{Gn}]*7} = o,

where the probability that a standard normal random variable exceeds £, is &
and

V{yn} =(1- fN)RN yn

In Theorem 1.3.2, the basis for the limiting result is a sequence of all possi-
ble samples from all possible finite populations. One can also obtain limiting
normality for Poisson sampling from a fixed sequence of finite populations.
The result is due to Hajek (1960),

Consider the Poisson sampling design introduced in Section 1.2.2. For
such a design, define the vector random variable

x; = gl i=1,2 ..., N, (1.3.17)

where I, is the indicator variable with I; = 1 if element ¢ is selected and
I; = 0 otherwise,

g = (1, ¥, axm, anmlyl), i=1,2 ..., N, (1318

7; is the probability that element ¢ is included in the sample, y; is a column
vector associated with element i, oy = N lny,y, and ngy = E{ny | N},
where ny = Zic 4{;. The ratio cvyy is required only for normalization purposes
in limit operations, and is required only if N~ ny or 1 — N~Iny goes to zero
as N increases. For a fixed g;, the mean of x; is g;m; and

V{Xa’ | ga’} = We(l ) 8 gz
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The Horvitz—Thompson estimator, IV _l'i‘f, of the population mean of y is
the vector associated with aym;” 1y.£- in the estimated mean vector,

b, = TLB}{,ZX, (1.3.19)

Theerem 1.3.3. Let ¥1. y2, ..., be a sequence of real vectors and let

T, T2, --., be a sequence of probabilities, with (¢ < m; < 1. Let a Poisson

sample be selected from Fy = (y1, ¥2. ..., ¥~), and let g; be defined by
(1.3.18). Assume that

lim nB\, ng = (1.3.20)

Jim ngg Z Tl —mi)gi g = Zaw (1.3.21)

the submatrix of X, associated with (1, y}) is posnwc definite, and the
submatrix of X, associated with (o N:rr;l, QN y ;) is positive definite.
Also assume that

N -1
lim sup (Zw g@)%(l—m) (Ye? = 0 (1322)
i=1

N—oo 1<k N

for every fixed row vector o' such that 4" .. v > 0. Letx;, i =1, 2,
be the independent random variables defined by (1.3.17). Then

L .
nBN(,uJ o) | Fyv = N(O, Ty, (1.3.23)
where
N
ey = ﬂ';,'l\rz iy
i=1

and f& . is defined in (1.3.19).
If, in addition,

Jim ngi,‘zl:m g |t = M, (1.3.24)
1=
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for some finite M, then
[V{T, | F 7 Y2(T, - T,) | Fy 5 N(O, 1), (1.3.25)

where T, is the Horvitz-Thompson estimator, | g; |= (g/g:)"/?, and

V{Ty | Fv) = > (1 —mn vyl

tEAN

Proof. Let
Zy = & gilli —m), ©(1.3.26)

where ~ is an arbitrary real-valued column vector, v # 0. Then {Z;} is a
sequence of independent random variables with zero means and V{Z;} =
mi(1—m5) (7 @:)° =t vy. Letting

N

Vi = > m(l-m) (V&)
i=1 i=1

Ui, (1.3.27)

Mz

the arguments of the proof of Theorem 1.3.2 can be used to show that
N
vi'?S" 2 5 N, 1. (1.3.28)

Note that all moments exist for the random variables I;. Multivariate normality
follows because ~y is arbitrary. Now

hm nm Z(’y gl — ) = A aay

and we have result (1.3.23). A X
By assumption (1.3.24), the variance of V{N‘qu;T.y | Fu}is

N

N~ —2 Z 1 - 7!': qya) = N_4 Z?T%'(]_ - ?Ti)gﬂ';{i{’}(;y!‘_)‘i
ieAN i=1
= O(N7?)

for any fixed vector 7,,. Because V{T,} is positive definite,
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W{T, | Fvm V2V {T, | B2 = T+ 0N Y3 (13.29)

and result (1.3.25) follows. [ |

By Theorem 1.3.3, the limiting distribution of the pivotal statistic for the
mean of a Poisson sample is N{0, 1) for any sequence of finite populations
satisfying conditions (1.3.20), (1.3.21), and (1.3.22). Condition (1.3.22) can
be replaced with conditions on the moments of ¢ and on the probabilities.

Corollary 1.3.3.1. Let the sequence of populations and vectors satisfy (1.3.20)
and (1.3.21) of Theorem 1.3.3. Replace assumption (1.3.22) with

A\‘r
B -1 . 2445 ) 3
Jim N Sy PP<oe (1.3.30)

=1

for some d > 0, and assume that
Krp < m < Kyir (1.3.3D

for all : where Ky and K are fixed positive numbers and ngy was defined
for (1.3.18). Then the limiting normality of (1.3.23) holds.

Proof. The result follows from the fact that (1.3.30) and (1.3.31) are sufficient
for the Lindeberg condition. |

Hdjek (1960) showed that the result for Poisson sampling can be extended
to simple random nonreplacement sampling .

Theorem 1.3.4. Let the assumptions of Theorem 1.3.3 hold for a sequence
of scalars, {y;}, with the exception of the assumption of Poisson sampling.
Instead, assume that samples of fixed size n = w/N are selected by simple
random nonreplacement sampling. Then

VU2, — gx) | Fu = N(O, 1), (1.3.32)
where V,, = N~ In YN - n)s?_, and 35,«; 1s defined for (1.2.37).

y!n’

Proof. The probability that any set of » elements, 1 < r < n,, is included in
a Poisson sample of size i, is

( N-r )ﬁno(l — N

Ny — T

( N ) .ﬂ—no(l o ?T)N-—'n.(,

Tig
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which is also the probability for the set of r selected as a simple random
sample. Hence, the conditional distribution of the Poisson sample given that
T, elements are selected is that of a simple random noareplacement sample
of size n,.

Let ng be the expected sample size of a Poisson sample selected with
probability m, where np is an integer, and let a realized sample of size n,
be given. We create a simple random sample of size np starting with the
sample of size n,. If n, >> ng, a simple random sample of n, — ny elements
is removed from the original sample. If n; > n,, a simple random sample
of ng — n, elements is selected from the N — n, nonsample elements and
added to the original n, elements, If n, > ng, the ng elements form a simple
random sample from the n,, and if n, < ng, n, is a simple random sample
from ng.

Consider, for n, > ng, the difference

Z-@er Yi Zier Yi — Zz’EAk b

Yo~ Yp = -
Ny Ng ’

where 7, is the mean of the original Poisson sample, iz = §sns = Un i8 the
mean of the created simple random sample, A, is the set of indices in the
original Poisson sample, and Ay, represents the indices of the k = n, — np
elements removed from the original Poisson sample. Because the n; elements
are selected from the n, elements, E{§z | (n,, 45)} = %, and

Vv {go — 95 | (o, Ao)} = ngl - l)sym

where

850 = {n;— 1)_1 Z(% - gt})ga

icA,
= _ -1
gs = n5' > Ui
icAp
= _ -1
Yo = n() Zyﬁ'}
A,

and Ay is the set of indices for the ng elements. Furthermore,
V(o — ¥ | e} = E{E[(Ho —7)* | (110, Ao)] | 10}
= (g —ng )8y

where SS‘ ~ 18 the finite population variance.
0 <n, <np, E{go l (noaAB } = Y

Vo — 95 | (no, As)} = (n —Nig 3-3,3
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and
VYo — s | 1o} = ('”';1 - ngl)Sj,N’
where
2 = (s -1 Y (w - 7a)
i€Ap
Then, for n, > 0,

V{do—lno} = |0 —nz'|S2,.

We note that n,, satisfies
E{(nz'n, — 1)} = O(n;")

for positive integer ~ because N 1n, is the mean of N Poisson random
variables. Now -njng is bounded by n, for n, > 0 and by Kflns for
n, > Kj. 1t follows from Theorems 5.4.4 and 5.4.3 of Fuller (1996) that

E{(ngt —nz Y In, >0} = O(nz%).

See Exercise 1.34.
To evaluate E{(§, — 95)?}, we define §, — §z = §5 when n, = 0, and
write

E{(flo — 52)°} = E{(Ho — 72)" | 1o > 0}P{n, > 0} + 53 P{n, = 0}.

Because P{n, = 0} goes to zero exponentially as ny — o,

E{@s - 8)} = O@mz'%

and the limijting distribution of n};{ 2(373 — §w) is the same as that of ?lg Q(g}o —

U~ ). By Theorem 1.3.3, the limiting distribution of ng 2(-§0 — §n ) i8 normal.
By assumption (1.3.24), ‘Sgr.n - S_ih, converges to zero in probability, and
result (1.3.32) is proven. [

Theorem 1.3.4 is for simple random samples, but the result extends imme-
diately to a sequence of stratified samples with a fixed number of strata.

Corollary 1.3.4.1. Let {F} be a sequence of populations, where the Nth

population is composed of H strata with Fp v = {¥a1, Y2 -+ Yrowon b
=12 ..., H. Assumethat{ys;}, h =1, 2, ..., H, are sequences of
real nembers satisfying

im Nia Z (nis (wni — Frn)?s Whi) = (Min, S§, Mas),

TI'EUP: N
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where the My; are finite and the Sg are positive. Then

[V {(Gst — ) | Fud] V2@ — ) | Fn = N(O, 1),

where 7, is the stratified mean and V {(F — Gn) | F } is the usval stratified
estimator defined in (1.2.56).

