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C H A P T E R 1

The General
History of

Geometric Mean
Maximization

G eometric mean maximization, or “growth-optimality,” is the idea of
maximizing the size of a stake when the amount you have to wager
is a function of the outcome of the wagers up to that point. You are

trying to maximize the value of a stake over a series of plays wherein you
do not add or remove amounts from the stake.

The lineage of reasoning of geometric mean maximization is crucial,
for it is important to know how we got here. I will illustrate, in broad
strokes, the history of geometric mean maximization because this story
is about to take a very sharp turn in Part III, in the reasoning of how we
utilize geometric mean maximization. To this point in time, the notion of
geometric mean maximization has been a criterion (just as being at the
growth-optimal point, maximizing growth, has been the criterion before
we examine the nature of the curve itself).

We will see later in this text that it is, instead, a framework (something
much greater than the antiquated notion of “portfolio models”). This is an
unavoidable perspective that gives context to our actions, but our crite-
rion is rarely growth optimality. Yet growth optimality is the criterion that
is solved mathematically. Mathematics, devoid of human propensities, pro-
clivities, and predilections, can readily arrive at a clean, “optimal” point. As
such, it provides a framework for us to satisfy our seemingly labyrinthine
appetites.

On the ninth of September 1713, Swiss mathematician Nicolaus
Bernoulli, whose fascination with difference equations had him corres-
ponding with French mathematician Pierre Raymond de Montmort, whose

9



P1: OTA
c01 JWBT086-Vince March 31, 2009 10:49 Printer: Yet to come

10 THE SINGLE COMPONENT CASE

fascination was finite differences, wrote to Montmort about a paradox that
involved the intersection of their interests.

Bernoulli described a game of heads and tails, a coin toss in which
you essentially pay a cover charge to play. A coin is tossed. If the coin
comes up heads, it is tossed again repeatedly until it comes up tails. The
pot starts at one unit and doubles every time the coin comes up heads. You
win whatever is in the pot when the game ends. So, if you win on the first
toss, you get your one unit back. If tails doesn’t appear until the second
toss, you get two units back. On the third toss, a tails will get you four units
back, ad infinitum.

Thus, you win 2q–1 units if tails appears on the qth toss.
The question is “What should you pay to enter this game, in order for it

to be a ‘fair’ game based on Mathematical Expectation?”
Suppose you win one unit with probability .5, two units with proba-

bility .25, four units with probability .125, ad infinitum. The Mathematical
Expectation is therefore:

ME = 20 ∗ 1
21

+ 21 ∗ 1
22

+ 22 ∗ 1
23

· · · (1.01)

ME = .5 + .5 + .5 . . .

ME =
∞∑

q=1

.5 = ∞

The expected result for a player in such a game is to win an infinite
amount. So just what is a fair cover charge, then, to enter such a game?1

This is quite the paradox indeed, and one that shall rendezvous with us in
the sequel in Part III.

The cognates of geometric mean maximization begin with Nicolaus
Bernoulli’s cousin, Daniel Bernoulli.2,3 In 1738, 18 years before the birth

1A cover charge would be consistent with the human experience here. After all, it
takes money to make money (though, it doesn’t take money to lose money).
2Daniel was one of eight members of this family of at least eight famous mathemati-
cians of the late seventeenth through the late eighteenth century. Daniel was cousin
to Nicolaus, referred to here, whose father and grandfather bore the same name.
The grandson, Daniel’s cousin, is often referred to Nicolaus I, and as the nephew
of Jakob and Johann Bernoulli, the latter being Daniel’s father. As an aside, one of
Daniel’s two brothers was also named Nicolaus, and he is known as Nicolaus II,
who would thus be cousin as well to Nicolaus I, whose father was named Nicolaus
as well as his grandfather (the grandfather thus to not only Nicolaus I, but to Daniel
and his brothers, including Nicolaus II).
3Though in our context we look upon Daniel Bernoulli in the context of his pioneer-
ing work in probability, he is primarily famous for his applications of mathematics
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The General History of Geometric Mean Maximization 11

of Mozart, Daniel made the first known reference to what is known as “ge-
ometric mean maximization.” Arguably, his paper drew upon the thoughts
and intellectual backdrop of his era, the Enlightenment, the Age of Rea-
son. Although we may credit Daniel Bernoulli here as the first cognate of
geometric mean maximization (as he is similarly credited as the father of
utility theory by the very same work), he, too, was a product of his time.
The incubator for his ideas began in the 1600s in the belching mathematical
cauldron of the era.

