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CHAPTER 1

Introduction

The cavities discussed in Part I consist of a region of finite extent bounded by

conductingwalls and filled with a uniform dielectric (usually free space). After a brief

discussion of fundamentals of electromagnetic theory, the general properties of cavity

modes and their excitation will be given in this chapter. The remaining three chapters

of Part I give detailed expressions for the modal resonant frequencies and field

structures, quality (Q) factor [1], and Dyadic Green’s Functions [2] for commonly

used cavities of separable geometries (rectangular cavity in Chapter 2, circular

cylindrical cavity in Chapter 3, and spherical cavity in Chapter 4). The International

System of Units (SI) is used throughout.

1.1 MAXWELL’S EQUATIONS

Since this book deals almost exclusively with time-harmonic fields, the field and

source quantities have a timevariation of exp(�iot), where the angular frequencyo is

given by o ¼ 2pf . The time dependence is suppressed throughout. The differential

forms ofMaxwell’s equations are most useful in modal analysis of cavity fields. If we

follow Tai [2], the three independent Maxwell equations are:

r�~E ¼ io~B; ð1:1Þ
r � ~H ¼~J�io~D; ð1:2Þ

r .~J ¼ ior; ð1:3Þ

where ~E is the electric field strength (volts/meter), ~B is the magnetic flux density

(teslas),~H is themagnetic field strength (amperes/meter),~D is the electric flux density

(coulombs/meter2), ~J is the electric current density (amperes/meter2), and r is the

electric charge density (coulombs/meter3). Equation (1.1) is the differential form of

Faraday’s law, (1.2) is the differential form of the Ampere-Maxwell law, and (1.3) is

the equation of continuity.
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Two dependent Maxwell equations can be obtained from (1.1)–(1.3). Taking the

divergence of (1.1) yields:

r .~B ¼ 0 ð1:4Þ
Taking the divergence of (1.2) and substituting (1.3) into that result yields

r .~D ¼ r ð1:5Þ
Equation (1.4) is the differential form of Gauss’s magnetic law, and (1.5) is the

differential form of Gauss’s electric law. An alternative point of view is to consider

(1.1), (1.2), and (1.5) as independent and (1.3) and (1.4) as dependent, but this does not

change anyof the equations. Sometimes amagnetic current is added to the right side of

(1.1) and a magnetic charge is added to the right side of (1.4) in order to introduce

duality [3] into Maxwell’s equations. However, we choose not to do so.

The integral or time dependent forms of (1.1)–(1.5) can be found in numerous

textbooks, such as [4]. The vector phasors, for example~E, in (1.1)–(1.5) are complex

quantities that are functions of position~r and angular frequencyo, but this dependence
will be omitted except where required for clarity. The time and space dependence of

the real field quantities, for example electric field~E , can be obtained from the vector

phasor quantity by the following operation:

~Eð~r; tÞ ¼
ffiffiffi
2

p
Re½~Eð~r;oÞexpð�iotÞ�; ð1:6Þ

where Re represents the real part. The introduction of the
ffiffiffi
2

p
factor in (1.6) follows

Harrington’s notation [3] and eliminates a 1/2 factor in quadratic quantities, such as

power density and energy density. It also means that the vector phasor quantities

represent root-mean-square (RMS) values rather than peak values.

In order to solveMaxwell’s equations, we needmore information in the form of the

constitutive relations. For isotropic media, the constitutive relations are written:

~D ¼ e~E; ð1:7Þ
~B ¼ m~H ; ð1:8Þ
~J ¼ s~E; ð1:9Þ

where e is the permittivity (farads permeter),m is the permeability (henrys/meter), and

s is the conductivity (siemens/meter). In general, e, m, and s are frequency dependent

and complex. Actually, there are more general constitutive relations [5] than those

shown in (1.7)–(1.9), but we will not require them.

In many problems,~J is treated as a source current density rather than an induced

current density, and the problem is to determine~E and~H subject to specified boundary

conditions. In this case (1.1) and (1.2) can be written:

r�~E ¼ iom~H ; ð1:10Þ
r � ~H ¼~J�ioe~E ð1:11Þ

Equations (1.10) and (1.11) are two vector equations in two vector unknowns

(~E and ~H ) or equivalently six scalar equations in six scalar unknowns. By eliminating
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either ~H in (1.10) or ~E in (1.11), we can obtain inhomogeneous vector wave

equations:

r�r�~E�k2~E ¼ iom~J ; ð1:12Þ
r �r� ~H�k2~H ¼ r�~J ; ð1:13Þ

where k ¼ o
ffiffiffiffiffi
me

p
. Chapters 2 through 4 will contain sections where dyadic Green’s

functions provide compact solutions to (1.12) and (1.13) and satisfy the boundary

conditions at the cavity walls.

