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CHAPTER 1

Introduction: Distributions and
Inference for Categorical Data

From helping to assess the value of new medical treatments to evaluating the factors that
affect our opinions and behaviors, analysts today are finding myriad uses for categorical
data methods. In this book we introduce these methods and the theory behind them.

Statistical methods for categorical responses were late in gaining the level of sophistica-
tion achieved early in the twentieth century by methods for continuous responses. Despite
influential work around 1900 by the British statistician Karl Pearson, relatively little de-
velopment of models for categorical responses occurred until the 1960s. In this book we
describe the early fundamental work that still has importance today but place primary
emphasis on more recent modeling approaches.

1.1 CATEGORICAL RESPONSE DATA

A categorical variable has a measurement scale consisting of a set of categories. For
instance, political philosophy is often measured as liberal, moderate, or conservative. Diag-
noses regarding breast cancer based on a mammogram use the categories normal, benign,
probably benign, suspicious, and malignant.

The development of methods for categorical variables was stimulated by the need to
analyze data generated in research studies in both the social and biomedical sciences.
Categorical scales are pervasive in the social sciences for measuring attitudes and opinions.
Categorical scales in biomedical sciences measure outcomes such as whether a medical
treatment is successful.

Categorical data are by no means restricted to the social and biomedical sciences. They
frequently occur in the behavioral sciences (e.g., type of mental illness, with the categories
schizophrenia, depression, neurosis), epidemiology and public health (e.g., contraceptive
method at last sexual intercourse, with the categories none, condom, pill, IUD, other),
genetics (type of allele inherited by an offspring), botany and zoology (e.g., whether or
not a particular organism is observed in a sampled quadrat), education (e.g., whether a stu-
dent response to an exam question is correct or incorrect), and marketing (e.g., consumer
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2 INTRODUCTION: DISTRIBUTIONS AND INFERENCE FOR CATEGORICAL DATA

preference among the three leading brands of a product). They even occur in highly quan-
titative fields such as engineering sciences and industrial quality control. Examples are the
classification of items according to whether they conform to certain standards, and subjec-
tive evaluation of some characteristic: how soft to the touch a certain fabric is, how good a
particular food product tastes, or how easy a worker finds it to perform a certain task.

Categorical variables are of many types. In this section we provide ways of classifying
them.

1.1.1 Response–Explanatory Variable Distinction

Statistical analyses distinguish between response (or dependent) variables and explana-
tory (or independent) variables. This book focuses on methods for categorical response
variables. As in ordinary regression modeling, explanatory variables can be any type. For
instance, a study might analyze how opinion about whether same-sex marriages should be
legal (yes or no) changes according to values of explanatory variables, such as religious
affiliation, political ideology, number of years of education, annual income, age, gender,
and race.

1.1.2 Binary–Nominal–Ordinal Scale Distinction

Many categorical variables have only two categories. Such variables, for which the two
categories are often given the generic labels “success” and “failure,” are called binary
variables. A major topic of this book is the modeling of binary response variables.

When a categorical variable has more than two categories, we distinguish between
two types of categorical scales. Variables having categories without a natural ordering are
said to be measured on a nominal scale and are called nominal variables. Examples are
mode of transportation to get to work (automobile, bicycle, bus, subway, walk), favorite
type of music (classical, country, folk, jazz, rock), and choice of residence (apartment,
condominium, house, other). For nominal variables, the order of listing the categories is
irrelevant to the statistical analysis.

Many categorical variables do have ordered categories. Such variables are said to be
measured on an ordinal scale and are called ordinal variables. Examples are social class
(upper, middle, lower), political philosophy (very liberal, slightly liberal, moderate, slightly
conservative, very conservative), patient condition (good, fair, serious, critical), and rating
of a movie for Netflix (1 to 5 stars, representing hated it, didn’t like it, liked it, really liked
it, loved it). For ordinal variables, distances between categories are unknown. Although
a person categorized as very liberal is more liberal than a person categorized as slightly
liberal, no numerical value describes how much more liberal that person is.

An interval variable is one that does have numerical distances between any two values.
For example, systolic blood pressure level, length of prison term, and annual income are
interval variables. For most such variables, it is also possible to compare two values by
their ratio, in which case the variable is also called a ratio variable.

The way that a variable is measured determines its classification. For example, “educa-
tion” is only nominal when measured as (public school, private school, home schooling);
it is ordinal when measured by highest degree attained, using the categories (none, high
school, bachelor’s, master’s, doctorate); it is interval when measured by number of years
of education completed, using the integers 0, 1, 2, 3, . . ..
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A variable’s measurement scale determines which statistical methods are appropriate.
It is usually best to apply methods appropriate for the actual scale. In the measurement
hierarchy, interval variables are highest, ordinal variables are next, and nominal variables
are lowest. Statistical methods for variables of one type can also be used with variables at
higher levels but not at lower levels. For instance, statistical methods for nominal variables
can be used with ordinal variables by ignoring the ordering of categories. Methods for
ordinal variables cannot, however, be used with nominal variables, since their categories
have no meaningful ordering. The distinction between ordered and unordered categories
is not important for binary variables, because ordinal methods and nominal methods then
typically reduce to equivalent methods.

In this book, we present methods for the analysis of binary, nominal, and ordinal
variables. The methods also apply to interval variables having a small number of distinct
values (e.g., number of times married, number of distinct side effects experienced in taking
some drug) or for which the values are grouped into ordered categories (e.g., education
measured as ≤12 years, >12 but <16 years, ≥16 years).

1.1.3 Discrete–Continuous Variable Distinction

Variables are classified as discrete or continuous, according to whether the number of
values they can take is countable. Actual measurement of all variables occurs in a discrete
manner, due to precision limitations in measuring instruments. The discrete–continuous
classification, in practice, distinguishes between variables that take few values and variables
that take lots of values. For instance, statisticians often treat discrete interval variables having
a large number of values (such as test scores) as continuous, using them in methods for
continuous responses.

This book deals with certain types of discretely measured responses: (1) binary vari-
ables, (2) nominal variables, (3) ordinal variables, (4) discrete interval variables hav-
ing relatively few values, and (5) continuous variables grouped into a small number of
categories.

1.1.4 Quantitative–Qualitative Variable Distinction

Nominal variables are qualitative—distinct categories differ in quality, not in quantity. In-
terval variables are quantitative—distinct levels have differing amounts of the characteristic
of interest. The position of ordinal variables in the qualitative–quantitative classification
is fuzzy. Analysts often treat them as qualitative, using methods for nominal variables.
But in many respects, ordinal variables more closely resemble interval variables than they
resemble nominal variables. They possess important quantitative features: Each category
has a greater or smaller magnitude of the characteristic than another category; and although
not possible to measure, an underlying continuous variable is often present. The political
ideology classification (very liberal, slightly liberal, moderate, slightly conservative, very
conservative) crudely measures an inherently continuous characteristic.

Analysts often utilize the quantitative nature of ordinal variables by assigning numerical
scores to the categories or assuming an underlying continuous distribution. This requires
good judgment and guidance from researchers who use the scale, but it provides benefits
in the variety of methods available for data analysis.
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1.1.5 Organization of Book and Online Computing Appendix

The models for categorical response variables discussed in this book resemble regres-
sion models for continuous response variables; however, they assume binomial or multi-
nomial response distributions instead of normality. One type of model receives special
attention—logistic regression. Ordinary logistic regression models apply with binary re-
sponses and assume a binomial distribution. Generalizations of logistic regression apply
with multicategory responses and assume a multinomial distribution.

The book has four main units. In the first, Chapters 1 through 3, we summarize descriptive
and inferential methods for univariate and bivariate categorical data. These chapters cover
discrete distributions, methods of inference, and measures of association for contingency
tables. They summarize the non-model-based methods developed prior to about 1960.

In the second and primary unit, Chapters 4 through 10, we introduce models for cate-
gorical responses. In Chapter 4 we describe a class of generalized linear models having
models of this text as special cases. Chapters 5 and 6 cover the most important model for bi-
nary responses, logistic regression. Chapter 7 presents alternative methods for binary data,
including the probit, Bayesian fitting, and smoothing methods. In Chapter 8 we present
generalizations of the logistic regression model for nominal and ordinal multicategory
response variables. In Chapters 9 and 10 we introduce the modeling of multivariate cate-
gorical response data, in terms of association and interaction patterns among the variables.
The models, called loglinear models, apply to counts in the table that cross-classifies those
responses.

In the third unit, Chapters 11 through 14, we discuss models for handling repeated
measurement and other forms of clustered data. In Chapter 11 we present models for
a categorical response with matched pairs; these apply, for instance, with a categorical
response measured for the same subjects at two times. Chapter 12 covers models for more
general types of repeated categorical data, such as longitudinal data from several times
with explanatory variables. In Chapter 13 we present a broad class of models, generalized
linear mixed models, that use random effects to account for dependence with such data. In
Chapter 14 further extensions of the models from Chapters 11 through 13 are described,
unified by treating the response as having a mixture distribution of some type.

The fourth and final unit has a different nature than the others. In Chapter 15 we consider
non-model-based classification and clustering methods. In Chapter 16 we summarize large-
sample and small-sample theory for categorical data models. This theory is the basis for
behavior of model parameter estimators and goodness-of-fit statistics. Chapter 17 presents
a historical overview of the development of categorical data methods.

Maximum likelihood methods receive primary attention throughout the book. Many
chapters, however, contain a section presenting corresponding Bayesian methods.

In Appendix A we review software that can perform the analyses in this book. The
website www.stat.ufl.edu/∼aa/cda/cda.html for this book contains an appendix
that gives more information about using R, SAS, Stata, and other software, with sample
programs for text examples. In addition, that site has complete data sets for many text
examples and exercises, solutions to some exercises, extra exercises, corrections, and links
to other useful sites. For instance, a manual prepared by Dr. Laura Thompson provides
examples of how to use R and S-Plus for all examples in the second edition of this text,
many of which (or very similar ones) are also in this edition.

In the rest of this chapter, we provide background material. In Section 1.2 we review the
key distributions for categorical data: the binomial and multinomial, as well as another that
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is important for discrete data, the Poisson. In Section 1.3 we review the primary mechanisms
for statistical inference using maximum likelihood. In Sections 1.4 and 1.5 we illustrate
these by presenting significance tests and confidence intervals for binomial and multinomial
parameters. In Section 1.6 we introduce Bayesian inference for these parameters.

1.2 DISTRIBUTIONS FOR CATEGORICAL DATA

Inferential data analyses require assumptions about the random mechanism that generated
the data. For regression models with continuous responses, the normal distribution plays the
central role. In this section we review the three key distributions for categorical responses:
binomial, multinomial, and Poisson.

1.2.1 Binomial Distribution

Many applications refer to a fixed number n of binary observations. Let y1, y2, . . . , yn

denote observations from n independent and identical trials such that P(Yi = 1) = π and
P(Yi = 0) = 1 − π . We refer to outcome 1 as “success” and outcome 0 as “failure.”
Identical trials means that the probability of success π is the same for each trial. Independent
trials means that the {Yi } are independent random variables. These are often called Bernoulli
trials. The total number of successes, Y = ∑n

i=1 Yi , has the binomial distribution with index
n and parameter π , denoted by bin(n, π ).

The probability mass function for the possible outcomes y for Y is

p(y) =
(

n
y

)

π y(1 − π )n−y, y = 0, 1, 2, . . . , n, (1.1)

where the binomial coefficient
(

n
y

)
= n!/[y!(n − y)!]. Since E(Yi ) = E(Y 2

i ) = 1 × π +
0 × (1 − π ) = π ,

E(Yi ) = π and var(Yi ) = π (1 − π ).