Prior to that time, there is no known mention in any language of even
generalized optimal reinvestment strategies. Merchants and traders, in any
of the developing parts of the earth, evidently never formally codified the
concept. If it was contemplated by anyone, it was not recorded.

As for what we know of Bernoulli’s 1738 paper (originally published
in Latin), according to Bernstein (1996), we find a German translation ap-
pearing in 1896, and we find a reference to it in John Maynard Keynes’ 1921
Treatise on Probability.

In 1936, we find an article in The Quarterly Journal of Economics

called “Speculation and the carryover” by John Burr Williams that per-
tained to trading in cotton. Williams posited that one should bet on a repre-
sentative price and that if profits and losses are reinvested, the method of
calculating this price is to select the geometric mean of all of the possible
prices.

Interesting stuff.
By 1954, we find Daniel Bernoulli’s 1738 paper finally translated into

English in Econometrica.
When so-called game theory came along in the 1950s, concepts were

being widely examined by numerous economists, mathematicians, and aca-
demicians, and this fecund backdrop is where we find, in 1956, John L.
Kelly Jr.’s paper, “A new interpretation of information rate.” Kelly demon-
strated therein that to achieve maximum wealth, a gambler should maxi-
mize the expected value of the logarithm of his capital. This is so because
the logarithm is additive in repeated bets and to which the law of large
numbers applies. (Maximizing the sum of the logs is akin to maximizing the
product of holding period returns, that is, the “Terminal Wealth Relative.”)

In his 1956 paper in the Bell System Technical Journal, Kelly showed
how Shannon’s “Information Theory” (Shannon 1948) could be applied to
the problem of a gambler who has inside information in determining his
growth-optimal bet size.

When one seeks to maximize the expected value of the stake after n

trials, one is said to be employing “The Kelly criterion.”

to mechanics and in particular to fluid mechanics, particularly for his most famous
work, Hydrodynamique (1738), which was published the very year of the paper of
his we are referring to here!
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12 THE SINGLE COMPONENT CASE

The Kelly criterion states that we should bet that fixed fraction of our
stake ( f ) that maximizes the growth function G( f ):

G( f ) = P ∗ ln(1 + B ∗ f ) + (1 − P) ∗ ln(1 − f ) (1.02)

where: f = the optimal fixed fraction
P = the probability of a winning bet/trade
B = the ratio of amount won on a winning bet to amount lost on

a losing bet
ln( ) = the natural logarithm function

Betting on a fixed fractional basis such as that which satisfies the Kelly
criterion is a type of wagering known as a Markov betting system. These
are types of betting systems wherein the quantity wagered is not a function
of the previous history, but rather, depends only upon the parameters of
the wager at hand.

If we satisfy the Kelly criterion, we will be growth optimal in the long-
run sense. That is, we will have found an optimal value for f (as the optimal
f is the value for f that satisfies the Kelly criterion).

In the following decades, there was an efflorescence of papers that
pertained to this concept, and the idea began to embed itself into the
world of capital markets, at least in terms of academic discourse, and
these ideas were put forth by numerous researchers, notably Bellman and
Kalaba (1957), Breiman (1961), Latane (1959), Latane and Tuttle (1967),
and many others.

Edward O. Thorp, a colleague of Claude Shannon, and whose work de-
serves particular mention in this discussion, is perhaps best known for his
1962 book, Beat the Dealer (proving blackjack could be beaten). In 1966,
Thorp developed a winning strategy for side bets in baccarat that employed
the Kelly criterion. Thorp has presented formulas to determine the value
for f that satisfies the Kelly criterion.