Proof. Omitted. [ |

In proving Theorems 1.3.3 and 1.3.4, we assumed the elements of the finite
population to be fixed and obtained results based on the sequence of fixed
populations. In Theorem 1.3.2, the sequence of finite populations was created
as samples from an infinite population, and the results were for averages over
all possible samples from all possible finite populations. It is also useful to
have conditional properties for a sequence of finite populations created as
samples from an infinite population. Using the strong law of large numbers, it
is shown in Theorem 1.3.5 that the central limit theorem holds conditionally,
except for a set of probability zero. The sequence {;} in the theorem can be
fixed or random.

Theorem 1.3.5. Consider a sequence of populations, {F }, where the Nth
population is the set (y1, ¥, ..., yx)and {y;} is a sequence of independent
(1, o?) random variables with bounded 4 + 4, & > 0, moments. Let a
Poisson sample be selected from the Nth finite population with probabilities
m;, where the Nnglm; are bounded as described in (1.3.31). If the @; are
random, {m;, y;) is independent of (r;, y;) for ¢ # j. Assume that

N
lim N71Y of = Wy (1.3.33)

N—oo .
=1

and

N—oo

N
lim nBNN'ZZ?T;l(l, ) (1, ) = g as, (1.3.34)
i=1

where E{nx | Fn} = ngpy. Assume that V7, is positive and that Xg9 is
positive definite. Then

VAT, | F O YUT, — Ty) | Fv S N0, 1) as,  (1.335)

where T, is the population total for the /Nth populaiton,

Ty = Z ﬂé'ly.,;,

e
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and

VIT, | 7y = > (1—m)m 2

PEAN

Proof. By the 2 4- 6 moments of the superpopulation,

N
M -1 . 2 = 2
i N2 e w) = e Vi) e

and
N

lim N1 Z |y; PH0%< 00 as.

N—-oc <
i=1

Therefore, conditions (1.3.20), (1.3.21), and (1.3.22) are satisfied almost
surely and

VAT, | Fx V2T, — Tyn) | o 5 N0, 1) as,  (1.336)

where

N
VT, | P} = D (L —mm 'y,

1=

by Corollary 1.3.3.1.
Now npy N ™11 — 7r,;)'rri'1 ts bounded by, say, K., and

v {z N1 — mrt] g2 a} < SR mym iyl
i€A i=1
Therefore, by the 4 4 & moments of ;,
N
A!E%C ney N~ ; K1 - m)m)

is a well-defined finite number, almost surely. It follows that
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nayN2WV{T, | FuY = VT, | Full | Fv = Oplnpd?) as.
(1.3.37)

and result {1.3.35) follows. [ ]

Theorem 1.3.5 is for Poisson sampling but the result holds for a sequence
of stratified samples with a fixed number of strata, by Corollary 1.3.4.1.

Corollary 1.3.5.1. Let {Fy} be a sequence of populations, where the Nth
population is composed of H strata with Fi v = {¥n1, Ya2s --+s Ynnon)s
h =12, ..., H Assume that the {yy;}, h = 1, 2, ..., H, are

sequences of independent (i, 0'}21_) random variables with bounded 4 + 4,

¢ > 0 moments. Let a sequence of stratified samples be selected, where
Thn 2 Moty UMy oo g v = 00,

lenmN];JL'nh-,N' = fh,n0
and
Jim NTINp o= Wy
forh =1, 2, ..., H Assumethat 0 < f; .o < land W, > Ofor
h=1,2,..., H Then
VAT, | F)™2(T, - Tyn) | Fu 5 N(O, 1) ass,,
where

H
V{T, | Fut = D Niny' = N;Yyst

h=1

Proof. The conditions of Corollary 1.3.3.1 hold almost surely and the resuit
follows by Corollary 1.3.4.1. [ ]

To extend the resulis of Theorem 1.3.5 to estimation of parameters of the
superpopulation, we require the following theorem, adapted from Schenker
and Welsh (1988).

Theorem 1.3.6. Let {F,} be a sequence of finite populations, let #, be
a function of the elements of 7, and let a sequence of samples be selected
from {JFy} by a design such that

Oy — 05 5 N (0, Vi), (1.3.38)
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and 5 .
(0 —6xy) | Fn = N{O, V22) as, (1.3.39)

for a fixed sequence {65, } and an estimator, A, where Vi1 + V2o > 0. Then

(Vir + Va2)"Y2(6 - 65) 5 N (0, 1), (1.3.40)

Proof. Let &, ,(-} denote the normal cumulative distribution function with
mean zero and variance Vj;, 7 = 1, 2, and let ®y5(-) = @y () * Ppa(-)
denote the normal cumulative distribution function with mean zero and vari-
ance Vi, + Voo = Vag, where ®@y,(-} * ®y2(-) is the convolution of ®()
and ®,,(-}). Consider '

| P{® —83) <t} —@ua(t) | = | EIP{(6—03) <t} | Ful— Bus(D) |
Letting s =t — (#y — 03} vields
| P{(8—02) <t} — Bva(t) |
< | EIP{(0 - 0x) < 5| Fx}) - B{®vals) | Fu} |
4| B{®ya(s) | Fa}— Byalt) |
< E[|P{(B—8x) < 5| Fu} —Buals) |, | Fu]
T | E{@ya(s) | Fu} — Pus(t) |- (1.341)
Because | P{(6 — 0y) < 5| Fy} — Bya(s) | is bounded for all s € R,

lim [ P{(6 —04) < 5| Fn}— Byypls) | Fu |

< E{A}iinoo(sgg | P{(B—0x) < s| Fu}— Duals) |, | Fa)}
(1.3.42)

by the dominated convergence theorem. By Lemma 3.2 of R. R. Rao (1962),
assumption (1.3.39) implies that

A}im {sup | P{(f — 0x) < s | Fn} — Buals) |, | Fx} = 0 as.
TR seR
(1.3.43)

and the expectation in (1.3.42) is zero.
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Now
].].Iﬂ E{@pg( ) |f\r} - E{;\!i{,ﬂxévz [t—(ej\r_gir)] B |fN}

= Dpalt) + Bra(t) = Pvuft) (1.3.44)

by (1.3.38) and the dominated convergence theorem. It follows from (1.3.43)
and (1.3.44) that (1.3.41) converges to zero as N — 00, [ |

The V11 of (1.3.38) or the V53 of (1.3.39) can be zero, but the sum Vi1 + Vas
is never zero, For example, let 3, be the mean of a simple random sample
from a finite population that is a set of 44d(u,c?) random variables, let
b — 0y = NY2(G, — §y), and let 0y — 65, = NV2(g, — p). Then if
N —n — 0as N increases, Voo = 0. Conversely, if N~tn — 0, the limiting
variance of n/(§,— %) = o and the limiting variance of /2 (g, — 1) = 0.
If imN~in = f, for 0 < f < 1, both Vj; and Vay are positive. These
theoretical results have a commonsense interpretation. If the sample is a very
small fraction of the finite population, the fact that there is the intermediate
step of generating a large finite population is of little importance. Conversely,
if we have a very large sampling rate, say a census, we still have variability
in the estimator of the superpopulation parameter. See Demmg and Stephan
(1941) on the use of a census in this context.

Using Theorems 1.3.6 and 1.3.5, one can prove that the limiting distribution
of the standardized {54 — p is normal.

Corollary 1.3.6.1. Let the assumptions of Theorem 1.3.5 hold and assume
that

limn Nlpgy = Joos

N—oo

where 0 < f, < 1, Then

o 12 c
[V Gz - ;u}] (Far —p) = N(O, 1), (1.3.45)
where ¥y 18 as defined in (1.2.24),
Vigur —p} = Vi{gar | Fu}+ N2
3‘5 = Nt Z "'T?;_l (3 — gHT)2;\
ey

Vi{gur | Fx} = N72V{T, | Fy), and V{T, | Fy} is as defined in (1.3.25).
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Proof. By the moment properties of the superpopulation,
Oy = N'Y2(gy — 1) L N{0, Vi)

or, equivalently, for f., > 0,

Mo (T — 18) 5 N (0, fooVi1)-

By (1.3.36} of the proof of Theorem 1.3.5,

”}JNZ@HT —in) | Fu 5 N(O, Va2) as.,

where
N
A}i_{;lmnBNN_Q Zl(l —m)r yE = Vi oas.
1=
Therefore, by Theorem 1.3.6,
1/2, c
ng (Gur — ) = N(O, Vag + foVi1). (1.3.46)

The estimated variance satisfies
1% War | Fn} = V{far | Fs} = p('”'_] D)
by (1.3.37). Also,

N1 Z s = OfngL)

icAy
and 5. = p? + Op(n BN ) by the fourth moments of ;. Therefore,

ViGur — ) = V{Gur — s} + Oplngy®) (1.3.47)
and result {1.3.43) follows from (1.3.46) and {1.3.47). [ ]

1.3.3 Functions of means

Theorems 1.3.2, 1.3.3, and 1.3.4 give the limiting distributions for means, but
functions of means also occur frequently in the analysis of survey samples. It
is a standard result that the limiting distribution of a continuous differentiable
function of a sample mean is normal, provided that the standardized mean
converges in distribution to a normal distribution.
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Theorem 1.3.7. Let X, be a vector random variable with E{%,,} = u,, such
that
1722 c
n2(%, ~ p,) = N0, T

as n — oo. Let g{X,) be a function of X that is continuous at g, with a
continuous derivative at g,,. Then

n'2 [g(%a) — gp2)] 5 N [0, ho(pe,) Sauhl (i)

as 1t — oo, where () is the row vector of derivatives of g{X) with respect
to X evaluated at X = ;.