The binomial distribution for Y = ∑
i Yi has mean and variance

μ = E(Y ) = nπ and σ 2 = var(Y ) = nπ (1 − π ).

The skewness is described by E(Y − μ)3/σ 3 = (1 − 2π )/
√

nπ (1 − π ). The distribution
is symmetric when π = 0.50 but becomes increasingly skewed as π moves toward either
boundary. The binomial distribution converges to normality as n increases, for fixed π , the
approximation being reasonable1 when n[min(π, 1 − π )] is as small as about 5.

There is no guarantee that successive binary observations are independent or identical.
Thus, occasionally, we will utilize other distributions. One such case is sampling binary
outcomes without replacement from a finite population, such as observations on whether a
homework assignment was completed for 10 students sampled from a class of size 20. The

1See www.stat.tamu.edu/∼west/applets/binomialdemo2.html.
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6 INTRODUCTION: DISTRIBUTIONS AND INFERENCE FOR CATEGORICAL DATA

hypergeometric distribution, studied in Section 3.5.1, is then relevant. In Section 1.2.4 we
discuss another case that violates the binomial assumptions.

1.2.2 Multinomial Distribution

Some trials have more than two possible outcomes. Suppose that each of n independent,
identical trials can have outcome in any of c categories. Let yi j = 1 if trial i has outcome
in category j and yi j = 0 otherwise. Then yi = (yi1, yi2, . . . , yic) represents a multinomial
trial, with

∑
j yi j = 1; for instance, (0, 0, 1, 0) denotes outcome in category 3 of four

possible categories. Note that yic is redundant, being linearly dependent on the others.
Let n j = ∑

i yi j denote the number of trials having outcome in category j. The counts
(n1, n2, . . . , nc) have the multinomial distribution.

Let π j = P(Yi j = 1) denote the probability of outcome in category j for each trial. The
multinomial probability mass function is

p(n1, n2, . . . , nc−1) =
(

n!

n1!n2! · · · nc!

)

π
n1
1 π

n2
2 · · ·πnc

c . (1.2)

Since
∑

j n j = n, this is (c − 1)-dimensional, with nc = n − (n1 + · · · + nc−1). The bino-
mial distribution is the special case with c = 2.

For the multinomial distribution,

E(n j ) = nπ j , var(n j ) = nπ j (1 − π j ), cov(n j , nk) = −nπ jπk . (1.3)

We derive the covariance in Section 16.1.4. The marginal distribution of each n j is binomial.

1.2.3 Poisson Distribution

Sometimes, count data do not result from a fixed number of trials. For instance, if Y =
number of automobile accidents today on motorways in Italy, there is no fixed upper bound n
for Y (as you are aware if you have driven in Italy!). Since Y must take a nonnegative integer
value, its distribution should place its mass on that range. The simplest such distribution
is the Poisson. Its probabilities depend on a single parameter, the mean μ. The Poisson
probability mass function (Poisson 1837, p. 206) is

p(y) = e−μμy

y!
, y = 0, 1, 2, . . . . (1.4)

It satisfies E(Y ) = var(Y ) = μ. It is unimodal with mode equal to the integer part of μ.
Its skewness is described by E(Y − μ)3/σ 3 = 1/

√
μ. The Poisson distribution approaches

normality as μ increases, the normal approximation being quite good when μ is at least
about 10.

The Poisson distribution is used for counts of events that occur randomly over time or
space, when outcomes in disjoint periods or regions are independent. It also applies as an
approximation for the binomial when n is large and π is small, with μ = nπ . For example,
suppose Y = number of deaths today in auto accidents in Italy (rather than the number of
accidents). Then, Y has an upper bound. If each of the 50 million people driving in Italy
is an independent trial with probability 0.0000003 of dying today in an auto accident, the
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number of deaths Y is a bin(50000000, 0.0000003) variate. This is approximately Poisson
with μ = nπ = 50000000(0.0000003) = 15.

A key feature of the Poisson distribution is that its variance equals its mean. Sample
counts vary more when their mean is higher. When the mean number of daily fatal accidents
equals 15, greater variability occurs from day to day than when the mean equals 2.

1.2.4 Overdispersion

In practice, count observations often exhibit variability exceeding that predicted by the
binomial or Poisson. This phenomenon is called overdispersion. We assumed above that
each person has the same probability each day of dying in a fatal auto accident. More
realistically, these probabilities vary from day to day according to the amount of road traffic
and weather conditions and vary from person to person according to factors such as the
amount of time spent in autos, whether the person wears a seat belt, how much of the
driving is at high speeds, gender, and age. Such variation causes fatality counts to display
more variation than predicted by the Poisson model.

Suppose that Y is a random variable with variance var(Y |μ) for given μ, but μ itself
varies because of unmeasured factors such as those just described. Let θ = E(μ). Then
unconditionally,

E(Y ) = E[E(Y |μ)], var(Y ) = E[var(Y |μ)] + var[E(Y |μ)].

When Y is conditionally Poisson (given μ), then E(Y ) = E(μ) = θ and var(Y ) = E(μ) +
var(μ) = θ + var(μ) > θ .

Assuming a Poisson distribution for a count variable is often too simplistic, because of
factors that cause overdispersion. The negative binomial is a related distribution for count
data that has a second parameter and permits the variance to exceed the mean. We introduce
it in Section 4.3.4.

Analyses assuming binomial (or multinomial) distributions are also sometimes invalid
because of overdispersion. This might happen because the true distribution is a mixture
of different binomial distributions, with the parameter varying because of unmeasured
variables. To illustrate, suppose that an experiment exposes pregnant mice to a toxin and
then after a week observes the number of fetuses in each mouse’s litter that show signs of
malformation. Let ni denote the number of fetuses in the litter for mouse i. The pregnant
mice also vary according to other factors, such as their weight, overall health, and genetic
makeup. Extra variation then occurs because of the variability from litter to litter in the
probability π of malformation. The distribution of the number of fetuses per litter showing
malformations might cluster near 0 and near ni , showing more dispersion than expected
for binomial sampling with a single value of π . Overdispersion could also occur when π

varies among fetuses in a litter according to some distribution (Exercise 1.17). In Chapters
4, 13, and 14 we introduce methods for data that are overdispersed relative to binomial and
Poisson assumptions.

1.2.5 Connection Between Poisson and Multinomial Distributions

For adult residents of Britain who visit France this year, let Y1 = number who fly there,
Y2 = number who travel there by train without a car (Eurostar), Y3 = number who travel
there by ferry without a car, and Y4 = number who take a car (by Eurotunnel Shuttle or
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a ferry). A Poisson model for (Y1, Y2, Y3, Y4) treats these as independent Poisson random
variables, with parameters (μ1, μ2, μ3, μ4). The joint probability mass function for {Yi } is
the product of the four mass functions of form (1.4). The total n = ∑

i Yi also has a Poisson
distribution, with parameter

∑
i μi .

With Poisson sampling the total count n is random rather than fixed. If we assume a
Poisson model but condition on n, {Yi } no longer have Poisson distributions, since each
Yi cannot exceed n. Given n, {Yi } are also no longer independent, since the value of one
affects the possible range for the others.

For c independent Poisson variates, with E(Yi ) = μi , the conditional probability of a
set of counts {ni } satisfying

∑
i Yi = n is

P
[
(Y1 = n1, Y2 = n2, . . . , Yc = nc)|

∑

j

Y j = n
]

= P(Y1 = n1, Y2 = n2, . . . , Yc = nc)

P
( ∑

j Y j = n
)

=
∏

i [exp(−μi )μ
ni
i /ni !]

exp
( − ∑

j μ j
)(∑

j μ j
)n

/n!
= n!

∏
i ni !

∏

i

π
ni
i , (1.5)

where
{
πi = μi/

(∑
j μ j

)}
. This is the multinomial (n, {πi }) distribution, characterized by

the sample size n and the probabilities {πi }.
Many categorical data analyses assume a multinomial distribution. Such analyses usually

have the same inferential results as those of analyses assuming a Poisson distribution,
because of the similarity in the likelihood functions.

1.2.6 The Chi-Squared Distribution

Another distribution of fundamental importance for categorical data is the chi-squared,
not as a distribution for the data but rather as a sampling distribution for many statistics.
Because of its importance, we summarize here a few of its properties.

The chi-squared distribution with degrees of freedom denoted by df has mean df, vari-
ance 2(df), and skewness

√
8/df. It converges (slowly) to normality as df increases, the

approximation being reasonably good when df is at least about 50.
Let Z denote a standard normal random variable (mean 0, variance 1). Then Z2 has a

chi-squared distribution with df = 1. A chi-squared random variable with df = ν has rep-
resentation Z2

1 + · · · + Z2
ν , where Z1, . . . , Zν are independent standard normal variables.

Thus, a chi-squared statistic having df = ν has partitionings into independent chi-squared
components—for example, into ν components each having df = 1. Conversely, the repro-
ductive property states that if X2

1 and X2
2 are independent chi-squared random variables

having degrees of freedom ν1 and ν2, then X2 = X2
1 + X2

2 has a chi-squared distribution
with df = ν1 + ν2.

1.3 STATISTICAL INFERENCE FOR CATEGORICAL DATA

In practice, the probability distribution assumed for the response variable has unknown
parameter values. In this section we review methods of using sample data to make
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inferences about the parameters. Sections 1.4 and 1.5 illustrate these methods for bino-
mial and multinomial parameters.

1.3.1 Likelihood Functions and Maximum Likelihood Estimation

In this book we use maximum likelihood for parameter estimation. Maximum likelihood
estimators have desirable properties: They have large-sample normal distributions; they
are asymptotically consistent, converging to the parameter as n increases; and they are
asymptotically efficient, producing large-sample standard errors no greater than those from
other estimation methods. These results hold under weak regularity conditions, mainly that
the number of parameters remains constant as n increases and that the true values of those
parameters fall in the interior (rather than on the boundary) of the parameter space.

Given the data, for a chosen probability distribution the likelihood function is the prob-
ability of those data, treated as a function of the unknown parameter. The maximum
likelihood (ML) estimate is the parameter value that maximizes this function. This is the
parameter value under which the data observed have the highest probability of occurrence.
We denote a parameter for a generic problem by β and its ML estimate by β̂. We de-
note the likelihood function by �(β). The β value that maximizes �(β) also maximizes
L(β) = log[�(β)]. It is simpler to maximize L(β) since it is a sum rather than a product of
terms. For many models, L(β) has concave shape and β̂ is the point at which the derivative
equals 0. The ML estimate is then the solution of the likelihood equation, ∂L(β)/∂β = 0.
Often, β is multidimensional, denoted by β, and β̂ is the solution of a set of likelihood
equations.

Let cov(β̂) denote the asymptotic covariance matrix of β̂. Under regularity conditions
(Rao 1973, p. 364), cov(β̂) is the inverse of the information matrix. The (j, k) element of
the information matrix is

− E

(
∂2L(β)

∂β j∂βk

)

. (1.6)

The standard errors are the square roots of the diagonal elements for the inverse of the
information matrix. The greater the curvature of the log likelihood function, the smaller
the standard errors. This is reasonable, since large curvature implies that the log likelihood
drops quickly as β moves away from β̂; hence, the data would have been much more likely
to occur if β took a value near β̂ rather than a value far from β̂.