Specifically:
If the amount won is equal to the amount lost:

f = 2 ∗ P − 1 (1.03)

which can also be expressed as:

f = P − Q (1.03a)

where: f = the optimal fixed fraction
P = the probability of a winning bet/trade
Q = The probability of a loss, or the complement of P, equal to 1

− P
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The General History of Geometric Mean Maximization 13

Both forms of the equation are equivalent
This will yield the correct answer for the optimal f value provided

the quantities are the same regardless of whether a win or a loss. As an
example, consider the following stream of bets:

−1, +1, +1, −1, −1, +1, +1, +1, +1, −1

There are 10 bets, 6 winners, hence:

f = 2 ∗ .6 − 1

= 1.2 − 1

= .2

If all of the winners and losers were not for the same size, then this
formula would not yield the correct answer. Reconsider our 2:1 coin toss
example wherein we toss a coin and if heads comes up, we win two units
and if tails we lose one unit. For such situations the Kelly formula is:

f = ((B + 1) ∗ P − 1)/B (1.04)

where: f = the optimal fixed fraction
P = the probability of a winning bet/trade
B = the ratio of amount won on a winning bet to amount lost on a

losing bet

In our 2:1 coin toss example:

f = ((2 + 1).5 − 1)/2

= (3 ∗ .5 − 1)/2

= (1.5 − 1)/2

= .5/2

= .25

This formula yields the correct answer for optimal f provided all wins
are always for the same amount and all losses are always for the same
amount (that is, most gambling situations). If this is not so, then this for-
mula does not yield the correct answer.

Notice that the numerator in this formula equals the Mathematical Ex-
pectation for an event with two possible outcomes. Therefore, we can say
that as long as all wins are for the same amount, and all losses are for the
same amount (regardless of whether the amount that can be won equals
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14 THE SINGLE COMPONENT CASE

the amount that can be lost), the f that is optimal is:

f = Mathematical Expectation/B (1.05)

The concept of geometric mean maximization did not go unchal-
lenged in subsequent decades. Notables such as Samuelson (1971, 1979),
Goldman (1974), Merton and Samuelson (1972), and others posited various
and compelling arguments to not accept geometric mean maximization as
the criterion for investors.

By the late 1950s and in subsequent decades there was a different, al-
beit similar, discussion that is separate and apart from geometric mean
maximization. This is the discussion of portfolio optimization. This paral-
lel line of reasoning, that of maximizing returns vis-à-vis “risk,” absent the
effects of reinvestment, would gain widespread acceptance in the financial
community and relegate geometric mean maximization to the back seat in
the coming decades, in terms of a tool for relative allocations.

Markowitz’s 1952 Portfolio Selection laid the foundations for what
would become known as “Modern Portfolio Theory.” A host of others, such
as William Sharpe, added to the collective knowledge of this burgeoning
discipline.

Apart from geometric mean maximization, there were points of over-
lap. In 1969 Thorp presented the notion that the Kelly criterion should re-
place the Markowitz criterion in portfolio selection. By 1971 Thorp had
applied the Kelly criterion to portfolio selection. In 1976, Markowitz too
would join in the debate of geometric growth optimization. I illustrated
how the notions of Modern Portfolio Theory and Geometric Mean Op-
timization could overlap in 1992 via the Pythagorean relationship of the
arithmetic returns and the standard deviation in those returns.

The reason that this similar, overlapping discussion of Modern Port-
folio Theory is presented is because it has seen such widespread ac-
ceptance. Yet, according to Thorp, as well as this author (Vince 1995,
2007), it is trumped by geometric mean maximization in terms of portfolio
selection.

It was Thorp who presented the “Kelly Formulas,” which satisfy the
Kelly criterion (which “seeks to maximize the expected value of the stake
after n trials”). This was first presented in the context of two possible gam-
bling outcomes, a winning outcome and a losing outcome. Understand that
the Kelly formulas presented by Thorp caught hold, and people were trying
to implement them in the trading community.