Proof. By a Taylor expansion

g(in) = y(au';c) + (X — au‘:.:-)h:r(f-":;)a

where ¢, is on the line segment joining X, and p,. Now X, — p, =
O, (n~/%) and h,(x) is continuous at x = p,. Therefore, given § > 0 and
gg > 0, there is some np and a closed set B containing g, as an interior
point such that h,{x) is uniformly continuous on B and P{X, € B and
| ®p — My | < €5} > 1 — & for n > ng. Therefore, given 6 > 0 and an
gy > 0, there is an £, > 0 and an ng such that

P{] g(%n) — 9(pty) — (Rn — o) (p,) | >0} < 8

for all » > ny. The limiting normality follows because nl/ 2()”@“ — ft,)
converges to a normal vector and h! (g, ) is a fixed vector. n

Ratios of random variables, particularly ratios of two sample means, play
a central role in survey sampling. Because of their importance, we give a
separate theorem for the large-sample properties of ratios.

Theorem 1.3.8. Let a sequence of finite populations be created as samples
from a superpopulation with finite fourth moments. Let x; = (@15, xg;) and
assume that g, # 0, where g, = (pig1, f22) is the superpopulation mean.
Assume that the sequence of designs is such that

nfe N~YT, - Nuy) 5 N0, ,.) (1.3.48)
and
PN YT, — Ten) 5 N(O, M), (1.3.49)

where 2., and M, are positive definite, ngy = E{ny | Fun},

T —1
T;;: - E T X,

ic Ay
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and T,y = NXuy. Then

na2(R — Rs) 5 N(0, hsS,zhl) (1.3.50)
and
nd (R — Ry) S N(0, hyM,.h',), (1.3.51)

s S - -1 -1
where R = T Tpo, Hs = iy pta2, By = T Zan,

8R AR y
hy = (8_;1,1’ 6_3*:2) | x=p, = pg; (1, —R)

and
AR AR
by = (G g} Ix=% = @01, ~Ro)

Let the designs be such that
VAT, | Fs ) Ver{T2} - 1 = 0O, (n,BHQ) (1.3.52)

for any x-variable with finite fourth moments, where VHT{Tm} is the Horvitz—
Thompson variance estimator. Then

Vur (T 2(R - Ry) £ N(O, 1), (1.3.53)
where V1. {T(d)} is the Horvitz-Thompson variance estimator calculated for
) = Y ald
i€An
and d; = (Bg? }?:1:17;).
Proof. Results (1.3.50) and (1.3.51) follow from (1.3.48), (1.3.49), and

Theorem 1.3.7. The Taylor expansion for the estimator of the finite population
ratio is

R = Ry+T3(Te2 — Toon) = To Toaw (T = Toryw) + Oplnizh)
= Ra+ T | D mitei | + Op(nin), (1.3.54)

iEAp

where ¢; = ¥y — Ry, The remainder is Op(n B\r) because the second
derivatives are continuous at (T3 n, Tyo n). Now

Var{T(d)} = ZZﬂul(ﬂ'aJ TR )R, dﬁ_idj,

sJ EAI\'
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where

d = d;- 1 T (Tor — Toaw)ei + T (R — Ry)as,
and d; = Tx“llNeg. Because 3, is positive definite, V{7'(d)} is the same
order as V {7}, }. It follows from (1.3.52) that

VAT War{T(d)}) = 1405z, (1.3.55)

because, for example,

VAT@N T (R~ Ba)® )Y gigmiws; = Oplngt),

";’.‘jEAN

VAT TR T (Ter — Tern) DS gigdie; = Op(nz''?),

LJEAN

where gi; = 771 (mi; — wemy)my 'w; . Result (1.3.53) follows from (1.3.55)
and (1.3.54). .

Theorem 1.3.8 is for unconditional properties derived under the probability
structure defined by sampling from a finite population that is a sample from a
superpopulation. It is possible to prove a theorem analogous to Theorem 1.3.5
in which the result holds almost surely for the sequence of finite populations.

Observe that the error in the ratio estimator is approximated by a design
linear estimator in e; in expression (1.3.54). This approximation is what leads
to the limiting normality in (1.3.53). Although the estimator is not exactly
normally distributed and Vi {T(d)} is not exactly a multiple of a chi-square
random variable, the limiting distribution of the “¢-statistic™ is N (0, 1). This
type of result will be used repeatedly for nonlinear functions of Horvitz—
Thompson estimators.

Expression (1.3.53) provides an efficient way to compute the estimated
variance of the ratio using

di = Txll (:r'z% 1%35‘13').

The d; is sometimes called the estimated Taylor deviate. In the notation of
Theorem 1.3.7, the Taylor deviate is

d; = hﬁ:(“m)(xi*iﬂ)!

and the estimated variance of ¢ (Tx ) is the estimated variance of d ;1 calculated
with d;.
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We can use Theorem 1.3.8 to define an estimator for the population mean
of y by letting (15, 22;) = (1, ¥:). Then we obtain

-1
Ur = (Zw;‘) > wly (1.3.56)

icA A

as an estimator of §,. We gave the unbiased estimator

Jar = N7'Ty = N3 xly, (1.3.57)
JEA
in (1.2.24)., The estimators (1.3.56) and (1.3.57) are identical for many
designs, including stratified sampling, but can differ considerably for designs
such as Poisson sampling with unequal probabilities. In general, and under
mild regularity conditions, N‘ITy is design unbiased and design consistent,
whereas ¥, is only design consistent. However, - is location and scale
invariant, whereas N ‘11'}, is only scale invariant. See (1.2.29). The estimator
(1.3.56) is sometimes called the Hdjek estimator. See Hajek (1971).
The estimators (1.3.56) and (1.3.57) can be compared under models for the
population. One superpopulation model is

4 = Bo+ G + e, (1.3.58)
e; ~ ind(0, 3‘:?02),

where « is positive, the x; are positive, e; is independent of z; for all ¢ and
j, and ~ ind denotes distributed independently. Let (x1, xo2, ..., xy)bea
finite population of positive xx values, let the finite population of y; values be
generated by model {1.3.58), and let a sample be selected with probabilities

T3 =13 ey %) 2
Then the conditional expected value of the finite population mean is

E{gn|Zn} = Bo+ Hiln. (1.3.59)

For fixed-size designs, the conditional expectations of the estimators are
E{N7'T, |x4} = BoN"'"Nur+ Aix, (1.3.60)
E{gx | xa} = fo+NgiNpiy, (13.61)

where NHT = ZT-E AT ! and x4 18 the set of r values in the sample. If
Ba=0,N _ITy is conditionally unbiased, and if 5, = 0, ¥, is conditionally
unbiased, conditional on x 4.
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The conditional variances are

VINTIT, %) = N2 o720 (1.3.62)
ieA

and

-2
Vign | xa} = (Zw;l) > oarteg? . (13.63)

icA =1

Thus, the conditional variance of §, can be larger or smaller than that of
NTIT,.
The design variance of Jyq is

Vilar | 7} = V{N_IZ?T;lyﬂ}"} (1.3.64)

icA

and the design variance of the approximate distribution of ¥ is

Vi{g= | F} = V{ S (O |?—'} (1.3.65)

tEA

Thus, as suggested by (1.3.64) and (1.3.65), Jgr will have smaller design
variance than §, if the ratio of y; to m; is nearly constant and j, will have
smaller design variance than 77 if 9; — ¢~ is nearly a constant multiple of
;. Also see Exercise 6.

Because §, is location invariant, we generally begin estimation for more
complex situations with ;. A regression estimator that is conditionally model
unbiased, conditional on x4, is discussed in Chapter 2.

In the analysis of survey samples, subpopulations are often called domains
of study or, simply, domains. Thus, in reporting unemployment rates, the rate
might be reported for a domain composed of females aged 35 to 44, To study
the properties of the estimated mean for a domain, let

Ypi = Wi if element i is in domain DD
= 0 otherwise,

Zpi = | it element ¢ is in domain 12
= otherwise.

Then the estimator of the domain mean is the ratio estimator

0p = Zptip. = TipTyn, {1.3.66)
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where
(.TZD': TzD) = Zﬂ'@_l(zDi? yDa')-
1EA

The Horvitz-Thompson variance estimator of Theorem 1.3.8 is

Vistfo} = 2207wl (my ~ mmpym tem ey, (13.67)
i, JEA

where €; = yp; — GADzD?;. Observe that é; is zero if elememt ¢ is not in the
domain.

The properties of the estimated domain mean illustrate the care required in
the use of large-sample results. Assume that we have a simple random sample
from a finite population that is, in turn, a random sample from a normal
distribution. Assume that the finite population correction can be ignored.
Then the domain mean is the simple mean of the elements in the domain,

b = o = np' D v (1.3.68)
tEA,

where np = ;e 42p,; is the number of elements in domain D and Aj, is
the set of indices of elements in domain I?. The variance estimator (1.3.67)
becomes

Vis{fp} = nzZniln(n -1t Z (g — 9p)%.  (1.3.69)

iEAp

Because the original sample is a simple random sample, the n, elements
selected from domain D are a simple random sample from that domain.
Therefore,

tsrs,D - [f/:srs {gD}]_U2 (379 - ,L!'D) (1370)

is, conditional on np,n; > 1, distributed as Student’s ¢ with n; — 1 degrees
of freedom, where

Vas{io} = Ino(mp =117 D (i —80)* (137D
i€Ap

and pp is the population domain mean. If we use (1.3.69) to construct the
estimated variance, we have

Vel = n3lnp — D)V {6p}. (1.3.72)
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Thus, the estimator based on the large-sample approximation underestimates
the variance and

Y o (1373)

[VLs{éD}]—l’(z(én — pip) ~ ['”»D(ﬂu - 1)_1]
where £, _ is distributed as Student’s ¢ with np — 1 degrees of fr :dom.
For small np, N(0, 1) will be a very poor approximation for the distr.oution
of (1.3.73).

