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I CHAPTER 1

Introduction

The cavities discussed in Part I consist of a region of finite extent bounded by
conducting walls and filled with a uniform dielectric (usually free space). After a brief
discussion of fundamentals of electromagnetic theory, the general properties of cavity
modes and their excitation will be given in this chapter. The remaining three chapters
of Part I give detailed expressions for the modal resonant frequencies and field
structures, quality (Q) factor [1], and Dyadic Green’s Functions [2] for commonly
used cavities of separable geometries (rectangular cavity in Chapter 2, circular
cylindrical cavity in Chapter 3, and spherical cavity in Chapter 4). The International
System of Units (SI) is used throughout.

1.1 MAXWELL’S EQUATIONS

Since this book deals almost exclusively with time-harmonic fields, the field and
source quantities have a time variation of exp(—iw?), where the angular frequency w is
given by w = 2xf. The time dependence is suppressed throughout. The differential
forms of Maxwell’s equations are most useful in modal analysis of cavity fields. If we
follow Tai [2], the three independent Maxwell equations are:

V x E = ioB, (1.1)
V x H=J—iwD, (1.2)
Vel =iwp, (1.3)

where E is the electric field strength (volts/meter), B is the magnetic flux density
(teslas), H is the magnetic field strength (amperes/meter), D is the electric flux density
(coulombs/meterz), 7 is the electric current density (amperes/meterz), and p is the
electric charge density (coulombs/meter®). Equation (1.1) is the differential form of
Faraday’s law, (1.2) is the differential form of the Ampere-Maxwell law, and (1.3) is
the equation of continuity.
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Two dependent Maxwell equations can be obtained from (1.1)—(1.3). Taking the
divergence of (1.1) yields:

VeB=0 (1.4)
Taking the divergence of (1.2) and substituting (1.3) into that result yields
VeD=p (1.5)

Equation (1.4) is the differential form of Gauss’s magnetic law, and (1.5) is the
differential form of Gauss’s electric law. An alternative point of view is to consider
(1.1),(1.2),and (1.5) as independent and (1.3) and (1.4) as dependent, but this does not
change any of the equations. Sometimes a magnetic current is added to the right side of
(1.1) and a magnetic charge is added to the right side of (1.4) in order to introduce
duality [3] into Maxwell’s equations. However, we choose not to do so.

The integral or time dependent forms of (1.1)—(1.5) can be found in numerous
textbooks, such as [4]. The vector phasors, for example E,in(1.1)~(1.5) are complex
quantities that are functions of position 7 and angular frequency w, but this dependence
will be omitted except where required for clarity. The time and space dependence of
the real field quantities, for example electric field g , can be obtained from the vector
phasor quantity by the following operation:

E(7,1) = V2 Re[E(F, w)exp(—iot))], (1.6)

where Re represents the real part. The introduction of the /2 factor in (1.6) follows
Harrington’s notation [3] and eliminates a 1/2 factor in quadratic quantities, such as
power density and energy density. It also means that the vector phasor quantities
represent root-mean-square (RMS) values rather than peak values.

In order to solve Maxwell’s equations, we need more information in the form of the
constitutive relations. For isotropic media, the constitutive relations are written:

D = ¢E, (1.7)
B = uH, (1.8)
J = GE, (1.9)

where ¢ is the permittivity (farads per meter), 1 is the permeability (henrys/meter), and
g is the conductivity (siemens/meter). In general, ¢, u, and ¢ are frequency dependent
and complex. Actually, there are more general constitutive relations [5] than those
shown in (1.7)—(1.9), but we will not require them.

In many problems, 7 is treated as a source current density rather than an induced
current density, and the problem is to determine EandH subject to specified boundary
conditions. In this case (1.1) and (1.2) can be written:

V x E = iouH, (1.10)
V x H = J—iweE (1.11)

Equations (1.10) and (1.11) are two vector equations in two vector unknowns
(E and H) or equivalently six scalar equations in six scalar unknowns. By eliminating
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either H in (1.10) or E in (1.11), we can obtain inhomogeneous vector wave
equations:

V x V x E-k*E = iouJ, (1.12)
VxVxH-kH =V x17, (1.13)
where k = w,/pe. Chapters 2 through 4 will contain sections where dyadic Green’s

functions provide compact solutions to (1.12) and (1.13) and satisfy the boundary
conditions at the cavity walls.

