
  CHAPTER 1 

INTRODUCTION     

    1.1    MICROELECTROMECHANICAL SYSTEMS 

 MEMS,  microelectromechanical systems , are systems that consist of small - scale 
electrical and mechanical components for specifi c purposes. MEMS were 
translated into systems with electrical and mechanical components but have 
extended their boundaries to include optical, radio - frequency, and nano 
devices. As a result, depending on the components included and applications 
desired, MEMS have different names: for example, MOEMS (micro -
 optoelectromechanical systems) for optical applications, RF MEMS (radio -
 frequency MEMS) to refer to radio - frequency components and applications, 
and NEMS (nanoelectromechanical systems) if the systems include at least 
one component whose dimension is less than 1     μ  m. When MEMS use bio -
 related material (e.g., strands of DNA) to detect desired targets or to manipu-
late cells, the corresponding MEM system is currently called bioMEMS. 
Different names may refer to MEMS:  microsystems technology  (MST) in 
Europe and  micromachines  in Japan. Throughout this book, MEMS will be 
referred to as systems that include at least one set of electrical and mechanical 
components for a specifi c purpose. Depending on the specifi c purpose, more 
components, such as a refl ective surface for a micromirror, can be added to a 
MEMS device. A typical dimension of a component of MEMS varies from 
1     μ  m to a few hundred micrometers, and the overall size is approximately less 
than 1   mm. In this book we describe MEMS principles via a unifi ed approach 
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2  INTRODUCTION

and newly developed closed - form solutions. Readers are assumed to be famil-
iar with mathematical background at the third - year college and university 
level.  

   1.2    COUPLED SYSTEMS 

 MEMS are coupled systems since they consist of electrical and mechanical 
components; the mechanical behavior of MEMS are in general coupled with 
the electrical behavior. For example, let us consider the fi rst electrostatic 
MEMS device (Fig.  1.1 ), presented by  Nathanson  et al. in the 1960s to fi lter 
or amplify electrical signals using the resonance of an electroplated cantilever. 
When an input signal (electrical signal) is applied across the end of the canti-
lever and the actuation electrode on a substrate, the electrical attractive force, 
given by Coulomb ’ s law, actuates the cantilever, and a detection circuit formed 
under the cantilever detects the fi ltered or amplifi ed electrical signal that is 
generated by the mechanical vibration of the cantilever.   

 Since the development of the fi rst MEMS device, many other MEMS have 
been developed. For example, as one of the important components of MEMS, 
the parallel plate shown in Fig.  1.2  (similar to the cantilever of Fig.  1.1 ) is 
widely used in many microdevices that employ electrostatic forces for actua-
tion of a microstructure or detection of a physical quantity. The typical parallel 
plate shown in Fig.  1.2  illustrates the basic knowledge that is required to 
understand MEMS behavior. The parallel plate consists of a movable plate 
suspended by fl exures, a stationary plate, and a voltage source to supply 
voltage or electrical charge to the movable and stationary plates. The fl exures 
are used to support the movable plate and act as a spring. The gap between 
plates can be adjusted when a force (e.g., electrostatic force or inertial force) 
acts on the plate.   

     Figure 1.1     Resonant gate transistor.  
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COUPLED SYSTEMS  3

 Let us suppose that we apply a voltage across the movable and stationary 
plates. Upon applying the voltage, positive charges (or negative charges, 
depending on the electrical connection) are accumulated on the movable plate 
while opposite charges are accumulated on the stationary plate. As a result, 
the positive and negative charges on the plates generate an attractive force, 
the electrostatic force, which can push down the movable plate. The movable 
plate is displaced until the spring force (restoring force) due to the fl exures 
balances the electrostatic force; that is, the displaced movable plate is in equi-
librium while the voltage is applied. However, when the voltage is greater than 
a critical voltage called the  pull - in voltage , the movable plate collapses into 
the lower plate. 

 A thermal actuator (Fig.  1.3 ) utilizes the thermal expansion due to 
Joule heating. As a voltage source supplies electrical current through the fl ex-
ible beam that acts as a heater, heat is generated in the heater. The thermal 

     Figure 1.2     Parallel plate.  
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     Figure 1.3     Electrothermal actuator.  
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4  INTRODUCTION

expansion of the beam provides the displacement shown in the fi gure. The 
displacement depends on the voltage applied, the resistance of the beam, and 
the stiffness. Therefore, the mechanical behavior (e.g., displacement) of thermal 
actuators is coupled with the electrical and thermal behavior.   

 A piezoelectric actuator (Fig.  1.4 ) utilizes a piezoelectric material whose 
shape is deformed when exposed to an electric fi eld. In Fig.  1.4  a piezoelectric 
layer is glued or deposited on a substrate. A thin conductive electrode is 
placed or deposited on the piezoelectric layer so that the layer is exposed to 
an electric fi eld when a voltage source applies a voltage across the layer. In 
this situation, the layer expands or contracts, depending on the polarity of 
the voltage. For example, if the piezoelectric layer expands in the longitudinal 
direction, the right end of the actuator moves downward. The end of the 
actuator moves upward when the polarity of the voltage is reversed. 
The mechanical behavior of the piezoelectric actuator is then coupled with 
the piezoelectric constants that relate the voltage to the deformation of the 
piezoelectric layer, the mechanical properties (e.g., Young ’ s modulus), and 
the layer geometry.   

 Electromagnetic force is also used to actuate microstructures. Figure  1.5  
shows a model of an electromagnetic relay, one type of electromagnetic actu-
ator. The relay consists of a movable bar (called an  armature ), a stationary 

     Figure 1.4     Piezoelectric actuator.  
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     Figure 1.5     Electromagnetic relay.  
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KNOWLEDGE REQUIRED  5

core connected to the movable bar, a coil to generate magnetic fi eld in the 
movable bar and stationary core, and a spring to provide the movable bar 
with a restoring force. When an electric current is applied to the coil, the 
relay is magnetized to generate an attractive force between the movable bar 
and the stationary core, and the movable bar is then attached to the station-
ary core. If the current is removed, the movable bar returns to its initial 
position under the restoring force of the spring. Thus, the mechanical behav-
ior of electromagnetic actuators depends on the applied current, the magnetic 
and mechanical properties of the material used, the geometry of the actuator, 
and the stiffness of the spring.   

 As briefl y discussed above, actuators use electricity to generate mechanical 
motion such as displacement, and the resulting mechanical behaviors are then 
coupled with electrical behavior, material properties, geometry, and so on. As 
a result of the coupling, the mechanical behavior is, in general, related nonlin-
early to electric input (e.g., applied voltage) except in a few cases, or are 
expressed as complicated functions of electric input. To understand these 
nonlinear actuators and sensors, numerical analyses have been widely used. 
For example, to obtain the sensitivity to voltage of the capacitance of a parallel 
plate (Fig.  1.2 ), numerical analyses have been used to solve the equilibrium 
equation that governs the equilibrium position of the movable plate. Therefore, 
researchers, designers, and students have required commercial software to 
solve a problem or the skill to develop codes or programs that obtain the 
solution numerically. This book is designed to provide analytical closed - form 
solutions of both linear and nonlinear actuators in which mechanical behavior 
and electrical behavior are coupled. Since most MEMS - based sensors use 
actuators to measure physical quantities, this book can be used to design and 
analyze sensors.  

