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    1.1    HISTORICAL BACKGROUND 

 The  “ bootstrap ”  is one of a number of techniques that is now part of the broad umbrella 
of nonparametric statistics that are commonly called resampling methods. Some of the 
techniques are far older than the bootstrap. Permutation methods go back to Fisher 
 (1935)  and Pitman  (1937, 1938) , and the jackknife started with Quenouille  (1949) . 
Bootstrapping was made practical through the use of the Monte Carlo approximation, 
but it too goes back to the beginning of computers in the early 1940s. 

 However, 1979 is a critical year for the bootstrap because that is when Brad Efron ’ s 
paper in the  Annals of Statistics  was published (Efron,  1979 ). Efron had defi ned a 
resampling procedure that he coined as bootstrap. He constructed it as a simple approxi-
mation to the jackknife (an earlier resampling method that was developed by John 
Tukey), and his original motivation was to derive properties of the bootstrap to better 
understand the jackknife. However, in many situations, the bootstrap is as good as or 
better than the jackknife as a resampling procedure. The jackknife is primarily useful 
for small samples, becoming computationally ineffi cient for larger samples but has 
become more feasible as computer speed increases. A clear description of the jackknife 
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2 INTRODUCTION

and its connecton to the bootstrap can be found in the SIAM monograph Efron  (1982) . 
A description of the jackknife is also given in Section  1.2.1 . 

 Although permutation tests were known in the 1930s, an impediment to their use 
was the large number (i.e.,  n !) of distinct permutations available for samples of size  n . 
Since ordinary bootstrapping involves sampling with replacement  n  times for a sample 
of size  n , there are  n n   possible distinct ordered bootstrap samples (though some are 
equivalent under the exchangeability assumption because they are permutations of each 
other). So, complete enumeration of all the bootstrap samples becomes infeasible 
except in very small sample sizes. Random sampling from the set of possible bootstrap 
samples becomes a viable way to approximate the distribution of bootstrap samples. 
The same problem exists for permutations and the same remedy is possible. The only 
difference is that  n ! does not grow as fast as  n n  , and complete enumeration of permuta-
tions is possible for larger  n  than for the bootstrap. 

 The idea of taking several Monte Carlo samples of size  n  with replacement from 
the original observations was certainly an important idea expressed by Efron but was 
clearly known and practiced prior to Efron  (1979) . Although it may not be the fi rst time 
it was used, Julian Simon laid claim to priority for the bootstrap based on his use of 
the Monte Carlo approximation in Simon  (1969) . But Simon was only recommending 
the Monte Carlo approach as a way to teach probability and statistics in a more intuitive 
way that does not require the abstraction of a parametric probability model for the 
generation of the original sample. After Efron made the bootstrap popular, Simon and 
Bruce joined the campaign (see Simon and Bruce,  1991, 1995 ). 

 Efron, however, starting with Efron  (1979) , fi rst connected bootstrapping to the 
jackknife, delta method, cross - validation, and permutation tests. He was the fi rst to 
show it to be a real competitor to the jackknife and delta method for estimating the 
standard error of an estimator. Also, quite early on, Efron recognized the broad appli-
cability of bootstrapping for confi dence intervals, hypothesis testing, and more complex 
problems. These ideas were emphasized in Efron and Gong  (1983) , Diaconis and Efron 
 (1983) , Efron and Tibshirani  (1986) , and the SIAM monograph (Efron  1982 ). These 
infl uential articles along with the SIAM monograph led to a great deal of research 
during the 1980s and 1990s. The explosion of bootstrap papers grew at an exponential 
rate. Key probabilistic results appeared in Singh  (1981) , Bickel and Freedman  (1981, 
1984) , Beran  (1982) , Martin  (1990) , Hall  (1986, 1988) , Hall and Martin  (1988) , and 
Navidi  (1989) . 

