CHAPTER 1

INTRODUCTION

1.1 MICROELECTROMECHANICAL SYSTEMS

MEMS, microelectromechanical systems, are systems that consist of small-scale
electrical and mechanical components for specific purposes. MEMS were
translated into systems with electrical and mechanical components but have
extended their boundaries to include optical, radio-frequency, and nano
devices. As a result, depending on the components included and applications
desired, MEMS have different names: for example, MOEMS (micro-
optoelectromechanical systems) for optical applications, RF MEMS (radio-
frequency MEMS) to refer to radio-frequency components and applications,
and NEMS (nanoelectromechanical systems) if the systems include at least
one component whose dimension is less than 1 um. When MEMS use bio-
related material (e.g., strands of DNA) to detect desired targets or to manipu-
late cells, the corresponding MEM system is currently called bioMEMS.
Different names may refer to MEMS: microsystems technology (MST) in
Europe and micromachines in Japan. Throughout this book, MEMS will be
referred to as systems that include at least one set of electrical and mechanical
components for a specific purpose. Depending on the specific purpose, more
components, such as a reflective surface for a micromirror, can be added to a
MEMS device. A typical dimension of a component of MEMS varies from
1um to a few hundred micrometers, and the overall size is approximately less
than 1 mm. In this book we describe MEMS principles via a unified approach
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2 INTRODUCTION

and newly developed closed-form solutions. Readers are assumed to be famil-
iar with mathematical background at the third-year college and university
level.

1.2 COUPLED SYSTEMS

MEMS are coupled systems since they consist of electrical and mechanical
components; the mechanical behavior of MEMS are in general coupled with
the electrical behavior. For example, let us consider the first electrostatic
MEMS device (Fig. 1.1), presented by Nathanson et al. in the 1960s to filter
or amplify electrical signals using the resonance of an electroplated cantilever.
When an input signal (electrical signal) is applied across the end of the canti-
lever and the actuation electrode on a substrate, the electrical attractive force,
given by Coulomb’s law, actuates the cantilever, and a detection circuit formed
under the cantilever detects the filtered or amplified electrical signal that is
generated by the mechanical vibration of the cantilever.

Since the development of the first MEMS device, many other MEMS have
been developed. For example, as one of the important components of MEMS,
the parallel plate shown in Fig. 1.2 (similar to the cantilever of Fig. 1.1) is
widely used in many microdevices that employ electrostatic forces for actua-
tion of a microstructure or detection of a physical quantity. The typical parallel
plate shown in Fig. 1.2 illustrates the basic knowledge that is required to
understand MEMS behavior. The parallel plate consists of a movable plate
suspended by flexures, a stationary plate, and a voltage source to supply
voltage or electrical charge to the movable and stationary plates. The flexures
are used to support the movable plate and act as a spring. The gap between
plates can be adjusted when a force (e.g., electrostatic force or inertial force)
acts on the plate.

Mechanical vibration

Detection circuit
/

Z
Input signal (voltage)/

Cantilever

Figure 1.1 Resonant gate transistor.
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Figure 1.2 Parallel plate.
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Figure 1.3 Electrothermal actuator.

Let us suppose that we apply a voltage across the movable and stationary
plates. Upon applying the voltage, positive charges (or negative charges,
depending on the electrical connection) are accumulated on the movable plate
while opposite charges are accumulated on the stationary plate. As a result,
the positive and negative charges on the plates generate an attractive force,
the electrostatic force, which can push down the movable plate. The movable
plate is displaced until the spring force (restoring force) due to the flexures
balances the electrostatic force; that is, the displaced movable plate is in equi-
librium while the voltage is applied. However, when the voltage is greater than
a critical voltage called the pull-in voltage, the movable plate collapses into
the lower plate.

A thermal actuator (Fig. 1.3) utilizes the thermal expansion due to
Joule heating. As a voltage source supplies electrical current through the flex-
ible beam that acts as a heater, heat is generated in the heater. The thermal
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Figure 1.5 Electromagnetic relay.

expansion of the beam provides the displacement shown in the figure. The
displacement depends on the voltage applied, the resistance of the beam, and
the stiffness. Therefore, the mechanical behavior (e.g., displacement) of thermal
actuators is coupled with the electrical and thermal behavior.

A piezoelectric actuator (Fig. 1.4) utilizes a piezoelectric material whose
shape is deformed when exposed to an electric field. In Fig. 1.4 a piezoelectric
layer is glued or deposited on a substrate. A thin conductive electrode is
placed or deposited on the piezoelectric layer so that the layer is exposed to
an electric field when a voltage source applies a voltage across the layer. In
this situation, the layer expands or contracts, depending on the polarity of
the voltage. For example, if the piezoelectric layer expands in the longitudinal
direction, the right end of the actuator moves downward. The end of the
actuator moves upward when the polarity of the voltage is reversed.
The mechanical behavior of the piezoelectric actuator is then coupled with
the piezoelectric constants that relate the voltage to the deformation of the
piezoelectric layer, the mechanical properties (e.g., Young’s modulus), and
the layer geometry.

Electromagnetic force is also used to actuate microstructures. Figure 1.5
shows a model of an electromagnetic relay, one type of electromagnetic actu-
ator. The relay consists of a movable bar (called an armature), a stationary
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core connected to the movable bar, a coil to generate magnetic field in the
movable bar and stationary core, and a spring to provide the movable bar
with a restoring force. When an electric current is applied to the coil, the
relay is magnetized to generate an attractive force between the movable bar
and the stationary core, and the movable bar is then attached to the station-
ary core. If the current is removed, the movable bar returns to its initial
position under the restoring force of the spring. Thus, the mechanical behav-
ior of electromagnetic actuators depends on the applied current, the magnetic
and mechanical properties of the material used, the geometry of the actuator,
and the stiffness of the spring.