The assumptions of Theorem 1.3.8 require the distributions of z,, and §p.,
to have small variances. This condition does not hold for the components of
the domain mean if np, is small, no matter how large the original sample,

1.3.4 Approximations for complex estimators

An estimator is often defined as the solution to a system of equations, where
the solution may be implicit. In Theorem 1.3.9 we show that Taylor methods
can be used to obtain an approximation to the distribution of such an estimator.
Results are given for 8 as an estimator of the finite population parameter and
for § as an estimator of the parameter of the superpopulation that generated
the finite population.

The theorem contains a number of technical assumptions. They can be
summarized as assumptions of existence of moments for the superpopulation,
assumptions pertaining to the design, and assumptions about the functions
defining the estimator. The design must be such that a central limit theo-
rem holds for the Horvitz-Thompson estimator, and the function must be
continuous with at least a continuous second derivative with respect fo the
parameter.

It is assumed that the estimator is consistent. See (1.3.80) and (1.3.81}. The
consistency assumption is required because some functions have more than
one root. If the function g{x, @) is the vector of derivatives of an objective
function, it may be possible to use the properties of the objective function to
prove (1.3.80) and (1.3.81). See, for example, Gallant (1987). The usual w;
of the theorem is 7, ! but altermative weights, some considered in Chapter
6, are possible. Equation {1.3.75), which defines the estimator, is sometimes
called an estimating equation. See Godambe (1991).

Theorem 1.3.9. Let 7y = {x1, X3, ..., Xy} be the Nth finite population
in the sequence {Fy }, where {x;} is a sequence of ¢4d random variables with
finite fourth moments. Assume that the sequence of designs is such that for
any x; with positive variance,

V{n}a;;g _1(Tu: - T:c,N) | :F\'} = V"I',zm,Na (1.3.74)
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where V1. v is positive semidefinite almost surely, T, v is the population
total of x, Ty is the Horvitz-Thompson estimator of the total, and ngy =
E{ny | Fx}. Let an estimator 8, be defined by

Zwig(xi, ) = 0 (1.3.75)
iEA

and let 8, satisfy
S gxi, 8y) = 0, (1.3.76)
el

where we have omitted the subscript N on Uy and Ay. Assume that g(x;, 8)
is continuous in @ for all @ in a closed set BB containing 8° as an interior point
and all x;, where 8° satisfies

E{Zg(xi, 9")} —~ 0. (1.3.77)

=
Assume that H{x;, 8) = 9g(x;,8)}/0¢’ is continuous in 8 for all  in B and
all x;. Assume for all 8 in B that

NS wH(x, 8) = N'Y H(x, 8) + Oplnay) (1378)
iEA ielf
and
. —1 . _
Jim N Y H(x;, ) = H(0) as,

ey

where H(#) is nonsingular. Assume that

| g(xs, 8) | < K(x;) (1.3.79)

for some K (x) with finite fourth moment for all x; and all € in 3. Assume
that

»

P hm @-0°) = 0 (1.3.80)
N—no
and
plim (@—-6y)|Fy = 0 as. (1.3.81)
N—oo
Then
—1
6 -6° (Z wH(x;, 90)) > wiglxi, 6°) + op(npy %)
ied icA

(1.3.82)
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and

-6y = (Z wiH(x;, GN)) S wig(xi, Ox) +op(nay ).

€A $EA
(1.3.83)

Let V; ;. v denote the conditional variance of NV -1 (’i‘w —T, ~) conditional
on F, and assume that

Vt_.:irii\'N HTe — Tew) | Fu 5 N0, T) as. (1.3.84)
and
lim (TEBJ\rVL;rJ:.N_EL;;;:;:) = 0 as, (1.3.83)
N—oo T i

where ¥ ,, is positive definite for any x; with positive definite covariance
matrix. Then

[Voold ~ 0°)7V2(6 - 6°) & N(0, T) (1.3.86)
and
Vel - 04 | HY7V4H6 - 0,4) | Fy S NO, T) as.,  (1387)
where

Vel — On | F} = HH0,)Vigy vH(04),

HOy) = N> H(x;,0y),
el

Vt,gng = V{N'lzwig(xi, GN) l.FN},
e
VOO{BA - 90} = H_l(go)(j\'r_lzqg + Vt_‘gg,N), H—l(ao)’

and By = E {g(x;, 6°)g'(x:, 0°)}.

Proof. For § ¢ B, by a Taylor expansion,
N1 Z wigx:, ) = N1 Zwig(xh 0°)
EA e

+ N7 " wHx;, 8%)(6 - 6°)
1EA
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N~ Z wig(x;, 0°)
icA
+ N1 sz-H(x,;, 8°)(6 — 6°)
i€A
+op(| 6 — 6°|), (1.3.88)
where 6" is between @ and 8°. The continuity of H(x;, @), (1.3.80), and
(1.3.78) were used to obtain the second equality. Given € > 0, by (1.3.80),

there is an #,, such that for n > n,, P {(;‘ € B} > 1 — e. Therefore, result
(1.3.88) holds in general. Now, by (1.3.79) and (1.3.74),

- Z"'—Uzg X 90 ~ Zg x;, 8°) = p(n_lfz)

ie4 2‘:[}
and by (1.3.79),

V{N”Zg(xi, a°)} = O(N7Y.

el
Therefore,
NS wiglxi, 8°) = Opnz”) (1.3.89)
€A

and result (1.3.82) is proven. Also see Exercise 31.
Result (1.3.83) follows by analogous arguments.
By (1.3.83) and (1.3.78),

6 -0y | Fu
(Z H(x;, 91\,)) S wiglxi, By} +0p(nzy”) as. (13.90)
1=l iEA

and result (1.3.87) follows from (1.3.79) and the independence assumption.
By (1.3.79) and the Lindeberg Central Limit Theorem,

A‘r—lﬂ Zg(x'i-: 90) _3 N((}* Egg)
ey

and, by (1.3.78),
NY2(6 - 9°) 5 N[0, H(6°)S,,H (6] (1.3.91)
Result (1.3.86) follows from (1.3.90) and (1.3.91) by Theorem 1.3.6. [ ]
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To apply Theorem 1.3.9, we require estimators of the vartances. Estimators
are obtained by substituting estimators for unknown parameters.

Corollary 1.3.9.1. Let the assumptions of Theorem 1.3.9 hold. Then
V{6 -0y Fu} V20 - 0y) | F 5 N(O,T) as.

and o X
(V{6 - 6}]7/2(6 — 9°) 5 N(0,T),

where

V{6 -0, Fy}= IVHT{Zg(m 9)}1“ !

icA
V{6 -0y =V{6-0,|Fy)+T5NE, T
'i‘H = qu_:.iH(x,;, é),
icA
and ) ) )
N3l = wig(xi,0)g'(x:.0)
ied

Proof. By the assumptions that H(x;, 8) and g(x;, @) are continuous in &,

NS T wH(x;, 6) - N7 wiH(x,, 0°) = 0,(1),

icA €A
-1 -1 1/2
N Zwag(xaa Z“'ag x;, 8°) = p(n / )s
ied icA

and
Sge = N7 wig(xi, 0°)g (x5, 6°) = Op(nan ).
e A
Therefore, by (1.3.78),
NS wH(x. 6) - N7 T H(x;, 6°) = 0,(1).
icA ielf
Furthermore, by (1.3.79),

NS wg(x;,0°) - N1 S g(x;,8°) = Op(nz)”)

ieAd iely
and 1;’2
The conclusions then follow because the estimators of the variances are con-
sistent estimators. [ ]
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1.3.5 Quantiles

Means, totals, and functions of means are the most common statistics, but
estimators of the quantiles of the distribution function are also important.
Let y be the variable of interest and define the finite population distribution
function by

1\?
Fyw(a) = N7'Y dai, (1.3.92)
i=1

where
da.t' =1 if 7 <a
=10 otherwise.

Given a sample, an estimator of the distribution function at point « is the
sample mean of the indicator function

-1
Fyla) = dor= (Zw;l) 3w s (1.3.93)

i€A icA
The finite population quantile is defined as
bon =1 Qyn(b) = inf{a: F,x(a) > b} (1.3.94)
and the sampie quantile by
& =: Q,b) = infla: Fy(a) > b}, (1.3.95)

Estimated quantiles are not simple functions of means, and therefore the
results of Section 1.3.3 are not applicable. However, the relationship between
the distribution function and the quantile function can be exploited to obtain
useful results.

Let 2, be the estimated variance of F,(a) and assume that the sample is
large enough so that ﬁy(a) can be treated as being normally distributed. Then
the hypothesis that F,,{a) = b will be accepted at the « level if F{a) falls in
the interval

(b —tadea, b+ tadca) (1.3.96)

where £, is the a percentage point of the normal distribution. Tf ﬁy(a) is in
the interval defined in (1.3.96), then

Qy(b — tadea) < Qy(b) < Qb+ tadea), (1.3.97)



70 PROBABILITY SAMPLING: FINITE UNIVERSE

where Fa) = b. Therefore, [Qy(b — tabea); Qb+ tabea)] is a1 — a
confidence interval for (). Intervals of this type are sometimes called fest
inversion intervals. The interval (1.3.97) is also called the Woodruff interval
in the survey sampling literature. See Woodruff (1952).