   1.3    KNOWLEDGE REQUIRED 

 As discussed in the foregoing section, MEMS are systems that consist of 
mechanical and electrical components and that may also involve other com-
ponents, such as a refl ective layer for a micromirror, depending on the purpose. 
Since the mechanical behavior of MEMS are coupled with other behavior, we 
should study interdisciplinary subjects in the fi elds of science and engineering 
to understand the coupled behaviors. Figure  1.6  shows an overview of the 
knowledge required for the research and development of MEMS and their 
derivatives. Because the most convenient and controllable energy is the elec-
trical energy, electrical and electronic engineering covering electromagnetics, 
circuit theory, or signal processing is required to control phenomena associ-
ated with electric charge (i.e., electron, current). For example, from the point 
of view of electrical engineering, the parallel plate of Fig.  1.2  may be consid-
ered to be a capacitor consisting of movable and stationary plates, so knowl-
edge of electrical engineering is necessary to calculate the capacitance of the 
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6  INTRODUCTION

parallel plate and to obtain the electrostatic force acting on the movable plate 
as a function of the interplate gap and the applied voltage. Similarly, since the 
magnetic relay of Fig.  1.5  is an electromagnet with a variable air gap, we use 
the magnetic energy that is stored in the electromagnet and calculate the 
magnetic force pulling the movable bar into the stationary core.   

 Physically, MEMS are mechanical structures that are designed for specifi c 
purposes. For desired functions, components of MEMS must be mechanically 
stable, vibrate if the mechanical resonance is utilized, and be deformed if 
deformation or displacement is needed. For the design and analysis of mechan-
ical components, we need statics for the mechanical structure design, dynamics 
and vibration for resonance and mechanical vibration, heat transfer for thermal 
actuation, and fl uid dynamics for the evaluation of damping due to the move-
ment of microstructures. Let us consider the parallel plate in Fig.  1.2  as an 
example of a mechanical structure. Since the four fl exures support the movable 
plate under the electrostatic force, we need statics to determine the fl exure 
dimensions: the length, width, and thickness of the fl exures. If the movable 
plate operates at resonance for a mechanical fi lter, we should use our knowl-
edge of dynamics or mechanical vibration to design the resonant frequency 
desired. If we wish to set up a mechanical quality factor that affects the band-
width of a mechanical fi lter, we should evaluate the damping force or damping 
coeffi cient that can be provided by fl uid dynamics. If we wish to design an 
accelerometer or acceleration switch using the parallel plate shown in Fig.  1.2 , 
we need to know the dynamics and mechanical vibration. 

 All the above - mentioned knowledge is coupled, so the design of a parallel 
plate for a specifi c application is very complicated even though the parallel 

     Figure 1.6     Knowledge required to understand MEMS.  
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DIMENSIONAL ANALYSIS  7

plate in Fig.  1.2  looks simple. In addition to these complexities, we may need 
physics, chemistry, mathematics, and other subject areas, and MEMS may have 
different names, as described in Fig.  1.6 : MOEMS if a MEMS device involves 
at least one optical component; RF MEMS if a MEMS device is designed for 
a radio - frequency application such as an RF fi lter; bioMEMS if a MEMS 
device is used for biological applications such as the detection of DNA strands; 
NEMS if at least one dimension of the mechanical structure is less than 1     μ  m; 
and perhaps other names in future applications if mechanical structures with 
electrical components are used for a specifi c purpose.  

   1.4    DIMENSIONAL ANALYSIS 

 Dimensional analysis and dimensionless numbers allow us to investigate com-
plicated or coupled systems such as the MEMS described in Section  1.3 . Using 
dimensional analysis and experimental results (or numerical simulation), we 
can fi nd relationships between variables that are involved in a problem or 
system. If we apply dimensional analysis to a governing equation that describes 
a physical phenomenon and cannot be solved due to its nonlinearity, we can 
obtain useful dimensionless numbers that play crucial roles in describing the 
phenomenon. We begin with easy dimensionless numbers with which we are 
familiar. 

 Let us begin by considering the ratio of the circumference of a circle to its 
diameter, the well - known constant. Figure  1.7 a, b, and c show a circular column, 
a rectangular column, and an arbitrarily shaped body, respectively. As the 
radius and height of the circular column (Fig.  1.7 a) are represented by  r  and 
 t , respectively, the perimeter  l  of the top view, the top - view area  A , and the 
volume  V  are given by

   l r d= =2π π  

   A r d= =π π2 2

4
 

   V r t d t= =π π2 2

4
 

where   π   denotes the ratio of the circumference of a circle to its diameter 
and  d  represents the diameter of the column. It is worth noting that the perim-
eter, area, and volume are proportional to the diameter, the square of the 
diameter, and the product of the area and thickness, respectively. It is also 
noted that if the circular column become  n  times larger than its original dimen-
sions  d  and  t , the corresponding length, area, and volume will be  nl ,  n  2  A , and 
 n  3  V , respectively. Manipulating the equations above gives dimensionless forms 
as follows:
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8  INTRODUCTION

   
l
d

= π  

   
A
r

A
d2 2 4

= =π π
or  

   
V
d t

V
d

t
d2 34 4

= =π π
or     

 In the preceding equations, the diameter  d  may be considered a characteristic 
length that represents the dimension of the circular column. The fi rst two 
equations above give the constants (numbers) on their right - hand sides, and 
the third equation also yields a constant if the  t / d  remains unchanged. In this 
case, the dimensionless numbers  l / d  and  A / d   2  remain unchanged even though 
the diameter becomes larger or smaller. However, the dimensionless number 
 V / d  3  is proportional to the dimensionless number  t / d . If the diameter and 
thickness become  n  times the original dimensions, the resulting length and 
area are, respectively,  nl  and  n  2  A , and the volume becomes  n  3  V  since  t / d  does 
not change for a uniform transform (i.e.,  nt / nd     =     t / d ). The preceding equations 
may be expressed in more general dimensionless forms as

   f
l
d

l
d

1 0⎛
⎝⎜

⎞
⎠⎟

= − =π  

     Figure 1.7     Various three - dimensional objects.  
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 Similarly, for the rectangular column of Fig.  1.7 b, the perimeter  l  of the top 
view, the top - view area  A , and the volume  V  are given by

   l a b= +( )2  

   A ab=  

   V abh=   

 We transform the equations above into dimensionless equations as follows:

   f
l
a

b
a

l
a

b
a

4 2 1 0,⎛
⎝⎜

⎞
⎠⎟

= − +⎛
⎝⎜

⎞
⎠⎟

=  

   f
A
a

b
a

A
a

b
a

5 2 2
0,⎛

⎝⎜
⎞
⎠⎟

= − =  

   f
V
a

b
a

h
a

V
a

b
a

h
a

6 3 3
0, ,⎛

⎝⎜
⎞
⎠⎟

= − =   

 The dimensionless equations  f  4 ,  f  5 , and  f  6  represent functions for the perimeter 
and area of the top view of the rectangular column and the volume, respec-
tively. It should be noted that the dimensionless length  l/a , area  A/a  2 , and 
volume  V/a  3  are expressed as functions of dimensionless variables  b/a  and  h/a.  
This concept may be extended into more general cases. 

