ONE: INTRODUCTION

Linear programming is concerned wilh the optimization {minimization or
maximization} of a linear function white satisfving a set of hinear equality andfor
incquality constraints or restrictions. The linear programming problem was first
conceived by George B. Dantzig around 1947 while he was working as a
mathematical advisor to the United States Air Force Comptroller on developing
a mechanized planning tool for a time—staged deplovment, training, and logistical
supply program. Although the Sovier mathematician and economist L. V.
Kantorovich formulated and solved a problem of this type dealing with
organization and planning in 1939, his work remained unknown until 1959,
Hence, the conception of the general class of lincar programming problems s
usually credited 1o Danizig. Because the Air Foree refers (o 1ls various plans and
schedules Lo be implemented as “programs,” Dantzig's first published paper
addressed this problem as “Programniing in a Linear Structure.” The term “linear
programming” was actually coined by the economist and mathematician T. C.
Koopmans in the summer of 1948 while he and Dantzig strolled near the Santa
Monica beach in California.

In 1949 George B. Dantzig published the “simplex method” for solving
linear programs. Since that time a number of individuals have contributed to the
field of linear programming in many different ways, meluding theoretical
developments, computational aspects, and exploration of new applications of the
subject. The simplex nethod of lincar programming cnjoys wide aceeptance
because of {1) 1ts ability o model important and complex management decision
problems, and (2) its capability for producing solutions in a reasonable amount
of time. In subsequent chapters of this text we shall consider the simplex method
and its variants, with emphasis on the understanding of the methods.

In this chapter, we introduce the linear programming problem. The
following topics are discussed: basic definitions in linear programining,
assumptions leading to linear models, manipulation of the problem, examples of
linear problems, and geometric solution in the leasible region space and the
requirement space. This chapter 1s elementary and may be skipped 11 the reader
has previous knowledge ol linear programming.

1.1 THE LINEAR PROGRAMMING PROBLEM

We begin our discussion by formulating a particular type of linear prograniming
problem. As will be seen subsequently, any general linear programming
preblem may be manipulated into this form.

Basic Definitions

Consider the following linear programming problem. Here, ¢jx + caxs + -+ +
c,X, 15 the eljective function (or criterion function) to be minimized and will
be denoted by =, The coefficients ¢|,¢5,...,¢, are the (known) cost coefficients
and
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X[ X3....,%, are the decision variables (variables, structural variables, or activity

levels) to be determined.

Minimize  qx; +  Caxy Tt oY,
subjectto gy +  a@ax; b apx, =0h
() X] + GaaXa At npgX, 2
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ayx; = h;denotes the ith constraint {or restriction or fimetional,
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structural, or technological constraint). The coefficients i fori=1...m, j=1, .. »nae
called the rechnological coefficients. These technological coefficients form the constraing
matrix A,

“h [55)) gy
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The columm vector whose ith component is A, which is referred to as the righ—
hand side vector, represents the minimal requirements 1o be satisfied. The
constraints ¥y, X,....x, = 0 are the nonregativity constraints. A set of values of
the vanables xq,....x,, satistying all the constraints is called a feasible point or a

Jfeasible selution. The set of all such peoints constitutes the feasible region or the
Jeasible space.

Using the foregoing terminology, the linear programming problem can be
stated as follows: Among all feasible solutions, find one that minimizes (or
maximizes) the objective tunction.

Example 1.1

Consider the following linear problem:

-+

Minimize 2x Sx;

subjectto ¥ + x 2 6
-x = 2x» = -18
Xis RS = 0.

In this case. we have two decision variables x and x,. The objective function
to be minimized is 2x + 3x. The constraints and the feasible region are

illustrated in Figure 1.1. The optimization problem is thus to find a point in the
feasible region having the smallest possible objective value.
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Figure 1.1. Nustration of the feasible region.

Assumptions of Linear Programining

To represent an optimization problem as a lincar program. several assumptions
that are implicit in the linear programming formulation discussed previously are
needed. A brief discussion of these assumptions is given nexl.

1.

(¥}

Proportionality. Given a variable x ., 1ty contribution to cosl s ¢;x;

and its contribution to the ith constraint is a;.x;. This means that it x;

I
is doubled, say, so is its contribution to cost and to each of the
constraints, To illustrate, suppose that x, is the amount of activily §

used. For insiance, if x; — 10, then the cost of this activity is 10¢,. If
x; = 20, then the cost is 20c;, and so on. This means that no savings

{or exira cosis) are realized by using more of activity j; that is, there are
no ceonomics or relums 1o scale or discounts, Also, no setup cost for
starting the activity is realized.

Addirivity. This assumption guarantecs that the total cost is the sum
of the individual costs, and that the total contribution 10 the /th
restriction is the sum of the individual contributions of the individual
activities. In other words, there are no substitution or interaction
effects among the activities,

Divisibifity. This assumption ensures that the decision variables ¢an
be divided inte any fractional levels so that non-integral values for
the decision variables are permitted.

Deierministic. The coefficients ¢ PR

deterministically. Any probabilistic or stochastic elements inherent in

and A are all known
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demands, costs, prices, resource availabilities, usages. and so on are all
assumed to be approximated by these coefficients through some
deterministic equivalent.

It is important to recognize that i a hnear programming problem is being
used fo model a given situation, then the alorementioned assumptions are
implied to hold, at least over some anticipated operating range for the activities.
When Dantzig first presented his linear programming model 1o a meeting of the
Econometric Society in Wisconsin, the famous economist H. Hotelling critically
remarked that in reality, the world is indeed nonlinear. As Dantzig recounts, the
well-known mathematician John von Neumann came to his rescue by counter-
ing that the talk was about “Linear” Programming and was based on a set of
postulated axioms. Quite simply, a user may apply this technique if and only if
the application fits the stated axioms.

Despite the seemingly restrictive assumptions, lincar programs are among
the most widely used models today. They represent several systems guite satis-
factorily, and they are capable of providing a large amount of information
besides simply a selution, as we shall see later, particularly in Chapter 6.
Moreover, they are also often used to solve certain types of nonlinear
optimization problems via {successive) linear approximations and constitute an
important tool in solution methods for lincar discrete optimization problems
having integer-restricted variables.

Problem Manipulation

Recall that a linear program is & problem of minimizing or maximizing a linear
function in the presence of linear inequality and/or cquality constraints. By
simiple manipulations the problem can be transformed from one form to another
equivalent form. These manipulations are most useful in linear programming, as
will be seen throughout the text,

INEQUALITIES AND EQUATIONS

An inequalily can be easily transformed into an equation. To illustrate, consider the

constraint given by % a.x. = b.. This constraint can be put in an equation form
=ity = 5 P 4

by subtracting the nonnegative swplus or slack variable x,,_,; (sometimes denoted by

s;} leading to ¥"_ a.x, —x,_; =& and x_ .. = 0. Similarly, the consiramt
! g __,._| i n—{ i H+i S

i
and x,,; = 0. Also, an

R e eyt e o H . _
2o jagx; = by isequivalentto 30 apx; + X, = by

cquation of the form Z?:| ayx; = by can be transtormed into the two nequalitics
pIIRY

- H - 1o 1 e e
foapx; < b and 30_gapx; 2 &;. although this is not the practice.

NONNEGATIVITY OF THE VARIABLES

For most practical problems the variables represent physical quantities, and henee
must be nonnegauve. The simplex method is designed to solve linear programs

where the varlables are nonnegative. If a variable x; is unrestricted in sign. then it
z 0 and x} = 0. 1f x,....x; aresomek

can be replaced by x; — x7 where x]
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variables that are all unrestricted in sign. then only one additional variable x" is

needed in the equivalent transformation: ¥ o= .r;- - x" forj =1, .. k where

Xpz 0 forj=1, & and x" = 0. {Ilerc, —x" plays the role of representing the
most negative variable, while all the other variables x, are x} above this value.)
Alternatively, one could solve for each unrestricted variable m terms of the other
variables using any equation in which it appears, eliminate this variable from the
problem by substitution using this equation, and then discard this equation {rom
the problem. However, this strategy is seldom used from a data management and

numerical implementation viewpoint. Continuing, 1I' x; = /£, then the new

;=X is automatically nonnegative. Alse, if a variable x; Is

!

variable x
restricted such that xp = ouy, where we might possibly have ;= 0. then the

substitution x; = u; —x ; produces a nonnegative variable x

f
MINIMIZATION AND MAXIMIZATION PROBLEMS

Another problem manipulation is to convert a maximization problem into a
minimization problem and conversely. Note that over any region,

7 s

maximunt Y €;x; = —minimum 3 —px

i=l i=l
Hence, a maximization {minimization} problem can be converted into a minimi-
zation (maximization) problem by multiplying the coefficients of the objective
tfunction by -1. After the optimization of the new problem is completed, the
objective value of the old problem is 1 limes the optimal objective value of the
new problent.

Standard and Canonical Formats

From the foregoing discussion, we have seen that any given linear program can
be put in different equivalent forms by suitable manipulations. In particular, two
forms will be useful. These are the standard and the canonical forms. A lincar
program is said to be in standard format if all restrictions are equalities and all
variables are nonnegative. The simplex method is designed to be applied only
after the problem is put in standard form. The canonical form is also useful,
especially in expleiting duality relationships. A minimization problem isg in
canontcal form if all variables are nonnegative and all the constraints are of the
= type. A maximization problem is in canonical form if all the variables are
nonnegative and all the constraints are of the < type. The standard and canonical
forms are summarized in Table 1.1.