Using a plot of the distribution function, one can see that shifting the func-
tion up by an amount ¢ will shift the quantile left by an amount approximately
equal to ¢ divided by the slope of the distribution function. This local approx-
imation can be used to approximate the distribution of a quantile. For simple
random samples from a distribution with a density, the limiting distribution
of a quantile associated with a positive part of the density is normal because
the error in the quantile can be written

£ —8& = [f(a)] 7 (b—dan) +op(n~V2), (1.3.98)

where £, = a and f,(a) is the density of i evaluated at a. Equation (1.3.98) is
called the Bahadur representation. See Bahadur (1966), Ghosh (1971), and
David (1981, Section 9.2). Francisco and Fuller (1991} extended representa-
tion (1.3.98) to a more general class of samples and used the representation
to show that sample quantiles for complex samples are normally distributed
in the limit,

Theorem 1.3.10. Let a sequence of finite populations be created as samples
from a superpopulation with cumulative distribution function Fy(-) and finite
fourth moments. Let&; = a° be the bth quantile. Assume that the cumulative
distribution function F}, () is continuous with a continuous positive derivative
on a closed interval B contfaining a° as an interior point. Assume that the
sequence of designs is such that

nZN"YT, — Nug) 5 N(O, 0p),

n}‘B’f\?N_l(Tx - J?\IE?N) £> N(O, ﬂgj’x‘r)
VI | P el | 7)1 = 03058

ViE )V {E —1 = Oz,
for any « with positive variance and fourth moment, where ngy = E{n x s
Vur{T: | Fx} is the Horvitz-Thompson estimator of the variance of T, — T},
given F, v {Z.} is an estimator of the unconditional variance of &, —
Mz, and p is the superpopulation mean. Assume that n NV{Fy(a.)} and
nxV{E,(a) — Fy x(a) | Fy} are positive and continuous in a for ¢ € B.
Assume that

V{Fﬂa-ﬁ-é a)} < Cny'ld|
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for some 0 < C < oc, for all N, and for all ¢ and ¢ + 4 in B. Then
S (E)E — a0y 5 N0, 1), (1.3.99)
where 52, V{Fy(a)},
Folée) = (2003:0) Qb + tadou) — Qb — taded)

i = &, to is defined by ®(t,) = 1 — 0.5q, and ®(-) is the distribution
function of a standard normal random variable.

Also,
- : L
S calu(60)(&s — &) = N(0,1),
where 85,7 ., = V{E,(a) — Fynla) | Fu}.
Proof. Omitted. See Francisco and Fuller (1991} and Shao (1994). [ ]

In Theorem 1.3.10, the ratio of the difference between two values of the
sample distribution function to the distance between the points defining the
values is used to estimate the density. The use of ¢, = 2in(1.3.99) to estimate
fy(a) seems to work well in practice. The estimator of f,(a) in (1.3.99) can
be viewed as a regression in the order statistics for order statistics “‘close” to
£b- o

Let ;) be the largest order statistic less than (& — taSea)s let Y be
the smallest order statistic greater than Q(éb + to80), and let a “smoothed”
estimator of the distribution function of ;) be

Let ég and 6 be the regression coefficients obtained in a weighted regression
of zon (1, yyy) fori =r, v+ 1, ..., m. Then ¢ is an estimator of Jy(&s)
and

& = 07b—8y) (1.3.101)

is a smoothed estimator of &. If only y,,,y and y,.) are used in the regression

~

th = (y(m) - y(r))_l (zm - z'l")ﬂ
ég =z} — ély{k), and

éb = Y+ (#m — zr)_l(y{m} - y(?‘})(b — Zr).

There are many smoothed estimators of quantiles. See Silverman (1986) and
Scott (1992).
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1.4 METHODS OF UNEQUAL PROBABILITY SAMPLE
SELECTION

The literature contains numerous procedures for the selection of nonreplace-
ment unequal probability samples. The number of procedures is indicative of
the difficulty of constructing a completely general procedure that is not ex-
tremely cumbersome computationally. We consider only sampling schemes
where selection is not a function of the y values. For selection procedures
that are functions of y, see Thompson and Seber (1996).

Selection procedures have been classified by Carroll and Hartley (1964)
as draw-by-draw methods, mass draw procedures wherein samples are re-
jected if duplication occurs, and systematic procedures. The draw-by-draw
and mass draw methods require computation of “working probabilities™ if
the probability of selection is to be maintained at the values specified. The
working probabilities are typically given as the solutions to a system of N,
Nn,or N(n — 1) equations. Some procedures have been demonstrated to be
superior to replacement sampling for n = 2 (Fellegi, 1963), while others are
justified on the basis of joint probabilities that guarantee nonnegative estima-
tors of variance (Hanurav, 1967; Vijayan, 1968). Alternative procedures have
been discussed by Jessen (1969) and Rao (1978), and procedures have been
reviewed extensively by Brewer and Hanif (1983) and Tillé (2006).

Perhaps the most common method of selecting an unequal probability
sample is the systematic procedure described in Section 1.2.4. The systematic
procedure is easy to implement but bas the disadvantage that no design-
unbiased estimator of the variance is available,

The following two draw-by-draw methods of selecting a sample of size 2
yield the same joint inclusion probabilities. The first was suggesied by Brewer
(1963a) and the second by Durbin (1967). Let p; be a set of positive numbers
(probabilities) with the properties that &Y ;p; = 1 and p; < 0.5 for all i. The
selection probability is then m; = 2p;.

Procedure 1

1. Select a unit with probability ¢;;, where

N -1
qy = (Z(l — 2pi) 'l —pi)) (1—2p;) " pi (1~ py).
i=1
(1.4.1)
2. Select a second unit with probability

g2, = (L—pyn)) 'pss (1.4.2)
where pj(,) is the value of p for the unit selected at the first draw.
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Procedure 2

1. Select a unit with probability p;,.

2, Select a second unit with probability p;-‘lﬂ't-j, J # ¢, where 2 is the unit
selected on the first draw and

My = e ( 1 1t ) (1.4.3)

2(1+A) 1—m I—ﬂ'j
where
1en N Pi
= = P = L 1.4.4
A 2 ; 1- Wy FZI 1 2p3' ( )

For both procedures, the joint probability is given by (1.4.3) and the total
probability of selecting unit ¢ is 7r; = 2p;. Under selection procedure 2, the
probability that the unit is selected on the first draw is p; and the probability
that it is selected on the second draw is p;. Fuller (1971) gave the following
motivation for the joint probabilities (1.4.3).

Assume that the population of IV values of p;” Yy, is a random sample from
a normal population with variance o2. Then considering the population of all
such populations, the variance of the Yates—Grundy—Sen estimated variance
for samples of size 2 15

N
80* > " wpt(mim; — mig)?. (1.4.5)
i< f

Therefore, under this model, minimization of the summation with respect
to m;; will result in a minimum variance for the estimated variance. Since
minimization of this expression leads to a system of noalinear equations
for the m;;, consider the approximation obtained by replacing the 7;; in the
denominator by m;m;.

For n = 2 those #;; that minimize

N

o 2
3 {mimy = mig)” T ) (14.6)
i< Tty
subject to the restrictions that
N
Y mg=m  forall i (1.4.7)
3=1

F#
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are the m;; of (1.4.3). The m;; of (1.4.3) are positive, and furthermore, for
0<m < 1.0,
1 1 i

|
= . 2<2+24
l—ﬂi—i_l—ﬂ‘j 1—?T1'+1—Trj+ *

and hence m;; < mm;. Therefore, the joint probabilities (1.4.3) permit the
construction of an unbiased nonnegative estimator of variance. The following
theorem demonstrates that the sampling scheme is always more efficient than
replacement sampling,

Theorem 1.4.1. The variance of the Horvitz-Thompson estimator for the
sampling scheme with joint probabilities (1.4.3) is never greater than that
of estimator (1.2.70) for replacement sampling, equality holding only if all
(2i — 2;)® = 0, where 2z; = yiﬂ';]

Proof. Using the variance expression (1.2.28), the variance of the Horvitz—
Thompson estimated total is

- ?T'E?Tj 1 1 .
W) = 2 [Wi T2(1+A) (1 e ﬂ (i = )"

1—m
i<j 3

and the variance of the replacement sampling estimator (1.2.70) is

N
. 1 ,
VR(}’ ) = 5 Zﬂiﬂj (Z.?-_ - Zj)z = Z’?i’j (Zj - 0.5}/)2
=1

i<
Then

1 -t
Ve=Vu = 1 |~(1+ V(@) 221_722% 2 = 24)°

ap— T (o 057
T 1+ A — 1 —m '

L 2

=0,

equality holding only if all z; = 0.5Y", [ |

Two procedures that maintain inclusion probabilities equal to np; forn > 2
are that of Brewer (1963a)} and that proposed by Rao (1965) and Sampford
(1967). In the Brewer (1963a) procedure, the first selection for a sample of
size n is made with probability

N —1
gn = | > (1—nppi(l - Pi)] (1—np;)~'ps(1 —py),

=1
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the next with probabilities proportional to

[1— (n~Lps ™ ps(L =),
and so on.