 Let us consider the complex three - dimensional structure shown in Fig.  1.7 c. 
We wish to obtain the dimension  a , the area, and the volume of the structure 
as functions of a characteristic length. The relations may be used to build a 
miniature or larger structure. Let  l  (not shown in Fig.  1.7 c),  h ,  A , and  V  repre-
sent a length, the height, the area, and the volume of a structure, respectively. 
The following equations can be written for a dimensional analysis:

   f a l h7 0, ,( ) =  

   f A a l h8 0, , ,( ) =  

   f V a l h9 0, , ,( ) =   

 Let  l  be a characteristic length of a structure. Since  a ,  l , and  h  have the dimen-
sions of length and  A  and  V  have the dimensions of the square and cube of 
length, respectively, the dimensionless equations are given by
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10  INTRODUCTION

   f
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 When the preceding equations are set up by dividing the arguments of the 
function by  l ,  l  2 , or  l  3 , the number of arguments is reduced by one in each 
equation. Rearranging the preceding equations yields the length  a , the area  A , 
and the volume  V  in dimensionless forms:

   
a
l

f
h
l

= ⎛
⎝⎜

⎞
⎠⎟

13  

   
A
l

f
a
l

h
l2 14= ⎛

⎝⎜
⎞
⎠⎟

,  

   
V
l

f
a
l

h
l3 15= ⎛

⎝⎜
⎞
⎠⎟

,   

 For the enlargement or contraction of the structure, the ratio of linear dimen-
sions,  h/l , remains constant, and then the ratio  a / l  also becomes constant. The 
fi rst equation above becomes  a/l     =     c  1 , where  c  1  is a constant. Consequently, the 
fi rst equation above gives a linear relation between  a  and  l :

    a c l= 1     (1.1)   

 Similarly, the equations for the area  A  and the volume can be expressed as

    A c l= 2
2     (1.2)  

    V c l= 3
3     (1.3)  

where  c  2  and  c  3  denote constants. These three equations state that for any 
structures in three - dimensional space, if the shape of the structure remains 
unchanged for enlargement or contraction, the length from one point to 
another, the area of any portion of the structure, and the volume of the struc-
ture are proportional to a characteristic length and to the square and cube of 
the characteristic length, respectively. During derivation of equations  (1.1)  to 
 (1.3) , the characteristic length can be taken to be any dimension: for example, 
the width or the height. If the height  h  is selected as the characteristic length, 
the foregoing equations may be expressed as follows:  a     =     d  1  h ,  A     =     d  2  h  2 ,  and 
V     =     d  3  h  3 , where  d  1 ,  d  2 , and  d  3  represent constants. 
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DIMENSIONAL ANALYSIS  11

  Example 1.1         A chocolate company decides to build an enlarged model of a 
piece of chocolate for an advertisement. The piece of chocolate shown in Fig. 
 1.8  will be enlarged  n  times. In other words, the dimension  d  will be  nd  in the 
model. In order to build the model and paint the outside, the company must 
calculate the length of the company logo  S  shown in Fig.  1.8  and the area and 
volume of the model. If the logo length is  l p  , the outside area  A p  , and the 
volume  V p  , fi nd the logo length of the model, the required volume of the piece 
of chocolate, and the outside area. If the company paints the outside to a 
thickness of  t  (wet paint), determine the volume of paint required.   

 As discussed above, the dimension, area, and volume of the model are 
proportional to a characteristic length and to the characteristic length squared 
and cubed, respectively. Let the logo length of model be  l m  , the outside area 
 A m  , and the volume  V m  . For the length, area, and volume of the prototype 
(original) piece of chocolate,  (1.1)  to  (1.3)  give

    l c dp = 1     (a)  

    A c dp = 2
2     (b)  

    V c dp = 3
3     (c)  

where  c  1 ,  c  2 , and  c  3  denote constants for the relationships between the proto-
type and the model. The preceding equations also hold for the model as 
follows:

    l c ndm = 1     (d)  

    A c ndm = ( )2
2     (e)  

    V c ndm = ( )3
3     (f)   

 From the preceding equations, we thus fi nd relationships that will hold for 
both the prototype and the model:

     Figure 1.8     A piece of chocolate.  

d
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12  INTRODUCTION

    l nlm p=     (g)  

    A n Am p= 2     (h)  

    V n Vm p= 3     (i)   

 The volume of paint required for the model is given by  tA m      =     n  2  tA p  . According 
to  (g)  to  (i) , if the dimensions of a model are  n  times those of a prototype (i.e., 
geometrically similar), the linear dimension, area, and volume of the model 
are increased to  n ,  n  2 , and  n  3  times those of the prototype, respectively. For 
example, if a structure is magnifi ed by a factor of 10, any length, area, and 
volume of the magnifi ed structure become, respectively, 10, 10 2 , and 10 3  times 
those of the original structure.  

 In the foregoing discussion and Example  1.1 , the dimensional analysis has 
been described for similar structures. These concepts may be extended to 
involve more general cases that are related to force, stress, energy, or any other 
physical quantities. As a physical quantity, force such as the weight of a struc-
ture is measured in newtons (N) if we use SI units (an abbreviated form of 
the French term corresponding to  “ international system of units ” ). Weight may 
be measured in other units: for example, lb f  (pound - force). To avoid any confu-
sion associated with force units such as N and lb f ,  F  is used to represent the 
force dimension in dimensional analysis. Similarly,  L  and  T  represent the 
dimensions of length and time, respectively. In many cases, force ( F ), length 
( L ), and time ( T ) are used as the fundamental units if physical quantities 
involved in a problem are expressed using force, length, and time. If force, 
length, and time are used as the fundamental units, the system of units is called 
the  F – L – T system . Other dimensions that can be derived from the fundamen-
tal units are known as  derived units . Derived units can be derived easily from 
basic equations. For example, the mass of a structure is a derived unit that is 
defi ned as  FL   − 1  T   2 , since the mass may be expressed as  m     =     F/a , where  F  and 
 a  denote the force acting on the mass and the acceleration of the structure, 
respectively. If physical quantities under consideration cannot be derived from 
the preceding fundamental units ( F – L – T  units), the physical unit may be 
added to the list of fundamental units. For example, the temperature for 
thermal study and the electric charge for electric phenomena can be consid-
ered as additional units. As the fundamental units, the temperature and electric 
charge are represented by   θ   and  Q , respectively. Fundamental and derived 
units that are widely used in scientifi c and engineering problems are shown in 
Table  1.1 . In physics, researchers may use mass as a fundamental unit instead 
of force. In this case, the dimensions in Table  1.1  can be converted into an 
 M – L – T  system as  MLT    − 2  is substituted for force  F . For example,  FL  of the 
 F – L – T  system, representing energy, is converted to  ML  2  T    − 2  in the  M – L – T  
system. The  F – L – T  and  M – L – T  systems yield the same results for the dimen-
sional analysis of a physical problem.     

c01.indd   12c01.indd   12 10/13/2010   11:40:35 AM10/13/2010   11:40:35 AM



DIMENSIONAL ANALYSIS  13

 Using the fundamental and derived units listed in Table  1.1 , let us perform 
dimensional analysis that may be used to obtain a relation among many vari-
ables. Consider the cantilever beam of Young ’ s modulus  E  (dimensions: N/m 2 ; 
a modulus relating stress to strain), length  l , width  b , and thickness  t , as shown 
in Fig.  1.9 a. For this simple problem we know from statics (that will be dealt 
with in Chapter 3) that a solution for the defl ection   δ   at the end of a cantilever 
under an applied force  F a   is given by  

    δ = 1
3

3F l
EI

a     (1.4)  

     Figure 1.9     Cantilever subjected to a force.  