Linear Programming in Matrix Notation

A linear programming problem can be stated in a more convenient form using
matrix notation. To iHlustrate, consider the following problem:
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H
Minimize 3 «,x;
g=1
. "r.
subjectto X ayx; = b, i=l..m
J=l
x; z 0, j=1..m
Denote the row veetor (¢y,¢5....,¢, ) by ¢, and consider the following column

vectors X and b, and the m x 7 matrix A,

| & ;ﬂ —‘ (“H 42 .. Ay

X ) v} a

x=| 2 h-|™ A=!91 “9n ... g
_Kn bm Laml pz o Uy

‘Then the problem cun be written as follows:

Minminuze cx
subjectto AX b
x = 0

The problem can also be conveniently represented via the columis of A,
Denoting A by [a),a;.....a, | where a; is the jth column of A, the problem can

J
be formulated as follows:
i
Minimize 2oepx;
=1
) £l
subjectto 2 a,x; = b
o
x; = 0 j=l..n

f
1.2 LINEAR PROGRAMMING MODELING AND EXAMPLES

The modeling and analysis of an operations research problem in general, and a
linear programming problem in particular, evolves through several stages. The
problem formularion phase involves a detailed study of the system, data
collection, and the identification of the specific problem that nceds to be
analyzed (otten the encapsulated problem may only be part of an overall system
problem), along with the systemn constraints, restrictions, or limilations, and the
objective function(s). Note that in real-world contexts, there frequently already
exisls an operating solution and it is usually advisable to preserve a degree of
persisterey with respect to this solution, i.e., to limit changes from it (e.g.. 1o
limit the number of price changes, or decision option modifications, or changes
in percentage resource consumptions. or to limil changing some entity
contingent on changing another related entity). Such issues, aside from
technological or structural aspects of the problem, should also be modeled into
the problem constraints,

The next stage involves the construction of an absiraction or an
idealization of the problem through a mathemarical model. Care must be taken
to ensure that the model satisfactorily represents the system being analyzed.
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while keeping the model mathematically tractable. This compromise must be
made judiciously, and the underlying assumptions inherent in the model must be
properly considered. It must be borne in mind that from this point onward, the
solutions obtained will be solutions to the model and not necessarily solutions to
the actual system unless the model adequately represents the tiie sitvation.

The third step is to derive a sofurion. A proper technique that exploits any
special structures (if present) must be chosen or designed. One or more optimal
solutions may be sought. or only a heuristic or an approximate solution may be
determined along with some assessment of its quality. In the case of multiple
objective {unctions, one may scek efficient or Parefo—optimal solutions, that is,
solutions that arc such that a further improvement in any objective function
value is necessarily accompanied by a detriment in some other objective
function value,

The fourth stage is model festing, analysis, and (possibly) restructuring.
One examines the model solution and its sensitivity to relevant system
parameters, and studies jts predictions to various what—if tvpes of scenarios.
This analysis provides insights into the system. One can also use this analysis to
ascertain the reliability of the model by comparing the predicted outcomes with
the expected outcomes, using either past experience or conducting this test
retroactively using historical data. At this stage, onc may wish (o enrich the
model further by incorperaling other important features of the system that have
not been modeled as yet, or, on the other hand, one may choose to simypfifi: the
model.

The final stage is implementation. The primary purpose of a model is to
interactively aid in the decision—making process. The model should never
reprace the decision maker. Often a “frank—factor™ based on judgment and
experience needs to be applied to the model solution before making policy
decisions, Also, a model should be treated as a “living” entity that needs to be
nurtured over time, i.e., model parameters, assumptions, and restrictions should
be periodically revisited in order to keep the model current, relevant, and vatid.

We describe several problems that can be formulated as linear programis.
The purpose is to exhibit the varicties of problems that can be recognized and
expressed in precise mathematical terms as linear programs.

Feed Mix Problem

An agricultural mill manufactures feed for chickens. This is done by mixing
several ingredients, such as com, limestone, or alfalfa. The mixing is to be done in
such a way that the feed meets certain levels for different types of nutrients, such
as protein, calcium, carbohydrates, and vitamins. To be more specific, suppose
that 2 ingredients 7= 1,..., 7 and a7 nutrients § = 1..... m are considered. Lel the unit
cost of ingredient / be ¢ ; and let the amount of ingredient 7 to be used be x ;- The

cost is therefore Z’;. 1€,;%;. If the amount of the final product needed is b, then

we must have Z?:]x ; = b. Further suppose that g is the amount of nutrient

present in a unit of ingredient §, and that the acceptable lower and upper limits of
putrient { in a unit of the chicken feed are #; and w;. respectively. Therefore, we
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must have the constraints ¢b < X.i;:la@-xj,- < b for /= 1., m. Finally,
because ol shortages, suppose that the mill cannot acquire more than #; units of

mgredient 7. The problem of mixing the ingredients such that the cost is
minimized and the restrictions are met can be formulated as follows:

Mimimize X 4+ G¥ 4p Gy

subject to ) X+ Y2 gt X, = {J
n'!)_-'r:'i “/—“all"‘] + a12x3 EPE G‘IHIH < blé"l

by Samxy ¢ an¥y 4.4 G, g b

o - . _ . '

bt mo O X 4 G2 iy Xy < ‘bum

sy <

D<xy <« 1a
Ozx, < u,

Production Scheduling: An Optimal Control Problem

A company wishes to determine the production rate over the planning
harizon of the next 7 weeks such that the known demand is satisfied and the
total production and inventory cost is minimized. Let the known demand rate at
time £ be g(2), and similarly, denote the production rate and mventory al tme ¢
by x(£) and (1), respectively. Furthermore, supposce that the initial nvenlory at
time 0 is vy and that the desired mventory at the end of the planning horizon is

vp. Suppose that the invenlory cost s proportional o the units in storage, so

that the inventory cost is given by ¢ jg,}f(!) di where ¢ > 0 is known. Also,

suppose that the production cost is proportional to the rate of production, and s

theretore given by ¢ jg—x(r) di. Then the total cost is jé.[cl_v[f) — cax(£)] dt.

Also nole that the inventory al any time is given according to the relationship
¥y = vy~ [ilx(r) = g dr, forz < [0,T].

Suppose that no backlogs are allowed: that is, all demand must be satisiied.
PP g

Furthermore, suppose that the present manufacturing capacity restricts the
production rate so that it docs not exceed By at any time. Also, assume that the

available storage restricts the maximum inventory to be less than or equal 10 by,
Hence, the production scheduling problem can be stated as follows:

Minimize jg[n‘l}’(f) + ey x(8)]dr

subjectto (1) =y + [{x(r)—glrildr, for 1e[0,T]

1‘(71) = }.T
O=xir)=h, for 1e[0.7]
D<) =bhy, for (e[0.7].

The foregoing model is a linear control problem, where the conmrol variahle is
the production rate x(/) and the stafe variable is the inventory level v{#). The
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problem can be approximated by a linear program by discretizing the continuous
variables x and p. First, the planning horizon |0, 7] is divided into # smaller
periods [O0,ALLA, 2ZALL (7 — DA#A], where #A = T, The production rate,
the inventory, and the demand rate are assumed constant over cach period. In
particular, let the production rate, the inventory, and the demand rate in period j
be x;, v, and g, respectively. Then, the production scheduling problem can

be approximated by the following linear program (why?).

1 i
Minmize Y {(qd)y; + % {erd)x;
i=l i=l ’
subject o vi=vatlg—gA j=lon
Ya = X¥r
0= X; = J=1..n
0< v, <h, =1,...n

Cutting Stock Problem

A manufacturer of metal sheets produces rolls of standard fixed width w and of
standard length . A large order s placed by a customer who needs sheets of
width w and varying lengths. In particular, %, sheets with length £, and width w
for i = 1..... m are ordered. The manufacturer would like to cut the standard rolls in
such a way as to satisly the order and to minimize the waste. Because scrap picees
are useless to the manulacturer, the objective is to minimize the number of rolls
needed to satisfy the order. Given a slandard sheet of length ¢, there are many
ways of cutting it. Cach such way 1s called a cutting pattern. The fth cutting
pattern is characterized by the column vector a; where the jth component of a ;.

namely ;. is a nonnegative integer denoting the number of sheets of length ¢; in

the jth pattern. For instance, suppose that the standard sheets have length £ =10
meters and that sheets of lengths 1.5, 2.5, 3.0, and 4.0 meters are necded. The
following are typical cutting patterns:

3 0! 0
2 4 0

a, = gl a = UI.. ay = 3|
0 0] 0

Note that the vector a; represents a cuiting pattern if and only if Y7 a,¢; < ¢

i
and each @;; is a nonnegative integer. The number of cutting patterns s is finite.
Il'we let x; be the number of standard rolls cut according to the jth pattern, the

problem can be formulated as follows:
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#
Minimize X X

i=1
H
subjectto 3 @;x; 2 b, f=l..m
=
X; =0, F=l..n
X integer, i=L.,n

If the integrality requirement on the x; variables is dropped, the problem 1s a

linear program. Of course, the difticulty with this problem is that the number of
possible cutting patterns » is very large, and also. it is not computationally
feasible to enumerate each cutting pattern and its column a; beforehand. The

decomposition algorithm of Chapter 7 is particularly suvited to solve this
problem, where a new cutting pattern is generated at each iteration (see also
Exercise 7.28). In Section 6.7 we suggest a method for handling the integrality
requireimernts.