Another way to select unequal probability samples is to select a replacement
sample and reject the sample if the sample contains duplicates. Hajek (1964)
studied this procedure. To illustrate, consider the selection of a sample of size
2 from a population of size [V with draw probabilities p;. The total probability

of selecting the sample is
N 2
i=1

and the probabilities of selecting one of the units twice is
N
P{repeated selection} = Z 7.
i=1

Thus, the joint probability of element i and element j, ¢ # j, appearing in a
sample where samples with repeated elements are rejected is

N -1
Tawk = P{G, )€ A|NR} = (1-2?)%) pipy,
k=1

where N R denotes no repeated elements in the sample. The probability that
clement i appears in the sample is

N N -1
Tilve — Z?T-:;j = (1 - ZPE) (1-pi)pi.
=1 k=1

i

If a nonreplacement sample with selection probabilities close to the specified
7; is desired, working probabilities must be specified. Hajek (1964) suggested
approximate p;, and Carroll and Hartley (1964) gave an iterative procedure,
described by Brewer and Hanif (1983), for determining working probabilities.
Chen, Dempster, and Liu (1994) give a computational algorithm that can be
used for sample selection. For a complete discussion, see Tillé (2006, Chapter
3). Also see Section 3.4.

1.5 REFERENCES

Sections 1.1, 1.2. Brewer (1963b), Cochran (1946, 1977), Goldberger
(1962), Graybill (1976), Hansen and Hurwitz (1943), Horvitz and
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and Ord (1991), Yates (1948), Yates and Grundy (1953).

Section 1.3, Bickel and Freedman (1984), Binder (1983), Blight (1973),

Cochran (1946, 1977), Francisco (1987), Francisco and Fuller (1991),
Fuller (1975, 1987b, 1996), Hajek (1960), Hannan (1962), Isaki and
Fuller (1982), Krewski and Rao (1981), Madow (194%), Madow and
Madow (1944), Papageorgiou and Karakostas (1998), Rao and Wu
(1987, R. R. Rao (1962), Rubin-Blever and Kratina (2005), Sen
(1988), Shao (1994}, Thompson (1997), Woodruff (1952, 1971), Xiang
(1994).

Section 1.4. Brewer (1963a), Brewer and Hanif (1983), Carroll and Hartley

1.6

(1964), Durbin (1967}, Fellegi (1963), Fulter (1971), Hajek (1964),
Hanurav (1967), Hedayat and Sinha (1991), Jessen (1969), Rao (1965,
1978), Rao, Hartley, and Cochran (1962), Sampford (1967), Vijayan
(1968), Yates and Grundy (1953).

EXERCISES

. (Section 1.2.1) Letd = ([, fa,...,Iy), as defined in (1.2.4). Show

that a matrix expression for the variance of the design linear estimator
gof (1.217)is

VG| FY = yxWyZaaWay',

where y v = (y1, %2, . -, yn), Wy = diag{wy, w, ..., wy) is a diago-
nal matrix whose diagonal elements starting in the upper left corner are
W, Wa, ..., Wy, and 2z 1s the covariance matrix of d.,

. {Section 1.2.4) Derive the joint probabilities of selection for systematic

samples of size 3 selected from the population of Table 1.1 with the
measures of size of Table 1.1,

(Section 1.2.4} Assume that a population satisfies
Yt = sin 2kt

fort =1, 2, ..., N. Give the variance of the sample mean of a
systematic sample of size 10 as an estimator of the population mean for
a population with k = 6 and N = 60. Compare this to the variance of
the mean of a simple random nonreplacement sample and to the variance
of the mean of a stratified sample, where the population is divided into
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two equal-sized strata with the smallest 30 indices in the first stratam.
How do the results change if the sample size is 12?

. (Section 1.2.3) Let a stratified population be of the form described in
Section 1.2.3 with H strata of sizes Ny, N, ..., Ny, Find the optimal
allocation to strata to estimate the linear function

o
0 = > v
h=1

where ap, =1, 2, ..., H, are fixed constants. Assume equal costs
for observations in the strata.

. {Section 1.2, 1.3) Consider the following sampling scheme. A simple
random sample of » households is selected from /N households. The ith
household contains M; family members. In each household selected,
one family member is selected at random and interviewed. Give the
probability that person #j (the jth person in the 7th household) is in-
terviewed. Define the Horvitz—Thompson estimator of the total of y.
Give the joint probability that any two people appear in the sample.
Is it possible to construct an unbiased estimator of the variance of the
Horvitz-Thompson estimator?

Consider the estimator of the varance,

T

T _2
Vige | Fx} = nn-1)7" (ZMt) ST MRy - 500
t=1

t=1

where

o - (z Mt) S M
t=1 t=1

and y;; 18 the value observed for person ij. Assume that the household
size satisfies 1 < M, < K for some K and assume that the finite popu-
lation is a random sample from a superpopulation, where (y:;, M;) has
a distribution with finite fourth moments and (y;;, M) is independent
of (y;;, M;) fort # i. Show that

nV{Ge | Fa} = ViTe | Fa}Y] = op) as.
as N — o0, n — o¢, and N~=In — 0, where

-1 N M

N 2
VAiga | Fu} = B |5 — (Z M:—.) DD v ‘ﬂ a.s.
i=1

i=1 j=1
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. (Section 1.3.3) Consider a population of x values with x; > 0 for all 7.

Let model (1.3.58) hold with E{fy | Tv} = Zy, 02 = 1, and o = 2,
Let samples be selected from a finite population generated by (1.3.58)
with 7r; proportional to «;. Using the approximate design variances, for
what values of Gy and 8y 18 V{gx | F} < V{gur | F}? You may
constder the set of finite populations with commen (1, z2, ..., Tyl

. {Section 1.2.4) In Section 1.2.4 it is stated that the sample mean for

a systematic sample with equal probabilities for samples of unequal
sizes is biased for the population mean. Derive the bias and construct
an unbiased estimator of the population mean. Assign probabilities to
the two types of samples so that the sample mean is unbiased for the
population mean.

. (Section 1.2) Consider a population of size 9 that has been divided into

two strata of size 4 and 5, respectively. Assume that a stratified sample
of size 5 is to be selected, with two in stratum 1 and theee in stratum 2.
Let d be the nine-dimensional vector of indicator variables defined in
(1.2.4}. Give the mean and covariance matrix of d.

. (Section 1.2.5) Assume that a replacement sample of size 3 is selected

from a population of size N with draw probabilities (p1, p2, ..., Px).

(a) What is the probability that element ¢ appears in the sample three
times?

(b) What is the probability that element ¢ is observed given that the
sample contains only one distinct unit?

(c}) What is the probability that element 4 is selected twice?

(d) What is the probability that element 3 is selected twice given that
some element was selected twice?

(e) What is the probability that element ¢ appears in the sample at least
once?

(f) What is the probability that element ¢ appears in the sample given
that the sample contains three distinct units?

(Section 1.2} Consider a design for a population of size N, where the
design has V41 possible samples. /N of the samples are of size 1, where
each sample contains one of the possible /N elements. One sample is of
size N, containing all elements in the population. Each of the N + 1
possible samples is given an equal probability of selection.

(a) What is the probability that element § is included in the sample?
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{b) What is the expected sample size?
(¢} What is the variance of the sample size?

{d) If the finite population is a realization of NI{0, ¢?) random vari-
ables, what is the variance (over all populations and samples) of
Ty — T, where Ty is the Horvitz—Thompson estimator of the finite
population total?

(e) Compare the variance of the estimated total of part {d) with the
variance of N(§, — ) for a simple random sample of size n.

(f) Consider the estimator that conditions on sample size

Ty = Nn_l Z'y’ia
tCA
where n is the realized sample size. Show that this estimator is
design unbiased for 7.

(g) Give the variance of Ty — T, of part (f) under the conditions of part
(d).

(Section 1.2} Assume an R-person list, where the ith person appears
on the list r; times. The total size of the list is N. Assume that a
simple random nonreplacement sample of » lines is selected from the
list. For each line selected, a person’s characteristic, denoted by v;, the
total number of lines for person 4, denoted by r;, and the number of
times that person ¢ occurs in the sample, denoted by ¢;, are determined.
Assume that r; is known only for the sample.

{(a} Give an estimator for the number of people on the list.

(b} Give an estimator for the total of .

(Section 1.2) The possible samples of size 3 selected from a population of
size 5 are enumerated in Table 1.3. The table also contains probabilities
of selection for a particular design.

(a) Compute the probabilities of selection, m;, for: =1, 2, ..., 10.

(b} Compute the joint probabilities of selection, m;;, for all possible
pairs.

(c) Compute the joint probability of selection for each pair of pairs.

(d) Assume that a population of finite populations of size 5 is such that

each finite population is a sample of 5 NI(u, o2) random vari-
ables. What are the mean and variance of the Horvitz—Thompson
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Table 1.3 Design for Samples of Size 3 from a Population of Size 5

Sample  Prob. of Sample  Prob. of
Sample Elements Sample | Sample Elements Sample
1 12,3 0.06 6 14,5 0.10
2 1.2.4 0.07 7 234 0.11
3 1,2,5 0.08 8 2,35 0.12
4 1.34 0.09 9 2,45 0.13
5 1,35 0.10 10 34,5 0.14

estimator of the total of the finite population when the sample is
selected according to the design of the table?

(e) Under the assumptions of part (d), find the mean and variance of
the variance estimator (1.2.33).

(f) Under the assumptions of part (d), find the mean and variance of
9&; - gNu k = ]. 2, where

91 = .N_lz':r;ly?;

icA

-1
o - (Zﬁ;i) (Zﬂglyﬁ).
(=¥ teA

13. (Section 1.2) [Sirken (2001)] Let a population be composed of N units

and

with integer measures of size yn;, ¢ =1, 2, ..., N. Let My =0
and let M; = &/ m;, =1, 2, ..., N. Consider two sampling
procedures:

(a) A replacement simple random sample of n integers is selected
from the set {1,2, ..., M, }. If the selected integer, denoted by X,
satisfies

J’l’fi_l < k <Z _Mri,

element % is in the sample.