As briefly discussed above, actuators use electricity to generate mechanical
motion such as displacement, and the resulting mechanical behaviors are then
coupled with electrical behavior, material properties, geometry, and so on. As
a result of the coupling, the mechanical behavior is, in general, related nonlin-
early to electric input (e.g., applied voltage) except in a few cases, or are
expressed as complicated functions of electric input. To understand these
nonlinear actuators and sensors, numerical analyses have been widely used.
For example, to obtain the sensitivity to voltage of the capacitance of a parallel
plate (Fig. 1.2), numerical analyses have been used to solve the equilibrium
equation that governs the equilibrium position of the movable plate. Therefore,
researchers, designers, and students have required commercial software to
solve a problem or the skill to develop codes or programs that obtain the
solution numerically. This book is designed to provide analytical closed-form
solutions of both linear and nonlinear actuators in which mechanical behavior
and electrical behavior are coupled. Since most MEMS-based sensors use
actuators to measure physical quantities, this book can be used to design and
analyze sensors.

1.3 KNOWLEDGE REQUIRED

As discussed in the foregoing section, MEMS are systems that consist of
mechanical and electrical components and that may also involve other com-
ponents, such as a reflective layer for a micromirror, depending on the purpose.
Since the mechanical behavior of MEMS are coupled with other behavior, we
should study interdisciplinary subjects in the fields of science and engineering
to understand the coupled behaviors. Figure 1.6 shows an overview of the
knowledge required for the research and development of MEMS and their
derivatives. Because the most convenient and controllable energy is the elec-
trical energy, electrical and electronic engineering covering electromagnetics,
circuit theory, or signal processing is required to control phenomena associ-
ated with electric charge (i.e., electron, current). For example, from the point
of view of electrical engineering, the parallel plate of Fig. 1.2 may be consid-
ered to be a capacitor consisting of movable and stationary plates, so knowl-
edge of electrical engineering is necessary to calculate the capacitance of the
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MEMS Derivatives

Mechanical engineering MOEMS:
statics, dynamics, mechanical Optics +
vibration, fluid dynamics, heat transfer, MEMS
etc.

Electrical engineering BioMEMS:
electromagnetics, circuit theory, biotech. +
microfabrication, etc. MEMS

NEMS:

Physics: optics (e.g., grating, mirror, lens),

. nanoscale
quantum mechanics, etc. + MEMS
Chemistry: biochemistry (e.g., DNA, RNA),
organic chemistry, etc. RF MEMS:
Mathematics: differential equations, RF
Laplace transform, matrices, application
calculus, numerical analysis, etc. . oo

Figure 1.6 Knowledge required to understand MEMS.

parallel plate and to obtain the electrostatic force acting on the movable plate
as a function of the interplate gap and the applied voltage. Similarly, since the
magnetic relay of Fig. 1.5 is an electromagnet with a variable air gap, we use
the magnetic energy that is stored in the electromagnet and calculate the
magnetic force pulling the movable bar into the stationary core.

Physically, MEMS are mechanical structures that are designed for specific
purposes. For desired functions, components of MEMS must be mechanically
stable, vibrate if the mechanical resonance is utilized, and be deformed if
deformation or displacement is needed. For the design and analysis of mechan-
ical components, we need statics for the mechanical structure design, dynamics
and vibration for resonance and mechanical vibration, heat transfer for thermal
actuation, and fluid dynamics for the evaluation of damping due to the move-
ment of microstructures. Let us consider the parallel plate in Fig. 1.2 as an
example of a mechanical structure. Since the four flexures support the movable
plate under the electrostatic force, we need statics to determine the flexure
dimensions: the length, width, and thickness of the flexures. If the movable
plate operates at resonance for a mechanical filter, we should use our knowl-
edge of dynamics or mechanical vibration to design the resonant frequency
desired. If we wish to set up a mechanical quality factor that affects the band-
width of a mechanical filter, we should evaluate the damping force or damping
coefficient that can be provided by fluid dynamics. If we wish to design an
accelerometer or acceleration switch using the parallel plate shown in Fig. 1.2,
we need to know the dynamics and mechanical vibration.

All the above-mentioned knowledge is coupled, so the design of a parallel
plate for a specific application is very complicated even though the parallel
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plate in Fig. 1.2 looks simple. In addition to these complexities, we may need
physics, chemistry, mathematics, and other subject areas, and MEMS may have
different names, as described in Fig. 1.6: MOEMS if a MEMS device involves
at least one optical component; RF MEMS if a MEMS device is designed for
a radio-frequency application such as an RF filter; bioMEMS if a MEMS
device is used for biological applications such as the detection of DNA strands;
NEMS if at least one dimension of the mechanical structure is less than 1 um;
and perhaps other names in future applications if mechanical structures with
electrical components are used for a specific purpose.

1.4 DIMENSIONAL ANALYSIS

Dimensional analysis and dimensionless numbers allow us to investigate com-
plicated or coupled systems such as the MEMS described in Section 1.3. Using
dimensional analysis and experimental results (or numerical simulation), we
can find relationships between variables that are involved in a problem or
system. If we apply dimensional analysis to a governing equation that describes
a physical phenomenon and cannot be solved due to its nonlinearity, we can
obtain useful dimensionless numbers that play crucial roles in describing the
phenomenon. We begin with easy dimensionless numbers with which we are
familiar.