1.3.2 Likelihood Function and ML Estimate for Binomial Parameter

The part of a likelihood function involving the parameters is called the kernel. Since the
maximization of the likelihood is done with respect to the parameters, the rest is irrelevant.

To illustrate, consider the binomial distribution (1.1). The binomial coefficient
n!/[y!(n − y)!] has no influence on where the maximum occurs with respect to π . Thus,
we ignore it and treat the kernel as the likelihood function. The binomial log likelihood
function is then

L(π ) = log[π y(1 − π )n−y] = y log(π ) + (n − y) log(1 − π ). (1.7)
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Differentiating with respect to π yields

∂L(π )/∂π = y/π − (n − y)/(1 − π ) = (y − nπ )/π (1 − π ). (1.8)

Equating this to 0 gives the likelihood equation, which has solution π̂ = y/n, the sample
proportion of successes for the n trials.

Calculating ∂2L(π )/∂π2, taking the expectation, and combining terms, we get

− E[∂2L(π )/∂π2] = E[y/π2 + (n − y)/(1 − π )2] = n/[π (1 − π )]. (1.9)

Thus, the asymptotic variance of π̂ is π (1 − π )/n. This is no surprise. Since E(Y ) = nπ

and var(Y ) = nπ (1 − π ), the distribution of π̂ = Y/n has mean and standard deviation

E(π̂ ) = π, σ (π̂ ) =
√

π (1 − π )

n
.

1.3.3 Wald–Likelihood Ratio–Score Test Triad

There are three standard ways to use the likelihood function to perform large-sample
inference. We introduce these for a significance test of a null hypothesis H0: β = β0 and
then discuss their relation to interval estimation. They all exploit the large-sample normality
of ML estimators.

Standard errors obtained from the inverse of the information matrix depend on the
unknown parameter values. When we substitute the unrestricted ML estimates (i.e., not
assuming the null hypothesis) we obtain an estimated standard error of β̂, which we denote
by SE. Denote −E[∂2L(β)/∂β2] (i.e., the information) evaluated at β̂ by ι(β̂). The first
large-sample inference method has test statistic using this estimated standard error,

z = (β̂ − β0)/SE, where SE = 1/

√

ι(β̂).

This statistic has an approximate standard normal distribution when β = β0. We refer z
to the standard normal table to obtain one- or two-sided P-values. Equivalently, for the
two-sided alternative, z2 has an approximate chi-squared null distribution with df = 1;
the P-value is then the right-tailed chi-squared probability above the observed value. This
type of statistic, using the nonnull estimated standard error, is called a Wald statistic (Wald
1943).

The multivariate extension2 for the Wald test of H0: β = β0 has test statistic

W = (β̂ − β0)T [cov(β̂)]−1(β̂ − β0).

The nonnull covariance is based on the curvature (1.6) of the log-likelihood function at β̂

and typically itself requires estimation. The asymptotic multivariate normal distribution for
β̂ implies an asymptotic chi-squared distribution for W. The df equal the rank of cov(β̂),
which is the number of nonredundant parameters in β.

2The T superscript on a vector or matrix denotes the transpose.
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A second general-purpose method uses the likelihood function through the ratio of two
maximizations: (1) the maximum over the possible parameter values under H0, and (2) the
maximum over the larger set of parameter values permitting H0 or an alternative Ha to be
true. Let �0 denote the maximized value of the likelihood function under H0, and let �1

denote the maximized value generally (i.e., under H0 ∪ Ha). For instance, for parameters
β = (β0,β1) and H0: β0 = 0, �1 is the likelihood function calculated at the β value for
which the data would have been most likely; �0 is the likelihood function calculated at the
β1 value for which the data would have been most likely, when β0 = 0. Then �1 is always
at least as large as �0, since �0 results from maximizing over a restricted set of the parameter
values.

The ratio 
 = �0/�1 of the maximized likelihoods cannot exceed 1. Wilks (1935, 1938)
showed that −2 log 
 has a limiting null chi-squared distribution, as n → ∞. The df equal
the difference in the dimensions of the parameter spaces under H0 ∪ Ha and under H0. The
likelihood-ratio test statistic equals

−2 log 
 = −2 log(�0/�1) = −2(L0 − L1),

where L0 and L1 denote the maximized log-likelihood functions. [In this book, we use
the natural logarithm throughout, for which its inverse is the exponential function; so, if
a = log(b), then b = exp(a) = ea .]

The third method uses the score statistic, due to R. A. Fisher and C. R. Rao. The score
test, referred to in some literature as the Lagrange multiplier test, is based on the slope and
expected curvature of the log-likelihood function L(β) at the null value β0. It utilizes the
size of the score function

u(β) = ∂L(β)/∂β,

evaluated at β0. The value u(β0) tends to be larger in absolute value when β̂ is farther
from β0. Denote −E[∂2L(β)/∂β2] evaluated at β0 by ι(β0). The score statistic is the ratio
of u(β0) to its null SE, which is [ι(β0)]1/2. This has an approximate standard normal null
distribution. The chi-squared form of the score statistic is

[u(β0)]2

ι(β0)
= [∂L(β)/∂β0]2

−E[∂2L(β)/∂β2
0 ]

,

where the notation reflects derivatives with respect to β that are evaluated at β0. In the
multiparameter case, the score statistic is a quadratic form based on the vector of partial
derivatives of the log likelihood with respect to β and the inverse information matrix, both
evaluated at the H0 estimates (i.e., assuming that β = β0).

Figure 1.1 shows a plot of a generic log-likelihood function L(β) for the univariate
case. It illustrates the three tests of H0: β = 0. The Wald test uses the behavior of L(β) at
the ML estimate β̂, having chi-squared form (β̂/SE)2. The SE of β̂ depends on the cur-
vature of L(β) at β̂. The score test is based on the slope and curvature of L(β) at β = 0.
The likelihood-ratio test combines information about L(β) at both β̂ and β0 = 0. It com-
pares the log-likelihood values L1 at β̂ and L0 at β0 = 0 using the chi-squared statistic
−2(L0 − L1). In Figure 1.1, this statistic is twice the vertical distance between values of
L(β) at β̂ and at 0.
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Figure 1.1 Log-likelihood function and information used in three tests of H0: β = 0.

Section 1.4.1 illustrates the Wald, likelihood-ratio, and score tests for inference about a
binomial parameter. As n → ∞, the three tests have certain asymptotic equivalences (Cox
and Hinkley 1974, Sec. 9.3). For small to moderate sample sizes, the likelihood-ratio and
score tests are usually more reliable than the Wald test, having actual error rates closer to
the nominal level.

1.3.4 Constructing Confidence Intervals by Inverting Tests

In practice, it is more informative to construct confidence intervals for parameters than to
test hypotheses about their values. For any of the three test methods, we can construct a
confidence interval by inverting the test. For instance, a 95% confidence interval for β is
the set of β0 for which the test of H0: β = β0 has P-value exceeding 0.05.

Let za denote the z-score from the standard normal distribution having right-tailed
probability a; this is the 100(1 − a) percentile of that distribution. A 100(1 − α)% confi-
dence interval based on asymptotic normality uses zα/2, for instance z0.025 = 1.96 for 95%
confidence. The Wald confidence interval is the set of β0 for which |β̂ − β0|/SE < zα/2.
This gives the interval β̂ ± zα/2(SE). Let χ2

df(a) denote the 100(1 − a) percentile of the
chi-squared distribution with degrees of freedom df. The likelihood-ratio-based confidence
interval is the set of β0 for which −2[L(β0) − L(β̂)] < χ2

1 (α). [Note that χ2
1 (α) = z2

α/2.]

When β̂ has a normal distribution, the log-likelihood function has a parabolic shape. For
small samples with categorical data, β̂ may be far from normality and the log-likelihood
function can be far from a symmetric, parabolic-shaped curve. This can also happen with
moderate to large samples when β falls near the boundary of the parameter space, such
as a population proportion that is near 0 or near 1. In such cases, inference based on
asymptotic normality of β̂ may have inadequate performance. A marked divergence in
results of Wald and likelihood-ratio inference indicates that the distribution of β̂ may not
be close to normality. The example in Section 1.4.3 illustrates.

The Wald confidence interval is commonly used in practice, because it is simple to
construct using ML estimates and standard errors reported by statistical software. The
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likelihood-ratio-test-based interval is becoming more widely available in software and is
preferable for categorical data with small to moderate n. The score-test-based interval is
widely available only in certain cases, such as for proportions as outlined in Section 1.4.2.
For the best known statistical model, regression for a normal response, the three types of
inference provide identical results. In later chapters, we’ll use versions of these intervals
that apply for models with multiple parameters. Especially useful is the profile likelihood
approach based on inverting likelihood-ratio tests (e.g., Section 3.2.6).

1.4 STATISTICAL INFERENCE FOR BINOMIAL PARAMETERS

In this section we illustrate inference methods for categorical data by presenting tests and
confidence intervals for the binomial parameter π . With y successes in n independent
trials, recall that the ML estimator of π is π̂ = y/n, for which E(π̂ ) = π and var(π̂ ) =
π (1 − π )/n.

1.4.1 Tests About a Binomial Parameter

Consider H0: π = π0. Since H0 has a single parameter, we use the normal rather than
chi-squared forms of Wald and score test statistics. They permit tests against one-sided as
well as two-sided alternatives.

The Wald statistic for testing H0: π = π0 is

zW = π̂ − π0

SE
= π̂ − π0√

π̂ (1 − π̂ )/n
. (1.10)

To find the score statistic, we evaluate the binomial score (1.8) and information (1.9) at π0.
This yields

u(π0) = y

π0
− n − y

1 − π0
, ι(π0) = n

π0(1 − π0)
.

The normal form of the score statistic simplifies to

zS = u(π0)

[ι(π0)]1/2
= y − nπ0√

nπ0(1 − π0)
= π̂ − π0√

π0(1 − π0)/n
. (1.11)

Whereas the Wald statistic zW uses the standard error evaluated at π̂ , the score statistic zS

uses it evaluated at π0. The score statistic is preferable, as it uses the actual null SE rather
than an estimate. Its null sampling distribution is closer to standard normal than that of the
Wald statistic.

The binomial log-likelihood function (1.7) equals L0 = y log π0 + (n − y) log(1 − π0)
under H0 and L1 = y log π̂ + (n − y) log(1 − π̂ ) more generally. The likelihood-ratio test
statistic simplifies to

−2(L0 − L1) = 2

[

y log
π̂

π0
+ (n − y) log

1 − π̂

1 − π0

]

.
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Expressed as

−2(L0 − L1) = 2

[

y log
y

nπ0
+ (n − y) log

n − y

n − nπ0

]

,

it compares observed success and failure counts with fitted counts under H0 by

2
∑

observed

[

log

(
observed

fitted

)]

. (1.12)

We’ll see that this formula also holds for tests about Poisson and multinomial parameters.
Since no unknown parameters occur under H0 and one occurs under Ha , the asymptotic
chi-squared distribution for (1.12) has df = 1 − 0 = 1.

1.4.2 Confidence Intervals for a Binomial Parameter

Inverting the Wald test statistic gives the interval of π0 values for which |zW | < zα/2, or

π̂ ± zα/2

√
π̂ (1 − π̂)

n
. (1.13)

Historically, this was one of the first confidence intervals used for any parameter (Laplace
1812, p. 283). Unfortunately, it performs poorly unless n is very large (e.g., Brown et al.
2001), in the sense that the actual probability that the interval contains π usually falls below
the nominal confidence coefficient, much below when π is near 0 or 1.