 In a very remarkable paper, Efron  (1983)  used simulation comparisons to show 
that the use of bootstrap bias correction could provide better estimates of classifi cation 
error rate than the very popular cross - validation approach (often called leave - one - out 
and originally proposed by Lachenbruch and Mickey,  1968 ). These results applied 
when the sample size was small, and classifi cation was restricted to two or three classes 
only, and the predicting features had multivariate Gaussian distributions. Efron com-
pared several variants of the bootstrap with cross - validation and the resubstitution 
methods. This led to several follow - up articles that widened the applicability and supe-
riority of a version of the bootstrap called 632. See Chatterjee and Chatterjee  (1983) , 
Chernick et al.  (1985, 1986, 1988a, b) , Jain et al.  (1987) , and Efron and Tibshirani 
 (1997) . 
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 Chernick was a graduate student at Stanford in the late 1970s when the bootstrap 
activity began on the Stanford and Berkeley campuses. However, oddly the bootstrap 
did not catch on with many graduate students. Even Brad Efron ’ s graduate students 
chose other topics for their dissertation. Gail Gong was the fi rst student of Efron to do 
a dissertation on the bootstrap. She did very useful applied work on using the bootstrap 
in model building (particularly for logistic regression subset selection). See Gong 
 (1986) . After Gail Gong, a number of graduate students wrote dissertations on the 
bootstrap under Efron, including Terry Therneau, Rob Tibshirani, and Tim Hesterberg. 
Michael Martin visited Stanford while working on his dissertation on bootstrap confi -
dence intervals under Peter Hall. At Berkeley, William Navidi did his thesis on boot-
strapping in regression and econometric models under David Freedman. 

 While exciting theoretical results developed for the bootstrap in the 1980s and 
1990s, there were also negative results where it was shown that the bootstrap estimate 
is not  “ consistent ”  in the probabilistic sense (i.e., approaches the true parameter value 
as the sample size becomes infi nite). Examples included the mean when the population 
distribution does not have a fi nite variance and when the maximum or minimum is 
taken from a sample. This is illustrated in Athreya  (1987a, b) , Knight  (1989) , Angus 
 (1993) , and Hall et al.  (1993) . The fi rst published example of an inconsistent bootstrap 
estimate appeared in Bickel and Freedman  (1981) . Shao et al.  (2000)  showed that a 
particular approach to bootstrap estimation of individual bioequivalence is also incon-
sistent. They also provide a modifi cation that is consistent. Generally, the bootstrap is 
consistent when the central limit theorem applies (a suffi cient condition is Lyapanov ’ s 
condition that requires existence of the 2    +      δ   moment of the population distribution). 
Consistency results in the literature are based on the existence of Edgeworth expan-
sions; so, additional smoothness conditions for the expansion to exist have also been 
assumed (but it is not known whether or not they are necessary). 

 One extension of the bootstrap called  m  - out - of -  n  was suggested by Bickel and Ren 
 (1996)  in light of previous research on it, and it has been shown to be a method to 
overcome inconsistency of the bootstrap in several instances. In the  m  - out - of -  n  boot-
strap, sampling is with replacement from the original sample but with a value of  m  that 
is smaller than  n . See Bickel et al.  (1997) , Gine and Zinn  (1989) , Arcones and Gine 
 (1989) , Fukuchi  (1994) , and Politis et al.  (1999) . 

 Some bootstrap approaches in time series have been shown to be inconsistent. 
Lahiri  (2003)  covered the use of bootstrap in time series and other dependent cases. 
He showed that there are remedies for the  m  - dependent and moving block bootstrap 
cases (see Section  5.5  for some coverage of moving block bootstrap) that are 
consistent.  

   1.2    DEFINITION AND RELATIONSHIP TO THE DELTA METHOD AND 
OTHER RESAMPLING METHODS 

 We will fi rst provide an informal defi nition of bootstrap to provide intuition and under-
standing before a more formal mathematical defi nition. The objective of bootstrapping 
is to estimate a parameter based on the data, such as a mean, median, or standard 



4 INTRODUCTION

deviation. We are also interested in the properties of the distribution for the parameter ’ s 
estimate and may want to construct confi dence intervals. But we do not want to make 
overly restrictive assumptions about the form of the distribution that the observed data 
came from. 

 For the simple case of independent observations coming from the same population 
distribution, the basic element for bootstrapping is the empirical distribution. The 
empirical distribution is just the discrete distribution that gives equal weight to each 
data point (i.e., it assigns probability 1/ n  to each of the original  n  observations and shall 
be denoted  F n  ). 

 Most of the common parameters that we consider are functionals of the unknown 
population distribution. A functional is simply a mapping that takes a function  F  into a 
real number. In our case, we are only interested in the functionals of cumulative probabil-
ity distribution functions. So, for example, the mean and variance of a distri bution can 
be represented as functionals in the following way. Let   μ   be the mean for a distribution 

function  F , then   μ = ∫ ( )xdF x  Let   σ   2  be the variance then   σ μ2 2= ∫ −( ) ( )x dF x . These 

integrals over the entire possible set of  x  values in the domain of  F  are particular examples 
of functionals. It is interesting that the sample estimates most commonly used for these 
parameters are the same functionals applied to the  F n  . 