Let us begin by considering the ratio of the circumference of a circle to its
diameter, the well-known constant. Figure 1.7a,b, and c show a circular column,
a rectangular column, and an arbitrarily shaped body, respectively. As the
radius and height of the circular column (Fig. 1.7a) are represented by r and
t, respectively, the perimeter / of the top view, the top-view area A, and the
volume V are given by

[=2nr=mnd

A=nr*= T
4

V=nrt=2a%
4

where 7 denotes the ratio of the circumference of a circle to its diameter
and d represents the diameter of the column. It is worth noting that the perim-
eter, area, and volume are proportional to the diameter, the square of the
diameter, and the product of the area and thickness, respectively. It is also
noted that if the circular column become # times larger than its original dimen-
sions d and ¢, the corresponding length, area, and volume will be nl, n*A, and
n*V, respectively. Manipulating the equations above gives dimensionless forms
as follows:
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In the preceding equations, the diameter d may be considered a characteristic
length that represents the dimension of the circular column. The first two
equations above give the constants (numbers) on their right-hand sides, and
the third equation also yields a constant if the #/d remains unchanged. In this
case, the dimensionless numbers //d and A/d* remain unchanged even though
the diameter becomes larger or smaller. However, the dimensionless number
VId® is proportional to the dimensionless number #d. If the diameter and
thickness become n times the original dimensions, the resulting length and
area are, respectively, nl and n°A, and the volume becomes rn’V since #/d does
not change for a uniform transform (i.e., nt/nd = t/d). The preceding equations
may be expressed in more general dimensionless forms as

[ [
i)
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Similarly, for the rectangular column of Fig. 1.7b, the perimeter / of the top
view, the top-view area A, and the volume V are given by

[=2(a+Db)
A=ab
V =abh

We transform the equations above into dimensionless equations as follows:

a a _a ;
Vbh\ V bh
a a a a aa

The dimensionless equations f, f5, and fs represent functions for the perimeter
and area of the top view of the rectangular column and the volume, respec-
tively. It should be noted that the dimensionless length /a, area A/d?, and
volume V/a® are expressed as functions of dimensionless variables b/a and h/a.
This concept may be extended into more general cases.

Let us consider the complex three-dimensional structure shown in Fig. 1.7c.
We wish to obtain the dimension a, the area, and the volume of the structure
as functions of a characteristic length. The relations may be used to build a
miniature or larger structure. Let / (not shown in Fig. 1.7c), h, A, and V repre-
sent a length, the height, the area, and the volume of a structure, respectively.
The following equations can be written for a dimensional analysis:

fr(a,lbh)=0
fs(A,a,lLh)=0
fo(V,a,l,h)=0
Let [ be a characteristic length of a structure. Since a, /, and 4 have the dimen-

sions of length and A and V have the dimensions of the square and cube of
length, respectively, the dimensionless equations are given by
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When the preceding equations are set up by dividing the arguments of the
function by [, [, or [, the number of arguments is reduced by one in each
equation. Rearranging the preceding equations yields the length a, the area A,
and the volume V in dimensionless forms:

a h
7=fl3(7)

A a h
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~ |

Il
]

SN
~|

0

<<
~ |
Nlb‘

5 4

For the enlargement or contraction of the structure, the ratio of linear dimen-
sions, A/l, remains constant, and then the ratio a/l also becomes constant. The
first equation above becomes a/l = ¢;, where ¢, is a constant. Consequently, the
first equation above gives a linear relation between a and /:

a=cl (1.1)
Similarly, the equations for the area A and the volume can be expressed as

A=cl (1.2)
V=l (1.3)

where ¢, and c¢; denote constants. These three equations state that for any
structures in three-dimensional space, if the shape of the structure remains
unchanged for enlargement or contraction, the length from one point to
another, the area of any portion of the structure, and the volume of the struc-
ture are proportional to a characteristic length and to the square and cube of
the characteristic length, respectively. During derivation of equations (1.1) to
(1.3), the characteristic length can be taken to be any dimension: for example,
the width or the height. If the height / is selected as the characteristic length,
the foregoing equations may be expressed as follows: a = d,h, A = d,h?, and
V = dsh*, where d,, d,, and d; represent constants.
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d

Figure 1.8 A piece of chocolate.

Example 1.1 A chocolate company decides to build an enlarged model of a
piece of chocolate for an advertisement. The piece of chocolate shown in Fig.
1.8 will be enlarged n times. In other words, the dimension d will be nd in the
model. In order to build the model and paint the outside, the company must
calculate the length of the company logo S shown in Fig. 1.8 and the area and
volume of the model. If the logo length is /,, the outside area A,, and the
volume V), find the logo length of the model, the required volume of the piece
of chocolate, and the outside area. If the company paints the outside to a
thickness of ¢ (wet paint), determine the volume of paint required.

As discussed above, the dimension, area, and volume of the model are
proportional to a characteristic length and to the characteristic length squared
and cubed, respectively. Let the logo length of model be /,, the outside area
A,,, and the volume V. For the length, area, and volume of the prototype
(original) piece of chocolate, (1.1) to (1.3) give

lp = Cld (a)
Ap = C2d2 (b)
V,=cd’ (c)

where ¢, ¢,, and ¢; denote constants for the relationships between the proto-
type and the model. The preceding equations also hold for the model as
follows:

L, =cnd (d)
A, =c(nd) (e)
V, =cs(nd)’ ()

From the preceding equations, we thus find relationships that will hold for
both the prototype and the model:
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Ly =nl, (2)
A, = nzAp (h)
Vi = n3vp (1)

The volume of paint required for the model is given by A, = n’tA,. According
to (g) to (i), if the dimensions of a model are n times those of a prototype (i.e.,
geometrically similar), the linear dimension, area, and volume of the model
are increased to n, n%, and n® times those of the prototype, respectively. For
example, if a structure is magnified by a factor of 10, any length, area, and
volume of the magnified structure become, respectively, 10, 10%, and 10° times
those of the original structure.