1.2 EMPTY CAVITY MODES

Consider a simply connected cavity of arbitrary shape with perfectly conducting
electric walls as shown in Figure 1.1. The interior of the cavity is filled with a
homogeneous dielectric of permittivity ¢ and permeability . The cavity has volume V
and surface area S. Because the walls have perfect electric conductivity, the tangential
electric field at the wall surface is zero:

it x E =0, (1.14)

where 7 is the unit normal directed outward from the cavity. Because the cavity is
source free and the permittivity is independent of position, the divergence of the
electric field is zero:

VeE =0 (1.15)

>

FIGURE 1.1 Empty cavity of volume V with perfectly conducting walls.
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If we set the current J equal to zero in (1.12), we obtain the homogeneous vector
wave equation:

V xVxE-KE =0 (1.16)

We can work directly with (1.16) in determining the cavity modes, but it is simpler and
more common [6, 7] to replace the double curl operation by use of the following vector
identity (see Appendix A):

V XV xE=V(VeE)-V’E (1.17)

Since the divergence of E is zero, (1.17) can be used to reduce (1.16) to the vector
Helmbholtz equation:

(V24+K2E =0. (1.18)

The simplest form of the Laplacian operator VZoccurs in rectangular coordinates,
where V2E reduces to:

V2E = $V’E, 4+ §V2E, + £VE., (1.19)

where X, y, and Z are unit vectors.

We assume that the permittivity ¢ and the permeability u of the cavity are real.
Then nontrivial (nonzero) solutions of (1.14), (1.15), and (1.18) occur when k is equal
to one of an infinite number of discrete, real eigenvalues k, (where p = 1,2,3,...).
For each eigenvalue k,, there exists an electric field eigenvector E p. (There can be
degenerate cases where two or more eigenvectors have the same eigenvalue.) The pth
eigenvector satisfies:

(—V xVx +k)E, = (V*+k)E, =0 (inV), (1.20)
VeE,=0 (inV), (1.21)
ixE,=0 (on). (1.22)

For convenience (and without loss of generality), each electric field eigenvector can be
chosen to be real (E = Ep where * indicates complex conjugate).
The corresponding magnetic field eigenvector H, can be determined from (1.1)
and (1.8):
_ 1

H,=—V xE,, 1.23
P lCOp,Ll P ( )

where the angular frequency w), is given by:

(1.24)
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Hence, the pth normal mode of the resonant cavity has electric and magnetic fields,
E and H p»and a resonant frequency f,, (= w,/2m). The magnetic field is then pure
imaginary H, = ) and has the same phase throughout the cavity (as does E »)-

For the pth mode, the time-averaged values of the electric stored energy W, and
the magnetic stored energy W,,, are given by the following integrals over the cavity
volume [3]:

W, = %mﬁ Eav, (1.25)
Vv

Wop == ‘[J H,eH,dV (1.26)
|4

(The complex conjugate in (1.25) is not actually necessary when E is real, but it
increases the generality to cases where E is not chosen to be real.) In general, the
complex Poynting vector Sis given by [3]

S=ExH (1.27)
If we apply Poynting’s theorem to the pth mode, we obtain [6]:

jﬁg x H ) o 1S = 2i,(Wep—Woyp) (1.28)
S

Since 71 X E"p = O on S, the left side of (1.28) equals zero, and for each mode we have:
Wep = me = _p/Z (1.29)

Thus, the time-averaged electric and magnetic stored energies are equal to each other
and are equal to one half the total time-averaged stored energy W, at resonance.
However, since (1.23) shows that the electric and magnetic fields are 90 degrees out of
phase, the total energy in the cavity oscillates between electric and magnetic energy.

Up to now we have discussed only the properties of the fields and the energy of an
individual cavity mode. It is also important to know what the distribution of the
resonant frequencies is. In general, this depends on cavity shape, but the problem
has been examined from an asymptotic point of view for electrically large cavities.
Weyl [8] has studied this problem for general cavities, and Liu et al. [9] have studied
the problem in great detail for rectangular cavities. For a given value of wavenumber £,
the asymptotic expression (for large kV'?) for the number of modes N, with
eigenvalues less than or equal to k is [8, 9]:

Ny(k) = — (1.30)

The subscript s on N indicates that (1.30) is a smoothed approximation, whereas N
determined by mode counting has step discontinuities at each mode. It is usually more
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useful to know the number of modes as a function of frequency. In that case, (1.30)
can be written:

83V
33

Ni(f) =

(1.31)

where ¢ (= 1/,/ue) is the speed of light in the medium (usually free space). The 1
dependence in (1.31) indicates that the number of modes increases rapidly at high
frequencies.