 Now the idea of bootstrap is to use only what you know from the data and not 
introduce extraneous assumptions about the population distribution. The  “ bootstrap 
principle ”  says that when  F  is the population distribution and  T ( F ) is the functional 
that defi nes the parameter, we wish to estimate based on a sample of size  n , let  F n   play 
the role of  F  and   Fn

∗, the bootstrap distribution (soon to be defi ned), play the role of  F n   
in the resampling process. Note that the original sample is a sample of  n  independent 
identically distributed observations from the distribution  F  and the sample estimate of 
the parameter is  T ( F n  ). So, in bootstrapping, we let  F n   play the role of  F  and take  n  
independent and identically distributed observations from  F n  . Since  F n   is the empirical 
distribution, this is just sampling randomly with replacement from the original data. 

 Suppose we have  n     =    5 and the observations are  X  1     =    7,  X  2     =    5,  X  3     =    3,  X  4     =    9, and 
 X  5     =    6 and that we are estimating the mean. Then, the sample estimate of the population 
parameter is the sample mean, (7    +    5    +    3    +    9    +    6)/5    =    6.0. Then sampling from the 
data with replacement generates what we call a bootstrap sample. 

 The bootstrap sample is denoted   X1
∗,   X2

∗,   X3
∗,   X4

∗, and   X5
∗. The distribution for sam-

pling with replacement from  F n   is called the bootstrap distribution, which we previously 
denoted by   Fn

∗. The bootstrap estimate is then   T Fn
∗( ). So a bootstrap sample might be 

  X1 5∗ = ,   X2 9∗ = ,   X3 7∗ = ,   X4 7∗ = , and   X5 5∗ = , with estimate (5    +    9    +    7    +    7    +    5)/5    =    6.6. 
 Note that, although it is possible to get the original sample back typically some 

values get repeated one or more times and consequently others get omitted. For this 
bootstrap sample, the bootstrap estimate of the mean is (5    +    9    +    7    +    7    +    5)/5    =    6.6. 
Note that the bootstrap estimate differs from the original sample estimate, 6.0. If we 
take another bootstrap sample, we may get yet another estimate that may be different 
from the previous one and the original sample. Assume for the second bootstrap sample 
we get in this case the observation equal to 9 repeated once. Then, for this bootstrap 
sample,   X1 9∗ = ,   X2 9∗ = ,   X3 6∗ = ,   X4 7∗ = , and   X5 5∗ = , and the bootstrap estimate for the 
mean is 7.2. 



1.2 DEFINITION AND RELATIONSHIP 5

 If we repeat this many times, we get a histogram of values for the mean, which 
we will call the Monte Carlo approximation to the bootstrap distribution. The average 
of all these values will be very close to 6.0 since the theoretical mean of the bootstrap 
distribution is the sample mean. But from the histogram (i.e., resampling distribution), 
we can also see the variability of these estimates and can use the histogram to estimate 
skewness, kurtosis, standard deviation, and confi dence intervals. 

 In theory, the exact bootstrap estimate of the parameter could be calculated by aver-
aging appropriately over all possible bootstrap samples, and in this example for the mean, 
that value would be 6.0. As noted before, there can be  n n   distinct bootstrap samples 
(taking account of the ordering of the observations), and so even for  n     =    10, this becomes 
very large (i.e., 10 billion). So, in practice, a Monte Carlo approximation is used. 

 If you randomly generate  M     =    10,000 or 100,000 bootstrap samples, the distribu-
tion of bootstrap estimates will approximate the bootstrap distribution for the estimate. 
The larger  M  is the closer the histogram approaches the true bootstrap distribution. Here 
is how the Monte Carlo approximation works:

   1.     Generate a sample with replacement from the empirical distribution for the data 
(this is a bootstrap sample).  

  2.     Compute   T Fn
*( ) the bootstrap estimate of  T ( F  ). This is a replacement of the 

original sample with a bootstrap sample and the bootstrap estimate of  T ( F  ) in 
place of the sample estimate of  T ( F  ).  

  3.     Repeat steps 1 and 2  M  times where  M  is large, say 100,000.    

 Now a very important thing to remember is that with the Monte Carlo approximation 
to the bootstrap, there are two sources of error:

   1.     the Monte Carlo approximation to the bootstrap distribution, which can be made 
as small as you like by making  M  large;  

  2.     the approximation of the bootstrap distribution   Fn
∗ to the population distribution 

 F .    