(b) A nonreplacement simple random sample of »n integers is selected
fromthe set {1.2, ..., My}. The rule for identifying selected units
is the same as for procedure (a).
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For each procedure:

i. Determine the probability that element i is selected for the sample
exactly once.

ii. Determine the probability that element i is selected for the sample
at least once.

iii. Determine the joint probability that elements ¢ and % appear to-
gether in the sample.

(Section 1.2.2) Let a finite population of size N be a random sample
from an infinite population satisfying the model

yi = Po+ B+ e,
e; ~ NI, I@O’g),

where x; is distributed as a multiple of a chi-square random variable
with d, d > 3, degrees of freedom, and ¢; is independent of x; for
all + and j. Let a Poisson sample of expected size nyg be selected with
the selection probability for element 4 proportional to x;. What is the
expected value of

?1;1 Z 7; (Z $;l: Zyi’ Z 11?;23}-@.1 Z ff-i_ly-z:) 7

iely A A €A i€A

(Section 1.2.2) Assumne that a sample of n elements is selected using
Poisson sampling with probabilities m;, ¢ =1, 2, ..., N. Find the
design variance of the linear function

b = >
i€A

where the ¢;, i =1, 2, ..., N, are fixed coefficients. Determine an
estimator of the variance of 8.

(Section 1.3) Let a sequence of populations of size IV be selected from
a distribution with mean u and variance ¢®. Give an example of a
sequence (N, n,) such that

N (Z g+ (N —na)n' D g~ u) = 0,(ny"),

€A A ey

where 3 > 0.5.



82 PROBABILITY SAMPLING: FINITE UNIVERSE

17. (Section 1.3.3) Let y; ~ NI{0, 1) and define x; by

T = Y with probability 0.5
= —Y "with probability 0.5,

where the event defining z; is independent of y;. Let (Z, ) =
n Tt i (@ vi)-
{a) Prove that
nV2(z, ) 5 N(0, I).
{b) Does the conditional distribution of Z given ¥ converge to a normal
distribution almost surely?
{c) Let

I = g with probability 0.5
—¥ with probability 0.5,

where the event defining Z is independent of §. Show that Z is a
normal random variable. Is the conditional distribution of Z given
g normal?

18. (Section 1.3) Assume that a finite population of size NV is a realization
of N binomial trials with probability of success equal to p. Let the finite
population proportion be py. Assume that a sample of size . is selected
with replacement from the finite population. Show that the variance
of the sample proportion, p, as an estimator of the infinite population
proportion is

V{p—-p} = N ' ?[(n-1)N+n?p(l-p),

where $ is the replacement estimator of the mean obtained by dividing
the estimated total (1.2.66) by N.

19. (Section 1.2.2) Assume that a Poisson sample is selected with known
probabilities m;, where the x; differ. Let 7z be the expected sample
size. Find the design mean and variance of the estimator

Ty = Nﬂ;l Z UYi.
ied

Is it possible to construct a design-unbiased estimator of the design
variance of T,?

20. (Section 1.2) Assume that a simple random sample of size n is selected
from a population of size IV and then a simple random sample of size m
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is selected from the remaining NV — n. Show that the n + m elements
constitute a simple random sample from the population of size V. What
i8 C{Yn, gm | F}, where g, is the mean of the first » elements and §y,
is the mean of the second m: elements?

(Section 1.3) Show that the assumptions

(@ Ky <m <Ky

N
(b) Hm N7'" |y 0= Mys > 0
N—oo . =1

for positive constants 8, K and Ky are sufficient for

N 1
lim sup lz y?m;(l - Wa’]jl y?c = 0.

N—oo I<k<N =

(Section 1.3) Consider a sequence of finite populations composed of
H, strata. Assume that random samples of size 2 are selected from
each stratumn, Do the gy, need to be bounded for the results of Theorem
1.3.2 to hold?

(Section 1.2.2) Assume that the data in Table 1.4 are a Poisson sample
selected with the probabilities given in the table.

(a) Estimate the fraction of managers who are over 50. Estimate the
variance of your estimator.

{b) Estimate the fraction of employees who have a manager over 50.
Estimate the variance of your estimator.

{c) Estimate the population covariance between age of manager and
number of employees for the population of managers.

(Section 1.3.3) Consider the estimator ﬁNI%W, where

~1
Ry = (z) .

icA ied

The denominator of the ratio is n, but the summation expression empha-
sizes the fact that » is an estimator of N7 ,. Thus, under the assumptions
of Theorem 1.3.8, ﬁNR,ry =¥nv + Op(ng,l\,’lz)‘ Find E{7y I’?«y | 7n}
under medel (1.3.58), where 7, is the set of 7; in A. Assume that w = 2
and 35 = 0 in model (1.3.58). Find the best linear unbiased estimator
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Table 1.4 Poisson Sample of Managers

Ageof Number of Age of Number of

Probability  Manager Employees | Probability  Manager Employees
0.016 35 10 0.070 50 3
0.016 36 4 0.100 51 47
0.036 41 15 0.100 56 55
0.040 45 25 0.120 62 41
0.024 45 8 0.100 64 30

25.

26.

27.

28.

of /3, conditional on 1r,,. What is the best linear unbiased predictor of
T,?

(Section 1.3.2) In the proof of Theorem 1.3.4 we demonstrated that for
a sequence of Bernoulli samples there is a corresponding sequence of
simple random samples such that the difference between the two means
. —3/2 . ) -

is Op(n;™"). Given a sequence of simple random samples, construct
a corresponding sequence of Bernoulli samples such that the difference

between the two means is Oy(ng 3 2).

(Section 1.3.1) Prove the following.
Result. Let {X,,} be a sequence of random variables such that

E{ X-n_ } - 0,
Va{Xn} = Gp(n™),

where V,,{ X,, } is the sequence of variances of X, and o > (). Then

Xy, = Op(n™05%).

(Section 1.2.5) Let a population of size NV be given and denoted by Fiy.
Let a second finite population of size n/V be created by replicating each
of the otiginal observations »n times. Denote the second population by
Fon 8V{Z,—Tn | F } for an equal probability replacement sample
of size n selected from F, the same as the variance of V {Z, —Z~ | Fn v}
for a simple random nonreplacement sample of size n selected from
Fnx? The statistic I, for the replacement sample is the mean of the y
for the n draws, not the mean of distinct units.

(Section 1.2.3) Show that the estimator (1.2.56) is the Horvitz-Thompson
variance estimator.
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(Section 1.2.1) Show that

§2 = (N-D7) (wi—ow)

el

= OSNTEV 1SS T -

i€l jeU
Hence, show that expression (1.2.28) for simple random sampling is
V{NG. | F} = N}(n'-N"hHs
(Section 1.2.6) In the example in the text, the selection of a sample of
size 3 from a population of size 6 led to selection probabilities of (9/16,

8/16, 7/16, 7/16, 8/16, 9/16). What is the joint selection probability of
units 1 and 2? Of units 3 and 4? Of units 1 and 67

(Section 1.3.1) Prove:

Lemma 1.6.1. If 6, = B,, + 0,(| 8, |), then 8,, = O,( | B.,| ).

. {Section 1.2,1) Let A, be the indexes of a simple random nonreplace-

ment sample of size ) selected from a finite population of size N. Let
As be the indexes of a simple random sample of size ny selected from
the remaining V — 4 elements. Let ¢, be the mean for sample 4; and
J2 be the mean for sample Ay. What is C{§1,72 | F}?

(Section 1.4) Let a population of size N have assigned probabilities
{p1,p2,..-,py)andconsider the following successive selection scheme.
At step 1 a unit is selected from the N units with probability p;. At
step 2 a unit is selected from the remaining N — 1 units with probability
p;(1 —p;)~". What is the probability that unit j is in a sample of size
27 What is the probability that units 7 and &k will be in a sample of size
27 Rosen (1972} has studied this selection scheme for 1 selections.

. {(Section 1.3.2) In Theorem 1.3.4 it is asserted that

E{(n;' —n; % | n, > 0} = O(nz?).

Show that the conditions of Theorem 5.4.4 of Fuller (1996) are satisfied

for n;?n% and hence that the conditions of Theorem 5.4.3 of Fuller

(1996) are satisfied for (n 1ng ~ 1)2. Hint: Let 2 of Theorem 5.4.4 be

n;lno.
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(Section 1.3) Prove:

Theorem 1.6.1.  Let {y;} be a sequence of fixed numbers and let
FN = {yl?yQ} s 1yN}- Assume that

Ji\"

. _‘1 . _

A N e =
i=1

and

N
lim N71Y " g )™ = K.
N—ooo 1

i=

for some € > 0, where p and ¥, are finite. Let {w;} be a sequence of
probabilities with 0 < ¢, < m; < ¢g < 1. Let a sequence of Poisson
samples be defined with selection probabilities #;, where Ay, C Ax.
Then

Nli_lgoN'l SNomly = poas (1.6.1)
icAy
and
-1
1\}513;0 Z ?T_;l Z ﬂ';ly,,; = p -as. (1.6.2)
g Ay AN

(Section 1.3) Let two finite populations of size V) and N be realizations
of ¢id random variables from a distribution F(y). Let a simple random
sample of size n; be selected from N; and a simple random sample of
size no be selected from Ny. Show that the sample of n; + ng elements

can be treated as a simple random sample from the population of size
N+ Ns.