1.2 EMPTY CAVITY MODES

Consider a simply connected cavity of arbitrary shape with perfectly conducting

electric walls as shown in Figure 1.1. The interior of the cavity is filled with a

homogeneous dielectric of permittivity e and permeability m. The cavity has volumeV

and surface area S. Because thewalls have perfect electric conductivity, the tangential

electric field at the wall surface is zero:

n̂�~E ¼ 0; ð1:14Þ

where n̂ is the unit normal directed outward from the cavity. Because the cavity is

source free and the permittivity is independent of position, the divergence of the

electric field is zero:

r .~E ¼ 0 ð1:15Þ

ε, μ

V

n

FIGURE 1.1 Empty cavity of volume V with perfectly conducting walls.
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If we set the current~J equal to zero in (1.12), we obtain the homogeneous vector

wave equation:

r�r�~E�k2~E ¼ 0 ð1:16Þ

Wecanwork directlywith (1.16) in determining the cavitymodes, but it is simpler and

more common [6, 7] to replace the double curl operation by use of the following vector

identity (see Appendix A):

r�r�~E ¼ rðr .~EÞ�r2~E ð1:17Þ

Since the divergence of ~E is zero, (1.17) can be used to reduce (1.16) to the vector

Helmholtz equation:

ðr2 þ k2Þ~E ¼ 0: ð1:18Þ

The simplest form of the Laplacian operator r2occurs in rectangular coordinates,

where r2~E reduces to:

r2~E ¼ x̂r2Ex þ ŷr2Ey þ ẑr2Ez; ð1:19Þ

where x̂, ŷ, and ẑ are unit vectors.

We assume that the permittivity e and the permeability m of the cavity are real.

Then nontrivial (nonzero) solutions of (1.14), (1.15), and (1.18) occur when k is equal

to one of an infinite number of discrete, real eigenvalues kp (where p ¼ 1; 2; 3; . . .).
For each eigenvalue kp, there exists an electric field eigenvector ~Ep. (There can be

degenerate cases where two or more eigenvectors have the same eigenvalue.) The pth

eigenvector satisfies:

ð�r �r� þ k2pÞ~Ep ¼ ðr2 þ k2pÞ~Ep ¼ 0 ðin VÞ; ð1:20Þ
r .~Ep ¼ 0 ðin VÞ; ð1:21Þ
n̂�~Ep ¼ 0 ðon SÞ: ð1:22Þ

For convenience (andwithout loss of generality), each electric field eigenvector can be

chosen to be real (~Ep ¼ ~E
*

p, where
� indicates complex conjugate).

The corresponding magnetic field eigenvector ~Hp can be determined from (1.1)

and (1.8):

~Hp ¼ 1

iopm
r�~Ep; ð1:23Þ

where the angular frequency op is given by:

op ¼ kpffiffiffiffiffi
me

p ð1:24Þ
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Hence, the pth normal mode of the resonant cavity has electric and magnetic fields,
~Ep and ~Hp, and a resonant frequency fp (¼ op/2p). The magnetic field is then pure

imaginary (~Hp ¼ �~H
*

p) and has the same phase throughout the cavity (as does ~Ep).

For the pth mode, the time-averaged values of the electric stored energyWep and

the magnetic stored energyWmp are given by the following integrals over the cavity

volume [3]:

Wep ¼ e
2

ððð
V

~Ep .~E
*

pdV ; ð1:25Þ

Wmp ¼ m
2

ððð
V

~Hp .~H
*

pdV ð1:26Þ

(The complex conjugate in (1.25) is not actually necessary when ~Ep is real, but it

increases the generality to cases where ~Ep is not chosen to be real.) In general, the

complex Poynting vector~S is given by [3]:

~S ¼ ~E � ~H
* ð1:27Þ

If we apply Poynting’s theorem to the pth mode, we obtain [6]:

%
S

ð~Ep � ~H
*

pÞ . n̂dS ¼ 2iopðWep�WmpÞ ð1:28Þ

Since n̂�~Ep ¼ 0 on S, the left side of (1.28) equals zero, and for each modewe have:

Wep ¼ Wmp ¼ Wp=2 ð1:29Þ
Thus, the time-averaged electric and magnetic stored energies are equal to each other

and are equal to one half the total time-averaged stored energy Wp at resonance.

However, since (1.23) shows that the electric andmagnetic fields are 90 degrees out of

phase, the total energy in the cavity oscillates between electric and magnetic energy.

Up to now we have discussed only the properties of the fields and the energy of an

individual cavity mode. It is also important to know what the distribution of the

resonant frequencies is. In general, this depends on cavity shape, but the problem

has been examined from an asymptotic point of view for electrically large cavities.

Weyl [8] has studied this problem for general cavities, and Liu et al. [9] have studied

the problem in great detail for rectangular cavities. For a givenvalue ofwavenumberk,

the asymptotic expression (for large kV1/3) for the number of modes Ns with

eigenvalues less than or equal to k is [8, 9]:

NsðkÞ ffi k3V

3p2
ð1:30Þ

The subscript s on N indicates that (1.30) is a smoothed approximation, whereas N

determined bymode counting has step discontinuities at eachmode. It is usuallymore
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useful to know the number of modes as a function of frequency. In that case, (1.30)

can be written:

Nsðf Þ ffi 8pf 3V
3c3

ð1:31Þ

where c (¼ 1=
ffiffiffiffiffi
me

p
) is the speed of light in the medium (usually free space). The f 3

dependence in (1.31) indicates that the number of modes increases rapidly at high

frequencies.

The mode density Ds is also an important quantity because it is an indicator of the

separation between the modes. By differentiating (1.30), we obtain:

DsðkÞ ¼ dNsðkÞ
dk

ffi k2V

p2
ð1:32Þ

The mode density as a function of frequency is obtained by differentiating (1.31):

Dsðf Þ ¼ dNsðf Þ
df

ffi 8pf 2V
c3

ð1:33Þ

The f 2 dependence in (1.33) indicates that the mode density also increases rapidly for

high frequencies. The approximate frequency separation (in Hertz) between modes

is given by the reciprocal of (1.33).

1.3 WALL LOSSES

For cavities with real metal walls, the wall conductivity sw is large, but finite. In this

case, the eigenvalues and resonant frequencies become complex. An exact calculation

of the cavity eigenvalues and eigenvectors is very difficult, but an adequate approxi-

mate treatment is possible for highly conducting walls. This allows us to obtain an

approximate expression for the cavity quality factor Qp [1].