 If   T Fn
∗( ) converges to  T ( F  ) as  n     →     ∞ , then bootstrapping works. It is nice that this 

works out often, but it is not guaranteed. We know by a theorem called the Glivenko –
 Cantelli theorem that  F n   converges to  F  uniformly. Often, we know that the sample 
estimate is consistent (as is the case for the sample mean). So, (1)  T ( F n  ) converges to 
 T ( F  ) as  n     →     ∞ . But this is dependent on smoothness conditions on the functional  T . 
So we also need (2)   T F T Fn n

*( ) − ( ) to tend to 0 as  n     →     ∞ . In proving that bootstrapping 
works (i.e., the bootstrap estimate is consistent for the population parameter), probabil-
ity theorists needed to verify (1) and (2). One approach that is commonly used is by 
verifying that smoothness conditions are satisfi ed for expansions like the Edgeworth 
and Cornish – Fisher expansions. Then, these expansions are used to prove the limit 
theorems. 

 The probability theory associated with the bootstrap is beyond the scope of this 
text and can be found in books such as Hall  (1992) . What is important is that we know 
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that consistency of bootstrap estimates has been demonstrated in many cases and 
examples where certain bootstrap estimates fail to be consistent are also known. There 
is a middle ground, which are cases where consistency has been neither proved nor 
disproved. In those cases, simulation studies can be used to confi rm or deny the useful-
ness of the bootstrap estimate. Also, simulation studies can be used when the sample 
size is too small to count on asymptotic theory, and its use in small to moderate sample 
sizes needs to be evaluated. 

   1.2.1    Jackknife 

 The jackknife was introduced by Quenouille  (1949) . Quenouille ’ s aim was to improve 
an estimate by correcting for its bias. Later on, Tukey  (1958)  popularized the method 
and found that a more important use of the jackknife was to estimate standard errors 
of an estimate. It was Tukey who coined the name jackknife because it was a statistical 
tool with many purposes. While bootstrapping uses the bootstrap samples to estimate 
variability, the jackknife uses what are called pseudovalues. 

 First, consider an estimate   �u based on a sample of size  n  of observations indepen-
dently drawn from a common distribution  F . Here, just as with the bootstrap, we again 
let  F n   be the empirical distribution for this data set and assume that the parameter 
 u     =     T ( F ), a functional;   �u T Fn= ( ), and   �u T Fi n i( ) ( )= ( ), where  F n   (   i   )  is the empirical distri-
bution function for the  n     −    1 observations obtained by leaving the  i th observation out. 
If   �u is the population variance, the jackknife estimate of variance of   σ   2  is obtained as 
follows:

   σ JACK *2 2

1

1= −( ) −( )( )
=

∑n u u ni

i

n

� ,  

where   u u ni
n

i* = ∑ = ( )1 � . The jackknife estimate of standard error for   �u  is just the square 

root of   σ JACK
2 . Tukey defi ned the pseudovalue as   � � � �u u n u ui i= + −( ) −( )( )1 . Then the jack-

knife estimate of the parameter  u  is   u u ni
n

iJACK = ∑ =1 � . So the name pseudovalue comes 

about because the estimate is the average of the pseudovalues. Expressing the estimate 
of the variance of the estimate   �u in terms of the pseudovalues we get

   σ JACK JACK
2 2

1

1= −( ) −( )[ ]
=

∑ �u u n ni

i

n

.   

 In this form, we see that the variance is the usual estimate for variance of a sample 
mean. In this case, it is the sample mean of the pseudovalues. Like the bootstrap, the 
jackknife has been a very useful tool in estimating variances for more complicated 
estimators such as trimmed or Winsorized means. 

 One of the great surprises about the bootstrap is that in cases like the trimmed 
mean, the bootstrap does better than the jackknife (Efron,  1982 , pp. 28 – 29). For the 
sample median, the bootstrap provides a consistent estimate of the variance but 
the jackknife does not! See Efron ( 1982 , p. 16 and chapter 6). In that monograph, 
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Efron also showed, using theorem 6.1, that the jackknife estimate of standard error 
is essentially the bootstrap estimate with the parameter estimate replaced by a 
linear approximation of it. In this way, there is a close similarity between the two 
methods, and if the linear approximation is a good approximation, the jackknife and 
the bootstrap will both be consistent. However, there are complex estimators where this 
is not the case.  

   1.2.2    Delta Method 

 It is often the case that we are interested in the moments of an estimator. In particular, 
for these various methods, the variance is the moment we are most interested in. To 
illustrate the delta method, let us defi ne   φ      =     f (  α  ) where the parameters   φ   and   α   are both 
one - dimensional variables and  f  is a function differentiable with respect to   α  . So there 
exists a Taylor series expansion for  f  at a point say   α   0 . Carrying it out only to fi rst order, 
we get   φ      =     f (  α  )    =     f (  α   0 )    +    (  α      −      α   0 ) f  ′ (  α   0 )    +    remainder terms and dropping the remainder 
terms leaves

   ϕ α α α α α= ( ) = ( ) + −( ) ′( )f f f0 0 0  

or

   f f fα α α α α( ) − ( ) = −( ) ′( )0 0 0 .   