The Transportation Problem

The Brazilian coffec company processes colfee beans into coffee at m plants.
The colfee 1s then shipped every week to n# warehouses in major cities for retail,
distribution, and exporting. Suppose that the unit shipping cost from plant § to
warehouse / is ¢;;. Furthermore, supposc that the production capacity at plant i

is a; and that the demand at warehouse j is 5. It is desired to find the

i, which minimizes the overall shipping cost. This is the well-known
rransportation problem. The essential elements of the problem are shown in the
network of Figure 1.2. The transportation problem can be formulated as the
tollowing linear program:

m M

Minimize 3 X Xy

=l =l
3 F

subjectto ¥ Xy Sy, i=1..m
i=l
H'J_
IZ .x‘f_-f:bj-, J=L..n
i=1
Xy =10 i=l..om f=1_..n

Capital Budgeting Problem

A municipal construction project has funding requirements over the next four
years of S2 million, $4 miltion, $8 million, and $5 million, respectively. Assume
that ali of the money for a given year is required at the beginning of the year.
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Plants Warchouses

Figure 1,2, The transportation problem.

The city intends to sell exactly enough long—term bonds to cover the project
funding requirements, and all of these bonds, regardless of when they are sold,
will be paid off (muiure) on the same date in a distant future year. The long—
term bhond market interest rates (that 15, the costs of selling bonds) for the next
four years are projected (o be 7 percent, 6 percent, 6.5 percent, and 7.5 percent,
respectively. Bond interest paid will comumence one vear after the project is
complete and will continue for 20 vears, after which the bonds will be paid off.
During the same period, the short—term interest rates on time deposits (that is,
what the city can carn on deposits) are projected to be 6 percent, 5.5 percent,
and 4.5 percent, respectively (the city will clearly not invest meney in short-
term deposits during the fourth vear). What is the city’s optimal strategy for
selling bonds and depositing funds in time accounts in order to complete the
construction project?

To formulate this problem as a lincar program, let ¥, J 7 L4 be the amount

of bonds sold at the beginning of cach year j. When honds are sold, some of the
motey will imimediately be used for construction and some money will be
placed in short—term deposits to be used in later years. Let Yif= 103 be the

money placed in time deposits at the beginning of vear ;. Consider the
heginning of the first year. The amount of bonds sold minus the amount of time
deposits made will be used for the funding requirement at that vear. Thus, we
may write

-y = 2.

We could have expressed this constraint as . Ilowever, it is clear in (his case
that any excess funds will be deposited so that equality is also acceplable.

Consider the beginning of the sccond year. In addition to bonds sold and
time deposits made, we also have time deposits plus interest becoming avaitable
from the previous year. Thus, we have

1.06_1"] — Xy — ¥ = 4,
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The third and fourth constraints are constructed in a similar manner.

Ignoring the fact that the amounts occur in dificrent years (that is, the
time value ol moncy). the unit cost of selling bonds 1s 20 times the interest rate.
Thus, for bonds sold at the beginning of the first vear we have ¢ = 20(0.07).
The other cost coefficients are computed similarly.

Accordingly, the lincar programming model is given as follows:

Minimize 20(0.07)x ~20(0.06) x; 1| 20{0.065) x; + 20(0.075)
subject to x; - ¥ =2

LO6y - X2 — 34 =

1O35 pa— %y - 3 -

1045 vy — x4 =

LAGC e

Xl» X2, X3. Xgo ¥ F2. ¥3 = O

£

Tanker Scheduling Problem

A shipline company requires a flect of ships to service requirements for carrying
cargo between six cities. There are four specific routes that must be served
daily. These routes and the number of ships required for each route are as
follows:

NUMBER C3F SHIPS

ROUTE # ORIGIN DESTINATION PER DAY NEEDED
1 Dhahran New York 3
2 Marseilles 1stanbul 2
3 Naples Mumbai 1
4 New York Marseilles 1

All cargo is compatible, and therefore only one type of ship is needed. The
travel time matrix between the various cities is shown.

%
0 = %
, =2 2 5 Z 2
4 0 a] bl [ é
= vz =
T &2 « 7B < =
< 5 = o= =
z = ¥ z 4o =
Naples 0 1 2 14 7 7
Marseilles 1 0 3 13 8 8
Istanbul 2 3 0 15 5 5 : ”
f;; matrix {days
New York 14 13 15 0 17 20 ¥ (days)
Dhahran 7 8 5 17 0 3
Mumbai 7 i 5 20 3 0

It takes one day to off—load and one day to on-load each ship, How many ships
must the shipline company purchase?
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In addition to nonnegativity restrictions, there are two types of constraints
that must be maintained in this problem. First, we must ensure that ships coming
off of some route get assigned to some (other) route. Second, we must ensure
that each roule gets its required number of ships per day. Let Xy be the number
of ships per day coming off of route / and assigned to route ;. Let 4, represent
the number of ships per day required on route i,

To ensure that ships from a given route get assigned to other routes, we
write the constraint

[T R ES
i
1l
o

To ensure that a given route gets its required number of ships, we write the
constraint

4 .

XXy = b i=1,..,4.

k=
Computing the cost coefficients is a bit more involved. Since the objective is to
mimimize the total number of ships, let ¢y be the number of ships required to

ensure a continuous daily How of one ship coming off of route § and assigned to

route /. To illustrate the computation of these ¢;; -coefficients, consider ¢p3. It

takes one day to load a ship at Marseilles, three davs to travel from Marseilles to
Istanbul, one day to unload cargo at [stanbui, and two days to head from
Istanbul 10 Naples—a total of seven days. This implies that seven ships are
needed to ensure that one ship will be assigned daily from route 2 1o route 3
{why?). In particular, one ship will be on- loading al Marseilles, three ships en
route (rom Marseilles to Istanbul. one ship off-loading at Istanbui. and two
ships en route from Tstanbul 1o Naples.
In general, €y is given as follows:

¢; = oneday for on—loading + nwmber of days for transit on route §

+ one day for oft-loading
~ number of days tor travel from the destination of route { to the
origin of route /.

Therefore, the tanker scheduling problem can be formulated as follows:
Minimize 36.\,'” + 32.\'|2 + 33_\f|3 + 19.\’|4 + 10.\,’2| - SXEE + 7.\,’23
+20.‘-('24 + 12.\’31 + I—)"X:gz + ]6X33 + ?.9.‘{34 + 23.‘-(4]
+15X42 + 16)(43 + 28.‘644

4
subjectto X x; = by, i=1,2.3.4
=1

i=1.2,3,4

X, =0, ij=1.2.3,4,
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where by =3, b, =2, b =1, and by = 1.

It can be easily seen that this is another application of the transportation
problem (it is instructive for the reader to form the origins and destinations of
the corresponding transportation problem}.

Multiperiod Coal Blending and Distribution Problem

A southwest Virginia coal company owns several mines that produce coal at
different given raies, and having known quality (ash and sulfur content)
specifications that vary over mines as well as over time periods at each mine.
This coal needs (o be shipped to silo facilities where it can be possibly subjected
10 a benefictation (cleaning) process, in order to partially reduce its ash and
sullur content to a desired degree. The different grades of coal then need to be
blended at individual silo facilities betore being shipped to customers in order to
satisfy demands for various quantities having stipulated quality specifications.
The aim is to determine optimal scheduies over a multiperiod time horizon for
shipping coal from mines to silos, cleaning and blending the coul at the silos,
and distributing the coal to the customers, subject to production capacity,
storage, material flow balance, shipment, and quality requirement restrictions,
s0 as to satisfy the demand at & minimum total cost, including revenues due to
rebates for possibly shipping coal to customers that is of a better quality than the
minimum acceplable specified level,

Suppose that this problem involves i = 1,..., w mines. j = 1..... Fsilos, k=
l..... K customers, and that we are considering ¢ = 1...., 7{= 3) ume periods. Let

Py be the production (in tons of coal} at mine /7 during period ¢, and let @, and
s;, tespectively denote the ash and sulfur percentage content in the coul
produced at mine 7 during period 2. Any excess coal not shipped must be stored
at the site of the mine at a per—period storage cost of c,:'w per ton at mine 4,
where the capacity of the storage facility at mine { is given by M.

Let 4 denote the permissible flow transter arcs (Z, /) from mine { w silo

7, and let Fg ={j{i.f) e A} and R_L- =4 (i, /)y e A }. The wansportation

cost per ton from mine / to silo j is denoled by el for each (i, /) € 4. FKach

i
silo / has a storage capacity of S, and a per—ton storage cost of cf per period.
Assume that al the beginning of the time horizon, there exists an initial amount

of q? tons of coal stored at silo /, having an ash and sulfur percentage content of

a{;-‘ and ’l,] respectively. Some of the silos are cquipped with beneficiation or
cleaning facilities, where any coal coming from mine 7 to such a silo f is cleaned
at a cost of c{-‘? per ton, resulting in the ash and sulfur content being respectively
< {0,1]. and the total weight being

attenuated by a lactor of By e 0.1] and y;

thereby attenuated by a factor of @;  (0.1] (hence, for onc (on input, the
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output is ¢z;; tons, which is then stored for shipment). Note that for silos that do
not have any cleaning facilities, we assume that cf = (), and e —ﬁ{f =y L
Let 4y denote the feasible Mlow transfer ares (7, &) from silo 7 1o customer
-2 : 2 RN .
Avandlet /7 =k 1 (jik) € Aa), and Rp = {j . (J.k) € A}, The transport—
tation cost per lon from silo / (o customer & is denoted by C?k . foreach (/. k) e

4> . Additionally. if ¢ is the time period for a certain mine to silo shipment
{assumed o occur at the beginning of the peried). and 7, is the time period fora
continuing silo 1o customer shipment {assumed to occur at the end of the
period), then the shipment lug between the two coal flows is given by 75 — 1. A
maximum of a three—period shipment lag is permitted between the coal
production at any minc and its ultimale shipment to customers through any sito,
based on an cstimate of the maximum clearance time at the silos. (Actual
shipment times from mines to silos are assumed to be negligible) The demand
placed (in tons ol coal) by customer & during period ¢ is given by dp,, with ash
and sulfur percentage contents being respectively required to lie in the intervals
defined by the lower and upper limits [¢,, ] and | /%, ,w;]. There is also a

revenue eamed ol #y, per-ton per—percentage point that falls below the maxi-

mum specified percentage #}, of ash content in the coal delivered to customer &
during period £.