The likelihood-ratio-based confidence interval is more complex computationally, but
simple in principle. It is the set of π0 for which the likelihood-ratio test has a P-value
exceeding α. Equivalently, it is the set of π0 for which double the log likelihood drops by
less than χ2

1 (α) from its value at the ML estimate π̂ = y/n. For example, the endpoints of
the 95% confidence interval can be found using numerical methods to iteratively solve for
the values of π0 that satisfy

2

[

y log
π̂

π0
+ (n − y) log

1 − π̂

1 − π0

]

= χ2
1 (0.05) = 3.84.

The score confidence interval contains π0 values for which |zS| < zα/2. Its endpoints are
the π0 solutions to the equations

(π̂ − π0)/
√

π0(1 − π0)/n = ±zα/2.

These are quadratic in π0. First discussed by Wilson (1927), this interval is

[

π̂

(
n

n + z2
α/2

)

+ 1

2

(
z2
α/2

n + z2
α/2

)]

±zα/2

√
√
√
√ 1

n + z2
α/2

[

π̂(1 − π̂ )

(
n

n + z2
α/2

)

+
(

1

2

) (
1

2

) (
z2
α/2

n + z2
α/2

)]

. (1.14)
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The midpoint is a weighted average of π̂ and 1
2 , where the weight n/(n + z2

α/2) given π̂

increases as n increases. Combining terms, this midpoint equals π̃ = (y + z2
α/2/2)/(n +

z2
α/2). This is the sample proportion for an adjusted sample that adds z2

α/2 observations,
half of each type, for example, z2

0.025/2 = 1.962/2 ≈ 2 of each type for 95% intervals.
The square of the coefficient of zα/2 in (1.14) is a weighted average of the variance of a
sample proportion when π = π̂ and the variance of a sample proportion when π = 1

2 , using
the adjusted sample size n + z2

α/2 in place of n.
For 95% confidence, the score interval can be approximated by a simple adjustment of

the Wald interval (see Exercise 1.25) that adds 2 observations of each type to the sample
before using the Wald formula (1.13). This interval and the ordinary score interval tend to
have actual coverage probability much closer to the nominal level than the Wald interval
(Agresti and Coull 1998, Agresti and Caffo 2000).

1.4.3 Example: Estimating the Proportion of Vegetarians

To collect data to illustrate concepts in introductory statistics courses, often I have given the
students a questionnaire. One year I asked each student in an honors class at the University
of Florida whether he or she was a vegetarian. Of n = 25 students, y = 0 answered “yes.”
They were not a random sample of a particular population, but we use these data to illustrate
95% confidence intervals for a binomial parameter π .

Since y = 0, the ML estimate π̂ = 0/25 = 0. With the Wald method, the 95% confidence
interval for π is

π̂ ± 1.96
√

π̂ (1 − π̂)/n, which is 0 ± 1.96
√

(0.0 × 1.0)/25, or (0, 0).

When a parameter falls near the boundary of the sample space, often sample estimates of
standard errors are poor and the Wald method does not provide a sensible answer.

By contrast, the 95% score interval equals (0.0, 0.133). That is, when π̂ = 0.0 and
n = 25, the two roots for π0 that satisfy the equation

|π̂ − π0| = 1.96
√

π0(1 − π0)/n

are π0 = 0.0 and π0 = 0.133. This interval provides a more believable inference. It
contains the values not rejected in corresponding score tests with size (probability of
type I error) 0.05. For H0: π = 0.20, for instance, the score test statistic is zS = (0 −
0.20)/

√
(0.20 × 0.80)/25 = −2.50, which has two-sided P-value 0.012 < 0.05, so 0.20

does not fall in the interval. By contrast, for H0: π = 0.10, zS = (0 −
0.10)/

√
(0.10 × 0.90)/25 = −1.67, which has P-value 0.096 > 0.05, so 0.10 falls in the

interval.
When y = 0 and n = 25, the kernel of the likelihood function is �(π ) = π0(1 − π )25 =

(1 − π )25. The log-likelihood function (1.7) is L(π ) = 25 log(1 − π ). Note that L(π̂) =
L(0) = 0. The 95% likelihood-ratio confidence interval is the set of π0 for which the
likelihood-ratio statistic

−2(L0 − L1) = −2[L(π0) − L(π̂)]

= −50 log(1 − π0) < χ2
1 (0.05) = 3.84.
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Figure 1.2 Binomial likelihood and log likelihood when y = 0 in n = 25 trials, and likelihood-ratio test-based
confidence interval for π .

The upper bound is 1 − exp(−3.84/50) = 0.074, and the confidence interval equals (0.0,
0.074). Figure 1.2 shows the likelihood and log-likelihood functions and the corresponding
confidence region for π .

The three large-sample methods yield quite different results. When π is near 0, the
sampling distribution of π̂ is highly skewed to the right for small n. From numerical
evaluations, we prefer the interval based on inverting the score test.

1.4.4 Exact Small-Sample Inference and the Mid P-Value

With modern computational power, it is not necessary to rely on large-sample approxima-
tions for the distribution of estimators such as π̂ . Tests and confidence intervals can directly
use the binomial distribution rather than its normal approximation. Such inferences occur
naturally for small samples, but apply for any n.

We illustrate by testing H0: π = 0.50 against Ha : π 
= 0.50 for the survey results
on vegetarianism just discussed, namely, y = 0 with n = 25. We noted that the score
statistic equals z = −5.0. The exact P-value for this statistic, based on the null bin(25, 0.50)
distribution, is

P(|z| ≥ 5.0) = P(Y = 0 or Y = 25) = 0.5025 + 0.5025 = 0.00000006.

Because of discreteness, in testing H0: π = π0, it is not usually possible to achieve a
particular fixed size such as 0.05. With a finite number of possible samples, there is a finite
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number of possible P-values, of which 0.05 may not be one. When n = 25 and π0 = 0.50,
for example, the two-sided P-value using the binomial probabilities is 0.043 if y = 7 or if
y = 18 and it is 0.108 if y = 8 or if y = 17. Thus, if we reject H0 when y ≤ 7 or y ≥ 18,
the test is conservative, in the sense that the actual size (i.e., 0.043) is less than the nominal
size (0.05).

To adjust somewhat for discreteness in small-sample distributions, we can base inference
on the mid P-value (Lancaster 1949b, 1961). For a test statistic T with observed value to
and one-sided Ha such that large T contradicts H0,

mid P-value = 1
2 P(T = to) + P(T > to),

with probabilities calculated from the null distribution. Thus, the mid P-value is less than
the ordinary P-value by half the probability of the observed result. Although discrete,
compared with the ordinary P-value, the mid P-value behaves more like the P-value for a
test statistic having a continuous distribution: The sum of its two one-sided P-values equals
1.0. Under H0, it has a null expected value of 0.50 (like the uniform distribution that occurs
in the continuous case), whereas this expected value exceeds 0.50 for the ordinary P-value
for a discrete test statistic.

Unlike an exact test with ordinary P-value, a test using the mid P-value does not guarantee
that the size of the test is no greater than a nominal value (Exercise 1.12). However, it usually
performs well. It is less conservative than the ordinary exact test. Inference based on the
mid P-value compromises between the conservativeness of exact methods and the uncertain
adequacy of large-sample methods.

Similarly, we can use small-sample distributions to construct confidence intervals for
parameters. Some subtle issues arise such that the choice of such an interval is not straight-
forward, and we defer this topic to a special section (16.6) in Chapter 16 about small-sample
intervals for categorical data.

1.5 STATISTICAL INFERENCE FOR MULTINOMIAL PARAMETERS

Next we consider inference for multinomial parameters {π j }. Of n observations in c cate-
gories, n j occur in category j, j = 1, . . . , c.

1.5.1 Estimation of Multinomial Parameters

First, we obtain ML estimates of {π j }. As a function of {π j }, the multinomial probability
mass function (1.2) is proportional to the kernel

∏

j

π
n j

j , where all π j ≥ 0 and
∑

j

π j = 1. (1.15)

The ML estimates are the {π j } that maximize (1.15).
The multinomial log-likelihood function is

L(π) =
∑

j

n j log π j .
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To eliminate redundancies, we treat L as a function of (π1, . . . , πc−1), since πc = 1 − (π1 +
· · · + πc−1). Thus, ∂πc/∂π j = −1, j = 1, . . . , c − 1. Since

∂ log πc

∂π j
= 1

πc

∂πc

∂π j
= − 1

πc
,

differentiating L(π) with respect to π j gives the likelihood equation

∂L(π)

∂π j
= n j

π j
− nc

πc
= 0.

The ML solution satisfies π̂ j/π̂c = n j/nc. Now

∑

j

π̂ j = 1 = π̂c
(∑

j n j
)

nc
= π̂cn

nc
,

so π̂c = nc/n and then π̂ j = n j/n. From general results presented later in the book (Sec-
tion 9.6), this solution does maximize the likelihood. Thus, the ML estimates of {π j } are
the sample proportions.

1.5.2 Pearson Chi-Squared Test of a Specified Multinomial

In 1900 the eminent British statistician Karl Pearson introduced a hypothesis test that
was one of the first inferential methods. It had a revolutionary impact on categorical data
analysis. Pearson’s test evaluates whether multinomial parameters equal certain values. His
original motivation in developing this test was to analyze whether possible outcomes on a
particular Monte Carlo roulette wheel were equally likely (Stigler 1986).

Consider H0: π j = π j0, j = 1, . . . , c, where
∑

j π j0 = 1. When H0 is true, the expected
values of {n j }, called expected frequencies, are μ j = nπ j0, j = 1, . . . , c. Pearson proposed
the test statistic

X2 =
∑

j

(n j − μ j )2

μ j
. (1.16)

Greater differences |n j − μ j | produce greater X2 values, for fixed {π j0} and n. Let X2
o

denote the observed value of X2. The P-value is the null value of P(X2 ≥ X2
o). This equals

the sum of the null multinomial probabilities of all count arrays (having a sum of n) with
X2 ≥ X2

o .
For large samples, X2 has approximately a chi-squared distribution with df = c − 1.

The P-value is approximated by P(χ2
c−1 ≥ X2

o), where χ2
c−1 denotes a chi-squared random

variable with df = c − 1. Statistic (1.16) is called the Pearson chi-squared statistic.

1.5.3 Likelihood-Ratio Chi-Squared Test of a Specified Multinomial

An alternative test for multinomial parameters uses the likelihood-ratio test. The kernel of
the multinomial likelihood is (1.15). Under H0 the likelihood is maximized when π̂ j = π j0.
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In the general case, it is maximized when π̂ j = n j/n. The ratio of the likelihoods equals


 =
∏

j (π j0)n j

∏
j (n j/n)n j

.

Thus, the likelihood-ratio statistic, denoted by G2, is

G2 = −2 log 
 = 2
∑

j

n j log(n j/nπ j0). (1.17)

This statistic, which has form (1.12), is called the likelihood-ratio chi-squared statistic.
The larger the value of G2, the greater the evidence against H0.

In the general case, the parameter space consists of {π j } subject to
∑

j π j = 1, so the
dimensionality is c − 1. Under H0, the {π j } are specified completely, so the dimension is
0. The difference in these dimensions equals (c − 1). For large n, G2 has a chi-squared null
distribution with df = c − 1.