Fa

l

b

t
δ

(a)

(b)

δ/l

Fa /(El2)

  TABLE 1.1    Dimensions of Physical Quantities 

   Physical Quantities     Dimensions     Physical Quantities     Dimensions  

  Force     F     Thermal conductivity     FT    − 1   θ     − 1   
  Length, displacement     L     Electric charge     Q   
  Time     T     Current     QT    − 1   
  Mass     FL   − 1  T   2     Voltage     FLQ    − 1   
  Density     FL   − 4  T   2     Resistance     FLTQ   − 2   
  Velocity     LT    − 1     Permittivity     F   − 1  L   − 2  Q  2   
  Acceleration     LT    − 2     Capacitance     F   − 1  L   − 1  Q  2   
  Energy     FL     Magnetic fi eld strength     L   − 1  T    − 1  Q   
  Stress, pressure     FL   − 2     Magnetic fl ux density     FL   − 1  T Q   − 1   
  Viscosity     FL   − 2  T     Permeability     FT   2  Q   − 2   
  Angle    dimensionless    Inductance     FLT   2  Q   − 2   
  Temperature      θ              
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14  INTRODUCTION

where  I  denotes the moment of inertia of the cantilever, defi ned as  bt  3 /12. 
However, in order to know how to conduct the dimensional analysis of this 
problem, it is assumed that at this stage we don ’ t know the solution. From Fig. 
 1.9 a we know that  F a  ,  E ,   δ  ,  b ,  t , and  l  enter into the problem. The problem may 
be expressed as

    f F E b t la, , , , ,δ( ) = 0     (1.5)     

 From Table  1.1  we know the dimensions of the variables as follows ( E  has the 
dimension of stress):

   F Fa = [ ]  

   E F L= [ ]2  

   δ = [ ] = [ ] = [ ] = [ ]L b L t L l L, , ,   

 These variables involve the two fundamental dimensions  F  and  L . If we divide 
the fi rst equation by the second to eliminate the fundamental unit  F , we have

   
F
E

F
F L

La = [ ]
[ ] = [ ]2

2  

which involves only the fundamental dimension  L . We have   δ  ,  b ,  t , and  l  for 
the fundamental dimension of  L , and any of them may be selected to represent 
 L . Using  l  for a characteristic length representing the fundamental dimension 
 L , the preceding equation can be converted into the following dimensionless 
number:

   
F

El

L

L
a
2

2

2
0=

[ ]
[ ] = [ ]  

where [0] states that the number  Fa/El  2  is dimensionless. Similarly, the other 
variables,   δ  ,  b , and  t , can be converted into corresponding dimensionless 
numbers by dividing the variables by the characteristic length  l , and the origi-
nal problem can be expressed as

   f
F

El l
b
l

t
l

a
2

0, , ,
δ⎛

⎝⎜
⎞
⎠⎟

=   

 Since we wish to obtain an expression for the beam defl ection   δ  , the foregoing 
equation may be expressed as follows:

    
δ
l

f
F

El
b
l

t
l

a= ⎛
⎝⎜

⎞
⎠⎟

1 2
, ,     (1.6)   
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DIMENSIONAL ANALYSIS  15

 Equation  (1.6)  states that the defl ection of the cantilever in Fig.  1.9 a is 
expressed as the four dimensionless numbers  Fa/El  2 ,   δ /l ,  b/l , and  t/l . Equation 
 (1.6)  is all that we can obtain from dimensional analysis. However, if we obtain 
more information from experiments or numerical simulations, the relationship 
 (1.6)  can be expressed in a more accurate expression. From an experiment or 
numerical analysis, we can fi nd more relationships:

    
δ δ δ
l

c
F

El l
c

b
l l

c
t
l

a= = ⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

− −

1 2 2

1

3

3

    (1.7)   

 These equations are substituted into equation  (1.6)  and we then have

   δ
l

f
F

El
b
l

t
l

c
F

El
b
l

t
l

c
F l
Ebt

a a a= ⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=
− −

1 2 2

1 3 2

, ,
33

 

or

   δ = c
F l
Ebt

a
3

3
 

where  c  is a constant that represents the product of  c  1 ,  c  2 , and  c  3  and can be 
obtained from the experiment or numerical analysis (e.g., Fig.  1.9 b) and 
obtained easily from a graph of  F a l  2 /( Ebt  3 ) against   δ /l . We know that the 
constant will be 4 when the equation above is compared with the analytical 
solution,  (1.4) . 

 In the procedure used to obtain the dimensionless equation above, note 
that after selecting variables as characteristic variables ( E  and  l ), the other 
variables were divided by the variables selected. Note also that the number of 
resulting dimensionless variables is reduced by the number of fundamental 
units. In the cantilever problem in Fig.  1.9 a, the number of dimensional vari-
ables of  (1.5)  was 6, but in the dimensionless form, the number of dimension-
less variables was reduced to 4 (6    −    2, where 2 is the number of fundamental 
units,  F  and  L  in this case). This procedure is generalized by  Buckingham ’ s 
 π   -  theorem  (Buckingham,  1914 ), which may be stated as follows: 

 If  n  variables (  υ   1 ,   υ   2 ,  …  ,   υ  n  ), which can be expressed by  N  fundamental 
units, are involved in a problem, the dimensional equation for the problem 
may be expressed as

    f n( , , , , )υ υ υ υ1 2 3 0… =     (1.8)  

and the corresponding dimensionless equation can be a function of the  n     −     N  
dimensionless variables (  π   1 ,  π   2 ,   π   3 ,  …  ,   π  n    −    N  ), as follows:

    g n N( , , , , )π π π π1 2 3 0… =−     (1.9)   
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16  INTRODUCTION

 As discussed in the foregoing problem (Fig.  1.9 a), equation  (1.9)  can give 
useful information and becomes more accurate if more information, such as 
data from an experiment or numerical analysis, is available. 