The mode density Dj is also an important quantity because it is an indicator of the
separation between the modes. By differentiating (1.30), we obtain:

AN,(k) K2V
D, (k) = dli) 2

IR

(1.32)

The mode density as a function of frequency is obtained by differentiating (1.31):

dNs(f) _ 8nf*V

D) =S =

(1.33)

The f? dependence in (1.33) indicates that the mode density also increases rapidly for
high frequencies. The approximate frequency separation (in Hertz) between modes
is given by the reciprocal of (1.33).

1.3 WALL LOSSES

For cavities with real metal walls, the wall conductivity a,, is large, but finite. In this
case, the eigenvalues and resonant frequencies become complex. An exact calculation
of the cavity eigenvalues and eigenvectors is very difficult, but an adequate approxi-
mate treatment is possible for highly conducting walls. This allows us to obtain an
approximate expression for the cavity quality factor Q,, [1].

The exact expression for the time-average power P, dissipated in the walls can be
obtained by integrating the normal component of the real part of the Poynting vector
(defined in 1.27) over the cavity walls:

P, = jggRe(E,, x H,)ends (1.34)
S

For simplicity and to compare with earlier work [6], we assume that the cavity medium
and the cavity walls have free-space permeability i, as shown in Figure 1.2. Using
a vector identity, we can rewrite (1.34) as:

ds (1.35)
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FIGURE 1.2 Cavity wall with conductivity ay.
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In (1.35), we can approximate H » by its value for the case of the lossless cavity.
For i1 x E,, we can use the surface impedance boundary condition [10]:

-

x E,~nH, onS (1.36)

WpHo
~ [ 1.37
. F (1.37)

By substituting (1.36) and (1.37) into (1.35), we obtain:

,,_Rjég H, (1.38)

where:

where the surface resistance R; is the real part of #:

Jo, 1
R, = Re(n) = 210_0 (1.39)

The quality factor Q, for the pth mode is given by [1, 6]:

w
0y, =w,=2 (1.40)

Py

where W, (= 2W,,, = 2W,,) is the time-averaged total stored energy. Substituting
(1.26) and (1.38) into (1.40), we obtain:

o[ -
14
ﬁf
where H » is the magnetic field of the pth cavity mode without losses. An alternative to
(1.41) can be obtained by introducing the skin depth 6 [3]:

2m Ry

:Df

v
(1.41)

s

mi

(1.42)
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where 0 = /2/(wppy0,). In order to accurately evaluate (1.41) or (1.42), we need to

know the magnetic field distribution of the pth mode, and in general this depends on the

cavity shape and resonant frequency w,. This will be pursued in the next three chapters.
A rough approximation for (1.42) has been obtained by Borgnis and Papas [6]:

2 || av

2V
Qpg " = <o
S

_ (1.43)
5j§€ds o8

For highly conducting metals, such as copper, J is very small compared to the cavity
dimensions. Hence, the quality factor Q,, is very large. This is why metal cavities make
very effective resonators. Even though (1.43) is a very crude approximation to
(1.42)—it essentially assumes that H » is independent of position—it is actually
close to another approximation that has been obtained by two unrelated methods.
Either by taking a modal average about the resonant frequency for rectangular cavities
[9] or by using a plane-wave integral representation for stochastic fields in a multimode
cavity of arbitrary shape (see either Section 8.1 or [11]), the following expression for Q
has been obtained:

3V

s 1.44
208 (1.44)

Hence, (1.43) exceeds (1.44) by a factor of only g—‘. It is actually possible to improve
the approximation in (1.43) and bring it into agreement with (1.44) by imposing the
boundary conditions for H »onS. If we take the z axis normal to S at a given point, then
the normal component H, is zero on S. However, the x component is at a maximum
because it is a tangential component:

H,. =H,, onS (1.45)

We can make a similar argument for H,,. Hence, we can approximate the surface
integral in (1.42) as:

jﬁgﬁp «H,dS = 2|H,,[*S (1.46)
S

For the volume integral, we can assume that all three components of H » contribute
equally if the cavity is electrically large. However, since each rectangular component is
a standing wave with approximately a sine or cosine spatial dependence, then a factor
of % occurs from integrating a sine-squared or cosine-squared dependence over an
integer number of half cycles in V. Hence, the volume integral in (1.42) can be written:

I 3
”JHpodeV o E|H,f,,,7|2v (1.47)
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If we substitute (1.46) and (1.47) into (1.42), then we obtain:

L 2G/)HW'Y 3V

O = 5 2|Hpm|2S 268

(1.48)
which is in agreement with (1.44). Hence, the single-mode approximation, the modal
average for rectangular cavities [9], and the plane-wave integral representation for
stochastic fields in a multimode cavity [11] all yield the same approximate value for Q.
When cavities have no loss, the fields of a resonant mode oscillate forever in time
with no attenuation. However, with wall loss present, the fields and stored energy
decay with time after any excitation ceases. For example, the incremental change in the
time-averaged total stored energy in a time increment d¢ can be written:

dW, = —P,dt (1.49)