When H0 holds, the Pearson X2 and the likelihood ratio G2 both have large-sample
chi-squared distributions with df = c − 1. In fact, they are asymptotically equivalent in
that case; specifically, X2 − G2 converges in probability to zero. [This means that for any
ε > 0, P(|X2 − G2| < ε) → 1 as n → ∞; See Section 16.3.4.] When H0 is false, X2 and
G2 grow in expectation proportionally to n; they need not take similar values, however,
even for very large n.

For fixed c, as n increases the distribution of X2 usually converges to chi-squared more
quickly than that of G2. The chi-squared approximation is often poor for G2 when n/c < 5.
When c is large, it can be decent for X2 for n/c as small as 1 if the table does not contain
both very small and moderately large expected frequencies.

Alternatively, the multinomial probabilities induce exact distributions of these test statis-
tics. When it is not feasible to quickly enumerate all the possible samples, it is simple to
simulate the exact distributions by randomly generating a very large number of multinomial
samples of size n with the null probabilities, and calculating X2 and or G2 for each sample
(Hirji 2005, Chap. 13). The simulated P-value is the proportion of test statistic values that
are at least as large as the observed value.

1.5.4 Example: Testing Mendel’s Theories

Among its many applications, Pearson’s test was used in genetics to test Mendel’s theories
of natural inheritance. Mendel crossed pea plants of pure yellow strain with plants of pure
green strain. He predicted that second-generation hybrid seeds would be 75% yellow and
25% green, yellow being the dominant strain. One experiment produced n = 8023 seeds,
of which n1 = 6022 were yellow and n2 = 2001 were green. The expected frequencies
for H0: π10 = 0.75, π20 = 0.25 are μ1 = 8023(0.75) = 6017.25 and μ2 = 2005.75. The
Pearson statistic X2 = 0.015 and the likelihood-ratio statistic G2 = 0.015 (df = 1) have
P-values of P = 0.90. They do not contradict Mendel’s hypothesis.

When c = 2, Pearson’s X2 simplifies to the square of the normal score statistic (1.11).
For Mendel’s data, π̂1 = 6022/8023, π10 = 0.75, n = 8023, and zS = 0.123, for which
X2 = (0.123)2 = 0.015. In fact, for general c the Pearson test is the score test about
specified values for multinomial parameters.
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Mendel performed several experiments of this type. In 1936, R. A. Fisher summarized
Mendel’s results. He used the reproductive property of chi-squared: If X2

1, . . . , X2
k are

independent chi-squared statistics with degrees of freedom ν1, . . . , νk , then
∑k

i=1 X2
i has a

chi-squared distribution with df = ∑k
i=1 νi . Fisher obtained a summary chi-squared statistic

equal to 42, with df = 84. A chi-squared distribution with df = 84 has mean 84 and standard
deviation (2 × 84)1/2 = 13.0, and the right-tailed probability above 42 is P = 0.99996. In
other words, the chi-squared statistic was so small that the fit seemed too good.

Fisher commented: “The general level of agreement between Mendel’s expectations
and his reported results shows that it is closer than would be expected in the best of
several thousand repetitions . . .. I have no doubt that Mendel was deceived by a gardening
assistant, who knew only too well what his principal expected from each trial made.” In a
letter written at the time, he stated: “Now, when data have been faked, I know very well
how generally people underestimate the frequency of wide chance deviations, so that the
tendency is always to make them agree too well with expectations” (Box 1978, p. 297). In
summary, goodness-of-fit tests can reveal not only when a fit is inadequate, but also when it
is better than random fluctuations would have us expect. [Fisher’s daughter, Joan Fisher Box
(1978, pp. 295–300), discussed Fisher’s analysis of Mendel’s data and the accompanying
controversy. See also Pires and Branco (2010). Despite possible difficulties with Mendel’s
data, subsequent work led to general acceptance of his theories.]

1.5.5 Testing with Estimated Expected Frequencies

The chi-squared statistics (1.16) and (1.17) compare a sample distribution to a hypothetical
one {π j0}. In some applications, {π j0 = π j0(θ )} are functions of a smaller set of unknown
parameters θ . ML estimates θ̂ of θ determine ML estimates {π j0(θ̂ )} of {π j0} and hence
ML estimates {μ̂ j = nπ j0(θ̂)} of expected frequencies.

Replacing {μ j } by estimates {μ̂ j } affects the distribution of X2 and G2. When dim(θ) =
p, the true df = (c − 1) − p (Section 16.3.3). Pearson (1917) realized this but did not
always take it into account (Section 17.2).

1.5.6 Example: Pneumonia Infections in Calves

We now show a goodness-to-fit test with estimated expected frequencies. A sample of 156
dairy calves born in Okeechobee County, Florida, were classified according to whether they
caught pneumonia within 60 days of birth. Calves that got a pneumonia infection were also
classified according to whether they got a secondary infection within 2 weeks after the first
infection cleared up. Table 1.1 shows the data. Calves that did not get a primary infection

Table 1.1 Primary and Secondary Pneumonia
Infections in Calves

Secondary Infectiona

Primary Infection Yes No

Yes 30 (38.1) 63 (39.0)
No 0 (—) 63 (78.9)

aValues in parentheses are estimated expected frequencies.
Source: Data courtesy of Thang Tran and G. A. Donovan,
College of Veterinary Medicine, University of Florida.
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Table 1.2 Probability Structure for Hypothesis

Secondary Infection

Primary Infection Yes No Total

Yes π 2 π (1 − π ) π

No — 1 − π 1 − π

could not get a secondary infection, so no observations can fall in the category for “no”
primary infection and “yes” secondary infection. That combination is called a structural
zero.

A goal of this study was to test whether the probability of primary infection was the same
as the conditional probability of secondary infection, given that the calf got the primary
infection. In other words, if πab denotes the probability that a calf is classified in row a and
column b of this table, the null hypothesis is

H0: π11 + π12 = π11/(π11 + π12)

or π11 = (π11 + π12)2. Let π = π11 + π12 denote the probability of primary infection. The
null hypothesis states that the probabilities satisfy the structure that Table 1.2 shows;
that is, probabilities in a trinomial for the categories (yes–yes, yes–no, no–no) for
primary–secondary infection equal [π2, π (1 − π ), 1 − π ].

Let nab denote the number of observations in row a and column b of Table 1.1. The ML
estimate of π is the value maximizing the kernel of the multinomial likelihood

(π2)n11 (π − π2)n12 (1 − π )n22 .

The log likelihood is

L(π ) = n11 log π2 + n12 log(π − π2) + n22 log(1 − π ).

Differentiation with respect to π gives the likelihood equation

2n11

π
+ n12

π
− n12

1 − π
− n22

1 − π
= 0.

The solution is

π̂ = (2n11 + n12)/(2n11 + 2n12 + n22).

For Table 1.1, π̂ = 0.494. Since n = 156, the estimated expected frequencies are μ̂11 =
nπ̂2 = 38.1, μ̂12 = n(π̂ − π̂2) = 39.0, and μ̂22 = n(1 − π̂ ) = 78.9. Table 1.1 shows them.
Pearson’s statistic is X2 = 19.7. Since the c = 3 possible responses have p = 1 parameter
(π ) determining the expected frequencies, df = (3 − 1) − 1 = 1. There is strong evidence
against H0 (P = 0.00001). Inspection of Table 1.1 reveals that many more calves got a
primary infection but not a secondary infection than H0 predicts. The researchers con-
cluded that the primary infection had an immunizing effect that reduced the likelihood of
a secondary infection.
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1.5.7 Chi-Squared Theoretical Justification

We now outline why Pearson’s statistic for a specified multinomial has a limiting chi-
squared distribution. Derivations for the likelihood-ratio statistic and cases with estimated
expected frequencies are given in Section 16.3.

For a multinomial sample (n1, . . . , nc) of size n, the marginal distribution of n j is the
bin(n, π j ) distribution. For large n, by the normal approximation to the binomial, n j (and
π̂ j = n j/n) have approximate normal distributions. More generally, by the central limit
theorem, the sample proportions π̂ = (n1/n, . . . , nc−1/n)T have an approximate multivari-
ate normal distribution (Section 16.1.4). Let �0 denote the null covariance matrix of

√
n π̂ ,

and let π0 = (π10, . . . , πc−1,0)T . Under H0, since
√

n(π̂ − π0) converges to a N (0,�0)
distribution, the quadratic form

n(π̂ − π0)T �−1
0 (π̂ − π0) (1.18)

has distribution converging to chi-squared with df = c − 1.
In Section 16.1.4 we show that the covariance matrix of

√
nπ̂ has elements

σ jk =
{−π jπk if j 
= k

π j (1 − π j ) if j = k
.

The matrix �−1
0 has (j, k)th element 1/πc0 when j 
= k and (1/π j0 + 1/πc0) when j =

k. (You can verify this by showing that �0 �−1
0 equals the identity matrix.) With this

substitution, direct calculation with appropriate combining of terms yields that (1.18)
simplifies to X2. In Section 16.3 we provide a formal proof in a more general setting.

This argument is similar to Pearson’s in 1900. R. A. Fisher (1922) gave a simpler
justification, the gist of which follows: Suppose that (n1, . . . , nc) are independent Poisson
random variables with means (μ1, . . . , μc). For large {μ j }, the standardized values {z j =
(n j − μ j )/

√
μ j } have approximate standard normal distributions. Thus,

∑
j z2

j = X2 has
an approximate chi-squared distribution with c degrees of freedom. Adding the single linear
constraint

∑
j (n j − μ j ) = 0, thus converting the Poisson distributions to a multinomial,

we lose a degree of freedom.

1.6 BAYESIAN INFERENCE FOR BINOMIAL AND
MULTINOMIAL PARAMETERS

This book mainly uses the traditional, so-called frequentist, approach to statistical inference.
We regard parameter values as fixed and apply probability statements to possible values for
the data, given the parameter values. Recent years have seen increasing popularity of the
Bayesian approach, which has probability distributions for parameters as well as for data.
This yields inferences in the form of probability statements about possible values for the
parameters, given the data.

1.6.1 The Bayesian Approach to Statistical Inference

The Bayesian approach assumes a prior distribution for the parameters. This probability
distribution may reflect subjective prior beliefs. Or, it may reflect information about the
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parameter values from other studies. Or, it may be relatively uninformative, so that infer-
ential results are based almost entirely on the current data. The prior distribution combines
with the information that the data provide to generate a posterior distribution for the pa-
rameters. Different choices for the prior distribution can result in quite different posterior
inferences, especially for small sample sizes, so the choice should be given careful thought.

By Bayes’ theorem, the posterior probability density function h of a parameter θ , given
the data y, relates to the probability mass function f for y, given θ , and the prior density
function g for θ , by

h(θ | y) = f ( y | θ)g(θ)

f ( y)
.

The denominator f ( y) on the right-hand side is the marginal probability mass function of
the data, that is,

∫
�

f ( y | θ )g(θ)dθ . This is a constant with respect to θ , so irrelevant for
inference about θ . When we plug in the observed data, f ( y | θ) is the likelihood function
when viewed as a function of θ . So, the prior density function for θ multiplied by the
likelihood function determines the posterior density for θ .

Except in specialized cases such as presented in Sections 1.6.2 and 1.6.3, there is not
a closed-form expression for the posterior distribution. The difficulty is in finding the
denominator integral that determines f ( y). The key part of the Bayes equation is the
numerator, because of the proportionality in terms of θ ,

h(θ | y) ∝ f ( y | θ)g(θ).