 The problem shown in Fig.  1.9 a can also be solved using the   π   - theorem. In 
Fig.  1.9 a we have six dimensional variables ( F a  ,  E ,   δ  ,  b ,  t , and  l ), and the problem 
of obtaining the defl ection at the end of the cantilever can be expressed as

   f F E b t la , , , , ,δ( ) = 0   

 Since all the dimensional variables are expressed by the fundamental units of 
 F  and  L , we expect that four dimensionless variables (6    −    2    =    4) will appear 
in a dimensionless equation:

    g π π π π1 2 3 4 0, , ,( ) =     (1.10)  

  δ  ,  b ,  t , and  l  have the dimension of  L , and then we take the fi rst three dimen-
sionless variables as   π   1     =      δ  / l ,   π   2     =     b / l , and   π   3     =      t / l . The fourth variable,   π   4 , may 
be expressed in the form

   π 4
2 1 2= = [ ][ ] [ ] = [ ]+ − +F E l F F L L F La

a b a b a a b  

for   π   4  to be a dimensionless number (i.e., [0]), we have two equations,

   1 0 2 0+ = − + =a a band   

 From these equations,  a     =     − 1 and  b     =    2 a     =     − 2 are obtained. Substituting  a  and 
 b  into   π   4  above gives

   π 4
1 2

2
= =− −F E l

F
El

a
a   

 The dimensionless variables (  π   1 ,   π   2 ,   π   3  and   π   4 ) are substituted into  (1.10)  to 
yield

   g
l

b
l

t
l

F
El

aδ
, , ,

2
0⎛

⎝⎜
⎞
⎠⎟

=   

 The preceding equation is the same as  (1.6) . For more general applications of 
dimensional analysis, more examples are presented below. 

  Example 1.2         Parallel plates are used widely in MEMS to actuate microstruc-
tures and to sense physical quantities. As illustrated in Fig.  1.10 , a parallel plate 
consists of an upper plate on a lower plate, and a voltage  V  may be applied 
across the plates, which are separated by a gap  h . The length and width of the 
upper plate are  l  1  and  l  2  (Fig.  1.10 ) and the thickness and fringing fi eld effect 
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DIMENSIONAL ANALYSIS  17

     Figure 1.10     Dimensions of a parallel plate.  

h
l1

l2
V

can be neglected if the thickness and the gap are much less than the length 
and width. The lower plate can be considered an infi nite plate since its length 
and width are much larger than those of the upper plate. We wish to obtain a 
dimensionless equation that represents the electrostatic force  F e   acting on the 
upper plate. Obtain the dimensionless equation in a simple form if from an 
experiment for  h     <<     l  1  and  l  2 , the electrostatic force  F  is proportional to the 
length and width of the upper plate,  l  1  and  l  2 , and inversely proportional to the 
square of the gap  h .   

 We derive the analytic solution of the electrostatic force for  h      <<      l  1  and  l  2  
in Chapter  7 . At this stage it is assumed that we do not know the relation, in 
order to study the dimensional analysis for an electrostatic problem. Let   ε   
represent the permittivity of the material (e.g., air) between the plates. The 
dimensional equation  f  for the problem may be expressed as

    f F V l l he, , , , ,ε 1 2 0( ) =     (a)  

and the dimension of the variables in equation  (a)  is written, with reference 
to Table  1.1 , as follows:

    

F F

Q FL

V FL Q

l l h L

e = [ ]
= [ ]
= [ ]
= = = [ ]

ε 2 2

1 2

    (b)   

 We have three fundamental variables ( F ,  Q , and  L ) and the six dimensional 
variables above. We thus expect three dimensionless variables and may write 
the dimensionless equation  g  as

    g π π π1 2 3 0, ,( ) =     (c)  

where   π   1 ,   π   2  and   π   3  are the dimensionless variables to be found. If  l  1  is taken 
as the characteristic length that represents the length of the parallel plate, we 
have the following dimensionless variables:

c01.indd   17c01.indd   17 10/13/2010   11:40:36 AM10/13/2010   11:40:36 AM



18  INTRODUCTION

    

π

π

π ε

1
2

1

2
1

3 1

2

2
1

=

=

= = [ ]⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

[ ] =

l
l
h
l

F V l F
Q
FL

FL
Q

L Fe
c d e

c d
e −− + − + + −[ ]c d c d e c dL Q2 2

    (d)   

 For   π   3  to be dimensionless (i.e., [0]) we have a set of equations to construct 
the dimensionless variable   π   3 :

    

1 0

2 0

2 0

− + =
− + + =

− =

c d

c d e

c d

    (e)  

which gives  c     =     − 1,  d     =     − 2, and  e     =    0, and we fi nd the third dimensionless vari-
able as

    π
ε3 2

= F
V

e     (f)   

 Substituting equations  (d)  and  (f)  into  (c) , we have the dimensionless 
equation

   g g
l
l

h
l

F
V

eπ π π
ε1 2 3

2

1 1
2

0, , , ,( ) = ⎛
⎝⎜

⎞
⎠⎟

=  

or

    
F
V

g
l
l

h
l

e

ε 2 1
2

1 1

= ⎛
⎝⎜

⎞
⎠⎟

,     (g)   

 Equation  (g)  states that the ratio (i.e.,   π   3 ) of the electrostatic force acting on 
the upper plate to the product of the permittivity and the square of voltage is 
a function of the dimensionless ratios  l  2  /l  1  and  h/l  1 . From experiments of the 
parallel plate, it was found that the electrostatic force  F  is proportional to 
the length and width of the upper plate,  l  1  and  l  2 , and inversely proportional 
to the square of the gap  h . Using this information, equation  (g)  is simplifi ed 
as follows:

    F
V

c
l
l

h
l

c
A
h

e

ε 2
2

1 1

2

2
= ⎛

⎝⎜
⎞
⎠⎟

=     (h)  

where  c  represents a constant and  A  denotes the area of the upper plate, 
defi ned as  A     =     l  1  l  2 . The constant is also determined by the experimental data. 
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DIMENSIONAL ANALYSIS  19

 The analysis to evaluate electrostatic force discussed in Example  1.2  may 
be extended to obtain the electrostatic force acting on more complicated 
structures across which a voltage is applied. Consider the structures in Fig.  1.11  
under electrostatic force due to the applied voltage  V . Let the dimensions of 
the structures be represented by  a ,  b ,  c ,  d ,  …  and the interstructure gap be 
denoted by  h . When we repeat the dimensional analysis discussed in Example 
 1.2 , the following equation is obtained:

    
F
V

g
h
a

b
a

c
a

d
a

e

ε 2
= ⎛

⎝⎜
⎞
⎠⎟

, , , ,�     (1.11)       

 In equation  (1.11) , for convenience, dimension  a  was taken as the character-
istic dimension. Any physical dimensions, such as  b ,  c ,  …  , can be selected as 
the characteristic dimension. If  b  is taken as the characteristic length, the argu-
ment of equation  (1.11)  may be ( h/b ,  a/b ,  c/b ,  d/b ,  … ). In many microstructures 
and nanostructures, only one dimension, such as  h  in Fig.  1.11 , varies with time 

If we perform an experiment or numerical simulation and if we plot a graph 
of  F e  /  ε   V   2  against  A / h  2 , the constant  c  is obtained from the slope of the graph. 
From the theoretical derivation described in Chapter  7 , the solution for 
the electrostatic force acting on the parallel plate for  h      <<      l  1  and  h      <<      l  2  is 
given by

    F
AV
h

e = 1
2

2

2

ε     (i)   

 From equations  (h)  and  (i)  we know that the constant  c  must be 1/2.  