By substituting (1.40) into (1.49), we can derive the following first-order differential
equation:

—r = 2y, (1.50)

For the initial condition, W,|,_, = W, the solution to (1.50) is:
W, = Wyexp(—t/1,), fort>0 (1.51)

where 1, = 0,/w,. Hence, the energy decay time 7, of the pth mode is the time
required for the time-average energy to decay to 1/e of its initial value. Equations
(1.49)—(1.51) assume that the decay time 7, is large compared to the averaging period
1/f,. This is assured if Q,, is large.

By asimilar analysis when the energy is switched off at # = 0, we find that the fields
of the pth mode, E »and H »» also have an exponential decay, but that the decay time is
27,. This is equivalent to replacing the resonant frequency w), for a lossless cavity by
the complex frequency w, El— ﬁ corresponding to a lossy cavity [6]. We can use
this result to determine the bandWidth of the pth mode [6]. If E,, is any scalar
component of the electric field of the pth mode, then its time dependence E,,,,, () when
the mode is suddenly excited at t = 0 can be written:

~ . w,t
Ep(1) = Epmoexp (—za)pz— ; )U(t), (1.52)
20,

where U is the unit step function and E,,,,,¢ is independent of ¢. The Fourier transform

of (1.52) is:

Epno [ ‘
Epp(w) = 5_’”0Jexp {iwpt ;O—é + ia)t} dz, (1.53)
P
0
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which can be evaluated to yield:

E pmQ 1

Eme((/)) = (154)
2n Wp
(Wy—w) + ——
The absolute value of (1.54) is:
|Epmol©, 1
[Epm ()] = === (1.55)
P \/1 N [ZQp(w w,,)}
Wp
The maximum of (1.55) occurs at w = w,:
|Epm0|Qp
|Epm(0p)| = ——— (1.56)
pmATp Tw,

This maximum value is seen to be proportional to Q,,. The frequencies at which (1.55)
drops to % times its maximum value are called the half-power frequencies, and their
separation Aw (or Af in Hertz) is related to Q, by:

Aw Af 1
— 1.57
Wp fp Qp ( )

Hence Q, is a very important property of a cavity mode because it controls both the
maximum field amplitude and the mode bandwidth.

1.4 CAVITY EXCITATION

Cavities are typically excited by short monopoles, small loops, or apertures. Complete
theories for the excitation of modes in a cavity have been given by Kurokawa [12]
and Collin [13]. According to Helmholtz’s theorem, the electric field in the interior
of a volume V bounded by a closed surface S can be written as the sum of a gradient
and a curl as follows [13]:

E(F) = -V ”JVO'E L dVo—j& ieE (o) g,

4nR
%

N
VO X E 0) nXx E Vo
+V x JJJ dVy— ﬁ 4nR dSy y (158)
N

where R = |F—Fy| and 71 is the outward unit normal to the surface S. Equation (1.58)
gives the conditions for which the electric field E () can be either a purely solenoidal
or a purely irrotational field. A purely solenoidal (zero divergence) field must satisfy



CAVITY EXCITATION 13

the conditions Ve E = 0in Vand 7e E = 0 on S. In this case, there is no volume or
surface charge associated with the field. In the following chapters, we will see that
some modes are purely solenoidal in the volume V, but are not purely solenoidal
because the mode has surface charge (i7e E # 0on S). A purely irrotational or lamellar
field (zero curl) must satisfy the conditions VX E=01in Vand 7 x E =0 on S.
For a cavity with perfectly conducting walls, 77 x E = 0 on S. However, for a time
varying field, V x E # 0 in V. Hence, in general the electric field is not purely
solenoidal or irrotational.

For the modal expansion of the electric field, we follow Collin [13]. The solenoidal
modes E  satisfy (1.20)—(1.22). The irrotational modes F » are solutions of:

(V2+L)F,=0 (inV), (1.59)
VxF,=0 (inV), (1.60)
ixF,=0 (onS) (1.61)

These irrotational modes are generated from scalar functions @, that are solutions of:

(V2 +D)®, =0 (inV), (1.62)
®,=0 (onS), (1.63)
I,F, =V, (1.64)

The factor /, in (1.64) yields the desired normalization for F » when @, is normalized.
The E, modes are normalized so that:

mﬁp oE,dV =1 (1.65)