In 1983, Fred Gehm referred to the notion of using Thorp’s Kelly For-
mulas, and pointed out they are only applicable when the probability of
a win, the amount won and the amount lost, “completely describe the
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The General History of Geometric Mean Maximization 15

distribution of potential profits and losses.” Gehm concedes that “this is not
the case” (in trading). Gehm’s book, Commodity Market Money Manage-

ment, was written in 1983, and thus he concluded (regarding determining
the optimal fraction to bet in trading) “there is no alternative except to use
complicated and expensive Monte Carlo techniques.” (Gehm 1983, p. 108)

In 1987, the Pension Research Institute at San Francisco State Uni-
versity put forth some mathematical algorithms to amend the concepts of
Modern Portfolio Theory to account for the differing sentiments investors
had pertaining to upside variance versus downside variance. This approach
was coined “Postmodern Portfolio Theory.”

The list of names in this story of mathematical twists and turns is
nowhere near complete. There were many others in the past three cen-
turies, particularly in recent decades, who added much to this discussion,
whose names are not even mentioned here.

I am not seeking to interject myself among these august names. Rather,
I am trying to show the lineage of reasoning that leads to the ideas pre-
sented in this book, which necessarily requires the addition of ideas I have
previously written about. As I said, a very sharp turn is about to occur for
two notions—the notion of geometric mean maximization as a criterion,
and the notion of the value of “portfolio models.” Those seemingly parallel
lines of thought are about to change.

In September 2007, I gave a talk in Stockholm on the Leverage Space
Model, the maximization for multiple, simultaneous positions, and juxta-
posed it to a quantification of the probability of a given drawdown. Near
the end of the talk, one supercilious character snidely asked, “So what’s
new? I don’t see anything new in what you’ve presented.” Without accus-
ing me outright, he seemed to imply that I was presenting, in effect, Kelly’s
1956 paper with a certain elision toward it.

This has been furtively volleyed up to me on more than one occasion:
the intimation that I somehow repackaged the Kelly paper and, further, that
what I have presented was already presented in Kelly. Those who believe
this are conflating Kelly’s paper with what I have written, and they are of-
ten ignorant of just what the Kelly paper does contain, and where it first
appears.

In fact, I have tried to use the same mathematical nomenclature as
Thorp, Kelly, and others, including the use of “ f ” and “G”4 solely to provide
continuity for those who want the full story, how it connects, and out of

4In this text, however, we will refer to the geometric mean HPR as GHPR, as op-
posed to G, which is how I, as well as the others, have previously referred to it. I
am using this nomenclature to be consistent with the variable we will be referring
to later, AHPR, as the arithmetic mean HPR.
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16 THE SINGLE COMPONENT CASE

respect for these pioneering, soaring minds. I have not claimed to be the
eponym for anything I have uncovered or added to this discussion.

Whether known by Kelly or not, the cognates to his paper are from
Daniel Bernoulli. It is very likely that Bernoulli was not the originator of
the idea, either. In fairness to Kelly, the paper was presented as a solution
to a technological problem that did not exist in Daniel Bernoulli’s day.

As for the Kelly paper, it merely tells us, for at least the second time,
that there is an optimal fraction in terms of quantity when what we have to
work with on subsequent periods is a function of what happens during this
period.

Yes, the idea is monumental. Its application, I found, left me with a
great deal of work to be done. Fortunately, the predecessors in this nearly
three-centuries-old story to these lines of thought memorialized what they
had seen, what they found to be true about it.

I was introduced to the notion of geometric mean maximization by
Larry Williams, who showed me Thorp’s “Kelly Formulas,” which he sought
to apply to the markets (because he has the nerve for it).

Seeing that this was no mere nostrum and that there was some inherent
problem with it (in applying those formulas to the markets, as they math-
ematically solve for a “2 possible outcome” gambling situation), I sought
a means of applying the concept to a stream of trades. Nothing up to
that point provided me with the tools to do so. Yes, it is geometric mean
maximization, or “maximizing the sum of the logs,” but it’s not in a gam-
bling situation. If I followed that path without amendment, I would end
up with a “number” between 0 and X. It tells me neither what my “risk” is
(as a percentage of account equity) nor how many contracts or shares to
put on.

Because I wanted to apply the concept of geometric mean maximiza-
tion to trading, I had to discern my own formulas, because this was not a
gambling situation (nor was it bound between 0 and 1), to represent the
fraction of our stake at risk, just as the gambling situation innately bounds
f between 0 and 1.