To maodel this problem, we first define a set of principal decision
— o e KT
variables as Yijr
f. with continued shipment to customer & in period 7 (where r = . 7+ L ¢+ 2,

= amount (tons) of coal shipped from mine 7 10 silo j in period

based on the three—period shipment lag restriction), and .V?k.r = amount (lons)
of coal that is In ininal storage at silo f. which s shipped to customer & in period
r{where r = 1,2.3, based on a three period dissipation limit). Controlled by
these principal decisions. there are four other auxilicry decision variables

defined as follows: ,r;'g = slack variable that represents the amount (tons} of coal

S8

remaining in storage at mine / during period o x5 = accumulated storage

amount (tons} of coal in silo j during period &; zf, = percentage ash content in

the blended coal that is ultimately delivered to customer & in period r and =}, =
percentage sulfur content in the blended coeal that is ulumately delivered to
customer & in period ©. The linear programming model is then given as follows,
where the objective function records the transportation, cleaning, and storage
costs, along with the revenue term owver the horizon 1....,7 of interest, The
respective sets of constraints represent the flow balance at the mines, storage
capacity restrictions at the mines, flow balance at the silos, storage capacity
restrictions at the silos, the dissipation of the initial storage at the silos, the
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demand satistactiion constraints, the ash content identities, the quality bound
specilications with respect to the ash content, the sulfur content identities. the
guality bound specilications with respeet to the sulfur content, and the
remaining iogical nonncgativity restrictions. (All undefined variables and
summation terms are assumed lo be zero. Also. see Excrcises 1.19-1.21.)
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1.3 GEOMETRIC SOLUTION

We describe here a geometric procedure for solving a linear programming
problem. Even though this method is only suitable for very small problems, it
provides a great deal of nsight into the linear programming problem. To be
more specitic, consider the following problem:

Minimize  ¢x
subjectto Ax - b
x = 0
Note that the teasible region consists of all veclors x satislying Ax =band x =
0. Among all such points, we wish to find a point having a minimal value of ex.
Note that points having the same objective value z satisfy the equation ¢x = z,
that is, 2%_j¢,x; = = Since z is to be minimized. then the planc (Ine m a

two—dimensional space) X7_ ¢;x; = z must be moved parallel to itself in the

H\}':
direction that minimizes the objective the most. This dircetlion is —e, and hence

the plane is moved in the direction of —¢ as much as possible, while maintaining
contact with the feasible region. This process is illustrated in Figure 1.3, Note

that as the optimal point x* is reached, the line ¢;x = ¢yxy = z°, where = =

cl.xr + cz.x;, cannoct be moved farther in the direction —¢ = {--¢).—ca ), becausc
this will only lead to points outside the feasible region. In other words, one

cannol move from x* in a dircction that makes an acute angle with —¢. i.e., a
direction that reduces the objective function value, while remaining feasible. We

therefore conclude that x* is indeed an optimal solution. Needless to say, for a
maximization problem, the plane ex = z must be moved as much as possible in
the direction ¢, while maintaining contact with the leasible region.

The foregoing process is convenient for problems having two vanables
and is obviously impractical for problems with more than three variables. Tt is

worth noting that the optimal point x" in Figure 1.3 is one of the five corner
points that are called extreme points. We shall show in Section 3.1 that if a
lingar program in standard or canonical form has a finite optimal solution, then
it has an optimal corner {or extreme) point selution.
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/

Objective
decreases

e A X

D= CX] + 02Xy = 23,23 <7

X +opx =2

Figure 1.3. Geometric solutien.

Example 1.2

Minimize -3 - 3x

subjectto x, + 1 = 6
—X 1 + 2.\,’2 < 8
Xls X2 = 0

The feasible region is illustrated in Figure 1.4, For example, consider the
second constraint. The cquation associated with this constraint is —y; + 24, =
8. The gradient or the partial derivative vector of the linear function —x; + 21

. -1 . . . . .
is [ 5 Hence, —x + 2. increases in any direction making an acute angle

= . . . . i
with |_ 5 | and decreases in any direction making an acute angle L_& . Conse-

quently, the region feasible to —x; — 2x» < 8 relative to the equation —x| +
2x; = 8 is as shown in Figure 1.4 and encompasses points having decreasing
values of —x; — 2x, from the value 8. (Allernatively, this region may be
determiined relative to the equation —y; + 2x; = 8 by testing the feasibility of a
point. for example. the origin) Similarly, the region feasible to the first
constraint js as shown. {Try adding the constrainl -2x + 3x, 2 0 10 this
figurc.) The nonnegativity constraints restrict the poimis to be in the first
quadrant. The equations —x; — 3x, = z, for different values of z, arc called the
objective confours and are represented by dotted lines in Figure 1.4, In particular
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Figurc 1.4. Numerical cxample,

the contour —x; — 3x, = z = (} passes through the origin, We move onto lower

valued contours in the direction —e¢ = {1, 3} as much as possible until the
optimal point (473, 14/3) is reached.

In this example we had a unique optimal solution. Other cases may oceur
depending on the problem structure. All possible cases that may arise are
summarized below (for a minimization problem).

B

[

Unigue Optimal Solution. Tf the optimal solution is unique, then it
occurs at an extreme point. Figures 1.5a and b show a unique optimal
solution. in Figure 1.5a the feasible region is hownded, that is. there
is a ball of finite radius centered at, say, the origin that contains the
feasible region. In Figure 1.5b the feasible region is not bounded. In
each case, however, a finite unigue optimal solution is obtained.

Afternative Optimal Solutions. This case is illustrated in Figure 1.6,
Note that in Figure 1.6a the {easible region is bounded. The two

corner points X| and 1, are optimal, as well as any point on the line
segment joining them. In Figure 1.6b the feasible region is

unbounded but the optimal objective is finite. Any point on the “ray”

with vertex x" in Figure 1.6b is optimal, Hence, the optimal solution
ser is unbounded.

Tn both cases (1) and (2), it is instructive 1o make the following

observation. Pick an optimal solution x* in Figure 1.5 or 1.6, corner
point or not. Draw the normal vectors to the constraints passing

through x” pointing in the outward direction with respect to the

feasible region. Also, construct the vector —¢ at x*. Notc that the
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“cone” spanned by the nermals to the constraints passing through 1"
contains the vector —¢. This is in fact the necessary and sulficient

condition for x" to be optimal, and will be formally established
later. Intuitively, when this condition occurs, we can see that there is
no direction along which a motion is possible that would improve the
objective tunction while remaining feasible. Such a direction would
have to make an acute angle with —e 1o improve the objective value
and simultaneously make an angle =90 with respect to cach of the

normals to (he constraints passing through x* in order to maintain
feasibility for some step length along this direction. This is
impossible at any optimal solution. although it is possible at any
nonoptimal solution,

Unbounded Optimal Objective Value. This case is illustrated in
Figure 1.7 where both the feasible region and the optimal objective
value are unbounded. For a minimization problem, the planc ex =z
can be moved in the direction —¢ indefinitely while always inter—
secting with the leasible region. In this case, the optimal objective
value 1s unbounded (with value —=) and no optimal solution exists.

Examining Figure 1.8, it is clear that there exists no point (x,x;) sauslying
these inegualitics. The problem is said o be infeasible, inconsisient, or with an
emphy feasible region. Again, we say that no optimal solution exists in this case.

Unique s Unique .

. - . ’
0ptm_1a] - optimal - P
solution_ - e solution, -

(a) (b)

Figure 1,5. Unique optimal solution: (a) Bounded region. (b) Unbounded region.
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41 Alternative
. X| optimal solutions Optimal

(@) ()
Figure 1.6. Alternative optima: (a) Bounded region. (b) Unbounded region.

\ N\ Objective contours can
o “\\ \ be moved indefinitely
\ in the direction —¢ while

intersecting with the feasible
region

Figure 1.7. Unbounded optimal objective value.

4. Emptv Feasible Region. In this case, the system of equations andfor
mnequalitics delining the feasibice region is inconsistens. To illustrate,
consider the following problem:

Minimize -2x - 3x,
subjectto -x + 2x, = 2
2y - xy = 3
.7(2 = 4
X1- Xa = 0.

1.4 THE REQUIREMENT SPACE

The linear programming problem can be interpreted and solved geometrically in
another space, referred to as the requirement space.
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Figure 1.8. An example of an empty feasible region.