(The normalization in (1.65) can be made consistent with the energy relationship in
(1.25) if we set W = ¢.) The scalar functions @, are similarly normalized:

m D2V =1 (1.66)
1%

From (1.64), the normalization for the F » modes can be written:
m FpeF,dV = m 12V, s VO,dV (1.67)
v v

To evaluate the right side of (1.67), we use the vector identity for the divergence of
a scalar times a vector:

Ve (®,VD,) = B,V°D, + VD, s VD, (1.68)
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From (1.62), (1.63), (1.68), and the divergence theorem, we can evaluate the right side
of (1.67):

- . o0
m 2V D, e VD,V = m DpdV +1, 2% 5, 45 =1, (1.69)
\4 14 N

since the second integral on the right side is zero. Thus the F » modes are also

normalized:
m FpeF,dV =1 (1.70)
1%

We now turn to mode orthogonality. To show that the E » and F » modes are
orthogonal, we begin with the following vector identity:

Ve(FyxVxE)=VxF,oVxE,~F, eV xV xE, (1.71)
Substituting (1.20) and (1.60) into the right side of (1.71), we obtain:
Ve(FyxV xE,) = —k*F,*E, (1.72)

— —

Using the divergence theorem and the vector identity, A AeB x C = CeA x B,
in (1.72), we can obtain:

k2m oF dv_—ﬁ(ﬁxﬁq-vXEpds (1.73)
Vv N

Substituting (1.61) into (1.73), we obtain the desired orthogonality result:
k2m 4*E,dV =0 (1.74)
4

The modes E » are also mutually orthogonal. By dotting E ¢ into (1.20), reversing
the subscripts, subtracting the results, and integrating over V, we obtain:

(kg—k?) ”Jépoﬁq = ”J(E,,-v XV x E;~E,oV x V x E,)dV  (1.75)
Vv Vv

By using the vector identity, VeA xB=BeV x A—AeV x B, the right side of
(1.75) can be rewritten:

(k2—k) m oE,= ﬂjv- (E, x V x E,—E, x V x E,)dV (1.76)
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By using the divergence theorem and (1.22), we obtain the desired result:

(ko—k) mﬁpoﬁq = —ﬁg(fz X EpoV x Eg~it x E;oV x E,)dS =0 (1.77)
Vv

When kf] #* kz, the modes E »and E ¢ are orthogonal. For degenerate modes that have
the same eigenvalue (k, = k;), we can use the Gram-Schmidt orthogonalization
procedure to construct a new subset of orthogonal modes [13].

We now consider cavity excitation by an electric current J. The electric field E
satisfies (1.12). We can expand the electric field in terms of the E, and F, modes:

E =Y (AE,+B,F),), (1.78)
P

where A, and B, are constants to be determined. Substitution of (1.78) into (1.12)
yields

> [(ky—k*)A E,—K*B,F ) = o] (1.79)
P

If we scalar multiply (1.79) by E pand F » and integrate over the volume V, we obtain:

(k2 —k*)Ap = iop Jﬂ E,(7)eJ(7)dV’, (1.80)
—k’B, = iop m Fy (7)o J (7)dV’ (1.81)

Substitution of (1.80) and (1.81) into (1.78) gives the solution for E:

E(F) = iou m >

v P

Ey(PE,(7) _Fy(F)Fy ()

k2 k2 i

o J(F)av’ (1.82)

The summation quantity is the dyadic Green’s function G, for the electric field in the
cavity [2, 13]:

I2—k2 2

G 7) = 3 [E”(y)ﬁp(?/) L) (183)

p

The summation over integer p actually represents a triple sum over a triple set of
integers. The specific details will be given in the next three chapters.

Equations (1.82) and (1.83) have singularities at k> = kf,. However, if we include
wall loss as in Section 1.3, then we can replace k, by k,(1— TZQ,,) Then there are no

singularities forreal k (except at the source point, » = /, which will be discussed later).
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1.5 PERTURBATION THEORIES

When a cavity shape is deformed or the dielectric is inhomogeneous, the analysis is
generally difficult, and numerical methods are required. However, if the shape
deformation or the dielectric inhomogeneity is small, then perturbation techniques
[14] are applicable.

1.5.1 Small-Sample Perturbation of a Cavity

If a small sample of dielectric or magnetic material of volume V; is introduced into a
cavity (as in Figure 1.3), the resonant frequency w,, of the cavity is changed by a small
amount dw. If the sample has loss, then dw becomes complex and a damping factor
occurs (the cavity Q is changed). If the sample is properly positioned, the measurement
of the complex frequency change dw can be used to infer the complex permittivity or
permeablility of the sample [15].