     Figure 1.11     Arbitrarily shaped structures under electrostatic force.  

V

h

a

b

d

c
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20  INTRODUCTION

  Example 1.3         A conductive strip of width  a     =    10     μ  m, thickness  b     =    5     μ  m, and 
length  c  (much larger than  a  and  b ) is positioned over an infi nite conductive 
plate as shown in Fig.  1.12 a. The gap  h  of the strip can be adjusted from the 
plate and a voltage is applied across the strip and the plate. The length is much 
larger than the dimensions  a ,  b , and  h , so the problem in Fig.  1.12 a can be 
considered to be a two - dimensional problem. Using commercial software for 
two - dimensional electrostatic analysis, we obtain the electrostatic forces (per 
unit meter) of 4.5685    ×    10  − 3    N, 4.9595    ×    10  − 5    N, 2.5008    ×    10  − 6    N, and 7.4195    ×    
10  − 7    N at  h     =    0.1    ×    10  − 6    m, 1    ×    10  − 6    m, 5    ×    10  − 6    m, and 10    ×    10  − 6    m, respectively. It 
is desired to fi nd a relation between the force  F e   and the gap  h  in the form 
 F e      =     ph q  , where  p  and  q  are constants.   

or can be adjusted, while the other dimensions ( b ,  c ,  d ,  …  in Fig.  1.11 ) remain 
unchanged since the dimensions are formed during fabrication of the struc-
tures. Then the dimension ratios ( b/a ,  c/a ,  … ) in equation  (1.11)  also remain 
unchanged, and we rewrite  (1.11)  in the simpler form

    F V g
h
a

e = ⎛
⎝⎜

⎞
⎠⎟

ε 2
1     (1.12)   

 Application of  (1.11)  is described in the following example.   

     Figure 1.12     Electrostatic force acting on a strip confi gured over a plate.  
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DIMENSIONAL ANALYSIS  21

 In designing MEM devices, this type of problem will be encountered, which 
cannot be solved by an analytical method or whose analytical solution is in 
very a complicated form or expressed in an infi nite series. In this example, 
since the thickness  b  and gap  h  are comparable to the width  a , equation  (i)  of 
Example  1.2  for the parallel - plate force generates signifi cant errors. Thus, we 
require an expression that can be used to evaluate the force. For this purpose, 
we can use  (1.11) , which was obtained from dimensional analysis. 

 Let us write  (1.11)  with the dimensions  a ,  b , and  c :

    
F
V

g
h
a

b
a

c
a

e

ε 2
= ⎛

⎝⎜
⎞
⎠⎟

, ,     (a)   

 Since  c  is much greater than  a  and  b , the problem is considered a two -
 dimensional problem, and the electrostatic force  F e   is then proportional to the 
length,  c . Thus, equation  (a)  is written in the form

    
F
V

c
a

g
h
a

b
a

e

ε 2 1= ⎛
⎝⎜

⎞
⎠⎟

,     (b)  

where  g  1  is a new function of  h/a  and  b/a . However, since  b/a  remains constant 
while  h/a  varies, equation  (b)  may be written as

    
F
V

c
a

g
h
a

e

ε 2 2= ⎛
⎝⎜

⎞
⎠⎟

 

or

    
F
V

a
c

g
h
a

e

ε 2 2= ⎛
⎝⎜

⎞
⎠⎟

    (c)  

where  g  2  is a function of  h/a  when  b/a  remains unchanged. As shown in Fig. 
 1.12 b, the dimensionless force defi ned on the left - hand side of equation  (c)  is 
plotted as circles against  h/a  on a log - log scale (base 10). The force – gap rela-
tion is linear in the log - log graph and can be expressed as a linear equation:

    log log
F
V

a
c

c
h
a

ce

ε 2 1 2
⎛
⎝⎜

⎞
⎠⎟

= +     (d)   

 From a linear curve fi tting (e.g., graphical method or least - squares method) 
using the force data given, we fi nd that  c  1     =     − 1.8990 and  c  2     =     − 0.1084. 
Substituting the coeffi cients into equation  (d)  leads us to

    F
V

a
c

h
a

h
a

e c h a c c
c

ε 2

1 899

10 10 0 77911 2 2

1

= = ⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

( )+
−

log
.

.
00

    (e)   
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22  INTRODUCTION

 Rearranging equation  (e)  gives us the electrostatic force  F e   in the form  F e      =     ph q  :

    F V
c
a

a
h

e = ⎛
⎝⎜

⎞
⎠⎟

0 7791 2
1 8990

.
.

ε     (f)   

 It should be noted that equation  (f)  is valid for width  a     =    10    ×    10  − 6    m, thickness 
 b     =    5    ×    10  − 6    m,  a     <<     c ,  b     <<     c , and 0.1    ×    10  − 6    m    ≤     h     ≤    10    ×    10  − 6    m (the range of 
the input data). To validate equation  (f)  we can substitute  a     =    10    ×    10  − 6    m, 
 b     =    5    ×    10  − 6    m,  h     =    5    ×    10  − 6    m,  c     =    1   m,   ε      =    8.854    ×    10  − 12    F/m, and  V     =    1   V to give 
 F e      =    2.5727    ×    10  − 6    N, which is very close to 2.5008    ×    10  − 6    N from numerical 
analysis. For  a     =    10    ×    10  − 6    m,  b     =    5    ×    10  − 6    m,  h     =    5    ×    10  − 6    m,  c     =    10 a     =    100    ×    
10  − 6    m,   e      =    8.854    ×    10  − 12    F/m, and  V     =    10   V, equation  (f)  yields  F e      =    2.5727    ×    10  − 8    N. 

 It is worth noting that  (1.11)  holds for any structures that are geometrically 
similar; that is,  (f)  holds for any structures of  b/a     =    0.5,  c/a     >>    1, and 0.1    ≤     h/a     ≤    1. 
For example,  (f)  can be used to evaluate the electrostatic force of the structure, 
which is suspended over a large plate and has the following dimensions: 
 a     =    20    ×    10  − 6    m,  b     =    10    ×    10  − 6    m,  h     =    10    ×    10  − 6    m, and  c     =    10 a     =    200    ×    10  − 6    m. 
The structure is the doubled structure of that above and generates the same 
magnitude of electrostatic force (2.5727    ×    10  − 8    N) if the same voltage (10   V) is 
applied.  

 If a microstructure immersed in a gas or liquid is moved, a drag force due 
to the viscosity is generated and acts as a damper that decays the energy stored 
in the microstructure. The drag force or damping force plays an important role 
since it is related to the damping coeffi cient or quality factor (this subject is 
dealt with in detail in Chapter  5 ). The drag force is also expressed in dimen-
sionless form. The following example shows how to use dimensional analysis 
to obtain the damping force. 