In the foregoing discussion and Example 1.1, the dimensional analysis has
been described for similar structures. These concepts may be extended to
involve more general cases that are related to force, stress, energy, or any other
physical quantities. As a physical quantity, force such as the weight of a struc-
ture is measured in newtons (N) if we use SI units (an abbreviated form of
the French term corresponding to “international system of units”). Weight may
be measured in other units: for example, Ib; (pound-force). To avoid any confu-
sion associated with force units such as N and lby, F is used to represent the
force dimension in dimensional analysis. Similarly, L and 7T represent the
dimensions of length and time, respectively. In many cases, force (F), length
(L), and time (7) are used as the fundamental units if physical quantities
involved in a problem are expressed using force, length, and time. If force,
length, and time are used as the fundamental units, the system of units is called
the F—~L-T system. Other dimensions that can be derived from the fundamen-
tal units are known as derived units. Derived units can be derived easily from
basic equations. For example, the mass of a structure is a derived unit that is
defined as FL™'T?, since the mass may be expressed as m = F/a, where F and
a denote the force acting on the mass and the acceleration of the structure,
respectively. If physical quantities under consideration cannot be derived from
the preceding fundamental units (F~L-T units), the physical unit may be
added to the list of fundamental units. For example, the temperature for
thermal study and the electric charge for electric phenomena can be consid-
ered as additional units. As the fundamental units, the temperature and electric
charge are represented by 6 and Q, respectively. Fundamental and derived
units that are widely used in scientific and engineering problems are shown in
Table 1.1. In physics, researchers may use mass as a fundamental unit instead
of force. In this case, the dimensions in Table 1.1 can be converted into an
M-L-T system as MLT is substituted for force F. For example, FL of the
F-L-T system, representing energy, is converted to ML*T* in the M—L-T
system. The F~L-T and M—-L-T systems yield the same results for the dimen-
sional analysis of a physical problem.



DIMENSIONAL ANALYSIS 13

TABLE 1.1 Dimensions of Physical Quantities

Physical Quantities Dimensions Physical Quantities Dimensions
Force F Thermal conductivity FT7'o"
Length, displacement L Electric charge ]

Time T Current or™!
Mass FL'T? Voltage FLQO™!
Density FL™T? Resistance FLTQ™
Velocity LT Permittivity F'L>Q?
Acceleration LT Capacitance F'L'Q?
Energy FL Magnetic field strength L'T7Q
Stress, pressure FL> Magnetic flux density FL7'T Q7'
Viscosity FL™T Permeability FT°Q
Angle dimensionless Inductance FLT*Q™
Temperature 0

o/l

F,AEP)
(b)

Figure 1.9 Cantilever subjected to a force.

Using the fundamental and derived units listed in Table 1.1, let us perform
dimensional analysis that may be used to obtain a relation among many vari-
ables. Consider the cantilever beam of Young’s modulus E (dimensions: N/m?
a modulus relating stress to strain), length /, width b, and thickness ¢, as shown
in Fig. 1.9a. For this simple problem we know from statics (that will be dealt
with in Chapter 3) that a solution for the deflection § at the end of a cantilever
under an applied force F, is given by

3
5-LE

=3l (1.4)
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where I denotes the moment of inertia of the cantilever, defined as b/12.
However, in order to know how to conduct the dimensional analysis of this
problem, it is assumed that at this stage we don’t know the solution. From Fig.
1.9a we know that F,, E, 0, b, t, and [ enter into the problem. The problem may
be expressed as

f(F,,E,8,b,t,1)=0 (1.5)

From Table 1.1 we know the dimensions of the variables as follows (£ has the
dimension of stress):

Fa:[F]
E=[F/L]
§=[L]. b=[L]. r=[L]. I=[L]

These variables involve the two fundamental dimensions F and L. If we divide
the first equation by the second to eliminate the fundamental unit F, we have

F,__[F]

E [F/I7]

=[]

which involves only the fundamental dimension L. We have 6, b, ¢, and [ for
the fundamental dimension of L, and any of them may be selected to represent
L. Using [ for a characteristic length representing the fundamental dimension
L, the preceding equation can be converted into the following dimensionless
number:

E_[2]_
EI? "[LZ]"[O]

where [0] states that the number Fa/El* is dimensionless. Similarly, the other
variables, 6, b, and t, can be converted into corresponding dimensionless
numbers by dividing the variables by the characteristic length /, and the origi-
nal problem can be expressed as

F, 6 bt
. PIE :0
f(Elz 171 1)

Since we wish to obtain an expression for the beam deflection 9, the foregoing
equation may be expressed as follows:

1) F, bt
T"ﬁ[EZZ’z’lj (10
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Equation (1.6) states that the deflection of the cantilever in Fig. 1.9a is
expressed as the four dimensionless numbers Fa/EP, &I, b/l, and #/I. Equation
(1.6) is all that we can obtain from dimensional analysis. However, if we obtain
more information from experiments or numerical simulations, the relationship
(1.6) can be expressed in a more accurate expression. From an experiment or
numerical analysis, we can find more relationships:

5 F, 5 bY' & AN
7:61 P 7:C2(7) 7:C3[7) (1.7)

These equations are substituted into equation (1.6) and we then have

) F, bt E, (bY'(tY" FEP
—=fil =5.—- |=c¢ - l-] =c
l EPR’ 1’1 Er\1) |1 Eb?

or

EP

d=c
Eb#?

where c is a constant that represents the product of ¢y, ¢,, and ¢; and can be
obtained from the experiment or numerical analysis (e.g., Fig. 1.9b) and
obtained easily from a graph of F,/’/(Ebf) against &. We know that the
constant will be 4 when the equation above is compared with the analytical
solution, (1.4).