 Squaring both sides of the last equation gives us [ f (  α  )    −     f (  α   0 )] 2     =    (  α      −      α   0 ) 2 [ f   ′ (  α   0 )] 2 . 
Now we want to think of   φ      =     f (  α  ) as a random variable, and upon taking expectations 
of the random variables on each side of the equation, we get

    E f f E fα α α α α( ) − ( )[ ] = −( ) ′( )[ ]0
2

0
2

0
2 .     (1.1)   

 Here,   α   and  f  (  α  ) are random variables, and   α   0 ,  f (  α   0 ), and  f   ′ (  α   0 ) are all constants. Equa-
tion  1.1  provides the delta method approximation to the variance of   φ      =     f (  α  ) since the 
left - hand side is approximately the variance of   φ   and the right - hand side is the variance 
of   α   multiplied by the constant [ f   ′ (  α   0 )] 2  if we choose   α   0  to be the mean of   α  .  

   1.2.3    Cross - Validation 

 Cross - validation is a general procedure used in statistical modeling. It can be used to 
determine the best model out of alternative choices such as order of an autoregressive 
time series model, which variables to include in a logistic regression or a multiple linear 
regression, number of distributions in a mixture model, and the choice of a parametric 
classifi cation model or for pruning classifi cation trees. 

 The basic idea of cross - validation is to randomly split the data into two subsets. 
One is used to fi t the model, and the other is used to test the model. The extreme 
case would be to fi t all the data except for a single observation and see how well that 
model predicts the value of the observation left out. But a sample of size 1 is not 
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very good for assessment. So, in the case of classifi cation error rate estimation, 
Lachenbruch and Mickey  (1968)  proposed the leave - one - out method of assessment. 
In this case, a model is fi t to the  n     −    1 observations that are included and is tested 
on the one left out. But the model fi tting and prediction is then done separately for 
all  n  observations by testing the model fi t without observation  i  for predicting the 
class for the case  i . Results are obtained from each  i  and then averaged. Efron  (1983)  
included a simulation study that showed for bivariate normal distributions the  “ 632 ”  
variant of the bootstrap does better than leave - one - out. For pruning classifi cation trees, 
see Brieman et al.  (1984) .  

   1.2.4    Subsampling 

 The idea of subsampling goes back to Hartigan  (1969) , who developed a theory of 
confi dence intervals for random subsampling. He proved a theorem called the typical 
value theorem when M - estimators are used to estimate parameters. We shall see in the 
chapter on confi dence intervals that Hartigan ’ s results were motivating factors for Efron 
to introduce the percentile method bootstrap confi dence intervals. 

 More recently the theory of subsampling has been further developed and related 
to the bootstrap. It has been applied when the data are independent observations and 
also when there are dependencies among the data. A good summary of the current 
literature along with connections to the bootstrap can be found in Politis et al.  (1999) , 
and consistency under very minimal assumptions can be found in Politis and Romano 
 (1994) . Politis, Romano, and Wolf included applications when the observations are 
independent and also for dependent situations such as stationary and nonstationary time 
series, random fi elds, and marked point processes. The dependent situations are also 
well covered in section 2.8 of Lahiri  (2003) . 

 We shall now defi ne random subsampling. Let  S  1 ,  S  2 ,    . . .    ,  S B       −    1  be  B     −    1 of the 2  n      −    1 
nonempty subsets of the integers 1, 2,    . . .    ,  n . These  B     −    1 subsets are selected at random 
without replacement. So a subset of size 3 might be drawn, and it would contain {1, 3, 
5}. Another subset of size 3 that could be drawn could be {2, 4,  n }. Subsets of other sizes 
could also be drawn. For example, a subset of size 5 is {1, 7, 9, 12, 13}. There are many 
subsets to select from. There is only 1 subset of size  n , and it contains all the integers 
from 1 to  n . There are  n  subsets of size  n     −    1. Each distinct subset excludes one and only 
one of the integers from 1 to  n . For more details on this and M - estimators and the typical 
value theorem see sections 3.1.1 and 3.1.2 of Chernick  (2007) .   

   1.3    WIDE RANGE OF APPLICATIONS 

 There is a great deal of temptation to apply the bootstrap in a wide variety of settings. 
But as we have seen, the bootstrap does not always work. So how do we know when 
it will work? We either have to prove a consistency theorem under a set of assumptions 
or we have to verify that it is well behaved through simulations. 