Interpretation of Feasibility
Consider the following linear programniing problem in standard form:

Minimize ¢x
subjectic Ax = b
x =0

where A is an m x # matrix whose jth column is denoted by a ;. The problem

can be rewritten as follows;

H
Minimize ¥ €i¥;
P
. fl
subject to 3 a,x; = b
=t

x; 2 0, F=1.,n.
Given the vectors a,.a;.....a,,, we wish to find nonnegative scalars x,. x,....%,

such that 3%_ja;x; = b and such that ¥7_,¢,x, is mininized. Note, however,

that the collection oi vectors of the form E?:]aj-rg' . where x . xplLx, =0, 08

the cone generated by aj,a,,...a, (see Figure 1.9). Thus, the problem has a

feasible solution if and only if the vector b belongs to this cone. Since the vector b
usually reflects requirements to be satisfied, Figure 1.9 is referred to as iflustrating
the requivement space.
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{a) (b)
Figure 1.9. Interpretation of feasibility in the requirement space: (a)
Feasible region is not empty. (b) Feasible region is empty,

{a) ()

Figure 1.10. Illustration of the requirement space: (a) System 1 is feasible.
(b) System 2 is inconsistent,
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Example 1.3

Consider the following (wo systems:

System 1:
2y o+ o o+ o = 2
-+ 3x + x4 = 3
X1, Xa. R Xyq = 0.
Svstem 2
2xp + X2+ oy = -1
-5 + 3x + xy = 2
Xis X7, X3 Xy = 0.

Figure 1.10 shows the requirciment space ol both systems. For System !, the

: r
vector b belongs to the cone generated by the vectors [_ﬂ, L%} [[ﬂ, and

1

belong to the corresponding cone and the system is then inconsistent.

. and hence admits feasible solutions. For the second svstem, b does not

The Requirement Space and Inequality Constraints

We now illustrate the interpretation of feasibility for the inequality case.
Consider the following inequality system:

x. =0, j=1l..n

Note that the collection of vectors >'/_ a

=i=

X where Xp 2z 0 forj=1,..n,15

the cone generated by aj,a....,a,. T a feasible solution exists, then this cone

must interscet the collection of vectors that are less than or equal to the
requirement vector b, Figure 1.11 shows both a feasible system and an
infeasible system.

Optimality
We have seen that the system }:?.:]af-_tf- =b and X 20 forj=1,.nm1s

feasible if and only if b belongs to the cone generaled by aj.a,,...,a,. The
variables x,x5,...,x, must be chosen so that feasibility is satisficd and

Z?:]ijj is minimized. Therefore, the linear programming problem can be

stated as follows, Find nonnegative xy. ¥».....x, such that

L L -

Ly ¢y (_'H} ] :}

X~ Xy o+ X, =17
LIJ ! [aﬂ - [a” T 'b



16 Chapter 1

Collection of Collection of
vertors = b eots = b
(a) (b

Figure 1.11. Requirement space and inequality constraints: (a) System is
feasible. (b) System is infeasible.

where the objective z 1s to be minimized. In other words we seek to represent the

vector [ﬂ, for the smallest possible z, in the cone spanned by the vectors

L;' ], | ;3}‘-, {fl” J The reader should note thal the price we must pay {or
1] 92 L

including the objective function explicitly in the requirement space is to increasc
the dimensionality from m o m + 1.

Example 1.4
Minimize -2x - 3x,
subject to X o+ 2 £ 2
X, X oz 0

Add the slack variable x3 = 0. The problem 1s then to choose x;, x5, 33 20

e[ e

. L T2 -3
where z is to be minimized. The cone generated by the vectors { ‘J [ 2 and

such that

0} is shown in Figure 1.12. We want to choose a vector F} in this cone

|1
having a minimal value for z. This gives the optimal solution z* = —4 with

* - . . . —‘j—l *
v = 2 (the multplier associated with [ “IJ) and x3 = x;3 = 0.
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Example 1.5
Minimize -2x - 3x,
subject to Y o+ 2x oz 2
x| xa 2 0

Obviously the optimal objective value is unbounded. We illustrate this fact in
the requirement space. Subtracting the slack (or surplus) variable x3 2 0, the

problem can be restated as {ollows: Find ¥, ¥y, x3 = 0 such that
-2 -3 z
e e v = 13)

and such that z is minimized. The cone generated by [_ﬂ [_ﬂ, and [_ﬂ 15

- 3 R ,
shown n Figure 1.13. We want to choose {EJ in this cone having the smallest

|2
having an arbitrarily small value for z. Therefore, the objective value z can be
driven to —=, or il is unbounded.

possible value for =, Note that we can find points of the form } in the cone

1.5 NOTATION

Throughout the text, we shall utilize notation that is, insofar as possible,
consistent with generally accepted standards for the fields of mathematics and
operations research. In this section, we indicate some of the notation that may
require special attention, either because of its infrequency of use in the linear
programming literature, or ¢lse because ol the possibility of confusion with
other lerms.

Minimal

.
valuez = -4

Points of the form

o

Figure 1.12, Optimal objective value in the requirement space,
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Points of the form

2

Figure 1.13. Unbounded optimal ahjective value in the requirement space.

In Chapter 2. we shall review matenal on vectors and mairices. We
indicate vectors by lowercase, boldface Greck or Roman letters or numerals,
such as a, b, x, 1, A; matrices by uppercase, boidface Greek or Roman letters,
such as A, B. N, @; and all scalars by Greek or Roman letters or numecrals that
are not boldface, such as a, o, |, £ Column vectors are generally denoted by
subseripts, such as a;, unless clear in the context. When special emphasis is

required, row vectors are indicated by superscripts, such as a. A supersceript ¢
will denote the transpose operation.

In caleulus. the partial derivative, indicatled by &z/¢éx, represents the rate
of change in the variable - with respect to {a unit increase in} the variable xr. We
shall alse utilize the symbol ¢z/dx to indicate the vector of partial derivatives
of = with respect to each element of the vector x. That is, if x = {x,x2....%, )

then
éz & e &z
&x iy &y &,

Also, we shall sometimes consider the partial derivative of one vector with

respect to another vector, such as &v/dx. If ¥ = (¥, and x =
(xj,x2....x,; ) then
(G |
&y dv &y,
. &y Om P
@ &y ‘C‘xz }x”
£X .
5_1 " {HJ il ﬁ
| & O c, J
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Note that if z is a function of the vector x = (x,xa....x,), then dz/&x is
called the gradient of -

We shall, when necessary, use (a, b) to refer o the apen interval a < x <
b, and |a, &) to refer to the closed imerval o < x < b, Finally we shall utilize
the standard set operators W, M, <, and € to refer to union, interseetion, set
inclusion, and sel membership. respectively.

EXERCISES

[1.1] Fred has $5000 to invest over the next five years. At the beginning of each
vear he can invest money in one— or two—year time deposits. The bank pays 4
percent interesl on one—vear time deposits and 9 percent (total) on two—year
time deposits. In addition, West World Limited will offer three—vear certificates
starting at the begimuing of the second year. These certificates will retumn 15
percent (total). If Fred reinvests his money that is available every wear,
formulate a linear program to show him how (o maximize his total cash on hand
at the cnd of the fifth vear.

[1.2] A manufacturer of plastics is planning to blend a new product from four
chemical compounds. These compounds are mainly composed of three
elements: A, B, and C. The compeosition and unit cost of these chemicals are
shown in the following table:

CHEMICAL COMPOUND I 2 3 4
Percentage A 35 15 35 25
Percentage B 20 65 35 40
Percentage C 40 15 25 30
Cost/kilogram 20 30 20 15

The new product consists of 25 percent clement A, at least 35 percent element
B, and at least 20 percent element €. Owing to side effects of compounds 1 and
2, they must not exceed 25 percent and 30 percent, respectively. of the content
of the new product. Formulate the problem of finding the least costly way of
blending as a linear program.

[1.3] Arn agricultural mill manufactures feed for caule, sheep, and chickens. This
is done by mixing the following main ingredients: com. limestone, soybeans,
and fish meal. These ingredients contain the following nutrients: vitamins,
protein, calciwm, and crude fat. The contents of the nutrients in standard units
for each kilogram of the ingredients are summarized in the following table:

NUTRIENT UNITS
INGREDIENT  VITAMINS PROTEIN  CALCIUM  CRUDE FAT

Corn 8 10 6 8
Limestonc 6 5 10 6
Soybeans 10 12 6 6
Fish meal 4 8 W] 9

The mill is contracted to produce 12, 8, and 9 (metric) tons of cattle feed, sheep
feed, and chicken feed. Because of shortages, a limited amount of the
ingredients is available—namely, 9 tons of com, 12 tons of limestone, 5 tons of
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sovbeans, and 6 tons of fish meal. The price per kilogram of these ingredients is,
respectively, $0.20, $0.12, 50.24, and $0.12. The minimal and maximal units of
the various nutrients that are permitted is summarized below for a kilogram of
the cattle feed, the sheep feed, and the chicken feed.

NLTRIENT LNITS

VITANINS PROTEIN CALCIUM CRUDE FAT
PROBUCT MITN MAX M hMAX MIN MAX  MIN  MAX
Cattle feed G o 6 o 7 e q g
Sheep teed 0 x 6 *x 6 «© 4 6
Chicken feed 4 6 6 ac 6 o 4 5

Formulate thig feed -mix problem so that the lotal cost is minimized.

11.4] Consider the problem of locating a new machine to an existing layout
consisting of four machines. These machines are located at the following

. . . . (3 ) iy I
coordinates in two-dimensional space: (I)’ (_(q)’ [ 5], and al Let the
[,
X2,
optimal location as a linear program for cach of the following cases:

coordinates of the new machine be Formulate the problem of finding an

A

a. The sum of the distances trom the new machine to the four machines
is minimized. Use the sfreer distance (also known as Marhation
distance or recitfinear distance); for cxample, the distance from

£ x] \I

LA

b.  Because of various amounts of Now between the new machine and

the existing machines, reformulate the problem where the sum ol the

weighted distances is minimized, where the weights corresponding
to the four machines are 6, 4, 7, and 2, respectively.