  Example 1.4         A microplate of length  l  and width  w  (Fig.  1.13 ) moves at a 
velocity of  u  toward a lower plate that is much larger than the microplate. 
During the motion of the microplate, the upper plate, spaced by a gap  h  from 
the lower plate, squeezes air between the plates so that the air moves out to 
atmosphere and the pressure under the microplate is increased. If the micro-
plate is moved up, the pressure is lowered and the air will move in from the 
atmosphere. The pressure acting on the microplate is a source of damping 
force. Experiments show that the damping force  F d   depends on the velocity  u , 
the viscosity   μ  , the length  l , the width  w , and the gap  h . We wish to fi nd a rela-
tion between the damping force and the variables. If the damping force  F d   is 
inversely proportional to the cubic of the gap  h , refi ne the relation.   

 This subject is covered in detail in Chapter  6 . At this stage we use dimen-
sional analysis to obtain the relation among the parameters. The dimensional 
equation of the problem may be expressed as
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     Figure 1.13     Parallel plate subjected to a damping force.  

h

u

l

w

    f F u l w hd , , , , ,μ( ) = 0     (a)  

and the dimension of the variables in equation  (a)  is written, with reference 
to Table  1.1 , as follows:

    

F F

FT L

u L T

l w h L

d = [ ]
= [ ]
= [ ]
= = = [ ]

μ 2

    (b)   

 We have three fundamental variables ( F ,  L , and  T ) and the six dimensional 
variables above. Three dimensionless variables will then be involved in 
this problem and the corresponding dimensionless equation  g  may be 
written as

    g π π π1 2 3 0, ,( ) =     (c)  

where   π   1 ,   π   2 , and   π   3  are the dimensionless variables to be found. If  l  is taken 
as the characteristic length that represents the upper plate, we have the fol-
lowing dimensionless variables:

    

π

π

π μ

1

2

3 2
1 2

=

=

= = [ ]⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

[ ] = + −

w
l
h
l

F u l F
FT
L

L
T

L F Le
c d e

c d
e c c++ + −[ ]d e c dT

    (d)   

 Setting   π   3     =    [0] gives a set of equations to construct the dimensionless 
variable   π   3 :
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1 0

2 0

0

+ =
− + + =

− =

c

c d e

c d

    (e)  

which gives  c     =     − 1,  d     =     − 1, and  e     =     − 1, and we fi nd the third dimensionless 
variable as

    π
μ3 = F

ul
d     (f)   

 Substituting the fi rst two equations of  (d)  and  (f)  into  (c) , we have the dimen-
sionless equation

   g g
w
l

h
l

F
ul
dπ π π

μ1 2 3 0, , , ,( ) = ⎛
⎝⎜

⎞
⎠⎟

=  

or

    
F
ul

g
w
l

h
l

d

μ
= ⎛

⎝⎜
⎞
⎠⎟

1 ,     (g)   

 For refi nement of equation  (g) , we use the inverse proportionality of the 
damping force  F d   to the cubic of the gap  h . Using the proportionality, equation 
 (g)  is rewritten in the form

    F
ul

l
h

g
w
l

d

μ
= ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

3

2     (h)   

 Even though equation  (h)  is valid, a slightly different form may be obtained 
for our convenience. Since the product of dimensionless numbers generates a 
dimensionless number,  (g)  can be written

    
F
ul

g
w
l

w
l

h
l

g
w
l

w
h

d

μ
= ⎛

⎝⎜
⎞
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= ⎛
⎝⎜

⎞
⎠⎟

3 3, ,     (i)   

 If proportionality is used, equation  (i)  is converted into

    F
ul

w
h

g
w
l

d

μ
= ⎛

⎝⎜
⎞
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⎛
⎝⎜

⎞
⎠⎟

3

4     ( j)   

 After studying squeeze damping in Chapter  6 , we obtain the following closed -
 form equation for the damping force:
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 The damping problem discussed in Example  1.4  may be extended to involve 
more dimensions that affect the damping force. If additional dimensions are 
represented by  a ,  b ,  c ,  …  , we have the following dimensional equation:

    f F u l w h a b cd, , , , , , , , ,μ …( ) = 0     (1.13)     

 When the procedure used in example  1.4  is repeated, the dimensionless equa-
tion for the general case is given by

   F
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w
h

g
w
l

a
l

b
l

c
l

d

μ
= ⎛
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⎞
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⎛
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⎞
⎠⎟

3

, , , ,�  

or

    F
w
h

ul g
w
l

a
l

b
l

c
l

d = ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

3

μ , , , ,�     (1.14)   

 Equation  (1.14)  can be interpreted as follows: The damping force due to 
squeezed gas is proportional to the viscosity of the surrounding gas or fl uid 
and to the velocity perpendicular to the plate. Furthermore, the damping force 
is inversely proportional to the cubic of the interplate gap. Other dimensions, 
such as the size of the perforation and the plate shape (e.g., rectangle or circle), 
also affect the damping force, and their effect on the force may be involved 
in a correction factor such as the function  g  of equation  (1.14) . 

 So far, to conduct dimensional analysis for problems, we have assumed that 
we did not know exact principles or governing equations but knew parameters 
involved in the problems. If we know governing equations of problems that 
cannot be solved due to their nonlinearity or for which it is diffi cult to obtain 
analytical solutions, we can also employ dimensional analysis to anticipate 
which parameters affect the solutions, to design experiments or numerical 
analysis, or to obtain closed - form expressions from experiments or numerical 
analysis. We begin by considering the cantilever defl ection problem, which has 
already been studied in association with Fig.  1.9 . 

 The governing equation for defl ection  y  of the cantilever at distance  x  is 
given by (its derivation is dealt with in Chapter  3 )

    F
uw l
h

d = β μ 3

3
    (k)  

where   β   denotes a function of the ratio  w/l . It is noted that if we defi ne 
  β      =     g  4 ( w/l ),  (k)  is the same as  (j) . It is noted that comparing  (h)  and  (j)  gives

    g
l
w

g
w
l

4

3

2= ⎛
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⎞
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⎛
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    EI
d y
dx

M
2

2
=     (1.15)  

where  E ,  I , and  M  denote Young ’ s modulus, the moment of inertia of the 
beam defi ned as  bt  3 /12, and the moment acting on the beam cross section, 
respectively. The defl ection  y  is easily obtained since the equation is linear 
and the moment  M  is defi ned as  F a  ( l     −     x ). To obtain a dimensionless equa-
tion from equation  (1.15) , we introduce the following dimensionless 
parameters:

   X
x
l

=  

   Y
y=
δ

 

where the dimensionless parameters  X  and  Y  represent  x  and  y , respectively, 
and  l  and   δ   are taken as the characteristic dimensions for the dimensionless 
parameters. It is noted that  X  and  Y  are normalized by the maximum values 
(i.e.,  l ,   δ  ) of the corresponding dimensional variables  x  and  y , and then the 
maximum  X  and  Y  are unity. Recalling the chain rule of differentiation, the 
fi rst and second derivatives of  y  with respect to  x  are obtained as

   
dy
dx

dX
dx

dy
dX l

d Y
dX l

dY
dX

= = =1 δ δ
 

   
d y
dx

d
dx

dy
dx l

d
dX l

dY
dX l

d Y
dX

2

2 2

2

2

1= = ⎛
⎝⎜

⎞
⎠⎟

=δ δ
  

 Substituting the preceding equations into the governing equation with 
 M     =     F a  ( l     −     x )    =     F a l (1    −     X ), we have