 In regression problems, there are at least two approaches to bootstrapping. One is 
called  “ bootstrapping residuals, ”  and the other is called  “ bootstrapping vectors or 
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cases. ”  In the fi rst approach, we fi t a model to the data and compute the residuals from 
the model. Then we generate a bootstrap sample by resampling with replacement from 
the model residuals. In the second approach, we resample with replacement from the 
 n ,  k     +    1 dimensional vectors:

   y X X X I ni i i ki, , , , , , , .1 2 1 2( ) =for   

 In the fi rst approach, the model is fi xed. In the second, it is redetermined each time. 
Both methods can be applied when a parametric regression model is assumed. But in 
practice, we might not be sure that the parametric form is correct. In such cases, it is 
better to use the bootstrapping vectors approach. 

 The bootstrap has also been successfully applied to the estimation of error rates 
for discriminant functions using bias adjustment as we will see in Chapter  2 . The boot-
strap and another resampling procedure called  “ permutation tests, ”  as described in 
Good  (1994) , are attractive because they free the scientists from restrictive parametric 
assumptions that may not apply in their particular situation. 

 Sometimes the data can have highly skewed or heavy - tailed distributions or mul-
tiple modes. There is no need to simplify the model by, say, a linear approximation 
when the appropriate model is nonlinear. The estimator can be defi ned through an 
algorithm and there does not need to be an analytic expression for the parameters to 
be estimated. 

 Another feature of the bootstrap is its simplicity. For almost any problem you 
can think of, there is a way to construct bootstrap samples. Using the Monte Carlo 
approximation to the bootstrap estimate, all the work can be done by the computer. 
Even though it is a computer - intensive method, with the speed of the modern computer, 
most problems are feasible, and in many cases, up to 100,000 bootstrap samples can 
be generated without consuming hours of CPU time. But care must be taken. It is not 
always apparent when the bootstrap will fail, and failure may not be easy to 
diagnose. 

 In recent years, we are fi nding that there are ways to modify the bootstrap so that 
it will work for problems where the simple (or na ï ve) bootstrap is known to fail. The 
 “  m  - out -  n  ”  bootstrap is one such example. 

 In many situations, the bootstrap can alert the practitioner to variability in his 
procedures that he otherwise would not be aware of. One example in spatial statistics 
is the development of pollution level contours based on a smoothing method called 
 “ kriging. ”  By generating bootstrap samples, multiple kriging contour maps can be 
generated, and the differences in the contours can be determined visually. 

 Also, the stepwise logistic regression problem that is described in Gong  (1986)  
shows that variable selection can be somewhat of a chance outcome when there are 
many competing variables. She showed this by bootstrapping the entire stepwise selec-
tion procedure and seeing that the number of variables and the choice of variables 
selected can vary from one bootstrap sample to the next. 

 Babu and Feigelson  (1996)  applied the bootstrap to astronomy problems. In clinical 
trials, the bootstrap is used to estimate individual bioequivalence, for  P  - value adjust-
ment with multiple end points, and even to estimate mean differences when the sample 
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size is not large enough for asymptotic theory to take hold or the data are very non -
 normal and statistics other that the mean are important.  

   1.4    THE BOOTSTRAP AND THE  R  LANGUAGE SYSTEM 

 In subsequent chapters of this text, we will illustrate examples with calculations and 
short programs using the R language system and its associated packages. 

 R is an integrated suite of an object - oriented programming language and software 
facilities for data manipulation, calculation, and graphical display. Over the last decade, 
R has become the statistical environment of choice for academics, and probably is now 
the most used such software system in the world. The number of specialized packages 
available in R has increased exponentially, and continues to do so. Perhaps the best 
thing about R (besides its power and breadth) is this: It is completely free to use. You 
can obtain your own copy of the R system at  http://www.cran.r - project.org/ . 

 From this website, you can get not only the executable version of R for Linux, 
Macs, or Windows, but also even the source programs and free books containing docu-
mentation. We have found  The R Book  by Michael J. Crawley a good way to learn how 
to use R, and have found it to be an invaluable reference afterword. 

 There are so many good books and courses from which you can learn R, including 
courses that are Internet based, such as at  http://statistics.com . We will not attempt to 
teach even the basics of R here. What we will do is show those features of direct applica-
bility, and give program snippets to illustrate examples and the use of currently available 
R packages for bootstrapping. These snippets will be presented in the Courier typeface 
to distinguish them from regular text and to maintain spacing in output generated. 