In 1990, I provided my equations to do just that. To find the optimal
f (for “fraction,” thus implying a number 0 <= f <= 1), given a stream of
trades (or, of periodic profits and losses; for example, the daily, or monthly,
or quarterly, or annual profit/loss), we must first convert them into a “Hold-
ing Period Return,” remaining within the nomenclature of those before me,
for a given f value, or “HPR( f ).” This is simply 1 + the rate of return, and
is given as:

HPR( f ) = 1 + f ∗ −trade

BiggestLoss
(1.06)
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The General History of Geometric Mean Maximization 17

where: f = the value we are using for f

−trade = the profit or loss on a trade with the sign reversed
so that losses are positive numbers and profits are
negative

BiggestLoss = the P&L over the entire stream that resulted in
the biggest loss. (This should always be a negative
number.)

Thus, a gain of 5 percent would see an HPR( f ) of 1.05. A loss of
5 percent would see an HPR( f ) of .95.

By multiplying together all of the HPR( f )s, we obtain the “Terminal
Wealth Relative,” or “TWR( f ).” This is simply the geometric product of the
HPR( f )s, and it represents the multiple made on our starting stake at the
end of the stream of profits and losses:

TWR( f ) =
n∏

i=1

HPR( f )i (1.07)

or:

TWR( f ) =
n∏

i=1

(
1 + f ∗ −tradei

BiggestLoss

)
(1.07a)

and geometric mean (GHPR( f )) is simply the nth root of the TWR( f ).
GHPR( f ) represents the multiple you made on your stake, on average, per
HPR( f ):

GHPR( f ) =
n

√√√√
n∏

i=1

HPR( f )i =
(

n∏

i=1

HPR( f )i

)1/n

(1.08)

or:

GHPR( f ) =
n

√√√√
n∏

i=1

(
1 + f ∗ −tradei

BiggestLoss

)

=
(

n∏

i=1

(
1 + f ∗ −tradei

BiggestLoss

))1/n

(1.08a)
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18 THE SINGLE COMPONENT CASE

where: f = the value we are using for f

−tradei = the profit or loss on the ith trade with the sign
reversed so that losses are positive numbers and
profits are negative

BiggestLoss = the P&L that resulted in the biggest loss. (This
should always be a negative number.)

n= the total number of trades
GHPR( f ) = the geometric mean of the HPR( f )s

The value for f (0 <= f <= 1) that maximizes GHPR( f ) (or TWR( f ),
as both are maximized at the same value for f ) is the optimal f . It is an op-
timization problem: Simply optimize f for greatest GHPR( f ) or TWR( f ).
The value for the optimal f is irrespective of the order the HPR( f )s occur
in; all permutations of a stream of HPR( f )s result in the same optimal f

value.
These equations would give you the same answer for the 2:1 coin toss

as the Kelly formula answer of f = .25. So, these formulas can be used in
lieu of the Kelly formulas. What’s more, these formulas work when there
are more than two possible outcomes.

Furthermore, the f derived from the 1990 procedure detailed here can
then be converted into a number of “units” to put on (number of shares
or contracts). Since the inputs in terms of tradei and biggest loss must be
determined from a particular trading size, be it 100 shares or one contract,
it can be any arbitrary, though consistent, amount you choose (which we
will call a “unit”). Thus, once an optimal f is determined, based on the
results of trading in one unit, we can determine how many units we should
have on for a given trade or period (depending upon whether the stream of
HPR( f )s was derived by using trades or periods) as:

f $ = −BiggestLoss/ f (1.09)

f $ represents how much to capitalize each unit for a given trade or period
by. To then determine how many units to have on:

Number of Units to Assume = Account Equity/ f $ (1.10)

For example, if we have a stake of 100 units, a biggest loss of −1 units
(using our 2:1 coin toss game here) and an f of .25, we would thus have:

f $ = −BiggestLoss/ f

f $ = −(−1)/.25

f $ = 1/.25

f $ = 4
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(So, if one unit is one wager in this game, we make one wager for every
4 units in our stake):

Number of Units to Assume = 100/4 = 25

Thus, we make 25 wagers, which in this case correspond to a 25 per-
cent fraction of our stake risked.