Simulation methods are used to approximate the posterior distribution. The primary method
for doing this is Markov chain Monte Carlo (MCMC). It is beyond our scope to discuss the
technical details of how an MCMC algorithm works. In a nutshell, a stochastic process of
Markov chain form is designed so that its long-run stationary distribution is the posterior
distribution. One or more such Markov chains provide a very large number of simulated
values from the posterior distribution, and the distribution of the simulated values approx-
imates the posterior distribution. Enough observations are taken after a burn-in period so
that the Monte Carlo error is small in approximating the posterior distribution and summary
measures of interest for that distribution, such as the mean and standard deviation, certain
percentiles, and intervals formed using those percentiles.

For an arbitrary parameter β, such as a coefficient in a regression-type model, Bayesian
methods of inference using the posterior distribution parallel those for frequentist inference.
For example, in lieu of P-values, posterior tail probabilities are useful. Information about
the direction of an effect is contained in the posterior probabilities P(β > 0 | y) and
P(β < 0 | y). With a flat prior distribution, P(β < 0 | y) corresponds to the frequentist
P-value for the one-sided test with Ha : β > 0.

Analogous to the frequentist confidence interval is an interval that contains most of the
posterior distribution. Such an interval is referred to as a posterior interval or credible
interval. A common approach for constructing a posterior interval uses percentiles of
the posterior distribution, with equal probabilities in the two tails. For example, the 95%
equal-tail posterior interval for β is the region between the 2.5 and 97.5 percentiles of
the posterior distribution for β. For unimodal posteriors, an alternative Bayesian highest
posterior density (HPD) interval has higher posterior density for every value inside the
interval than for every value outside it, subject to the posterior probability over the interval
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equaling the desired confidence level. This method produces the shortest possible interval
with the given level.

We next summarize the Bayesian approach for binomial and multinomial parameters.
Then, in the rest of the book, we’ll occasionally present Bayesian alternatives to frequentist
model-based inference.

1.6.2 Binomial Estimation: Beta and Logit-Normal Prior Distributions

The simplest Bayesian inference for a binomial parameter π uses a member of the beta
distribution as the prior distribution. The beta(α1, α2) probability density function for π is
proportional to

πα1−1(1 − π )α2−1.

The parameters α1 > 0 and α2 > 0 of the prior are often referred to as hyperparameters,
to distinguish them from the parameter that is the object of inference (in this case, π ). The
beta distribution has

E(π ) = α1/(α1 + α2) and var(π ) = α1α2/[(α1 + α2)2(α1 + α2 + 1)].

The family of beta probability density functions has a wide variety of shapes over the
interval (0, 1), including uniform when α1 = α2 = 1, unimodal symmetric (α1 = α2 > 1),
unimodal skewed left (α1 > α2 > 1), unimodal skewed right (α2 > α1 > 1), and bimodal
U-shaped (α1 < 1, α2 < 1).

Often prior knowledge about π can be expressed in terms of a mean and standard devi-
ation for a prior for π . Then, the one-to-one correspondence between those moments and
(α1, α2) based on the above moment expressions determines a beta prior. By contrast, lack
of prior knowledge about π might suggest using a uniform prior distribution. The posterior
distribution then has the same shape as the binomial likelihood function. Alternatively, a
popular prior distribution with Bayesians is the Jeffreys prior, which is proportional to
the square root of the determinant of the Fisher information matrix for the parameters of
interest. With this approach, prior distributions for different scales of measurement for the
parameters (e.g., for π or for φ = log[π/(1 − π )]) are equivalent. For a binomial parameter,
the Jeffreys prior is the beta distribution with α1 = α2 = 0.5.

The beta distribution is the conjugate prior distribution for inference about a binomial
parameter. This means that it is the family of probability distributions such that, when
combined with the likelihood function, the posterior distribution falls in the same family.
When we combine a beta(α1, α2) prior distribution with a binomial likelihood function, the
posterior distribution is a beta(y + α1, n − y + α2) distribution, for which the mean is

y + α1

n + α1 + α2
=

(
n

n + α1 + α2

)

π̂ +
(

α1 + α2

n + α1 + α2

)
α1

α1 + α2
.

This is a weighted average of the sample proportion π̂ = y/n and the prior mean, with
more weight given the sample proportion as n increases. Conjugate priors were the pri-
mary method of conducting Bayesian analysis before the development of computationally
intensive methods, such as Markov chain Monte Carlo, for evaluating the integral that
determines the posterior distribution.
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An alternative prior distribution assumes a normal distribution for the logit parameter,
log[π/(1 − π )]. This parameter, which is relevant for many analyses presented in this book,
takes values over the entire real line. With a N (0, σ 2) prior distribution for log[π/(1 − π )],
on the π scale the shape of this logit-normal (also called logistic-normal) density is sym-
metric3, being unimodal when σ 2 ≤ 2 and bimodal when σ 2 > 2, but always tapering off
toward 0 as π approaches 0 or 1. Specifically, it is mound-shaped for small σ , roughly
uniform except near the boundaries when σ ≈ 1.5, and with more pronounced peaks for
the modes when σ is about 2 or larger. The peaks for the modes get closer to 0 and 1 as
σ increases further, and the curve has appearance that is essentially U-shaped when σ = 3
and similar to that of a beta(0.5, 0.5) prior. For σ = (1, 2, 3), the standard deviations on the
π scale of these priors are (0.21, 0.31, 0.37), similar to the values (0.22, 0.29, 0.35) for the
beta priors with α1 = α2 = (2.0, 1.0, 0.5). The logit-normal prior with σ = 2.67 matches
the Jeffreys prior in the first two moments (on the probability scale), and the logit-normal
prior with σ = 1.69 matches the uniform prior in the first two moments. With a N (μ, σ 2)
prior distribution for the logit, the density for π is skewed left when μ > 0 and skewed
right when μ < 0.

Yet another possibility, hierarchical in nature, uses beta or logit-normal priors but as-
sumes a distribution for their hyperparameters instead of assigning fixing values. That
second-stage distribution may have its own hyperparameters. See Section 3.6.7, Albert
(2010), Good (1965), and Leonard (1972).

1.6.3 Multinomial Estimation: Dirichlet Prior Distributions

For c > 2 categories, the beta distribution generalizes to the Dirichlet distribution. It is
defined over the simplex of nonnegative values π = (π1, . . . , πc) that sum to 1. Expressed
in terms of gamma functions and c hyperparameters {αi > 0}, the Dirichlet probability
density function is

g(π) = �
(∑

i αi
)

[∏
i �(αi )

]
c∏

i=1

π
αi −1
i for 0 < πi < 1 all i ,

∑

i

πi = 1.

The case {αi = 1} is the uniform density over the possible probability values. The case{
αi = 1

2

}
is the Jeffreys prior for multinomial parameters. Let K = ∑

i αi . The Dirichlet
distribution has E(πi ) = αi/K and var(πi ) = αi (K − αi )/[K 2(K + 1)]. For particular rel-
ative sizes of {αi }, such as identical values, the distribution is more tightly concentrated
around the means as K increases.

Let n = (n1, . . . , nc) denote cell counts from n = ∑
i ni independent observations with

cell probabilities π . Formula (1.2) showed the multinomial probability mass function for
n. Multiplying this by the Dirichlet prior density function g(π) contributes to a posterior
density function h(π | n) for π that is also Dirichlet, but with the hyperparameters {αi }
replaced by {α′

i = ni + αi }. The mean of the posterior distribution of πi is

E(πi | n1, . . . , nc) = (ni + αi )/(n + K ).

3See logitnorm.r-forge.r-project.org and the “Logit-normal distribution” entry in
wikipedia.org for figures illustrating the shapes described below.
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Let γi = E(πi ) = αi/K . This Bayesian estimator equals the weighted average

(
n

n + K

)

pi +
(

K

n + K

)

γi (1.19)

of the sample proportion pi = ni/n and the mean γi of the prior distribution for πi . This
posterior mean takes the form of a sample proportion when the prior information corre-
sponds to K additional observations of which αi were outcomes of type i. (We’ll consider
a formal way of setting such data augmentation priors in Section 7.2.4.) With identical
{αi }, the Bayes estimate shrinks each sample proportion toward the equi-probability value
γi = 1/c. Greater shrinkage occurs as K increases, for fixed n.

Bayesian estimators of multinomial parameters, unlike the sample proportions, are
slightly biased for finite n. Usually, though, they have smaller total mean squared error
(MSE) than the sample proportions. They are not uniformly better for all possible parameter
values, however. For instance, if a particular πi = 0, then pi = 0 with probability one, so
the sample proportion is then better than any other estimator. We do not expect πi = 0 in
practice, and the parameter space is often defined under the restriction that all πi > 0, but
this limiting behavior explains why the ML estimator can have smaller MSE than the Bayes
estimator when πi is very near 0.

1.6.4 Example: Estimating Vegetarianism Revisited

In Section 1.4.3 we estimated the population proportion of vegetarians with a sample
of size n = 25 for which y = 0. The ML estimate of π is π̂ = 0.0, and the 95% score
confidence interval is (0.0, 0.133). How does this compare to Bayesian point and interval
estimates?

First, we use a uniform prior distribution for π , reflecting prior ignorance. For this beta(1,
1) prior with y = 0 and n = 25, the posterior distribution is beta(1, 26). The posterior mean
is 1/27 = 0.037. The posterior 95% equal-tail interval is (0.001, 0.132), the endpoints being
the 2.5 and 97.5 percentiles of the beta posterior density. This interval is similar to the
frequentist 95% score interval, but the prior information has the impact of moving the left
boundary slightly away from 0.0. By contrast, since the posterior density is proportional
to (1 − π )25 and hence monotone decreasing, the 95% highest posterior density (HPD)
interval has lower limit of 0 and upper limit that is the 95th percentile of the beta(1, 26)
density, which is 0.109.

For contrast, let’s use a much more informative beta prior. Suppose we used a subjective
approach and were quite sure a priori that π falls between about 0 and 0.16. We might
summarize this by a prior mean of 0.08 and standard deviation of 0.04. These moments
correspond to beta hyperparameters of α1 = 3.6 and α2 = 41.4, for which 0.16 is the 96th
percentile. Then, the posterior is the beta(3.6, 66.4), which has mean = 0.051 and 95%
posterior equal-tail interval of (0.013, 0.114) and HPD interval of (0.008, 0.103). Stronger
prior beliefs result in greater shrinkage of the Bayes estimate toward the prior mean and a
narrower posterior equal-tail interval.

1.6.5 Binomial and Multinomial Estimation: Improper Priors

For multinomial data, the sample proportion pi is the ML estimate of πi . It results as the
special case of the Bayesian estimate (1.19) when each αi = 0. But when any αi = 0, the
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Dirichlet formula is not a legitimate probability density function, as it integrates to ∞
instead of 1. It is then an example of an improper prior distribution. Bayesian inference
sometimes uses such improper prior distributions, as long as the posterior distribution is
proper (e.g., Lindley 1964). The Dirichlet posterior is proper as long as ni > 0 for each i
having αi = 0.

For parameters that can take value over the entire real line, a common improper distribu-
tion is uniform over all real numbers. For a binomial parameter π , the improper beta(0,0)
prior for π corresponds to an improper uniform distribution for logit(π ). Haldane (1948)
suggested that this prior is often sensible in genetics applications, such as for mutation rates
for which log(π ) might be approximately uniform for π close to 0.

NOTES

Section 1.1: Categorical Response Data

1.1 Measurement scales: Stevens (1951) defined (nominal, ordinal, interval) scales of measure-
ment. Other scales result from mixtures of these types. For instance, partially ordered scales
occur when subjects respond to questions having categories that are ordered except for don’t
know or undecided categories.