The exact expression for the time-average power �Pp dissipated in the walls can be

obtained by integrating the normal component of the real part of the Poynting vector

(defined in 1.27) over the cavity walls:

�Pp ¼ %
S

Reð~Ep � ~H
*

pÞ . n̂dS ð1:34Þ

For simplicity and to comparewith earlierwork [6],we assume that the cavitymedium

and the cavity walls have free-space permeability m0, as shown in Figure 1.2. Using

a vector identity, we can rewrite (1.34) as:

�Pp ¼ %
S

Re½ðn̂�~EpÞ .~H *

p�dS ð1:35Þ
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In (1.35), we can approximate ~Hp by its value for the case of the lossless cavity.

For n̂�~Ep, we can use the surface impedance boundary condition [10]:

n̂�~Ep ffi Z~Hp on S ð1:36Þ
where:

Z ffi
ffiffiffiffiffiffiffiffiffiffi
opm0
isw

r
ð1:37Þ

By substituting (1.36) and (1.37) into (1.35), we obtain:

�Pp ffi Rs %
S

~Hp .~H
*

pdS ð1:38Þ

where the surface resistance Rs is the real part of Z:

Rs ffi ReðZÞ ffi
ffiffiffiffiffiffiffiffiffiffi
opm0
2sw

r
ð1:39Þ

The quality factor Qp for the pth mode is given by [1, 6]:

Qp ¼ op

Wp

�Pp

ð1:40Þ

where Wp (¼ 2Wmp ¼ 2Wep) is the time-averaged total stored energy. Substituting

(1.26) and (1.38) into (1.40), we obtain:

Qp ffi op

m0

ððð
V

~Hp .~H
*

pdV

Rs %
S

~Hp .~H
*

pdS

ð1:41Þ

where~Hp is themagnetic field of the pth cavitymodewithout losses. An alternative to

(1.41) can be obtained by introducing the skin depth d [3]:

Qp ffi
2

ððð
V

~Hp .~H
*

pdV

d%
S

~Hp .~H
*

pdS

ð1:42Þ

εo, μo

σw

Cavity

Wall
n

FIGURE 1.2 Cavity wall with conductivity sW.
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where d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðopm0swÞ

p
. In order to accurately evaluate (1.41) or (1.42), we need to

know themagneticfielddistributionof thepthmode, and ingeneral this dependson the

cavity shape and resonant frequencyop. Thiswill be pursued in the next three chapters.

A rough approximation for (1.42) has been obtained by Borgnis and Papas [6]:

Qp ffi
2

ððð
V

dV

d%
S

dS

¼ 2V

dS
ð1:43Þ

For highly conducting metals, such as copper, d is very small compared to the cavity

dimensions.Hence, the quality factorQp is very large. This iswhymetal cavitiesmake

very effective resonators. Even though (1.43) is a very crude approximation to

(1.42)—it essentially assumes that ~Hp is independent of position—it is actually

close to another approximation that has been obtained by two unrelated methods.

Either by taking amodal average about the resonant frequency for rectangular cavities

[9]or byusingaplane-wave integral representation for stochasticfields in amultimode

cavity of arbitrary shape (see either Section8.1 or [11]), the following expression forQ

has been obtained:

Q ffi 3V

2dS
ð1:44Þ

Hence, (1.43) exceeds (1.44) by a factor of only 4
3
. It is actually possible to improve

the approximation in (1.43) and bring it into agreement with (1.44) by imposing the

boundary conditions for~Hp on S. If we take the z axis normal to S at a given point, then

the normal component Hpz is zero on S. However, the x component is at a maximum

because it is a tangential component:

Hpx ¼ Hpm on S ð1:45Þ

We can make a similar argument for Hpy. Hence, we can approximate the surface

integral in (1.42) as:

%
S

~Hp .~H
*

pdS ffi 2jHpmj2S ð1:46Þ

For the volume integral, we can assume that all three components of ~Hp contribute

equally if the cavity is electrically large.However, since each rectangular component is

a standing wave with approximately a sine or cosine spatial dependence, then a factor

of 1
2
occurs from integrating a sine-squared or cosine-squared dependence over an

integer number of half cycles inV. Hence, the volume integral in (1.42) can bewritten:ððð
V

~Hp .~H
*

pdV ffi 3

2
jHpmj2V ð1:47Þ
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If we substitute (1.46) and (1.47) into (1.42), then we obtain:

Qp ffi 2

d
ð3=2ÞjHpmj2V
2jHpmj2S

¼ 3V

2dS
ð1:48Þ

which is in agreement with (1.44). Hence, the single-mode approximation, the modal

average for rectangular cavities [9], and the plane-wave integral representation for

stochastic fields in amultimode cavity [11] all yield the same approximate value forQ.

When cavities have no loss, the fields of a resonant mode oscillate forever in time

with no attenuation. However, with wall loss present, the fields and stored energy

decaywith timeafter anyexcitationceases.For example, the incremental change in the

time-averaged total stored energy in a time increment dt can be written:

dWp ¼ ��Ppdt ð1:49Þ

By substituting (1.40) into (1.49), we can derive the following first-order differential

equation:

dWp

dt
¼ �op

Qp

Wp ð1:50Þ

For the initial condition, Wpjt¼0 ¼ Wp0, the solution to (1.50) is:

Wp ¼ Wp0expð�t=tpÞ; for t � 0 ð1:51Þ

where tp ¼ Qp=op. Hence, the energy decay time tp of the pth mode is the time

required for the time-average energy to decay to 1/e of its initial value. Equations

(1.49)–(1.51) assume that the decay time tp is large compared to the averaging period

1/fp. This is assured if Qp is large.