In order to avoid congestion, suppose that the new machine must he

located in the square {{x.x):-1<x <2, 0<x, <1j. Form-

ulate Parls (a} and (b) with this added restriction.

d.  Supposc that the new machine must be located so that its distance
from the first machine does not exceed 2. Formulate the problem
with this added restriction.

to the first machine located at (ﬂ is |-’f1 -3 - |x2 - 1|.

~

|1.5] The technical statf of a hospital wishes to develop a computerized menu-
planning system. To start with, a lunch menu is sought. The menu is divided
into three major categories: vegetables, meat, and dessert. At least one equi-
valent serving of each category is desired. The cost per serving of some
suggested items as well as their content of carbohydrates, vitamins, protein, and
fats is summarized below:
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CARBO- . . COSTIN
HYDRATES VITAMINS  PROTEIN  FATS SSERVING
Vegetables
Peas 1 3 1 0 (.10
Green beans 1 5 2 0 0.12
Okra 1 5 1 0 0.13
Com 2 6 i 2 0.09
Macarani 4 2 1 1 0.10
Rice 5 ] 1 1 0.07
Meat
Chicken 2 1 3 l 0.70
Beel 3 8 5 2 1.20
Fish 3 6 1 0.63
Dessert
Orange 1 3 1 0 028
Apple 1 2 0 0 042
Pudding 1 0 0 0 .15
Jello i 0 ¢ 0 012

Suppose that the minimal requirements of carbohydrates, vitamins, protein, and
{ats per meal are respectively 5, 10, 10, and 2.

a. Formuiate the menu—planning problem as a linear program.,

Many practical aspects have been left out in the foregoing model.
These include planning the breakfast, lunch, and supper menus
together, weekly planning so that different varieties of food are vsed,
and special menus for patients on particular diets. Discuss in detail how
these aspects can be incorporated in a comprehensive menu-planning
system.
|1.6] A cheese finn produces two types of cheese: swiss cheese and sharp
cheese. The firm has 60 cxperienced workers and would like to increase its
working force to 90 workers during the next eight weeks. Each experienced
worker can (rain three new employees in a period of (wo weeks during which
the workers involved virtually produce nothing. It takes one man—hour to
produce 10 pounds of Swiss cheese and one man—hour to produce 6 pounds of
sharp cheese. A work week is 40 hours. The weekly demands (in 1000 pounds)
are summarized below:

WEEK
CHEESE TYPE 1 2 3 4 5 & 7T 8
Swiss cheese L1213 18 14 18 200 20
Sharp cheese & 8 10 8 12 13 12 12

Suppose that a trainee receives the same full salary as an experienced worker.
Further suppose that overaging destroys the flavor of the cheese, so that
inventory is limited to one week. How should the company hire and train its
new employees 5o that the labor cost is minimized over this 8—week period?
Formulate the problem as a linear program.
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[1.7] A company wishes to plan its production of two items with scasonal
demands over a 12-month pericd. The monthly demand of item 1 is 100.000
units during the months of October, November, and December; 10,000 units
during the months of January, February, March, and April; and 30,000 units
during the remaining months. The demand of item 2 is 50,000 during the
menihs of Oclober through February and 15,000 during the remaining months,
Suppose that the unit product cost of items 1 and 2 is $5.00 and $8.50,
respectively. provided that these were manulactured prior to June. After June,
the unit costs arc reduced to $4.30 and S7.00 because of the installation of an
improved manufacturing system. The total units of items 1 and 2 that can be
manufactured during any particular month cannot exceed 120,000 for Jan- Sept,
and 150,000 for Oct—Dec. Furthermore, each unit of item 1 occupics 2 cubic feet
and each unit of item 2 occupies 4 cubic feet of inventory space. Suppose thal
the maximum inventory space allocated to these items is 150.000 cubic feet and
that the holding cost per cubic foot during any month is 30.20. Formulate the
production scheduling problem so that the total cost of production and inventory
18 mininzed.

[1.8] A textile mill produces five types of fabrics. The demand (in thousand
vards) over a quarter—year time horizon for these {abrics is 16, 48, 37, 21, and
82, respectively. These five fabrics are woven, finished, and sold in the market
at prices 0.9, 0.8. 0.8, 1.2, and 0.6 S/per vard, respectively. Besides weaving and
tinishing the fabrics at the mill itself, the fabrics are also purchased woven from
outside sources and are then finished at the mill before being sold. It the
unfinished labrics are purchased outside, the costs in $/per vard for the five
fabrics are 0.8, 0.7, 0.75, 0.9, and 0.7, respectively. If produced at the mill itself]
the respective costs are 0.6, 0.5, (.6, 0.7, and 0.3 $/per vard. There are two types
of looms that can produce the fabrics at the mill, that is, there are 10 Dobbic
looms and R0 regular looms, The production rawe of each Dobbie loom is 4.6,
4.6,5.2, 3.8, and 4.2 yards per hour [or the five labrics. The regular looms have
the same production rates as the Dobbie looms, bul they can only produce fabric
types 3, 4. and 5. Assuming that the mill operates seven days a week and 24
hours a day, formulate the problem of optimally planning to meet the demand
over a quarter—vear horizon as a linear program. Is your formulation a
transportation problem? [f not. reformulate the problem as a transportation
problem.

[1.9] A steel manufacturer produces four sizes of [ beams: small, medium, large,
and extra large. These beams can be produced on any one of three machine
types: A, B, and C. The lengths in fect of the T beams that can be produced on
the machines per hour are summarized below:

MACHINE
BEAM A B C
Small 350 630 830
Medium 250 400 700
Large 200 350 600
Extra large 125 200 325

Assume that each machine can be used up to 50 hours per week and that the
hourly operating costs of these machines are respectively $30.00, $50.00, and
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$80.00. Further suppose that 12,000, 6000, 3000, and 7000 fect of the different
size T beans are required weekly, Formulate the machine scheduling problem as
a linear program,

11.10} An oil refinery can buy two types of oil: light crude oil and heavy crude
oil. The cost per barrel ol these types is respectively S20 and S15. The following
quantities ol gasoline, kerosene. and jet luel are produced per barrel of each type
of oil.

GASOLINE KEROSLENFE JET FLEL
Light crude oil 0.4 0.2 0.35
Heavy crude oil 0.32 0.4 0.2

Note that 3 percent and 8 percent, respectively, of the light and heavy crude oil
are lost during the refining process. The refinery has contracted to deliver 1
million barrels of gaseline, 500,000 barrels of kerosene, and 300,000 barrels of
jet fuel, Formulate the problem of finding the number of barrels of each crude
oil that satisfies the demand and minimizes the total cost as a linear program.

[1.11] A lathe is used to reduce the diameter of a steel shatl whose length 1s 36 1n.
from 14 in. to 12 in. The speed x; (in revolutions per minute). the depth feed x-

{in inches per minute), and the length feed x3 (in inches per minute) nust be
determined, The duration of the cut is given by 36/ x,.x;, The compression and
side stresses exetted on the cutting tool are given by 30 + 4500 x> and 40y, +
5000k, + 5000x; pounds per square inch, respectively. The temperature (in
degrees Fahrenheit) at the tip ol the cutting tool 15 200 + 0.5 ~ 130{x2 — x5}
The maximum compression stress, side stress, and temperature allowed are
150,000 psi, 100,000 psi, and BOO°F. respeetively. Tt is desired to determine the
speed (which must be in the range from 600 rpm to 800 rpm), the depth feed, and
the length feed such that the duration of the cut is minimized. Tn order to usc a
linear model, the [ollowing approximation is made. Since 36/ x,xy 15 minimized if
and only if xyx; Is maximized, it was decided 1o replace the objective by the
maximization of the minimum of x, and x;. Formulate the problem as a linear

model and comment on the validity of the approximation used in the objective
function.

[1.12] A television set manufacturing tirm has to decide on the mix of color and
black—and—white TVs io be produced. A market research indicates that, at most,
2000 units and 4000 units of color and black and—white TVs can be sold per
menth, The maximum nunber of man-hours available 1s 60,000 per month. A
color TV requires 20 man- hours and a black—and -white TV requires 15 man
hours to manufacture. The unit profits of the color and black—and—white TVs arc
860 and $30, respectively. Tt is desired to find the number of units of each TV
type that the firm must produce in order to maximize its profit. Formulate the
problem as a linear program.

[1.13] A production manager is planning the scheduling of three products on
four machines. Each product can be manutaciured on cach of the machines. The
unit production cosis (in $) are summarized below.
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MACHINE

PRODUCT ] 2 3 4
1 P 4 5 7
2 6 7 5 6
3 12 10 8§ . 11

The time (in hours) required to produce a unit of each product on each of the
machines is summarized below.

MACHINE o

PRODUCT 1 2 3 4
1 0.3 025 T 02 T 02

2 0.2 0.3 ~ 02 [ 025

3 | 08 0.6 0.6 0.5

Suppose that 3000, 6000, and 4000 units of the products are required, and that
the available machine-hours are 1300, 1200, 1300, and 2000, respectively.
Formulate the scheduling problem as a linear program.

[L.14] A furniture manufacturer has three plants that need 300, 700, and 600
tons of lumber weekly. The manufacturer may purchase the lumber from three
lumber companies. The first two lumber manufacturers virtually have an
unlimited supply and., because of other commitments, the third manufacturer
cannot ship more than 500 tons weekly. The first lomber manufacturer uses rail
for transportation and there is no limit on the tonnage that can be shipped to the
furniture facilities. On the other hand, the last two lumber companies use trucks
that limit the maximum tonnage that can be shipped to anv of the furniture
companies to 200 tons. The following table gives the transportation cost from
the lumber companies to the furniture manufacturers (S per ton).