Section 1.3: Statistical Inference for Categorical Data

1.2 Chi-squared: Greenwood and Nikulin (1996), Kendall and Stuart (1979), and Lancaster (1969)
presented in-depth overviews of the chi-squared distribution. Cochran (1952) presented a
historical survey of chi-squared tests of fit. See also Cressie and Read (1989), Koch and Bhapkar
(1982), Koehler (2005), Moore (1986b), Read and Cressie (1988), and Watson (1959).

1.3 Wald/LR/score: Disadvantages of the Wald method compared with the score and likelihood-
ratio methods is that it does not apply when β̂ is on the boundary of the parameter space (such
as a sample proportion π̂ = 0) and its results depend on the parameterization; inference based
on β̂ and its SE is not equivalent to inference based on a nonlinear function of it, such as log(β̂)
and its SE. See Section 5.2.6. “Higher-order asymptotics” improve on simple normal and chi-
squared approximations for distributions of these statistics (Brazzale et al. 2007, Davison et al.
2006).

Section 1.4: Statistical Inference for Binomial Parameters

1.4 Score CI: The superiority of the score interval to the Wald interval for π was shown by, among
others, Agresti and Coull (1998), Blyth and Still (1983), Brown et al. (2001), Ghosh (1979),
Newcombe (1998a), and Schader and Schmid (1990).

1.5 Continuity correction: Using continuity corrections with large-sample methods provides ap-
proximations to exact small-sample methods. We do not present them, since if you prefer an
exact method, with modern computational power you can usually implement it directly rather
than approximate it. However, we’ll see in Sections 3.5.5, 3.5.7, 7.3.7, 16.6.1, and 16.6.4 that
exact methods have the disadvantage that they behave conservatively.

1.6 Discreteness: Suppose a statistic T has discrete distribution with cdf F(t). Then, F(T) is
stochastically larger than uniform over [0, 1], its cdf being everywhere no greater than that
of the uniform (Casella and Berger 2001, pp. 77, 434). Likewise, a P-value based on T has
null distribution stochastically larger than uniform. In theory, we can eliminate issues with
discreteness in tests by performing a supplementary randomization on the boundary of a
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critical region (see Exercise 1.12). In rejecting H0 at the boundary with a certain probability,
we can obtain type I error probability = α even when α is not an achievable P-value. For such
randomization, the P-value is

randomized P-value = U × P(T = to) + P(T > to),

where U denotes a uniform (0, 1) random variable (Stevens 1950). In practice, this is not done,
as it is absurd to let a random number determine a decision. The mid P-value replaces the
arbitrary uniform multiple U × P(T = to) by its expected value 0.50 × P(T = to).

Section 1.5: Statistical Inference for Multinomial Parameters

1.7 Multinomials: Other references on testing a specified multinomial include Good et al. (1970)
and Baglivo et al. (1992). For simultaneous confidence intervals for multinomial parameters
and their differences, see Exercise 1.36, Chafaı̈ (2009), Fitzpatrick and Scott (1987), Goodman
(1965), and Sison and Glaz (1995).

Section 1.6: Bayesian Inference for Binomial and Multinomial Parameters

1.8 Beta/Dirichlet priors: Agresti and Hitchcock (2005) surveyed Bayesian methods for cate-
gorical data. Lindley (1964) and Good (1965) were influential early articles about Bayesian
estimation of multinomial parameters using a Dirichlet prior. Brown et al. (2001) showed that
the Jeffreys beta prior yields posterior intervals for the binomial parameter that perform well,
having actual coverage probability close to the nominal level. Good (1967) gave a Bayesian
goodness-of-fit test that multinomial probabilities are identical, using a hierarchical approach
with a symmetric Dirichlet prior that has a log Cauchy distribution for its hyperparameter.

1.9 Loss functions: In decision-theoretic terms, the Bayes estimator minimizes the posterior ex-
pected value of a loss function that measures the distance between an estimator T ( y) and
a parameter θ . It is the posterior mean for squared error loss and posterior median for abso-
lute error loss. For loss function w(θ )(T − θ )2, it is E[θw(θ )| y]/E[w(θ )| y]. With loss function
(T − π )2/[π (1 − π )] and uniform prior, the Bayes estimator of π is the ML estimator p = y/n.
Its risk function (the expected loss, treated as a function of π ) is constant. Bayes estimators
with constant risk are minimax, the maximum risk being no greater than the maximum risk for
any other estimator. Johnson (1971) showed that p is an admissible estimator, for standard loss
functions. For other cases, see DasGupta and Zhang (2004). Blyth (1980) noted that for large
n, E |π̂ − π | ≈ √

2π (1 − π )/πcn, where πc = 3.14 . . . is the mathematical constant.

EXERCISES

Applications

1.1 Identify each variable as nominal, ordinal, or interval.

a. UK political party preference (Labour, Liberal Democrat, Conservative)

b. Anxiety rating (none, mild, moderate, severe, very severe)

c. Patient survival (in number of months)

d. Clinic location (London, Boston, Madison, Rochester, Montreal)

e. Response of tumor to chemotherapy (complete elimination, partial reduction,
stable, growth progression)

f. Favorite grocery store for UK residents (Sainsbury, Tesco, Waitrose, other)
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1.2 Each of 100 multiple-choice questions on an exam has four possible answers, one
of which is correct. For each question, a student guesses by selecting an answer
randomly.

a. Specify the distribution of the number of correct answers.

b. Find the mean and standard deviation of that distribution. Would it be surprising
if the student made at least 50 correct responses? Why?

c. Specify the distribution of (n1, n2, n3, n4), where n j is the number of times the
student picked choice j.

d. Find E(n j ) and var(n j ). Show that cov(n j , nk) = −6.25 and corr(n j , nk) =
−0.333.

1.3 An experiment studies the number of insects that survive a certain dose of an
insecticide, using several batches of insects of size n each. The insects are sensitive
to factors that vary among batches during the experiment but were not measured,
such as temperature level. Explain why the distribution of the number of insects per
batch surviving the experiment might show overdispersion relative to a bin(n, π )
distribution.

1.4 In his autobiography A Sort of Life, British author Graham Greene described a period
of severe mental depression during which he played Russian roulette. This “game”
consists of putting a bullet in one of the six chambers of a pistol, spinning the
chambers to select one at random, and then firing the pistol once at one’s head.

a. Greene played this game six times and was lucky that none of them resulted in a
bullet firing. Find the probability of this outcome.

b. Suppose that he had kept playing this game until the bullet fired. Let Y denote the
number of the game on which it fires. Explain why the probability mass function
for Y is the geometric, p(y) = (5/6)y−1(1/6), y = 1, 2, 3, . . ..

1.5 When the 2010 General Social Survey asked, “Please tell me whether or not you
think it should be possible for a pregnant woman to obtain a legal abortion if
she is married and does not want any more children,” 587 replied “yes” and 636
replied “no.” Let π denote the population proportion who would reply “yes.” Find the
P-value for testing H0: π = 0.50 using the score test, and construct a 95% confidence
interval for π . Interpret the results.

1.6 Refer to the vegetarianism example in Section 1.4.3. For testing H0: π = 0.50
against Ha : π 
= 0.50, show that:

a. The likelihood-ratio statistic equals 2[25 log(25/12.5)] = 34.7.

b. The chi-squared form of the score statistic equals 25.0.

c. The Wald z or chi-squared statistic is infinite.

1.7 In a crossover trial comparing a new drug to a standard, π denotes the probability
that the new one is judged better. It is desired to estimate π and test H0: π = 0.50
against Ha : π 
= 0.50. In 20 independent observations, the new drug is better each
time.



P1: TIX/OSW P2: ABC
JWBS088-c01 JWBS088-Agresti October 16, 2012 12:8 Printer Name: Yet to Come Trim: 7in × 10in

30 INTRODUCTION: DISTRIBUTIONS AND INFERENCE FOR CATEGORICAL DATA

a. Find and sketch the likelihood function. Is it close to the quadratic shape that
large-sample normal approximations utilize?

b. Give the ML estimate of π . Conduct a Wald test and construct a 95% Wald
confidence interval for π . Are these sensible?

c. Conduct a score test, reporting the P-value. Construct a 95% score confidence
interval. Interpret.

d. Conduct a likelihood-ratio test and construct a likelihood-based 95% confidence
interval. Interpret.

e. Construct an exact binomial test. Interpret.

1.8 Refer to the previous exercise. Suppose you wanted a large enough sample to estimate
the probability of preferring the new drug to within 0.05, with confidence 0.95. If
the true probability is 0.80, about how large a sample is needed?

1.9 In an experiment on chlorophyll inheritance in maize, for 1103 seedlings of self-
fertilized heterozygous green plants, 854 seedlings were green and 249 were yellow.
Theory predicts the ratio of green to yellow is 3:1. Test the hypothesis that 3:1 is the
true ratio. Report the P-value, and interpret.

1.10 Table 1.3 contains Ladislaus von Bortkiewicz’s data on deaths of soldiers in the
Prussian army from kicks by army mules (Fisher 1934, Quine and Seneta 1987).
The data refer to 10 army corps, each observed for 20 years. In 109 corps-years
of exposure, there were no deaths, in 65 corps-years there was one death, and so
on. Estimate the mean and test whether probabilities of occurrences in these five
categories follow a Poisson distribution (truncated for 4 and above).

1.11 A binomial experiment tests H0: π = 0.50 against Ha: π 
= 0.50 using significance
level 0.05. Only n = 5 observations are available. Show that the true null probability
of rejecting H0 is 0.00 for an exact binomial test and 1

16 using the large-sample score
test.

1.12 A researcher routinely tests using a nominal P(type I error) = 0.05, rejecting H0 if
the P-value ≤ 0.05. An exact test using test statistic T has null distribution P(T =
0) = 0.30, P(T = 1) = 0.62, and P(T = 2) = 0.08, where a higher T provides
more evidence against the null.

Table 1.3 Data on Deaths by Mule Kicks, for
Exercise 1.10

Number of Deaths Number of Corps-Years

0 109
1 65
2 22
3 3
4 1

≥5 0
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a. With the usual P-value, show that the actual P(type I error) = 0.

b. With the mid P-value, show that the actual P(type I error) = 0.08.

c. Find P(type I error) in parts (a) and (b) when P(T = 0) = 0.30, P(T = 1) =
0.66, P(T = 2) = 0.04. Note that the test with mid P-value can be conservative
or liberal. The exact test with ordinary P-value cannot be liberal.

d. In part (a), a randomized-decision test generates a uniform random variable
U from [0, 1] and rejects H0 if both T = 2 and U ≤ 5

8 . Show the actual
P(type I error) = 0.05. Is this a sensible test?

1.13 The 2006 General Social Survey asked respondents how much government should
spend on culture and the arts, with categories (much more, more, the same, less,
much less). For 18–21 year-old females, the counts in these categories were (0,
8, 10, 9, 1). Find the Bayes estimates of the population proportions based on a
Dirichlet prior distribution with {αi = K/5} for values of K = 1, 2.5, 5. For each
case, compare the estimate for the “much more” category to the ML estimate.

1.14 Refer to Example 1.6.4 on estimating the proportion of vegetarians. For the Jeffreys
prior, find the posterior mean, the posterior 95% equal-tail interval, and the 95%
highest posterior density interval.