By a similar analysiswhen the energy is switched off at t ¼ 0,we find that the fields

of the pth mode,~Ep and ~Hp, also have an exponential decay, but that the decay time is

2tp. This is equivalent to replacing the resonant frequencyop for a lossless cavity by

the complex frequency op 1� i
2Qp

� �
corresponding to a lossy cavity [6]. We can use

this result to determine the bandwidth of the pth mode [6]. If Epm is any scalar

component of the electric field of the pthmode, then its time dependence eEpmðtÞwhen
the mode is suddenly excited at t ¼ 0 can be written:

eEpmðtÞ ¼ Epm0exp �iopt� opt

2Qp

� �
UðtÞ; ð1:52Þ

where U is the unit step function and Epm0 is independent of t. The Fourier transform

of (1.52) is:

EpmðoÞ ¼ Epm0

2p

ð¥
0

exp �iopt� opt

2Qp

þ iot
� �

dt; ð1:53Þ
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which can be evaluated to yield:

Epm0ðoÞ ¼ Epm0

2p
1

iðop�oÞþ op

2Qp

ð1:54Þ

The absolute value of (1.54) is:

jEpmðoÞj ¼ jEpm0jQp

pop

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Qpðo�opÞ

op

� �2s ð1:55Þ

The maximum of (1.55) occurs at o ¼ op:

jEpmðopÞj ¼ jEpm0jQp

pop

ð1:56Þ

This maximum value is seen to be proportional toQp. The frequencies at which (1.55)

drops to 1ffiffi
2

p times its maximum value are called the half-power frequencies, and their

separation Do (or Df in Hertz) is related to Qp by:

Do
op

¼ Df
fp

¼ 1

Qp

ð1:57Þ

Hence Qp is a very important property of a cavity mode because it controls both the

maximum field amplitude and the mode bandwidth.

1.4 CAVITY EXCITATION

Cavities are typically excited by shortmonopoles, small loops, or apertures. Complete

theories for the excitation of modes in a cavity have been given by Kurokawa [12]

and Collin [13]. According to Helmholtz’s theorem, the electric field in the interior

of a volume V bounded by a closed surface S can be written as the sum of a gradient

and a curl as follows [13]:

~Eð~rÞ ¼ �r
ððð
V

r0 .~Eð~r0Þ
4pR

dV0�%
S

n̂ .~Eð~r0Þ
4pR

dS0

24 35
þr�

ððð
V

r0 �~Eð~r0Þ
4pR

dV0�%
S

n̂�~Eð~r0Þ
4pR

dS0

24 35; ð1:58Þ

where R ¼ j~r�~r0j and n̂ is the outward unit normal to the surface S. Equation (1.58)

gives the conditions for which the electric field~Eð~rÞ can be either a purely solenoidal
or a purely irrotational field. A purely solenoidal (zero divergence) field must satisfy
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the conditions r .~E ¼ 0 in V and n̂ .~E ¼ 0 on S. In this case, there is no volume or

surface charge associated with the field. In the following chapters, we will see that

some modes are purely solenoidal in the volume V, but are not purely solenoidal

because themode has surface charge (n̂ .~E 6¼ 0 on S). A purely irrotational or lamellar

field (zero curl) must satisfy the conditions r� E ¼ 0 in V and n̂� E ¼ 0 on S.

For a cavity with perfectly conducting walls, n̂� E ¼ 0 on S. However, for a time

varying field, r� E 6¼ 0 in V. Hence, in general the electric field is not purely

solenoidal or irrotational.

For themodal expansion of the electric field, we followCollin [13]. The solenoidal

modes ~Ep satisfy (1.20)–(1.22). The irrotational modes ~Fp are solutions of:

ðr2 þ l2pÞ~Fp ¼ 0 ðin VÞ; ð1:59Þ
r �~Fp ¼ 0 ðin VÞ; ð1:60Þ
n̂�~Fp ¼ 0 ðon SÞ ð1:61Þ

These irrotational modes are generated from scalar functionsFp that are solutions of:

ðr2 þ l2pÞFp ¼ 0 ðin VÞ; ð1:62Þ
Fp ¼ 0 ðon SÞ; ð1:63Þ
lp~Fp ¼ rFp ð1:64Þ

The factor lp in (1.64) yields the desired normalization for~Fp whenFp is normalized.

The ~Ep modes are normalized so that:ððð
V

~Ep .~EpdV ¼ 1 ð1:65Þ

(The normalization in (1.65) can be made consistent with the energy relationship in