If E, and H , are the unperturbed fields of the pth cavity mode and E and H | are the
Qerturbation fields due to the introduced sample, then the total perturbed fields E’ and
H' are:

E'=E,+E, (1.84)
H =H,+H, (1.85)

The (complex) frequency of oscillation is w, + dw. Outside the sample, the magnetic
and electric flux densities, B’ and D’, are given by:

B' =B, +B, = u(H,+H), (1.86)
Dlzl_jp—FBl ZS(EP+EI) (187)

FIGURE 1.3 Cavity with a small sample of material.
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Inside the sample, we have:

E/:MSH/:EP+EI :#ﬁp*’ﬂ[’cxm(ﬁp‘i‘ﬁl)_ﬁp]v (1.88)
D' = &eE =D, +D = ¢E, +e[i(E, + E1)—E)), (1.89)

where y, and & are the permeability and permittivity of the sample and «,, and x, are

the relative permeability and permittivity of the sample. Here we assume that the

sample is isotropic, but for anisotropic materials these quantities become tensors.
Throughout the cavity, the total fields satisfy Maxwell’s curl equations:

V x (E, +E) = i(w, +dw)(B, +B1), (1.90)
V x (H +H1)——z(cu,,+5w)( +D1) (1.91)
The unperturbed fields satisfy:
V x E, = io,B,, (1.92)
V x H, = —iw,D, (1.93)

Subtracting (1.92) from (1.90) and (1.93) from (1.91), we obtain:
V x E, = i[w, + (B, + B))), (1.94)

VxH = [copD1+5a)( + D, )] (1.95)
If we scalar multiply (1.94) by H » and (1.95) by E » and add the results, we obtain:

ﬁPOVXEI+Ep°VXﬁ1

— —

= —ia)p(Ep 051—31 OH,,)—ié(u(Ep 'Bp +Ep 051—ﬁ1,0§p—ﬁp °§1)
(1.96)

Using (1.92)—(1.95) and vector identities, we can write the right side of (1.96) in the
two following forms:

'VXE1+E ‘VXHI
7E1oV><H +H10V><E[, Ve(H,x E,+E,x H)) (1.97)
= —iw,(D,*E\~B,sH )~V e(H, x E\ +E, x H,)

If we substitute (1.94) and (1.95) into (1.97) and evaluate the result outside the sample,
we obtain:

i0w(¢E, E, +¢E,oE|—uH,oH,—puH,oH,) = Ve (H, x E\ +Eo x H)
(1.98)
The perturbation fields E| and H are not necessarily small everywhere in the cavity.
However, if (1.98) is integrated over the volume V—Vj, it is possible to neglect

contributions of terms involving E| and H, when the sample volume V is small.
Taking into account that £, and £| are normal to S, and using the divergence theorem
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and vector identities, we obtain:

—idw J (B,sH,~D,*E,)dV = J[(an X E1)eH,+ (it, x Hy)»E,JdZ, (1.99)
V-V z

where i1, is the outward unit normal from the sample and Z is the surface of the sample.
Comparing the right sides of (1.96) and (1.97), we obtain:

lwp(E10D —-B 0H1)+l(wp+5w)(BloH —E, 0D1)

1.100
+idw(H,B,~E,*D,) =V e(E, x H,+H, x E,) (1.100)

If we neglect dw in the factor (w, + dw), integration of (1.100) over the sample
volume yields:

= = - - —

idw J(é,,-H,,—f)p-E*,,)dm +iw, J(El eD,~E,*D,—B,*H,+B,«H,)dV,

The surface integrals in (1.99) and (1.101) are equal. Thus we can equate the left
sides of (1.99) and (1.101) to obtain:

= -

[(EyeD,~E,sD\)—(H,+B,—H,B,)|dV,

oo _ ¥ (1.102)

“r J(EP.DP_HP.BP)dV
v

Inside the sample, we can write the constitutive relations, (1.7) and (1.8), in more
convenient forms:

DIZSQE—f—ﬁ and EIZHOFIl—FMOM, (1103)

where ¢y and y, are the permittivity and permeability of free space, P is the electric
polarization, and M is the magnetic polarization. For convenience, we will assume
in the rest of this section that the cavity permittivity ¢ = gy and the cavity permeability
U = . If we substitute (1.103) into (1.102), we obtain:

" Jﬁp.mv_ﬁ J E,BdV,

5 ,
oL i (1.104)
“r J(E)'Dﬁ_ﬁp’ép)dv

Vv

If the sample volume V is very small, E » and H » are nearly constant throughout
the sample volume, and (1.104) can be approximated as:

o0 _ _poHyoPu=E, P, (1.105)
O J@p.ﬁ,,_ﬁp.ﬁ,,)dv
\4
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where P, and B,, are the quasi-static electric and magnetic dipole moments induced
in the sample by the cavity modal fields (E,, H ).
For a spherical sample of radius a, the induced dipole moments are [15, 16]:

B, =4 — P 1.106

naey w+2 Ey(P), ( )

B —dnadd L py, (1.107)
KS/?1+2

where P is the location of the center of the sphere. If we substitute (1.25), (1.26), (1.29),
(1.106), (1.107) into (1.05), we obtain the following resonant frequency shift:

ow 2na’ Kgn—1
— ==l |y (P) + 0

2
1.108
o= [P 1) (1.108)

Se+2

Equation (1.108) is the desired mathematical result, which can be applied to a
number of measurements. Consider first the case where the spherical sample is
located at a point where the electric field E »(P) is zero. If the relative permeability
Kgyn Of the sample is known, then (1.108) can be used to determine the square of the
magnetic field at P:

., S W 2
[, (P = = =25t + (1.109)
p 210 Uy Kgp—1

If the magnitude of the square of the magnetic field at P is known (measured),
then (1.108) can be used to determine ig,,:

na’ ow
W tio|H (P )2_w_
K = 2 = r (1.110)
2na |FI( )| +5w
W Ho p

If dw is real, then Ky, is real and the sample has no magnetic loss. However, if dw
is complex, then xg, is complex and the sample does have magnetic loss. The
imaginary part of the resonant frequency is related to the cavity Q from the expression
for acomplex resonant frequency w, (1— é) Hence the change in the imaginary part of
the resonant frequency is determined from the change in Q. This is typically
determined by measuring the half-power bandwidth, which is given by (1.57).

In the analogous case, the spherical sample is located at a point where the
magnetic field H »(P) is zero. If the relative permittivity x. of the sample is known,
then (1.108) can be used to determine the square of the electric field at P:

S oo W Ke+2
E,(P)* = -—— s 1.111
|E,(P)] P TP ( )
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This method has been used to map the electric field along the axis of a linear
accelerator [15]. If the magnitude of the square of the electric field at P is known
(measured), then (1.108) can be used to determine xg,:

ma® dw
7{’0|EP(P) z_w_
Ke = 27— £ (1.112)
P B+ 22
w .

Similar to (1.110), dw can be either real (lossless dielectric sample) or complex
(lossy dielectric sample).

1.5.2 Small Deformation of Cavity Wall

Here we consider the change in the resonant frequency of a cavity mode due to a small
deformation in the cavity wall. This case is useful in determining the effects of small
accidental deformations or intentional displacements of pistons or membranes on the
resonant frequencies.

Our derivation is similar to that of Argence and Kahan [7], but with somewhat
different notation. We first write Maxwell’s equation for the curl of E » and the complex
conjugate for Maxwell’s equation for the curl of H p for the pth mode of the
unperturbed cavity:

V x E, = iopuH,, (1.113)

V x H, = —iwyE,, (1.114)

where the electric current term is omitted in (1.114) for this source-free case. If
we scalar multiply (1.113) by H;, and (1.114) by E, and take the difference, we
obtain:

— - - = - = - =

= —iwy(uH,*H,—¢E, s E ) (1.115)

If we integrate (1.115) over the volume V, the two terms on the right side can be
written in terms of the time-averaged magnetic and electric energies from (1.25) and
(1.26). The left side of (1.115) can be converted to a divergence via a vector identity
and converted to a surface integral over S by use of the divergence theorem. The
result is:

- jﬁ((ﬁp x H ) o idS = 2ico(Wp—Wep) (1.116)
S
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FIGURE 1.4 Cavity with a small deformation 6V in the cavity wall.

Equation (1.116) can be written in the form:

@, = —jﬁ((ﬁp x H ) e hdS = 2iw JJJTpdV, (1.117)
S v
where:
'u — = & = =
Tp :EH],.Hp*EEP‘Ep, (1118)

which is the difference between the time-average magnetic and electric energy
densities.