 At the current time, using R version 2.10.1, the R query ( “   >   ”  denotes the R 
command line prompt)

  >  ?? bootstrap 
 or 

  >  help.search( ′ bootstrap ′ ) 
 results in 

 agce::resamp.std Compute the standard 
deviation by bootstrap. 

 alr3::boot.case Case bootstrap for 
regression models 

 analogue::RMSEP Root mean square error of 
prediction 

 analogue::bootstrap Bootstrap estimation and 
errors 

 analogue::bootstrap.waBootstrap estimation and 
errors for WA models 

 analogue::bootstrapObject Bootstrap object 
description 



1.4 THE BOOTSTRAP AND THE R LANGUAGE SYSTEM 11

 analogue::getK Extract and set the number of 
analogues 

 analogue::performance Transfer function 
model performance statistics 

 analogue::screeplot.mat Screeplots of model 
results 

 analogue::summary.bootstrap.mat Summarise 
bootstrap resampling for MAT models 

 animation::boot.iid Bootstrapping the i.i.d 
data 

 ape::boot.phylo Tree Bipartition and 
Bootstrapping Phylogenies 

 aplpack::slider.bootstrap.lm.plot 
interactive bootstapping for lm 

 bnlearn::bn.boot Parametric and 
nonparametric bootstrap of Bayesian networks 

 bnlearn::boot.strength Bootstrap arc 
strength and direction 

 boot::nested.corr Functions for Bootstrap 
Practicals 

 boot::boot Bootstrap Resampling 

 boot::boot.array Bootstrap Resampling Arrays 

 boot::boot.ci Nonparametric Bootstrap 
Confi dence Intervals 

 boot::cd4.nested Nested Bootstrap of cd4 
data 

 boot::censboot Bootstrap for Censored Data 

 boot::freq.array Bootstrap Frequency Arrays 

 boot::jack.after.boot Jackknife - after - 
Bootstrap Plots 

 boot::linear.approx Linear Approximation of 
Bootstrap Replicates 

 boot::plot.boot Plots of the Output of a 
Bootstrap Simulation 

 boot::print.boot Print a Summary of a 
Bootstrap Object 

 boot::print.bootci Print Bootstrap 
Confi dence Intervals 

 boot::saddle Saddlepoint Approximations for 
Bootstrap Statistics 

 boot::saddle.distn Saddlepoint Distribution 
Approximations for Bootstrap Statistics 
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 boot::tilt.boot Non - parametric Tilted 
Bootstrap 

 boot::tsboot Bootstrapping of Time Series 

 BootCL::BootCL.distribution Find the 
bootstrap distribution 

 BootCL::BootCL.plot Display the bootstrap 
distribution and p - value 

 BootPR::BootAfterBootPI Bootstrap - after - 
Bootstrap Prediction 

 BootPR::BootBC Bootstrap bias - corrected 
estimation and forecasting for AR models 

 BootPR::BootPI Bootstrap prediction intevals 
and point forecasts with no bias - correction 

 BootPR::BootPR - package Bootstrap Prediction 
Intervals and Bias - Corrected Forecasting 

 BootPR::ShamanStine.PI Bootstrap prediction 
interval using Shaman and Stine bias formula 

 bootRes::bootRes - package The bootRes Package 
for Bootstrapped Response and Correlation 
Functions 

 bootRes::dendroclim Calculation of 
bootstrapped response and correlation functions. 

 bootspecdens::specdens Bootstrap for testing 
equality of spectral densities 

 bootStepAIC::boot.stepAIC Bootstraps the 
Stepwise Algorithm of stepAIC() for Choosing a 
Model by AIC 

 bootstrap::bootpred Bootstrap Estimates of 
Prediction Error 

 bootstrap::bootstrap Non - Parametric 
Bootstrapping 

 bootstrap::boott Bootstrap - t Confi dence 
Limits 

 bootstrap::ctsub Internal functions of 
package bootstrap 

 bootstrap::lutenhorm Luteinizing Hormone 

 bootstrap::scor Open/Closed Book Examination 
Data 

 bootstrap::spatial Spatial Test Data 

 BSagri::BOOTSimpsonD Simultaneous confi dence 
intervals for Simpson indices 

 cfa::bcfa Bootstrap - CFA 

 ChainLadder::BootChainLadder Bootstrap - 
Chain - Ladder Model 
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 CircStats::vm.bootstrap.ci Bootstrap 
Confi dence Intervals 

 circular::mle.vonmises.bootstrap.ci 
Bootstrap Confi dence Intervals 

 clue::cl_boot Bootstrap Resampling of 
Clustering Algorithms 

 CORREP::cor.bootci Bootstrap Confi dence 
Interval for Multivariate Correlation 

 Daim::Daim.data1 Data set: Artifi cial 
bootstrap data for use with Daim 

 DCluster::achisq.boot Bootstrap 
replicates of Pearson ′ s Chi - square statistic 