(1.25) if we set W ¼ e.) The scalar functions Fp are similarly normalized:ððð
V

F2
pdV ¼ 1 ð1:66Þ

From (1.64), the normalization for the ~Fp modes can be written:ððð
V

~Fp .~FpdV ¼
ððð
V

l�2
p rFp .rFpdV ð1:67Þ

To evaluate the right side of (1.67), we use the vector identity for the divergence of

a scalar times a vector:

r . ðFprFpÞ ¼ Fpr2Fp þrFp .rFp ð1:68Þ
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From (1.62), (1.63), (1.68), and the divergence theorem, we can evaluate the right side

of (1.67): ððð
V

l�2
p rFp .rFpdV ¼

ððð
V

F2
pdV þ l�2

p %
S

Fp

qFp

qn
dS ¼ 1; ð1:69Þ

since the second integral on the right side is zero. Thus the ~Fp modes are also

normalized: ððð
V

~Fp .~FpdV ¼ 1 ð1:70Þ

We now turn to mode orthogonality. To show that the ~Ep and ~Fp modes are

orthogonal, we begin with the following vector identity:

r . ð~Fq �r�~EpÞ ¼ r �~Fq .r�~Ep�~Fq .r�r�~Ep ð1:71Þ

Substituting (1.20) and (1.60) into the right side of (1.71), we obtain:

r . ð~Fq �r�~EpÞ ¼ �k2p
~Fq .~Ep ð1:72Þ

Using the divergence theorem and the vector identity, ~A .~B � ~C ¼ ~C .~A �~B,
in (1.72), we can obtain:

k2p

ððð
V

~Fq .~EpdV ¼ �%
S

n̂�~Fq .r�~EpdS ð1:73Þ

Substituting (1.61) into (1.73), we obtain the desired orthogonality result:

k2p

ððð
V

~Fq .~EpdV ¼ 0 ð1:74Þ

The modes ~Ep are also mutually orthogonal. By dotting ~Eq into (1.20), reversing

the subscripts, subtracting the results, and integrating over V, we obtain:

ðk2q�k2pÞ
ððð
V

~Ep .~Eq ¼
ððð
V

ð~Ep .r�r�~Eq�~Eq .r�r�~EpÞdV ð1:75Þ

By using the vector identity, r .~A �~B ¼ ~B .r�~A�~A .r�~B, the right side of

(1.75) can be rewritten:

ðk2q�k2pÞ
ððð
V

~Ep .~Eq ¼
ððð
V

r . ð~Eq �r�~Ep�~Ep �r�~EqÞdV ð1:76Þ
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By using the divergence theorem and (1.22), we obtain the desired result:

ðk2q�k2pÞ
ððð
V

~Ep .~Eq ¼ �%
S

ðn̂�~Ep .r�~Eq�n̂�~Eq .r�~EpÞdS ¼ 0 ð1:77Þ

When k2q 6¼ k2p, the modes~Ep and~Eq are orthogonal. For degenerate modes that have

the same eigenvalue (kp ¼ kq), we can use the Gram-Schmidt orthogonalization

procedure to construct a new subset of orthogonal modes [13].

We now consider cavity excitation by an electric current~J . The electric field ~E
satisfies (1.12). We can expand the electric field in terms of the ~Ep and ~Fp modes:

~E ¼
X
p

ðAp
~Ep þBp

~FpÞ; ð1:78Þ

where Ap and Bp are constants to be determined. Substitution of (1.78) into (1.12)

yields X
p

½ðk2p�k2ÞAp
~Ep�k2Bp

~Fp� ¼ iom~J ð1:79Þ

If we scalar multiply (1.79) by~Ep and~Fp and integrate over the volume V, we obtain:

ðk2p�k2ÞAp ¼ iom
ððð
V

~Epð~r0Þ .~Jð~r0ÞdV 0; ð1:80Þ

�k2Bp ¼ iom
ððð
V

~Fpð~r0Þ .~Jð~r0ÞdV 0 ð1:81Þ

Substitution of (1.80) and (1.81) into (1.78) gives the solution for ~E:

~Eð~rÞ ¼ iom
ððð
V

X
p

~Epð~rÞ~Epð~r0Þ
k2p�k2

�
~Fpð~rÞ~Fpð~r0Þ

k2

" #
.~Jð~r0ÞdV 0 ð1:82Þ

The summation quantity is the dyadic Green’s functionG
$

e for the electric field in the

cavity [2, 13]:

G
$

eð~r;~r0Þ ¼
X
p

~Epð~rÞ~Epð~r0Þ
k2p�k2

�
~Fpð~rÞ~Fpð~r0Þ

k2

" #
ð1:83Þ

The summation over integer p actually represents a triple sum over a triple set of

integers. The specific details will be given in the next three chapters.

Equations (1.82) and (1.83) have singularities at k2 ¼ k2p. However, if we include

wall loss as in Section 1.3, then we can replace kp by kpð1� i
2Qp

Þ: Then there are no

singularities for realk (except at the sourcepoint, r ¼ r0,whichwill bediscussed later).
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1.5 PERTURBATION THEORIES

When a cavity shape is deformed or the dielectric is inhomogeneous, the analysis is

generally difficult, and numerical methods are required. However, if the shape

deformation or the dielectric inhomogeneity is small, then perturbation techniques

[14] are applicable.

1.5.1 Small-Sample Perturbation of a Cavity

If a small sample of dielectric or magnetic material of volume Vs is introduced into a

cavity (as in Figure 1.3), the resonant frequencyop of the cavity is changed by a small

amount do. If the sample has loss, then do becomes complex and a damping factor

occurs (the cavityQ is changed). If the sample is properly positioned, themeasurement

of the complex frequency change do can be used to infer the complex permittivity or

permeablility of the sample [15].