If we were trading and we had an optimal f $ of .25, and our biggest loss
per unit was 10,000 units, we would have an f $ of 40,000 units and would
thus trade one unit per every 40,000 units in our account equity. Such a
position sizing would represent having 25 percent of our account at risk.

Do not be dissuaded by margin requirements. They have nothing to
do with what is the mathematically optimal amount to finance a trade by
(often, margin requirements will be more than f $).

Do not be dissuaded by having the variable BiggestLoss in the equa-
tions. This will be addressed in the following chapter.

So these equations can be used in lieu of the Kelly formulas for trad-
ing situations, but they are applicable to trading only one game, only one
component, at a given time.

However, I was interested in multiple, simultaneous games that were
not simply gambling games. I was interested in portfolios of tradable com-
ponents and thus had to determine my own equations for dealing with
multiple, simultaneous positions, because again, this is a trading situation.
Kelly and others intimated that such an approach could be worked out for
trading, and in my search for answers to these problems I had encountered
Mike Pascual, a brilliant fellow, who had worked it out for gambling situa-
tions (taking the Kelly Formulas to the next level—multiple, simultaneous
wagers). Yet even so I was left in a dead end in terms of applying this ap-
proach to market outcomes for the very same reasons that I could not apply
the Kelly Formulas to market outcomes of a single component; the distri-
bution of market outcomes is more complex than for gambling outcomes.
(I will not attempt to cover all that Pascual has covered; interested readers
are referred to Pascual [1987]).

I had to work out the formulas for geometric mean maximization for
market-related situations (and bounding the result, f , between 0 and 1) as
opposed to simpler, gambling illustrations, and I had to work it out for mul-
tiple, simultaneous “plays,” that is, “portfolios.” The equations for such will
be provided later in this story, when we get to the discussion of Leverage
Space Part II.

Most important, where the predecessors (including Kelly) of this “geo-
metric mean maximization” notion came up short for me, in terms of mar-
ket application, was that they only alluded to the fact that there was an
optimal point.
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Having an optimal point implies a curved function, and it is the dynam-
ics of the curve itself (as bound between 0 and 1, to put in context and
give meaning to being on the curve!) that we use to discern the informa-
tion about our actions in the marketplace. There are a great deal of infor-
mation, payoffs, and consequences to being at different points along this
curve (which, because we are oblivious to them, we are likely migrating
along with each trade, and hence, assuming different potential payoffs and
consequences from trade to trade!).

Furthermore, as I pursued my passion in this vein, I discovered what
really was an entire domain to this netherworld that had been heretofore
undiscovered: the very nature of the curve. Prior to my illumination of the
character of these curves (and the fact that they are at work on us whether
we acknowledge them or not), people, very smart guys in fact, would talk
about things like betting “half Kelly,” or other arbitrary, ad hoc things like
this. I could see that no one had explored the dynamics of the curve. That
is where the real story is here. (Because “half kelly” is an arbitrary point
in terms of the dynamics of the curve and shows a common perspective
that is oblivious to the dynamics of the curve, and hence, the tradeoffs of
the curve and the mathematically significant points moving and migrating
along it.)

It is the character of the curve whereupon the optimal point resides
that is what is the netherworld, it is leverage space. The nature of the curve
itself—that is where we find information about our actions, and therefore
what we shall discuss in forthcoming chapters.

I had unwittingly stumbled into what was an entire domain, found
myself in a place alive with geometric relationships, this place I call this
netherworld of “leverage space.” Things, the good predecessors in this line
of reasoning evidently never saw, which I have had the pleasure of being
utterly fascinated by.

Had others in this nearly three-centuries-old story seen this, they would
have memorialized in writing what they had seen regarding these things, as
I have tried to do over the decades.

I contend you are somewhere on the curve, ineluctably, and that there
are characteristics to being at different points on that curve that have not
been identified. Further, unless you are risking a certain, fixed, percentage
of your “stake” on each “play,” you are ineluctably migrating about that
curve, and the characteristics of those heretofore-unidentified points on
that curve apply to you, but unbeknownst to you.
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