In the procedure used to obtain the dimensionless equation above, note
that after selecting variables as characteristic variables (E and /), the other
variables were divided by the variables selected. Note also that the number of
resulting dimensionless variables is reduced by the number of fundamental
units. In the cantilever problem in Fig. 1.9a, the number of dimensional vari-
ables of (1.5) was 6, but in the dimensionless form, the number of dimension-
less variables was reduced to 4 (6 — 2, where 2 is the number of fundamental
units, F and L in this case). This procedure is generalized by Buckingham’s
n-theorem (Buckingham, 1914), which may be stated as follows:

If n variables (v, v,, ... , v,), which can be expressed by N fundamental
units, are involved in a problem, the dimensional equation for the problem
may be expressed as

f(vthvvfi’ oo 7vn) = 0 (18)

and the corresponding dimensionless equation can be a function of the n — N
dimensionless variables (7,7, 7, ... , T,_y), as follows:

g(nlznb”&“':”an):O (19)
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As discussed in the foregoing problem (Fig. 1.9a), equation (1.9) can give
useful information and becomes more accurate if more information, such as
data from an experiment or numerical analysis, is available.

The problem shown in Fig. 1.9a can also be solved using the n-theorem. In
Fig. 1.9a we have six dimensional variables (F,, E, 6, b, t,and /), and the problem
of obtaining the deflection at the end of the cantilever can be expressed as

f(F,E,0,b,1,1)=0
Since all the dimensional variables are expressed by the fundamental units of
F and L, we expect that four dimensionless variables (6 — 2 = 4) will appear
in a dimensionless equation:

g1, 72,703,704 ) =0 (1.10)
0, b, t, and [ have the dimension of L, and then we take the first three dimen-

sionless variables as m; = §/, m, = b/l, and m; = t/l. The fourth variable, m,, may
be expressed in the form

7, =F,E" = [F][F/LZ]a [L]b _ [F]+aL72a+b]
for m, to be a dimensionless number (i.e., [0]), we have two equations,
1+a=0 and -2a+b=0

From these equations, a = —1 and b = 2a = -2 are obtained. Substituting a and
b into m; above gives

1y F
Ty = EZE 1[ 2= ﬁ
The dimensionless variables (7, m,, w3 and ) are substituted into (1.10) to
yield
sbt E) g
STTTE?

The preceding equation is the same as (1.6). For more general applications of
dimensional analysis, more examples are presented below.

Example 1.2 Parallel plates are used widely in MEMS to actuate microstruc-
tures and to sense physical quantities. As illustrated in Fig. 1.10, a parallel plate
consists of an upper plate on a lower plate, and a voltage V may be applied
across the plates, which are separated by a gap 4. The length and width of the
upper plate are /; and /, (Fig. 1.10) and the thickness and fringing field effect
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v
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Figure 1.10 Dimensions of a parallel plate.

can be neglected if the thickness and the gap are much less than the length
and width. The lower plate can be considered an infinite plate since its length
and width are much larger than those of the upper plate. We wish to obtain a
dimensionless equation that represents the electrostatic force F, acting on the
upper plate. Obtain the dimensionless equation in a simple form if from an
experiment for 4 << [, and /,, the electrostatic force F is proportional to the
length and width of the upper plate, /; and /,, and inversely proportional to the
square of the gap A.

We derive the analytic solution of the electrostatic force for & <</, and ,
in Chapter 7. At this stage it is assumed that we do not know the relation, in
order to study the dimensional analysis for an electrostatic problem. Let &
represent the permittivity of the material (e.g., air) between the plates. The
dimensional equation f for the problem may be expressed as

f(E?EsV5117127h)=O (a)

and the dimension of the variables in equation (a) is written, with reference
to Table 1.1, as follows:

F, =[F]

e=[0*/FL] o
V=[F/ ]

L=b=h=[L]

We have three fundamental variables (F, Q, and L) and the six dimensional
variables above. We thus expect three dimensionless variables and may write
the dimensionless equation g as

g(mi,m2,m5) =0 (c)

where m, m, and m; are the dimensionless variables to be found. If /; is taken
as the characteristic length that represents the length of the parallel plate, we
have the following dimensionless variables:
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b
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= (@)
1

2 ¢ d
Ty = Fegcvdlle — [F]I:FQLZ :| l:%:‘ [L]f — [Fl—c+dL—2c+d+eQ2c—d]

For m; to be dimensionless (i.e., [0]) we have a set of equations to construct
the dimensionless variable 7;:

1-c+d=0
—2c+d+e=0 (e)
2c—-d=0

which gives ¢ = —1,d = -2, and e = 0, and we find the third dimensionless vari-
able as

()

Substituting equations (d) and (f) into (c), we have the dimensionless
equation

(ﬂ' T,.7T )— liﬁi =
g 157425743 g l]’ll’gVZ
or
F (L h
7 —gl(ll 7 j (2)

Equation (g) states that the ratio (i.e., 7;) of the electrostatic force acting on
the upper plate to the product of the permittivity and the square of voltage is
a function of the dimensionless ratios I/, and A/l;. From experiments of the
parallel plate, it was found that the electrostatic force F is proportional to
the length and width of the upper plate, /; and /,, and inversely proportional
to the square of the gap A. Using this information, equation (g) is simplified

as follows:
F, L /(hY A
8V2=Cl?/[llj =C—h2 (h)

where ¢ represents a constant and A denotes the area of the upper plate,
defined as A = [;/,. The constant is also determined by the experimental data.
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If we perform an experiment or numerical simulation and if we plot a graph
of F,/eV? against A/h?, the constant c is obtained from the slope of the graph.
From the theoretical derivation described in Chapter 7, the solution for
the electrostatic force acting on the parallel plate for & << /; and h << [, is
given by

2
F_leAV

[ E h2 (1)

From equations (h) and (i) we know that the constant ¢ must be 1/2.