If~Ep and~Hp are the unperturbed fields of the pth cavitymode and~E1 and~H 1 are the

perturbation fields due to the introduced sample, then the total perturbed fields~E 0 and
~H 0 are:

~E 0 ¼ ~Ep þ~E1; ð1:84Þ
~H 0 ¼ ~Hp þ~H1 ð1:85Þ

The (complex) frequency of oscillation isop þ do. Outside the sample, the magnetic

and electric flux densities, ~B0 and ~D0, are given by:

~B0 ¼ ~Bp þ~B1 ¼ mð~Hp þ~H1Þ; ð1:86Þ
~D0 ¼ ~Dp þ~D1 ¼ eð~Ep þ~E1Þ ð1:87Þ

μs, εs

μ, ε

S

V un

Vs

FIGURE 1.3 Cavity with a small sample of material.
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Inside the sample, we have:

~B0 ¼ ms~H
0 ¼ ~Bp þ~B1 ¼ m~Hp þ m½ksmð~Hp þ~H1Þ�~Hp�; ð1:88Þ

~D0 ¼ es~E 0 ¼ ~Dp þ~D1 ¼ e~Ep þ e½kseð~Ep þ~E1Þ�~Ep�; ð1:89Þ
where ms and es are the permeability and permittivity of the sample and ksm and kse are
the relative permeability and permittivity of the sample. Here we assume that the

sample is isotropic, but for anisotropic materials these quantities become tensors.

Throughout the cavity, the total fields satisfy Maxwell’s curl equations:

r� ð~Ep þ~E1Þ ¼ iðop þ doÞð~Bp þ~B1Þ; ð1:90Þ
r � ð~Hp þ~H1Þ ¼ �iðop þ doÞð~Dp þ~D1Þ ð1:91Þ

The unperturbed fields satisfy:

r�~Ep ¼ iop
~Bp; ð1:92Þ

r � ~Hp ¼ �iop
~Dp ð1:93Þ

Subtracting (1.92) from (1.90) and (1.93) from (1.91), we obtain:

r�~E1 ¼ i½op þ doð~Bp þ~B1Þ�; ð1:94Þ
r � ~H 1 ¼ �i½op

~D1 þ doð~Dp þ~D1Þ� ð1:95Þ

If we scalar multiply (1.94) by ~Hp and (1.95) by ~Ep and add the results, we obtain:

~Hp .r�~E1 þ~Ep .r� ~H1

¼ �iopð~Ep .~D1�~B1 .~HpÞ�idoð~Ep .~Dp þ~Ep .~D1�~Hp .~Bp�~Hp .~B1Þ
ð1:96Þ

Using (1.92)–(1.95) and vector identities, we can write the right side of (1.96) in the

two following forms:

~Hp .r�~E1 þ~Ep .r� ~H1

¼ ~E1 .r� ~Hp þ~H1 .r�~Ep�r . ð~Hp �~E1 þ~Ep � ~H1Þ
¼ �iopð~Dp .~E1�~Bp .~H1Þ�r . ð~Hp �~E1 þ~Ep � ~H1Þ

ð1:97Þ

Ifwe substitute (1.94) and (1.95) into (1.97) and evaluate the result outside the sample,

we obtain:

idoðe~Ep .~Ep þ e~Ep .~E1�m~Hp .~Hp�m~Hp .~H1Þ ¼ r . ð~Hp �~E1 þ~E0 � ~H1Þ
ð1:98Þ

The perturbation fields~E1 and ~H1 are not necessarily small everywhere in the cavity.

However, if (1.98) is integrated over the volume V�Vs, it is possible to neglect

contributions of terms involving ~E1 and ~H1 when the sample volume Vs is small.

Taking into account that~Ep and~E1 are normal to S, and using the divergence theorem
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and vector identities, we obtain:

�ido
ð

V�Vs

ð~Bp .~Hp�~Dp .~EpÞdV ¼
ð
S

½ðûn �~E1Þ .~Hp þðûn � ~H1Þ .~Ep�dS; ð1:99Þ

where ûn is the outward unit normal from the sample andS is the surface of the sample.

Comparing the right sides of (1.96) and (1.97), we obtain:

iopð~E1 .~Dp�~Bp .~H 1Þþ iðop þ doÞð~B1 .~Hp�~Ep .~D1Þ
þ idoð~Hp .~Bp�~Ep .~DpÞ ¼ r . ð~E1 � ~Hp þ~H1 �~EpÞ

ð1:100Þ

If we neglect do in the factor ðop þ doÞ, integration of (1.100) over the sample

volume yields:

ido
ð
Vs

ð~Bp .~Hp�~Dp .~EpÞdVs þ iop

ð
Vs

ð~E1 .~Dp�~Ep .~D1�~Bp .~H1 þ~B1 .~HpÞdVs

¼
ð
S

½ðûn �~E1Þ .~Hp þðûn � ~H1Þ .Ep�dS
ð1:101Þ

The surface integrals in (1.99) and (1.101) are equal. Thus we can equate the left

sides of (1.99) and (1.101) to obtain:

do
op

¼

ð
Vs

½ð~E1 .~Dp�~Ep .~D1Þ�ð~H1 .~Bp�~Hp .~B1Þ�dVsð
V

ð~Ep .~Dp�~Hp .~BpÞdV
ð1:102Þ

Inside the sample, we can write the constitutive relations, (1.7) and (1.8), in more

convenient forms:

~D1 ¼ e0~E þ~P and ~B1 ¼ m0~H1 þ m0~M ; ð1:103Þ
where e0 and m0 are the permittivity and permeability of free space, ~P is the electric

polarization, and ~M is the magnetic polarization. For convenience, we will assume

in the rest of this section that the cavity permittivity e ¼ e0 and the cavity permeability

m ¼ m0. If we substitute (1.103) into (1.102), we obtain:

do
op

¼
m0

ð
Vs

~Hp . ~MdVs�
ð
Vs

~Ep .~PdVsð
V

ð~Ep .~Dp�~Hp .~BpÞdV
ð1:104Þ

If the sample volume Vs is very small, ~Ep and ~Hp are nearly constant throughout

the sample volume, and (1.104) can be approximated as:

do
op

¼ m0~Hp .~Pm�~Ep .~Peð
V

ð~Ep .~Dp�~Hp .~BpÞdV
; ð1:105Þ
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where~Pe and~Pm are the quasi-static electric and magnetic dipole moments induced

in the sample by the cavity modal fields (~Ep; ~Hp).