   EI
l

d Y
dX

F l Xa
δ

2

2

2
1= −( )  

or in dimensionless form,

    d Y
dX

G X
2

2
1= −( )     (1.16)  

where  G  is a dimensionless force defi ned as

   G
F l
EI

a=
3

δ
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 The foregoing governing equation in dimensionless form states that the dimen-
sionless defl ection  Y  is a function of the dimensionless force  G  and the dimen-
sionless position  X . This statement can be expressed as follows:

   f Y G X, ,( ) = 0  

or

   Y g G X= ( ),   

 For a small defl ection (i.e.,   δ /l     <<    1) we can fi nd from an experiment or numeri-
cal simulation that there is a linear relation between  Y  and  G  and that the 
following equation holds:

   Y Gg X= ( )1   

 Substituting  Y ,  G , and  X  defi ned earlier into the foregoing equation leads 
us to

   
y F l

EI
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δ δ
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3

1  

or
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g
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⎞
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3

1     (1.17)   

 The exact solution of this problem, which is dealt with in Chapter  3 , is 
given by

   y
F l
EI

x
l

x
l

a= −⎛
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+ ⎛
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3 3 2

6
3   

 Comparing the preceding equation with  (1.17) , we fi nd that

   g
x
l

x
l

1

3 21
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3= −⎛
⎝⎜

⎞
⎠⎟

+ ⎛
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⎦
⎥   

 If  g  1  of  (1.17)  is not known, we may obtain the coeffi cient from experiment. 
 As shown, if we make a governing equation dimensionless, we can fi nd the 

dimensionless parameters that are involved in the governing equation. Another 
example, involving manipulating governing equations to obtain dimensionless 
equations and variables, is presented below.   
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  Example 1.5         In physics many vibrating systems consist of a mass  m , a spring 
of stiffness  k  to generate a restoring force, and a damper with a damping coef-
fi cient  c . The model for the systems is illustrated in Fig.  1.14 , in which the mass 
is actuated by a time - varying force  f  o    sin     ω t , where  f  o ,   ω  , and  t  denote the force 
amplitude, angular frequency, and time, respectively. The governing equation 
for the response of the mass to the force is given by

    m
d y
dt

c
dy
dt

ky f t
2

2 0+ + = sinω     (a)  

where  y  is the response of the mass. We wish to obtain the dimensionless form 
of equation  (a)  and fi nd dimensionless parameters that are involved in the 
problem.   

 To obtain the dimensionless equation, we fi rst defi ne dimensionless param-
eters for  y  and  t  as follows:

    
Y

y
y

T
t

c

=

=
τ

    (b)  

where  Y  and  T  represent the dimensionless displacement and time, and  y c   and 
 t  denote the characteristic displacement and time, respectively, which will be 
defi ned later. Using the foregoing dimensionless parameters and recalling the 
chain rule of differentiation yields the time derivatives

   
d
dt

dT
dt

d
dT

d
dT

= = 1
τ

  

 Similarly,

   
d
dt

d
dt

d
dt

d
dT

2

2 2

2

2

1= ⎛
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⎞
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=
τ

  

     Figure 1.14     Vibrating system.  

m

c k

fo=sinωt
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 Substituting the preceding four equations into the original governing equation, 
we have

   m
d y Y

dT
c

d y Y
dT

ky Y f Tc c
c

1 1
2

2

2 0τ τ
ωτ( ) + ( ) + = sin   

 Dividing the foregoing equation by  ky c   leads to

    
m

k
d Y
dT

c
k

dY
dT

Y
f

ky
T

cτ τ
ωτ

2

2

2
0+ + = sin     (c)   

 In equation  (c)  the characteristic displacement  y c   and time   τ   are arbitrary 
and can be taken to reduce equation  (c)  to simplest form. For this purpose we 
may set both the fi rst coeffi cient on the left - hand side of equation  (c)  and the 
coeffi cient on the right - hand side equal to unity as follows:

    

m
k

f
kyc

τ 2

0

1

1

=

=
    (d)   

 The two equations  (d)  give the following characteristic time and displacement 
to provide the simplest dimensionless form:

    
τ

ω
= =

=

m
k

y
f
k

n

c

1

0

    (e)  

where   ω  n   denotes the natural frequency of the vibrating system, defi ned as 
  k m , and  y c   represents the static displacement. Using the defi nition of   τ   and 
 y c   above and introducing the quality factor   Q mk c= , we obtain the dimen-
sionless governing equation as follows:

    
d Y
dT Q

dY
dT

Y T
2

2

1+ + = sin Ω     (f)  

where  Ω  is the dimensionless frequency, defi ned as  Ω     =      ω / ω  n  . Therefore, the 
dimensionless response may be expressed as

   g Y Q T, , ,Ω( ) = 0  
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  PROBLEMS 

       1.1    The size of the piece of chocolate in Fig.  1.8  is increased  n  times and its 
weight is proportional to the mass. If the density of the model is half that of 
the original piece, determine the weight of the model.   

    1.2    Suppose that an astronaut visits a planet on which the gravitational 
acceleration is one - tenth that on Earth. He fi nds a giant ant that consists of 
the same material as, but whose size is 100 times greater than, that of the ant 
on Earth. He returns to Earth with the giant and puts it in a cage. By dimen-
sional analysis, describe what happens to the giant ant.   

    1.3    A fi xed – fi xed beam is subjected to a load  q  (N/m) that is distributed 
uniformly along the beam. The governing equation for defl ection  y  at  x  from 
one end of the beam is given by

   EI
d y
dx

N
d y
dx

q
4

4 0

2

2
− =  

where  E ,  I , and  N  o  denote Young ’ s modulus (N/m 2 ), the moment of inertia of 
the beam (m 4 ), and the tension (N) acting along the beam, respectively. Find 
the dimensionless equation and suggest an expression for the solution in 
dimensionless form.   

    1.4    A movable plate of length  l  and width  w  in a gas moves into an infi nite 
stationary plate at a velocity of  u  (Fig.  P1.4 ). The movable plate is perforated 
to reduce the damping force. The plate gap, the pitch, and the size of the per-
foration are denoted by  h ,  p , and  f , respectively. Find an expression for the 
damping force  F d   in dimensionless form. If experiments show that the damping 
force is inversely proportional to the gap cubed, refi ne the expression.     

    1.5    The sound of a bell depends on the natural frequency of the bell 
structure. The bell is made of a material of Young ’ s modulus  E  (N/m 2 ) and 
density   ρ   (kg/m 3 ). If the natural frequency of the original bell is  f p  , fi nd the 
natural frequency of an  n -  fold increased model that is geometrically similar 
to the original, but whose Young ’ s modulus and density are changed from 
the original values.        

or

    Y g Q T= ( )1 , ,Ω     (g)   

 This equation shows clearly that the response  Y  is a function of the quality 
factor  Q , which is defi ned by  m ,  c , and  k , the dimensionless angular frequency 
 Ω , and the dimensionless time  T . The corresponding analytic solution is dealt 
with in Chapter  5 .  
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     Figure P1.4     Perforated plate.  
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