(Section 1.2.7) Let y1. 42, . . . , yn be independent random variables with
yi ~ (. 02). Show that

E {(n )Y —@)2} w1y ok
i=1 i=1

(Section 1.3) Prove:

Result 1.6.1. Let y1,%2,..., be a sequence of real numbers. Let
Fyv = (¥,y2,..., Yy~ beasequence of populations, and let (1.3.20) and
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(1.3.21) hold. Let a sequence of samples be selected with probabilities
7; and joint probabilities m;; v, where 7 » < wym; for all ¢ and j in
Ux,t # j,and all N. Then

V{Nq(fy - Ty) | Fn} = O('”-Ei;]:

where npgy is the expected sample size for population N and fy is the
Horvitz-Thompson estimator of the total.

(Section 1.4) Let a sample of size n be selected in the following way.
The first element is selected with probability p;, where =¥ p; = 1.
Then n — 1 elements are selected as a simple random sample from the
remaining N — 1 elements. What is the total probability, ;, that element
1 is included in the sample? What is the probability that elements 7 and
J appear in the sample? What is the probability that the n elements
i1,%2,...,ip form the sample? See Midzuno (1952).

(Section 1.2.8) Assume simple random sampling at each of the two
stages of a two-stage sample. Are there population configurations such
that 7 ;) (k) Of (1.2.76) is the same for all ij and km, ij # km?

(Section 1.3.1) Consider a sequence of populations {F } created as the
first N elements of the sequence {1, y2,...}. Assume that the | y; | are
bounded and that Sﬁ ~ converges to a positive quantity. Let a systematic
sample be selected from the Nth population with a rate of K ! for all
N. Is gy, design consistent for 5,7 Explain.

(Section 1.2.4) Assume that a population of size 10 is generated by
the autoregressive model of (1.2.61) with p = 0.9. Assume that a
systematic sample of size 2 is selected and that the selected elements
are A = [¢, j]. Give

V{f‘h —yn|A = [21 7]}

and
Vi —on A = [3 8}
Derive the variance of the best linear unbiased predictor of §, for each

of the situations 4 = [2, 7] and A = [3, §]. Give the variance of the
predictor.

(Section 1.2) Let a population of size 2N be divided into two groups
of size N. Let a group be selected at random (with probability equal
to one-half), and let one unit be sclected at random from the selected
group. Let a simple random sample of size 2 be selected from the other
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group to form a sample of size 3 from the original population. Give the
inclusion probabilities and joint inclusion probabilities for this selection
scheme.

(Section 1.2.5) Assume that a replacement sample of size 2 is selected
from a population of size 4 with probability p; = 0.25 at each draw.
What is the relative efficiency of estimator (1.2.66) to estimator (1.2.71)?

(Sectioﬂ 1.2.1) Let y;,% = 1,2,...,n, be independent {u, 03) random
variables and let "
g=n"" Z Yi-
i=1

Show that -
Vigb=n"tn -1 (1~ 9)°
i=1
is unbiased for V{g}.

(Section 1.3.1)Letf = X wiy;, where 57 wi = O(n™3), B0 w; =
1 for all n, the w; are fixed, and the y;,¢ = 1,2,..., are independent
(¢4, 02) random variables with bounded fourth moments. Show that

E{(V(®)) =Vv{8} +0(n?),

where 1
V{g = (1 - Z w?) Zw?(yi e
i=1 i=1

(Section 1.3) Let (31,42, .- -,¥n) be a simple random sample from a
population with y; > 0 for all ¢ and finite fourth moment. Let an
estimator of the coefficient of variation be

f = g_lsy,
where § = JyS, n is the coefficient of variation. Using a Taylor

expansion, find the variance of the approximate distribution of n®? (@ -
9).

(Section 1.2) Let (11,92, ..., yx) = ¥ be avector of iid(u, 02 ) random
variables, What are the conditional mean and covariance matrix of
y conditional on ¥,y = T? What are the conditional mean and
covariance matrix of y conditional on (T, §2), where

AF
= (N1 (i~ gn)*?
i=1
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(Section 1.3) To evaluate My of Theorem 1.3.2, show that for a popula-
tion with zero mean and finite fourth moment,

BE{7'} = nT’[E{y"} +3(n - 1)o]

and n
C{d vl ng’} = E{y'} - o
i=1

Hinr: See Fuller (1996, p. 241),

. (Section 1.3) In Exercise 13, procedure (b) consisted of a nonreplace-

ment sample of » integers. Let an estimator of the total of y be
7 — 11
y r="mn 1nirn Z r"nd yd}

where d is the index for draw, (mg, 14} is the (measure of size, y value)
obtained on the dth draw, and the vector of totals is

N
(Tms Ty) = Z(W’*i: y'.i)-
f==1

{a) Show that Ty » 18 design unbiased for 7}, and give an expression for
V{T,, ~ T, 5’-'} Give an estimator of V{7, , — T, | F}. Hinr:
Let z; = m y; and consider the population composed of sl
values of m; yl, mg values of mg, yg, .,y values of mN Un-

(b) Consider a sequence of pairs of real numbers {m;, y;}, where the
m; are positive integers. Assume that;

(1) The mn; are bounded.

@ Jim N7y = g

'i:]

N
li -1 ;- — 32 - 2 .
iii) lim N > (v — Tn) o, >0

i=1
N
(iv) ;\!i_ﬂoN_l_ZE |yi — g P70 = Ky < oo,
po
Show that ) p
n'2(NTIT, . — gx) = N(O,Vi1),
where

Vl]. = hm nTmQV{Ty,r - Ty | "}CN}



90 PROBABILITY SAMPLING: FINITE UNIVERSE

1.7 APPENDIX 1A: SOME ORDER CONCEPTS

There are exact distributional results available for only a few of the statis-
tics associated with survey sampling. For most, approximations based on
large-sample theory are required. Concepts of relative magnitude or order
of magnitude are useful in deriving those approximations. The following
material is from Fuller (1996, Chapter 5). Let {a,}%, and {b,};>, be

n=
sequences of real numbers, let {f,}22, and {g,}>>, be sequences of pos-
itive real numbers, and let {X,,}°2, and {Y,}22, be sequences of random
variables.

Definition 1.7.1, We say that «,, is of smaller order than g,, and write

y, = 0lgn)
if

lim g;lan =0.
J‘\‘r—*DC'

Definition 1.7.2. We say that a,, is at most of order ¢,, and write
an = O(ga)

if there exists a real number M such that ;! | a, | < M for all n.

Using the definitions of order and the properties of limits, one can prove:
1. If a,, = o(f,) and b,, = o{gy), then

anb, = O(f-n,gn.),
lan |° = offi) fors>0,

an +by = olmax{fn,gn})
2. If a, = O(f,) and b, = O{gyn), then

anby, = O ( .f-ngn) »
la, |° = O(f;} fors>0,
an +b, = O(m&X{fn, gn})'

3. Ha, = o fn) and b,, = O(gy), then

anby, = 0( f 'n.g-n,) .
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The concepts of order for random variables, introduced by Mann and Wald
(1943), are closely related to convergence in probability.

Definition 1.7.3. The sequence of random variables {X,} converges in
probability to the random variable X, written

plim X, = X
(the probability limit of X,, is X), ifforevery ¢ > 0

lim P{j X, — X |> €} =0.
1— 00

Definition 1.7.4. We say that X, is of smaller order in probability than g,
and write

Xy = 0p{gn)
if
plim g, ' X,, = 0.

Definition 1.7.5. We say that X, is at most of order in probability g, (or
bounded in probability by g,,) and write

¢ [ Op(gn)
if for every ¢ > 0 there exists a positive real number A, such that
Pl X | = Megn} < ¢

for all n.

Analogous definitions hold for vectors.

Definition 1.7.6. If X, is a k-dimensional random variable, X, is at most of
order in probability g, and we write

Xn - Op(gn)

if for every ¢ > O there exists a positive real number M. such that
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P{| X3n|2 P”fegn}sez j:]‘ﬂg?"'ﬂk?
for all 7.

Definition 1.7.7. We say that X, is of smaller order in probability than g,
and write

Xn = Op(gn)
if for every € > 0 and 4 > O there exists an /¥ such that forall n > N,

P{]X”;,I)&gn}<5, j:1,21...,k.

Order operations for sequences of random variables are similar to those for
sequences of real numbers; thus:

1. If Xy, = 0,(fn) and Y, = 0p(gn), then

XnYy = Op(fngn)s
| X I° = o,(fy) fors>0,
Xn+Ys = op(max{fn,gn}).

2.1t X, = p(fﬂ) and Y, = Op(gn), then
XY, = Op(fngn)a

| X, | = Op(ff;_) for s > 0,
Xp+Yn = Op{max{f,,gn}).

3. I X, = 0,(fr) and Y, = Oy(g,,), then
XnYp = Op(fngn)-
One of the most useful tools for establishing the order in probability of

random variables is Chebyshev’s inequality.

Theorem 1.7.1. Let # > 0 and let X be a random variable such that
E{| X |"} < oc. Then for every € > 0 and finite 4,

BUX-Al}

P{IX-Aze} <

er



APPENDIX 1A: SOME ORDER CONCEPTS 93

it follows from Chebyshev’s inequality that any random variable with finite
variance is bounded in probability by the square root of its second moment
about the origin.

Corollary 1.7.1.1. If {X,,} is a sequence of random variables such that
B(X:} = Olay),

then
Xn —_ Op(an)