For a spherical sample of radius a, the induced dipole moments are [15, 16]:

~Pe ¼ 4pa3e0
kse�1

kse þ 2
~EpðPÞ; ð1:106Þ

~Pm ¼ 4pa3
ksm�1

ksm þ 2
~HpðPÞ; ð1:107Þ

whereP is the location of the center of the sphere. Ifwe substitute (1.25), (1.26), (1.29),

(1.106), (1.107) into (1.05), we obtain the following resonant frequency shift:

do
op

¼ �2pa3

W
m0

ksm�1

ksm þ 2
j~HpðPÞj2 þ e0

kse�1

kse þ 2
j~EpðPÞj2

� �
ð1:108Þ

Equation (1.108) is the desired mathematical result, which can be applied to a

number of measurements. Consider first the case where the spherical sample is

located at a point where the electric field ~EpðPÞ is zero. If the relative permeability

ksm of the sample is known, then (1.108) can be used to determine the square of the

magnetic field at P:

j~HpðPÞj2 ¼ � do
op

W

2pa3m0

ksm þ 2

ksm�1
ð1:109Þ

If the magnitude of the square of the magnetic field at P is known (measured),

then (1.108) can be used to determine ksm:

ksm ¼ 2

pa3

W
m0j~HpðPÞj2� do

op

2pa3

W
m0j~HpðPÞj2 þ do

op

ð1:110Þ

If do is real, then ksm is real and the sample has no magnetic loss. However, if do
is complex, then ksm is complex and the sample does have magnetic loss. The

imaginary part of the resonant frequency is related to the cavityQ from the expression

for a complex resonant frequencyopð1� i
Q
Þ. Hence the change in the imaginary part of

the resonant frequency is determined from the change in Q. This is typically

determined by measuring the half-power bandwidth, which is given by (1.57).

In the analogous case, the spherical sample is located at a point where the

magnetic field ~HpðPÞ is zero. If the relative permittivity kse of the sample is known,

then (1.108) can be used to determine the square of the electric field at P:

j~EpðPÞj2 ¼ � do
op

W

2pa3e0

kse þ 2

kse�1
ð1:111Þ
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This method has been used to map the electric field along the axis of a linear

accelerator [15]. If the magnitude of the square of the electric field at P is known

(measured), then (1.108) can be used to determine kse:

kse ¼ 2

pa3

W
e0j~EpðPÞj2� do

op

2pa3

W
e0j~EpðPÞj2 þ do

op

ð1:112Þ

Similar to (1.110), do can be either real (lossless dielectric sample) or complex

(lossy dielectric sample).

1.5.2 Small Deformation of Cavity Wall

Herewe consider the change in the resonant frequency of a cavitymode due to a small

deformation in the cavity wall. This case is useful in determining the effects of small

accidental deformations or intentional displacements of pistons or membranes on the

resonant frequencies.

Our derivation is similar to that of Argence and Kahan [7], but with somewhat

different notation.WefirstwriteMaxwell’s equation for the curl of~Ep and the complex

conjugate for Maxwell’s equation for the curl of ~Hp for the pth mode of the

unperturbed cavity:

r�~Ep ¼ iopm~Hp; ð1:113Þ

r � ~H
*

p ¼ �iope~E
*

p; ð1:114Þ

where the electric current term is omitted in (1.114) for this source-free case. If

we scalar multiply (1.113) by ~H
*

p and (1.114) by ~Ep and take the difference, we

obtain:

~H
*

p
.r�~Ep�~Ep .r� ~H

*

p ¼ �iopðm~Hp .~H
*

p�e~Ep .~E
*

pÞ ð1:115Þ

If we integrate (1.115) over the volume V, the two terms on the right side can be

written in terms of the time-averagedmagnetic and electric energies from (1.25) and

(1.26). The left side of (1.115) can be converted to a divergence via a vector identity

and converted to a surface integral over S by use of the divergence theorem. The

result is:

�%
S

ð~Ep� ~H
*

pÞ . n̂dS ¼ 2ioðWmp�WepÞ ð1:116Þ
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Equation (1.116) can be written in the form:

Fp ¼ �%
S

ð~Ep� ~H
*

pÞ . n̂dS ¼ 2io
ððð
V

tpdV ; ð1:117Þ

where:

tp ¼ m
2
~Hp .~H

*

p�
e
2
~Ep .~E

*

p; ð1:118Þ

which is the difference between the time-average magnetic and electric energy

densities.