The analysis to evaluate electrostatic force discussed in Example 1.2 may
be extended to obtain the electrostatic force acting on more complicated
structures across which a voltage is applied. Consider the structures in Fig. 1.11
under electrostatic force due to the applied voltage V. Let the dimensions of
the structures be represented by a, b, ¢, d, ... and the interstructure gap be
denoted by 4. When we repeat the dimensional analysis discussed in Example
1.2, the following equation is obtained:

F, hbcd
eV =g[;’;’;’;*"] (L11)

In equation (1.11), for convenience, dimension a was taken as the character-
istic dimension. Any physical dimensions, such as b, c, ... , can be selected as
the characteristic dimension. If b is taken as the characteristic length, the argu-
ment of equation (1.11) may be (4/b, a/b, ¢/b, d/b, ...). In many microstructures
and nanostructures, only one dimension, such as % in Fig. 1.11, varies with time

_Z_ TTV

| c

Figure 1.11 Arbitrarily shaped structures under electrostatic force.
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or can be adjusted, while the other dimensions (b, ¢, d, ... in Fig. 1.11) remain
unchanged since the dimensions are formed during fabrication of the struc-
tures. Then the dimension ratios (b/a, c/a, ...) in equation (1.11) also remain
unchanged, and we rewrite (1.11) in the simpler form

F,=¢Vg (g) (1.12)

Application of (1.11) is described in the following example.

Example 1.3 A conductive strip of width a = 10 um, thickness b = 5 um, and
length ¢ (much larger than a and b) is positioned over an infinite conductive
plate as shown in Fig. 1.12a. The gap & of the strip can be adjusted from the
plate and a voltage is applied across the strip and the plate. The length is much
larger than the dimensions a, b, and A, so the problem in Fig. 1.12a can be
considered to be a two-dimensional problem. Using commercial software for
two-dimensional electrostatic analysis, we obtain the electrostatic forces (per
unit meter) of 4.5685 x 107N, 4.9595 x 10°N, 2.5008 x 10°N, and 7.4195 x
10"Nath=0.1x10°m,1 x 10°m,5 x 10°m, and 10 x 10°m, respectively. It
is desired to find a relation between the force F, and the gap 4 in the form
F, = ph?, where p and g are constants.

|
/b d

L
h—f a |

@

2 ~.

1 .\T\\
Curve fitting :

o O Simulation __|

log((FleV?)(alc))

-2.0 -1.5 -1.0 -0.5 0.0
log(h/a)
(b)

Figure 1.12 Electrostatic force acting on a strip configured over a plate.
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In designing MEM devices, this type of problem will be encountered, which
cannot be solved by an analytical method or whose analytical solution is in
very a complicated form or expressed in an infinite series. In this example,
since the thickness b and gap h are comparable to the width a, equation (i) of
Example 1.2 for the parallel-plate force generates significant errors. Thus, we
require an expression that can be used to evaluate the force. For this purpose,
we can use (1.11), which was obtained from dimensional analysis.

Let us write (1.11) with the dimensions a, b, and c:

F =g[@39, ) (a)
a a

eV?
Since ¢ is much greater than a and b, the problem is considered a two-
dimensional problem, and the electrostatic force F, is then proportional to the
length, c. Thus, equation (a) is written in the form

F, c hb
e _ % == b
ev? agl(a aj (®)

Q0

where g is a new function of #/a and b/a. However, since b/a remains constant
while //a varies, equation (b) may be written as

E_c,(h
eVv? ag2 a

or

F, a_ h
Evzc—&(aj ©
where g, is a function of A/a when b/a remains unchanged. As shown in Fig.
1.12b, the dimensionless force defined on the left-hand side of equation (c) is
plotted as circles against #/a on a log-log scale (base 10). The force—gap rela-
tion is linear in the log-log graph and can be expressed as a linear equation:

F, h
log('sz g)zcl log;+cz (d)

From a linear curve fitting (e.g., graphical method or least-squares method)

using the force data given, we find that ¢; =-1.8990 and c, =-0.1084.
Substituting the coefficients into equation (d) leads us to

1 —1.8990
Fe a_jgarsmane — 100 (ﬁj =0.7791(ﬁ) (e)

eV?ie a a
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Rearranging equation (e) gives us the electrostatic force F, in the form F, = ph?:

1.8990
F, =0.7791eV? f(ﬁj (f)
a\ h

It should be noted that equation (f) is valid for width a = 10 x 10°m, thickness
b=5%x10°m,a<<c, b<<c,and 0.1 x 10°m <4 <10 x 10°m (the range of
the input data). To validate equation (f) we can substitute a =10 x 10°m,
b=5x10°m,h=5x10°m,c=1m,e=8.854 x 10"*F/m,and V = 1V to give
F,=2.5727 x 10°N, which is very close to 2.5008 x 10°N from numerical
analysis. For a=10x10°m, b=5x10°m, h=5x10°m, ¢ =10a = 100 x
10°m,e = 8.854 x 10?F/m,and V = 10V,equation () yields F, = 2.5727 x 10*N.

It is worth noting that (1.11) holds for any structures that are geometrically
similar;thatis, (f) holds for any structures of b/a = 0.5,c/a >> 1,and 0.1 < h/a < 1.
For example, (f) can be used to evaluate the electrostatic force of the structure,
which is suspended over a large plate and has the following dimensions:
a=20x10"m, b=10%x10°m, £ =10x10°m, and ¢ = 10a =200 x 10°m.
The structure is the doubled structure of that above and generates the same
magnitude of electrostatic force (2.5727 x 10°N) if the same voltage (10V) is
applied.

If a microstructure immersed in a gas or liquid is moved, a drag force due
to the viscosity is generated and acts as a damper that decays the energy stored
in the microstructure. The drag force or damping force plays an important role
since it is related to the damping coefficient or quality factor (this subject is
dealt with in detail in Chapter 5). The drag force is also expressed in dimen-
sionless form. The following example shows how to use dimensional analysis
to obtain the damping force.