LUMBER FURNITURE FACILITY
COMPANY 1 2 3
1 1 3 5
2 33 4 48
3 33 3.6 32

Fornwlate the problem as a linear program.

[1.15] A company manufactures an assembly consisting of a frame, a shafl. and
a ball bearing. The company manufactures the shafts and frames but purchases
the ball bearings from a ball bearing manufacturer. Fach shaft must be
processed on a forging machine, a lathe, and a grinder. These operations require
(1.6 hour, 0.3 hour, and (0.4 hour per shaft, respectively. Each frame requires (.8
hour on a forging machine, 0.2 hour on a drilling machine, .3 hour on a milling
machine, and 0.6 hour on a grinder. The company has 5 lathes, 10 grinders, 20
forging machines, 3 drillers. and 6 millers. Assume that each machine operates a
maximum of 4500 hours per ycar. Formulate the problem of finding the
maximum number of assembled components that can be preduced as a linear
program.

[1.16] A corporation has 330 million available for the coming year to aliocale Lo
its three subsidiaries. Because of commitments to stability of personnel em-
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ployment and for other reasons, the corporation has established a minimal level
of funding for each subsidiary. These funding levels are $3 million. $5 million,
and S8 million, respectively. Owing (o the nature of ils operation. subsidiary 2
cannot utilize more than S17 million without major new capital expansion. The
corporation is unwilling o undertake such an expansion at this time. Each
subsidiary has the opportunily o conduct various projects with the {unds it
receives. A rate of retwrn {as a pereent of investment) has been established for
cach project. In addition, certain projects permit only limited investment. The
data of cach project are given below:

. RATE OF UPPER LIMIT OF
SUBSIDIARY PROJECT RETURN NVESTMENT
1 7% %6 million
1 2 5% S5 million
3 8% S9 million
4 3% S7 million
2 5 7% 510 million
6 9% S4 million
3 7 10%% Sé million
) 8 8% §3 million

Formulate this problem as a lincar program,

[1.17] A 10-acre slum in New York City is to be cleared, The officials of the
city must decide on the redevelopment plan. Two housing plans are to be
congidered: Tow—income housing and middle—income housing. These types of
housing can be developed at 20 and 15 units per acre, respectively. The unit
costs of the low— and middle-income housing are $17.000 and $25.000. The
lower and upper limits set by the officials on the number of low—income
housing units are 80 and 120. Similarly, the number of middle—income housing
units must lie between 40 and 90. The combined maximum housing market
potential is estimated to be 19C (which is less than the sum of the individual
market limits due to the overlap between the two markets). The lolal mortgage
committed to the renewal plan is not 1o cxceed $2.5 million. Finally, it was
suggested by the architectural adviser that the number of low—income housing
units be at least 50 units greater than one—half the number of the middle income
housing units.

a. Formulate the minimwm cost renewal planning problem as a linear
program and solve it graphically.

h. Resolve the problem if the objective is to maximize the number of
houses to be constructed.

|1.18] Consider the following problem of launching a rocket to a fixed altitude b
in a given time T while expending a minimum amount of {uel. Let (6 be the
acceleration force excried at time ¢ and let 1(7) be the rocket altitude at time 2
The problem can be formulated as follows:

Minimize  [{ |u(t)]dtt

subjectto ¥ = u(r— g
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wWTy=~5h
yityz 0, fe[0T]

where g is the gravitational force and ¥ is the second derivative of the altitude

v. Discretize the problem and reformulate it as a linear programming problem.
In particular, formulate the problem for T = 15, b — 20, and g = 32, {Hint;
Replace the integration by a proper summation and the differentiation by

difference equations. Make the change of variables uf‘ = x;, 7/, based on the

discretization. and note that x;zuyand xp 2 —H),-.]

[1.19] Consider the Multiperiod Coal Blending and Distribution Problem
presented in Section 1.2, For the developed model, we have ignored the effect
of any production and distribution decisions made prior to period ¢ = | that
might affect the present horizon problem, and we have also neglected to
consider how production decisions during the present horizon might impact
demand beyond period 7" (especially considering the shipment lag phenomenon).
Provide a detailed discussion on the impact of such considerations, and suggest
appropriate modifications to the resulting model.

[1.20] Consider the Multiperiod Coal Blending and Distribution Problem
presented in Section 1.2, and assume that the shipment lag is zero (but that the
initial storage at the silos is stiil assumed to be dissipated in three periods).

Defining the principald decision variables as }-‘k — amount (tons) of coal

i
shipped Irom mine 7 through silo 7 to customer & during a particular time period
{, and _y?kr = amount (tons) of coal that is in initial storage at silo j, which is

shipped o custonier & 1 period ¢ (where ¢ =1, 2. 3), and detining all other
auxiliary variables as before, reformulate this problem as a linear program.
Discuss its size, structure, and assumptions relative to the mode! formulated in
Section 1.2,

[1.21] Consider the Multiperiod Coal Blending and Distnibution Problem pre-
sented in Section 1.2, Suppose that we define the principal decision variables as

~ . - . R . .. . 2
y{-';-, = amount (tons) of coal shipped from mine i to sito / in period # vy, =

amount {tons) of coal shipped from silo j to customer k& in period 12 and y?k, =

amount (tons) of coal that is in initial storage at silo 7, which is shipped to
customer & in period ¢ {(where r = 1, 2, 3}, with all other auxiliary decision
variables being defined as before. Assuming that coal shipped from any mine
to a silo / will essentially affect the ash and sulfur content at silo j for only three
periods as before (defined as the shipment lag), derive expressions for the
percentage ash and percentage sulfur contents of the coal that would be
available for shipment at silo 7 during cach period ¢4, in terms of the foregoing
decision variables. Discuss how you might derive some fixed constant estimates
for these values. Using these estimated constant values, lormulate the coal
distribution and blending problem as a linear program in terms of the just—
menttoned decision vartables. Discuss the size, struclure, and assumptions of
this model relative to the model formulated in Section 1.2, Also. comment on
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the nature of the resulting model i we used the aclual expressions tor the ash
and sulfur content of coal at cach silo j duning each period £, in Heu of the
constant cshmates.
[1.22] A region is divided into m residential and central business districts. Fach
district is represented by a node, and the nodes are interconnected by links
representing major routes. People living in the various districts go to their
business in the same and/or at other districts so that each node atiracts and/or
generates & number of trips. In particular, lel a; be the number of trips
generated at node 7 with final destination at node ; and let by- be the time to
travel from node 7 to node /. It is desired to determine the routes to be taken by
the people living in the region.

d. lllustrate the problem by a suitable network.

b, Develop some measures of effectiveness for this mraffic assignment

problem, and for each measure. devise a suitable model.

|1.23] Consider the problem of scheduling court hearings over a planning
horizon consisting of » periods. Let b; be the available judge—hours in period j,

h._i,a' be the number of hearings of class § arriving in period j. and «; be the

number of judge—hours required to process a hearing of class /. Tt is desired to
determine the number of hearings X7 of ¢lass 7 processed in period ;.

a. Formulate the problem as a linear program.

b.  Modify the model in Part (a) so that hearings would not be delaved

{or too long.

[1.24] Consider the following multiperiod, mulliproducl Preduction- Inventory
Problem. Suppose that we are examining 7 periods ¢ = 1,.... 7, and some »
products / = 1..... #. There is an inital inventory of y;, that is available at hand
for each product 7, i — 1,..., #. We need to principally determine tbe level of
production for each preduct i = 1,.... # during each of the periods £ = 1,..., 7, so
as to meet the forecasted demand ¢, for each product i during each period ¢
when it oceurs, at a minimal total cost. To take advantage of varying demands
and costs, we are permitted to produce excess quantities to be stored for later
use. However, cach unit of product i consumes a storage space s;. and incurs a

storage cost of ¢, during period £, for i = 1., n, =1, T. The total storage

space anticipated to be available for these » products during peried zis §,, =1
»e-en 1. Furthermore, each unit of product 7 requires A; hours of labor to produce,
where the labor cost per hour when producing a unit of product  during period ¢
is given by 45, for i = 1., #, r = 1., T. The total number ot labor hours
available to manufacture these # products during period 7 is given by /7,

Formulate a linear program to solve this production—inventory control system
problem. preseribing production as well as inventory levels for each product
over each time period.
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[1.25] Suppose that there are # sources that generate waste and # disposal sites.
The amount of waste generated at source {18 @; and the capacity of sitc j is 8.
[t is desired to select appropriate transler {acilities Irom among K candidate
facilities. Potential wransfer facility & has a fixed cost /.. capacity g,, and unit
processing cost ey per ton of waste. Let ¢ and ¢;; be the unit shipping costs
[rom source / to transfer station & and from transfer station 4 to disposal site ;.
respectively. The problem is to choose the transfer facilities and the shipping
pattern that minimize the total capital and operating costs of the transler stations
plus the transportation costs. Formulate this distribution problem. (Hinf: Let v,
be 1 if transfer siation £ is s¢lecled and 0 otherwise.)

{1.26] A governmental planning agency wishes to determine the purchasing
sources for fuel for use by # depots from among m bidders. Suppose that the
maximum quantity oftered by bidder 7 is &; gallons and that the demand of depot f

is b; gallons. Let ¢;; be the unit delivery cost for bidder / to the jth depot.

a. Formulate the problem of minimizing the total purchasing cost as a
linear program.

b.  Suppose that a discount in the unit delivery cost s offered by bidder §
if the ordered quantity exceeds the level «,. How would vou
incorporate this modification in the model developed in Part (a)?