We consider now a small deformation in the cavity wall, as shown in Figure 1.4. We
write the perturbed electric field E' and magnetic field H'asin (1.84) and (1.85). The
resonant frequency of the deformed cavity is @, + dw. The analogy to (1.117) for the
perturbed cavity is:

O = B, + 50 = 2i(ey + d0) m (t, + 60)dV (1.119)
V4oV

Subtracting (1.117) from (1.119) and neglecting second-order terms, we obtain:

5O = 2im, m otdV +2ida Jﬂ wdV + 2i, m wdV (1.120)
Vv Vv

ov
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The perturbed fields satisfy the following Maxwell curl equations, which are equiva-
lent to (1.90) and (1.91):

V x (H,+H,) = ie(w, + w)(E, + E,), (1.121)

— —

V x (E,+E\) = —in(w, +dw)(H, +H,) (1.122)

By subtracting the complex conjugate of (1.114) from (1.121) and (1.113) from
(1.122), we obtain:

VxH = is(wpﬁl +I_fp5a)), (1.123)
V x Ey = —ip(w,H, + H,dw) (1.124)

We can write 7’ in a manner analogous to (1.118):

— — — — 'u - - = =
o =B, ) (4 -5 By + ) e (B, +E)) (1.125)

=

If we subtract (1.118) from (1.125) and ignore second order terms (such as H oH 1 ),
we obtain:
ot=1-1,=

(HyoH,+H,oH )~ (E,*E, + E,*E}) (1.126)

=
NS S]

By substituting the curl equations from this section into (1.126) and using a vector
identity, we can multiply the result by 2iw,to obtain:

2iw,dt = iV eIm(E, x Hy) + iedwE,E, (1.127)
If we substitute (1.127) into (1.120), we obtain:

50 — 2ij§([lm(ﬁ; « 8F11)] * 1S + ida JJJ(,LF],,-I?; +eEy e E))AV
oY (1.128)
+iw, J”(qu *H,—¢E,*E,)dV
%
Because the cavity walls are assumed to be perfectly conducting, the tangential
component of the electric field is zero and d® = 0. Similarly:

ﬁ[lm(ﬁ; x Hy)endV =0 (1.129)
S
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By using 6@ = 0 and (1.129) in (1.128), we obtain the desired result for the relative
shift in the resonant frequency of the deformed cavity:

d N
o _ v (1.130)
m(ﬂH,, «H,+¢E,*E,)dV

Equation (1.130) can be written in a simpler form if we define time-average electric
and magnetic energy densities for the pth mode:

& >

wp" = EEP.E; and wpm = ﬁp'ﬁp (1131)

=

If we substitute (1.131) into (1.130), we can simplify the result to:

o —1 _ _
w—p = WPIJJ(WPm_Wpe)dV
v (1.132)

(Wpe—Wpm)OV
W,

~
~

In the second result in (1.132), w,, and W, are the time-averaged electric and
magnetic energies at the volume deformation. Equation (1.132) shows thatif the cavity
is compressed (6V < 0) in a region where Wy, > Wy, then 6 > 0 and the resonant
frequency is increased. However, if 6V < 0 and wp, < W, then dw < 0 and the
resonant frequency is decreased. For dV positive, the results are reversed. The result in
(1.132) is identical to that given by Borgnis and Papas [6].

PROBLEMS

1-1 Derive (1.3) from (1.2) and (1.5). This shows that the continuity equation can
be derived from two of Maxwell’s equations.

1-2  Show that (1.17) is satisfied in rectangular coordinates where E =XE.+
VE, + ZE.. Combine that result with (1.15) and (1.16) to derive the vector
Helmholtz equation in (1.18).

1-3 Apply the boundary condition, 7 X E], =0onS, to (1.28) to show that
Wep = Wyyp as in (1.29). Hint: use the vector identity (A19). Is the boundary
condition, 7e H = 0 on S, sufficient to derive the same result?

1-4 Using the smoothed approximations in (1.31) and (1.33), determine the mode
number and mode density for an empty cavity of volume 1 m> at a frequency of
1 GHz. What is the mode separation?
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1-5
1-6

1-8

1-9

1-10

INTRODUCTION

Show that the 1/e decay time of the fields of the pth mode is 2Q,/w).

In (1.82), show that the coupling of the current source JtoF p is zero if
V eJ = 0 and the normal component of J is zero at the boundary of the source
region. Hint: use the divergence theorem.

Does a small loop current, J= (i) [[)—‘; 0(p—py), satisfy the current conditions for
problem 1-6?

Does a short dipole current, J = Ipd(x)d(y)U (t—|z
conditions for problem 1-6?

), satisfy the current

Consider a small lossless dielectric sphere, Re(ky) > 1,Im(x,.) =0,
and kg, = 0, inserted in a lossless cavity. From (108), what is the sign of the
resonant frequency shift dw? What is the physical explanation for this sign?

Consider a small lossy dielectric sphere, Re (k) > 1,Im(ky) > 0, and g,
= 0, inserted in a lossless cavity. From (108), what is the sign of the imaginary
part of the frequency shift Im(dw)? What is the physical explanation for this
sign?