Example 1.4 A microplate of length / and width w (Fig. 1.13) moves at a
velocity of u toward a lower plate that is much larger than the microplate.
During the motion of the microplate, the upper plate, spaced by a gap 4 from
the lower plate, squeezes air between the plates so that the air moves out to
atmosphere and the pressure under the microplate is increased. If the micro-
plate is moved up, the pressure is lowered and the air will move in from the
atmosphere. The pressure acting on the microplate is a source of damping
force. Experiments show that the damping force F; depends on the velocity u,
the viscosity u, the length /, the width w, and the gap 4. We wish to find a rela-
tion between the damping force and the variables. If the damping force F; is
inversely proportional to the cubic of the gap A, refine the relation.

This subject is covered in detail in Chapter 6. At this stage we use dimen-
sional analysis to obtain the relation among the parameters. The dimensional
equation of the problem may be expressed as
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/Tl [ |

Figure 1.13 Parallel plate subjected to a damping force.

f(F,uulwh)=0 (a)

and the dimension of the variables in equation (a) is written, with reference
to Table 1.1, as follows:

[F]

- (P
[L/T]
w=h=[L]

(b)

u
u
l

We have three fundamental variables (F, L, and T) and the six dimensional
variables above. Three dimensionless variables will then be involved in
this problem and the corresponding dimensionless equation g may be
written as

8(m,75,75) =0 (c)

where 7, m,, and m; are the dimensionless variables to be found. If / is taken
as the characteristic length that represents the upper plate, we have the fol-
lowing dimensionless variables:

T =

Ty =

(d)

c d
= F;,‘ucl/ldle = [F][%} l:%] [L]e — [F1+CL72L‘+d+eTc—d:|

Setting m; = [0] gives a set of equations to construct the dimensionless
variable 73



24 INTRODUCTION

1+c¢=0
—2c+d+e=0 (e)
c—-d=0

which gives ¢ =-1, d =-1, and e =-1, and we find the third dimensionless
variable as

_Fa

T, =
’ uul

(f)

Substituting the first two equations of (d) and (f) into (c), we have the dimen-
sionless equation

w h F,
T, m,n3)=¢g| —,—,—— |=0
8 (M 72,03) g(z l/,tulj
or
Fo _,(wh
ﬂul—gl(l,l) ®

For refinement of equation (g), we use the inverse proportionality of the
damping force F, to the cubic of the gap /. Using the proportionality, equation

(g) is rewritten in the form
F, IY w
Ld (2 il h
pul (hjgz(l) ®

Even though equation (h) is valid, a slightly different form may be obtained
for our convenience. Since the product of dimensionless numbers generates a
dimensionless number, (g) can be written

L _(ww /ﬁ _o(rr )
wd S\ TR TR
If proportionality is used, equation (i) is converted into

5ol

After studying squeeze damping in Chapter 6, we obtain the following closed-
form equation for the damping force:
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3
[
Fy=pri— (k)

where f denotes a function of the ratio w/l. It is noted that if we define
B =gisw/l), (k) is the same as (j). It is noted that comparing (h) and (j) gives

8+=|— | 8|7
w [
The damping problem discussed in Example 1.4 may be extended to involve

more dimensions that affect the damping force. If additional dimensions are
represented by a, b, ¢, ... , we have the following dimensional equation:

f(Fy,mu,lw,h,a,b,c,...)=0 (1.13)

When the procedure used in example 1.4 is repeated, the dimensionless equa-
tion for the general case is given by

Fao _(wY (wabc
wi 7))\ TTTT

or

wY wabc
F,=|— lg|l —,— ==, 1.14
¢ [h)ﬂug(ll 171 j (1.14)

Equation (1.14) can be interpreted as follows: The damping force due to
squeezed gas is proportional to the viscosity of the surrounding gas or fluid
and to the velocity perpendicular to the plate. Furthermore, the damping force
is inversely proportional to the cubic of the interplate gap. Other dimensions,
such as the size of the perforation and the plate shape (e.g., rectangle or circle),
also affect the damping force, and their effect on the force may be involved
in a correction factor such as the function g of equation (1.14).

So far, to conduct dimensional analysis for problems, we have assumed that
we did not know exact principles or governing equations but knew parameters
involved in the problems. If we know governing equations of problems that
cannot be solved due to their nonlinearity or for which it is difficult to obtain
analytical solutions, we can also employ dimensional analysis to anticipate
which parameters affect the solutions, to design experiments or numerical
analysis, or to obtain closed-form expressions from experiments or numerical
analysis. We begin by considering the cantilever deflection problem, which has
already been studied in association with Fig. 1.9.

The governing equation for deflection y of the cantilever at distance x is
given by (its derivation is dealt with in Chapter 3)
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2
4y (1.15)

dx?

where FE, I, and M denote Young’s modulus, the moment of inertia of the
beam defined as br*/12, and the moment acting on the beam cross section,
respectively. The deflection y is easily obtained since the equation is linear
and the moment M is defined as F,(/ — x). To obtain a dimensionless equa-
tion from equation (1.15), we introduce the following dimensionless
parameters:

X =

le

Y =

ST

where the dimensionless parameters X and Y represent x and y, respectively,
and / and ¢ are taken as the characteristic dimensions for the dimensionless
parameters. It is noted that X and Y are normalized by the maximum values
(i.e., [, 0) of the corresponding dimensional variables x and y, and then the
maximum X and Y are unity. Recalling the chain rule of differentiation, the
first and second derivatives of y with respect to x are obtained as

dy_dXdy 1dsY_§dy
dx dxdX | dX [dX
dy_ddy_1d(5dY) sd¥
dx* dxdx ldxX\1ldX ) I?dX?