1.15 You plan to use Bayesian methods to estimate binomial parameters in two cases,
using n observations. In case (1) you want to estimate the probability that a new
treatment for skin cancer is effective. In case (2) you want to estimate the probability
of a head when you repeatedly flip a particular coin. Select prior distributions that
you think would be sensible for each case. If they differ, explain why.

Theory and Methods

1.16 It is easier to get a precise estimate of the binomial parameter when π is near 0 or 1
than when it is near 1

2 . Explain why.

1.17 Suppose that P(Yi = 1) = 1 − P(Yi = 0) = π, i = 1, . . . , n, where {Yi } are inde-
pendent. Let Y = ∑

i Yi .

a. What is the distribution of Y? What are E(Y ) and var(Y)?

b. When {Yi } instead have pairwise correlation ρ > 0, show that var(Y ) > nπ (1 −
π ), overdispersion relative to the binomial. [Altham (1978) and Ochi and Prentice
(1984) discussed generalizations of the binomial that allow correlated trials.]

c. Suppose that heterogeneity exists: P(Yi = 1|π ) = π for all i, but π is a random
variable with density function g(·) on [0, 1] having mean ρ and positive variance.
Show that var(Y ) > n ρ(1 − ρ). (When π has a beta distribution, Y has the beta-
binomial distribution of Section 14.3.)

1.18 For a sequence of independent Bernoulli trials, let Y be the number of successes
before the kth failure. Explain why its probability mass function is the negative
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binomial,

p(y) = (y + k − 1)!

y!(k − 1)!
π y(1 − π )k, y = 0, 1, 2, . . . .

[For it, E(Y ) = kπ/(1 − π ) and var(Y ) = kπ/(1 − π )2, so var(Y ) > E(Y ); the
Poisson is the limit as k → ∞ and π → 0 with kπ = μ fixed.]

1.19 For the multinomial distribution, show that

corr(n j , nk) = −π jπk/
√

π j (1 − π j )πk(1 − πk).

When c = 2, show that this simplifies to corr(n1, n2) = −1, and explain why this
makes intuitive sense.

1.20 Show that the moment generating function (mgf) is (a) m(t) = (1 − π + πet )n for
the binomial distribution, (b) m(t) = exp{μ[exp(t) − 1]} for the Poisson distribution.
For each distribution, use them to obtain the first two moments and to show a
reproductive property.

1.21 A likelihood-ratio statistic equals to. At the ML estimates, show that the data are
exp(to/2) times more likely under Ha than under H0.

1.22 Suppose that y1, y2, . . . , yn are independent from a Poisson distribution.

a. Obtain the likelihood function. Show that the ML estimator μ̂ = ȳ.

b. Construct a large-sample test statistic for H0: μ = μ0 using (i) the Wald method,
(ii) the score method, and (iii) the likelihood-ratio method.

c. Explain how to construct a large-sample confidence interval for μ using (i) the
Wald method, (ii) the score method, and (iii) the likelihood-ratio method.

1.23 Inference for Poisson parameters can often be based on connections with binomial
and multinomial distributions. Show how to test H0: μ1 = μ2 for two populations
based on independent Poisson counts (y1, y2), using a corresponding binomial test.
[Hint: Condition on n = y1 + y2 and identify π = μ1/(μ1 + μ2).] How can you
construct a confidence interval for μ1/μ2 based on one for π?

1.24 Since the Wald confidence interval for a binomial parameter π is degenerate when
π̂ = 0 or 1, argue that the probability that the interval covers π cannot exceed
[1 − πn − (1 − π )n]; hence, the infimum of the coverage probability over 0 < π < 1
equals 0, regardless of n.

1.25 We noted in Section 1.4.2 that the midpoint π̃ of the score confidence interval (1.14)
for π is the sample proportion after adding z2

α/2 observations to the sample, half of
each type. This motivates a simple confidence interval,

π̃ ± zα/2

√
π̃(1 − π̃ )/n∗, where n∗ = n + z2

α/2.
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Show that the variance π̃ (1 − π̃ )/n∗ at the weighted average is at least as large
as the weighted average of the variances that appears under the square root sign
in the score interval. [Hint: Use Jensen’s inequality.] Thus, this interval, which is
sometimes referred to as the Agresti–Coull confidence interval, contains the score
interval. [Agresti and Coull (1998) and Brown et al. (2001) showed that it performs
much better than the Wald interval. It does not have the score interval’s disadvantage
(Exercise 16.32) of poor coverage near 0 and 1. With 95% confidence, this motivates
a simple method that uses the Wald method after adding 2 observations of each type
(Agresti and Coull 1998, Agresti and Caffo 2000); this is sometimes called the plus
four confidence interval.]

1.26 A binomial sample of size n has y = 0 successes.

a. Show that the confidence interval for π based on the likelihood function is
[0.0, 1 − exp(−z2

α/2/2n)]. For α = 0.05, use the expansion of an exponential
function to show that this is approximately [0, 1.92/n].

b. For the score method, show that the confidence interval is [0, z2
α/2/(n + z2

α/2)],
or [0, 3.84/(n + 3.84)] when α = 0.05. (See Exercise 16.30 for small-sample
intervals when y = 0.)

1.27 Suppose that P(T = t j ) = π j , j = 1, . . . . Show that E(mid P-value) = 0.50.

[Hint: Show that
∑

j π j (π j/2 + π j+1 + · · ·) = ( ∑
j π j

)2
/2.]

1.28 For a statistic T with cdf F(t) and p(t) = P(T = t), the mid distribution func-
tion is Fmid(t) = F(t) − 0.50p(t) (Parzen 1997). Given T = to, show that the mid
P-value equals 1 − F(to). (It also satisfies E[Fmid(T )] = 0.50 and var[Fmid(T )] =
(1/12){1 − E[p2(T )]}.)

1.29 Genotypes AA, Aa, and aa occur with probabilities [θ2, 2θ (1 − θ ), (1 − θ )2].
A multinomial sample of size n has frequencies (n1, n2, n3) of these three
genotypes.

a. Form the log likelihood. Show that θ̂ = (2n1 + n2)/(2n1 + 2n2 + 2n3).

b. Show that −∂2L(θ )/∂θ2 = [(2n1 + n2)/θ2] + [(n2 + 2n3)/(1 − θ )2] and that its
expectation is 2n/θ (1 − θ ). Use this to obtain an asymptotic standard error of θ̂ .

c. Explain how to test whether the probabilities truly have this pattern.

1.30 Refer to Section 1.5.6 and the model for pneumonia infections in calves. Using the
likelihood function to obtain the information, show that the approximate standard
error of π̂ is

√
π (1 − π )/n(1 + π ).

1.31 Refer to Section 1.5.6. Let a denote the number of calves that got a primary, sec-
ondary, and tertiary infection, b the number that received a primary and secondary
but not a tertiary infection, c the number that received a primary but not a secondary
infection, and d the number that did not receive a primary infection. Let π be the
probability of a primary infection. Consider the hypothesis that the probability of
infection at time t, given infection at times 1, . . . , t − 1, is also π , for t = 2, 3. Show
that π̂ = (3a + 2b + c)/(3a + 3b + 2c + d).
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1.32 Refer to quadratic form (1.18) that leads to the Pearson chi-squared.

a. Verify that the matrix quoted in the text for �−1
0 is the inverse of �0.

b. Show that (1.18) simplifies to Pearson’s statistic (1.16).

c. For the zS statistic (1.11), show that z2
S = X2 for c = 2.

1.33 For testing H0: π j = π j0, j = 1, . . . , c, using sample multinomial proportions {π̂ j },
the likelihood-ratio statistic (1.17) is

G2 = −2n
∑

j

π̂ j log(π j0/π̂ j ).

Show that G2 ≥ 0, with equality if and only if π̂ j = π j0 for all j. [Hint: Apply
Jensen’s inequality to E(−2n log X ), where X equals π j0/π̂ j with probability π̂ j .]

1.34 For counts {ni }, the power divergence statistic for testing goodness of fit (Cressie
and Read 1984, Read and Cressie 1988) is

2

λ(λ + 1)

∑
ni [(ni/μ̂i )

λ − 1] for −∞ < λ < ∞.

a. For λ = 1, show that this equals X2.

b. As λ → 0, show that it converges to G2. [Hint: log t = limh→0(th − 1)/h.]

c. As λ → −1, show that it converges to 2
∑

μ̂i log(μ̂i/ni ), the minimum discrim-
ination information statistic (Gokhale and Kullback 1978).

d. For λ = −2, show that it equals
∑

(ni − μ̂i )2/ni , the Neyman modified chi-
squared statistic (Neyman 1949).

e. For λ = − 1
2 , show that it equals 4

∑
(
√

ni − √
μ̂i )2, the Freeman–Tukey statistic

(Freeman and Tukey 1950).

[Under regularity conditions, their asymptotic distributions are identical (Drost et al.
1989). The chi-squared null approximation works best for λ near 2

3 .]

1.35 The chi-squared mgf with df = ν is m(t) = (1 − 2t)−ν/2, for |t | < 1
2 . Use it to prove

the reproductive property of the chi-squared distribution.

1.36 For the multinomial (n, {π j }) distribution with c > 2, a possible set of score-type
simultaneous confidence limits for π j are the solutions of

(π̂ j − π j )
2/[π j (1 − π j )/n] = (zα/2c)2, j = 1, . . . , c.

a. Using the Bonferroni inequality, argue that for large n these c intervals simulta-
neously contain all {π j } with probability at least 1 − α.

b. Show that the standard deviation of π̂ j − π̂k is [π j + πk − (π j − πk)2]/n. Let
a = c(c − 1)/2. For large n, explain why the probability is at least 1 − α that the
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Wald confidence intervals

(π̂ j − π̂k) ± zα/2a{[π̂ j + π̂k − (π̂ j − π̂k)2]/n}1/2

simultaneously contain the a differences {π j − πk} (Goodman 1965).

1.37 Consider the Bayesian equal-tail posterior interval for a binomial parameter π , using
a beta or logit-normal prior. When y = 0, explain why the lower limit for π can never
be 0, unlike the frequentist approach based on inverting a score or likelihood-ratio
test.

1.38 Consider estimating the ratio πi/π j of two multinomial parameters. Should the
estimate depend at all on the counts in other categories?

a. With a frequentist approach, explain why the ML estimate of πi/π j is ni/n j .

b. For a Dirichlet prior, show that using the Bayes estimates of πi and π j to estimate
πi/π j uses also the counts in other categories. (However, the posterior distribution
of γ = πi/(πi + π j ) is the same as its posterior distribution ignoring the other
counts and treating yi as binomial with sample size (yi + y j ) and parameter γ .)

1.39 Given π , Y has a bin(n, π ) distribution, and π has a uniform prior distribution. Show
that the marginal distribution of Y is uniform over 0, 1, . . . , n.

1.40 Consider the Bayes estimator of the binomial parameter π using a beta prior distri-
bution.

a. Show that the ML estimator is a limit of Bayes estimators, for a certain sequence
of beta prior parameter values.

b. Find an improper prior density such that the Bayes estimator coincides with the
ML estimator. (In this sense, the ML estimator is a generalized Bayes estimator.)

1.41 For the Dirichlet prior for multinomial probabilities, show the posterior expected
value of πi is formula (1.19). Derive the expression for this Bayes estimator as a
weighted average of pi and E(πi ).



P1: TIX/OSW P2: ABC
JWBS088-c01 JWBS088-Agresti October 16, 2012 12:8 Printer Name: Yet to Come Trim: 7in × 10in

36