[1.27] The quality of air m an industrial region largely depends on the effluent

emission from # plants. Each plant can use w different types of fuel. Suppose
that the total energy needed at plant j is #; British Thermal Units per day and

that ¢; 1s the eflluent emission per ton of fuel type 7 at plant j. Further suppose
that fuel type / costs ¢; dollars per ton and that each ton of this fuel type generates
@;; British Thermal Units at plant /. The level of air pollution in the region is not
1o exceed b micrograms per cubic meter. Fially, let ¥; be a meteorological
parameter relating emissions at plant 7 to air quality in the region.

a.  Formulate the problem of determining the mix of fuels to be used at
each plant.

bh. How would vou incorporate technological constrainis that prohibit
the use of certain mixes of furel at centain plants?

¢.  How could you ensure equity among the plants?

[1.28] For some industry, let 2({J). © = 0, be an inverse demand curve, that is,

Q) is the price al which a quantity @ will be demanded, Let £2), @ = 0, bea

supply or marginal cost curve, that 1s. £} is the price at which the indusiry is
willing to supply ¢ units of the product. Consider the problem of delermining a

(perfect competition) equilibrium price and production quaniity p~ and @ for
pi-)y and fi) of the type shown in Fipure 1.14 via the intersection of these
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supply and demand curves. Note that Q" is obtainable by finding that O, which
maximizes the area under the demand curve minus the arca under the supply
curve. Now, supposc that £(-) 1s not available directly. but being a marginal
cost curve, is given implicitly by

jUQf(x)dx‘ = min{ey: Ay =h, ay=0, v = 0},
where Ais m x », o and ¢ arc | x »#, and ¥ is an r—vector representing a set of
production activities. Further, suppose that the demand curve p{} is approx
imated using the steps shown in the figure. {Let there be s steps used, each of
height //; and wadth W for /= 1., s.) With this approximation. formulate the
problem of determining the price—quantity equilibriym as a linear program.

gl

Figure 1. 14, Supply demand equilibrium for Exercise 1.28

[1.29] Consider the following mwo—siage stochastic program with recourse.
Suppose that in a time-stage process, we need to make some immediate decision
{“here and now™) that 13 represented by the decision variable vector x = 0. (For
cxample, x might represent some investment or production decisions.) This
decision must satisty the constraints Ax = b. Subsequent to this, a randoin demand
vector d, say, will be realized according Lo some probability distribution. Based on
the initial decision x and the realization d, we will need 10 make a recourse
decision y = 0 {e.g., some subsequent additional production decisions), such that
the constraint Dx — Ey — d is satisfied. The total objective cost for this pair of
decisions is given by ¢;x — sy, Assume that the random demand vector d can

take on a discrete set of possible values d;, d, ., .., dq with respective kaown

g
probabilities g, Prvs Py where > p, =1, p, =0, %r = l....g. {Accord-

r=l
ingly, note that each realization d, will prompt a corresponding recourse decision
¥,.} Formulate the problem of minimizing the total expected cost subject o the

initial and recourse decision constraints as a linear programming problem. Do you
observe any particular structure in the overall constraint coctficient matrix with
respect to the possible nonzero elements? (Chapter 7 explores ways for solving
such problems. )

[1.30] Consider the lollowing linear programming problem.
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Minimize  x — 2x» - 31
subjecttc —x; + 3x2 + xp = 13
Yo+ 2 3y oz 12
2y - X T oxy = 4
Xl X3 unrestricted
Xy £ -3,

Chapter 1

a. Reformulate the problem so that it is in standard format.
b. Reformuiate the problem so that it is in canonical format,
¢. Convert the problem into a maximization problem.

[1.31] Consider the tollowing problem:

Maximize X
subjectto  —xq
—3_\,'1

X

Sketeh the feasible region in the (x). x;) space.

I 1A

o P

b. Identify the regions in the (x}, x,) space where the slack variables

xy and x4 . say, are equal to zero.

¢ Solve the problem geometrically.

d. Draw the requirement space and interpret feasibility,

[1.32] Consider the feasible region sketched in Figure 1.56, Geometrically,
identify conditions on the objective gradient vector ¢ for which the different
points in the feasible region will be optimal and identify the vectors ¢ for which

no optimum exists. (Assume a minimization problem.)

[1.33] Sketch the feasible region of the set !x: Ax < b} where A and b are as
given below. In cach case, state whether the feasible region is empty or not and

whether it is bounded or not,

ir] 1 i 4
a. A= 2 -l b=l6

!_0 1J |2
-1 0] K
0 -1 0
b. A= b=
2 3 6
-1 E
11 [ 5]
c. A=|-1 =2 b=|-12
__I 0 L

[L1.34] Consider the following problem:



Introduction

Maximize 3y
subject 0 —x

a.  Sketch the feasible region.

b.  Verify that the problem has an unbounded optimal solution value.

[1.35] Consider the following problem:

Maximize 2x
subjectto  x
43 |

x|,

a. Sketch the feasible region.

b.  Find two alternative optimal extreme (corner) points,

+

+ Xn
+ 2x 2

Xa

3.\'2
X
6.1‘2
2

[FA PN

IV 1A 1A

¢. Find an infinite class of optimal solutions.

[1.36] Consider the following problem:

Maximize —x; - X3
subjectto 2y +  xa
RS + 2.\?2
X1. R

oo

93

2 X3
.T‘%
2x 1

Xa.,

+ + +

=R RN

4
4
X3
.'-(4

WA 1Y

6
4

0.

lntroduce slack variables and draw the requirement space.
Tnterpret teasibility in the requirement space.
You are told that an optimal solution can be obtained by having at
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most two positive variables while all other variables arc set at zero.
Utilize this statement and the requirement space to find an optimal

solution.

[1.37] Consider the following problem:

Maximize  3x
subjectto —x
—le
X

e

+ 4+ o+ +

IV 1A A A

el N X

a. Graphically identify the set of all alternative optimal solutions 1o this

problem.

b.  Suppose that a secondary priorify chjective function secks to
maximize —3x + xy over the set of alternative optimal solutions

identified in Part (a). What is the resulting solution oblained?
What 13 the solution obtained if the priorities of the foregoing two

[

objective functions is reversed?

[1.38] Consider the problem: Minimize ex subject to AX = b, x = 0. Suppose that

one compenent of the vector b, say #;. is increased by one unit te & + 1.

a.  What happens (o the feasible region?
b.  What happens to the optimal objective value?

[1.39] From the results of the previous problem, assuming 8:*.*"5335- exists, s it =

0,—0,or=07?
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[1.40] Solve Exercises 1.38 and [.39 il the restrictions Ax = b are replaced by
Ax <h.

1.41] Consider the problem: Minimize ¢x subject to Ax > h, x = 0. Suppose that
a new constraint is added to the problem,

a.  What happens to the feasible region?

b.  What happens to the optimal objective value 277
[1.42] Consider the problem: Minimize ex subject to Ax > b, x = 0. Suppose that
a new variable is added to the problem.

a.  What happens to the feasible region?

b.  What happens to the optimal objective value z*7?
[1.43| Consider the problem: Minimize cx subject to Ax = b, x = 8. Suppose that
a constraint, say constramnt /, is deleted {rom the problem.

a.  What happens to the feasible region?

b.  What happens (o the optimal ahjective value =77
[1.44] Consider the problem: Minimizc ex subjeet to Ax = b, x = 0. Suppose that
a variable, say, x; . is deleted trom the problem.

4. What happens to the feasible region?
b. What happens to the optimal objective value z*7

NOTES AND REFERENCES

1. Lincar programming and the simplex method were developed by Dantzig
in 1947 in conpection with military planning. A great deal of work has
influenced the development of linear programming, including World War
IT operations and the need for scheduling supply and maintenance
operations as well as training of Air Force personnel: Leontief’s input -
output mode! [1931], von Neumann’s Equilibrium Model [1937].
Koopmans' Model of Transportation | 1949], the Hilcheock transportation
problem [1941], the work of Kantorovich [1958], von Ncumann-
Morgenstern game theory (1944], and the rapid progress in electronic
computing machines have also impacted the field of linear programming,
The papers by Dantzig [1982] and by Albers and Reid [1986] provide
good historical developments.

2. Linear programming has found numerous applications in the military, the
government, industry, and urban engineering. See Swanson [1980], for
example,

3. Linear programming is also frequently used as a part of general

computaticnal schemes for solving nonlinear programming problems,
discrete programs, combinatorial problems, problems of oplimal control,
and programming under uncertainty.

4, Exercise 1.8 ig derived (rom Camin cf al. [1987]. who discuss some
modeling issues. For more detailed discussions, see Woolsey and
Swanson [1975], Woolsey [2003], and Swanson [19803]. The Multiperied
Coal Blending and Distribution Problem discussed in Section 1.2, and
Exercises 1.19-1.21, are adapted from Sherali and Puri [1993] {see also
Sherali and Saifee [1993]). For a discussion on structured modeling and
on  computer—assisted/artificial  intelligence approaches to  linear
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programming modeling, see Geoffrion [1987], Greenberg |[1983], and
Murphy and Stohr [1986], for example,

3. For discussions on diagnosing infeasibilities and rclaled frrechcible
Infeasible Systemr (IIS) issues, see Amaldi et al. [2003], Greenberg
[1996], Greenberg and Murphy [1991], and Parker and Ryan [1996].

6. For an excellent discussion on meodeling issues and insights related to
formulating and solving real-world problems, the reader is referred (o
Brown and Rosenthal [2008] (also. see the other references cited therein).