Substituting the preceding equations into the governing equation with
M =F,(l-x)=Fl(1 - X), we have

S d’Y
El— =Fl(1-X
> dx? ( )
or in dimensionless form,
d’y
—=G(1-X 1.16
e (1-X) (1.16)

where G is a dimensionless force defined as

3
G= Fl
EId




DIMENSIONAL ANALYSIS 27

The foregoing governing equation in dimensionless form states that the dimen-
sionless deflection Y is a function of the dimensionless force G and the dimen-
sionless position X. This statement can be expressed as follows:

f(Y,G,X)=0
or
Y =g(G.X)
For a small deflection (i.e., &/ << 1) we can find from an experiment or numeri-

cal simulation that there is a linear relation between Y and G and that the
following equation holds:

Substituting Y, G, and X defined earlier into the foregoing equation leads
us to
y_EE  (x
5 E%\1
or
FlP (x
= bl 1.17
v=r(7) (117

The exact solution of this problem, which is dealt with in Chapter 3, is

given by
EP xY x Y
6EI I l

Comparing the preceding equation with (1.17), we find that

= 1 — { i +3 f i
$76 !
If g, of (1.17) is not known, we may obtain the coefficient from experiment.
As shown, if we make a governing equation dimensionless, we can find the
dimensionless parameters that are involved in the governing equation. Another

example, involving manipulating governing equations to obtain dimensionless
equations and variables, is presented below.
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e _l_ J,=sinwt

Figure 1.14 Vibrating system.

Example 1.5 In physics many vibrating systems consist of a mass 1, a spring
of stiffness k to generate a restoring force, and a damper with a damping coef-
ficient c. The model for the systems is illustrated in Fig. 1.14, in which the mass
is actuated by a time-varying force f,sin wt, where f,, ®, and ¢ denote the force
amplitude, angular frequency, and time, respectively. The governing equation
for the response of the mass to the force is given by

d*y  dy .
m——+c—=+ky=f,sinwt a
a Ca = h (@)

where y is the response of the mass. We wish to obtain the dimensionless form
of equation (a) and find dimensionless parameters that are involved in the
problem.

To obtain the dimensionless equation, we first define dimensionless param-
eters for y and ¢ as follows:

y=2

fc (b)
T=—

T

where Y and T represent the dimensionless displacement and time, and y, and
t denote the characteristic displacement and time, respectively, which will be
defined later. Using the foregoing dimensionless parameters and recalling the
chain rule of differentiation yields the time derivatives

d_dT d _1d

dt dr dT  ©dT

Similarly,

& _d(d\_1 d
de® di\dt) *dT?



DIMENSIONAL ANALYSIS 29

Substituting the preceding four equations into the original governing equation,
we have

1d*(y.Y) 1d(y.Y) .
— < t+c———>+ky.Y = fysinwtT
2 art T ar TRk

Dividing the foregoing equation by ky. leads to

2
m d Y+££+Y:£siner (c)
kt* dT? ktdT ky.

In equation (c) the characteristic displacement y. and time 7 are arbitrary
and can be taken to reduce equation (c) to simplest form. For this purpose we
may set both the first coefficient on the left-hand side of equation (c) and the
coefficient on the right-hand side equal to unity as follows:

!

f (d)
AU

ky.

The two equations (d) give the following characteristic time and displacement
to provide the simplest dimensionless form:

fm 1

T= _— = —

k o,
_fh

Ve X

(e)

where @, denotes the natural frequency of the vibrating system, defined as
Jk/m,and y, represents the static displacement. Using the definition of 7and
y. above and introducing the quality factor Q = Jmk / ¢ , we obtain the dimen-
sionless governing equation as follows:

2
d—Y+ld—Y+Y=sinQT )
dT* QdT

where Q is the dimensionless frequency, defined as Q = @/,. Therefore, the
dimensionless response may be expressed as

g(Y,Q,Q,T)=O
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or

Y=4(0,QT) (@

This equation shows clearly that the response Y is a function of the quality
factor O, which is defined by m, ¢, and k, the dimensionless angular frequency
Q, and the dimensionless time 7. The corresponding analytic solution is dealt
with in Chapter 5.

PROBLEMS

1.1 The size of the piece of chocolate in Fig. 1.8 is increased n times and its
weight is proportional to the mass. If the density of the model is half that of
the original piece, determine the weight of the model.

1.2 Suppose that an astronaut visits a planet on which the gravitational
acceleration is one-tenth that on Earth. He finds a giant ant that consists of
the same material as, but whose size is 100 times greater than, that of the ant
on Earth. He returns to Earth with the giant and puts it in a cage. By dimen-
sional analysis, describe what happens to the giant ant.

1.3 A fixed-fixed beam is subjected to a load ¢ (N/m) that is distributed
uniformly along the beam. The governing equation for deflection y at x from
one end of the beam is given by

d'y d’y
N =a

where E, I, and N, denote Young’s modulus (N/m?), the moment of inertia of
the beam (m*), and the tension (N) acting along the beam, respectively. Find
the dimensionless equation and suggest an expression for the solution in
dimensionless form.

1.4 A movable plate of length / and width w in a gas moves into an infinite
stationary plate at a velocity of u (Fig. P1.4). The movable plate is perforated
to reduce the damping force. The plate gap, the pitch, and the size of the per-
foration are denoted by 4, p, and f, respectively. Find an expression for the
damping force F,; in dimensionless form. If experiments show that the damping
force is inversely proportional to the gap cubed, refine the expression.

1.5 The sound of a bell depends on the natural frequency of the bell
structure. The bell is made of a material of Young’s modulus £ (N/m?) and
density p (kg/m’). If the natural frequency of the original bell is f,, find the
natural frequency of an n-fold increased model that is geometrically similar
to the original, but whose Young’s modulus and density are changed from
the original values.
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Figure P1.4 Perforated plate.
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