We consider now a small deformation in the cavitywall, as shown in Figure 1.4.We

write the perturbed electric field~E 0 and magnetic field ~H 0as in (1.84) and (1.85). The
resonant frequency of the deformed cavity isop þ do. The analogy to (1.117) for the
perturbed cavity is:

F0 ¼ Fp þ dF ¼ 2iðop þ doÞ
ððð

V þ dV

ðtp þ dtÞdV ð1:119Þ

Subtracting (1.117) from (1.119) and neglecting second-order terms, we obtain:

dF ¼ 2iop

ððð
V

dtdV þ 2ido
ððð
V

tdV þ 2iop

ððð
dV

tdV ð1:120Þ

μ, ε

δV

V

FIGURE 1.4 Cavity with a small deformation dV in the cavity wall.
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The perturbed fields satisfy the following Maxwell curl equations, which are equiva-

lent to (1.90) and (1.91):

r� ð~Hp þ~H1Þ ¼ ieðop þ doÞð~Ep þ~E1Þ; ð1:121Þ

r � ð~Ep þ~E1Þ ¼ �imðop þ doÞð~Hp þ~H1Þ ð1:122Þ

By subtracting the complex conjugate of (1.114) from (1.121) and (1.113) from

(1.122), we obtain:

r� ~H1 ¼ ieðop
~E1 þ~EpdoÞ; ð1:123Þ

r �~E1 ¼ �imðop
~H1 þ~HpdoÞ ð1:124Þ

We can write t0 in a manner analogous to (1.118):

t0 ¼ m
2
ð~Hp þ~H1Þ . ð~H *

p þ~H
*

1Þ�
m
2
ð~Ep þ~E1Þ . ð~E*

p þ~E
*

1Þ ð1:125Þ

If we subtract (1.118) from (1.125) and ignore second order terms (such as ~H 1 .~H
*

1),

we obtain:

dt ¼ t0�tp ¼ m
2
ð~Hp .~H

*

1 þ~H
*

p
.~H1Þ� e

2
ð~Ep .~E

*

1 þ~E
*

p
.~E1Þ ð1:126Þ

By substituting the curl equations from this section into (1.126) and using a vector

identity, we can multiply the result by 2iopto obtain:

2iopdt ¼ ir . Imð~Ep � ~H1Þþ iedo~Ep .~E
*

p ð1:127Þ

If we substitute (1.127) into (1.120), we obtain:

dF ¼ 2i%
S

½Imð~E*

p � d~H1Þ� . n̂dSþ ido
ððð
V

ðm~Hp .~H
*

p þ e~Ep .~E
*

pÞdV

þ iop

ððð
dV

ðm~Hp .~H
*

p�e~Ep .~E
*

pÞdV
ð1:128Þ

Because the cavity walls are assumed to be perfectly conducting, the tangential

component of the electric field is zero and dF ¼ 0. Similarly:

%
S

½Imð~E*

p � ~H1Þ� . n̂dV ¼ 0 ð1:129Þ
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By using dF ¼ 0 and (1.129) in (1.128), we obtain the desired result for the relative

shift in the resonant frequency of the deformed cavity:

do
op

¼ �

ððð
dV

ðm~Hp .~H
*

p�e~Ep .~E
*

pÞdVððð
V

ðm~Hp .~H
*

p þ e~Ep .~E
*

pÞdV
ð1:130Þ

Equation (1.130) can be written in a simpler form if we define time-average electric

and magnetic energy densities for the pth mode:

�wpe ¼ e
2
~Ep . �E*

p and �wpm ¼ m
2
~Hp .~H

*

p ð1:131Þ

If we substitute (1.131) into (1.130), we can simplify the result to:

do
op

¼ �1

Wp

ððð
dV

ð�wpm��wpeÞdV

� ð�wpe��wpmÞdV
Wp

ð1:132Þ

In the second result in (1.132), �wpe and �wpm are the time-averaged electric and

magnetic energies at thevolumedeformation.Equation (1.132) shows that if the cavity

is compressed (dV < 0) in a region where �wpm > �wpe, then do > 0 and the resonant

frequency is increased. However, if dV < 0 and �wpm < �wpe, then do < 0 and the

resonant frequency is decreased. For dV positive, the results are reversed. The result in

(1.132) is identical to that given by Borgnis and Papas [6].

PROBLEMS

1-1 Derive (1.3) from (1.2) and (1.5). This shows that the continuity equation can

be derived from two of Maxwell’s equations.

1-2 Show that (1.17) is satisfied in rectangular coordinates where ~E ¼ x̂Ex þ
ŷEy þ ẑEz. Combine that result with (1.15) and (1.16) to derive the vector

Helmholtz equation in (1.18).

1-3 Apply the boundary condition, n̂�~Ep ¼ 0 on S, to (1.28) to show that

Wep ¼ Wmp as in (1.29). Hint: use the vector identity (A19). Is the boundary

condition, n̂ .~H ¼ 0 on S, sufficient to derive the same result?

1-4 Using the smoothed approximations in (1.31) and (1.33), determine the mode

number andmode density for an empty cavity of volume 1m3 at a frequency of

1GHz. What is the mode separation?
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1-5 Show that the 1/e decay time of the fields of the pth mode is 2Qp=op.

1-6 In (1.82), show that the coupling of the current source ~J to ~Fp is zero if

r .~J ¼ 0 and the normal component of~J is zero at the boundary of the source
region. Hint: use the divergence theorem.

1-7 Does a small loop current,~J ¼ f̂ I0
r0
dðr�r0Þ, satisfy the current conditions for

problem 1-6?

1-8 Does a short dipole current, ~J ¼ I0dðxÞdðyÞU l
2
�jzj	 


, satisfy the current

conditions for problem 1-6?

1-9 Consider a small lossless dielectric sphere, ReðkseÞ > 1; ImðkseÞ ¼ 0;
and ksm ¼ 0, inserted in a lossless cavity. From (108), what is the sign of the

resonant frequency shift do? What is the physical explanation for this sign?

1-10 Consider a small lossy dielectric sphere, ReðkseÞ > 1; ImðkseÞ > 0; and ksm
¼ 0, inserted in a lossless cavity. From (108), what is the sign of the imaginary

part of the frequency shift ImðdoÞ? What is the physical explanation for this

sign?
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