 DCluster::besagnewell.boot Generate boostrap 
replicates of Besag and Newell ′ s statistic 

 DCluster::gearyc.boot Generate bootstrap 
replicates of Moran ′ s I autocorrelation statistic 

 DCluster::kullnagar.boot Generate bootstrap 
replicates of Kulldorff and Nagarwalla ′ s 
statistic 

 DCluster::moranI.boot Generate bootstrap 
replicates of Moran ′ s I autocorrelation statistic 

 DCluster::pottwhitt.boot Bootstrap 
replicates of Potthoff - Whittinghill ′ s statistic 

 DCluster::stone.boot Generate boostrap 
replicates of Stone ′ s statistic 

 DCluster::tango.boot Generate bootstrap 
replicated of Tango ′ s statistic 

 DCluster::whittermore.boot Generate 
bootstrap replicates of Whittermore ′ s statistic 

 degreenet::rplnmle Rounded Poisson Lognormal 
Modeling of Discrete Data 

 degreenet::bsdp Calculate Bootstrap 
Estimates and Confi dence Intervals for the 
Discrete Pareto Distribution 

 degreenet::bsnb Calculate Bootstrap 
Estimates and Confi dence Intervals for the 
Negative Binomial Distribution 

 degreenet::bspln Calculate Bootstrap 
Estimates and Confi dence Intervals for the 
Poisson Lognormal Distribution 

 degreenet::bswar Calculate Bootstrap 
Estimates and Confi dence Intervals for the Waring 
Distribution 
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 degreenet::bsyule Calculate Bootstrap 
Estimates and Confi dence Intervals for the Yule 
Distribution 

 degreenet::degreenet - internal Internal 
degreenet Objects 

 delt::eval.bagg Returns a bootstrap 
aggregation of adaptive histograms 

 delt::lstseq.bagg Calculates a scale of 
bootstrap aggregated histograms 

 depmix::depmix Fitting Dependent Mixture 
Models 

 Design::anova.Design Analysis of Variance 
(Wald and F Statistics) 

 Design::bootcov Bootstrap Covariance and 
Distribution for Regression Coeffi cients 

 Design::calibrate Resampling Model 
Calibration 

 Design::predab.resample Predictive Ability 
using Resampling 

 Design::rm.impute Imputation of Repeated 
Measures 

 Design::validate Resampling Validation of a 
Fitted Model ′ s Indexes of Fit 

 Design::validate.cph Validation of a Fitted 
Cox or Parametric Survival Model ′ s Indexes of Fit 

 Design::validate.lrm Resampling Validation 
of a Logistic Model 

 Design::validate.ols Validation of an 
Ordinary Linear Model 

 dynCorr::bootstrapCI Bootstrap Confi dence 
Interval 

 dynCorr::dynCorrData An example dataset for 
use in the example calls in the help fi les for 
the dynamicCorrelation and bootstrapCI functions 

 e1071::bootstrap.lca Bootstrap Samples of 
LCA Results 

 eba::boot Bootstrap for Elimination - By - 
Aspects (EBA) Models 

 EffectiveDose::Boot.CI Bootstrap confi dence 
intervals for ED levels 

 EffectiveDose::EffectiveDose - package 
Estimation of the Effective Dose including 
Bootstrap confi ndence intervals 

 el.convex::samp sample from bootstrap 
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 equate::se.boot Bootstrap Standard Errors of 
Equating 

 equivalence::equiv.boot Regression - based 
TOST using bootstrap 

 extRemes::boot.sequence Bootstrap a 
sequence. 

 FactoMineR::simule Simulate by bootstrap 

 FGN::Boot Generic Bootstrap Function 

 FitAR::Boot Generic Bootstrap Function 

 FitAR::Boot.ts Parametric Time Series 
Bootstrap 

 fi tdistrplus::bootdist Bootstrap simulation 
of uncertainty for non - censored data 

 fi tdistrplus::bootdistcens Bootstrap simulation 
of uncertainty for censored data 

 fl exclust::bootFlexclust Bootstrap Flexclust 
Algorithms 

 fossil::bootstrap Bootstrap Species Richness 
Estimator 

 fractal::surrogate Surrogate data generation 

 FRB::FRBmultiregGS GS - Estimates for 
multivariate regression with bootstrap confi dence 
intervals 

 FRB::FRBmultiregMM MM - Estimates for 
Multivariate Regression with Bootstrap Inference 

 FRB::FRBmultiregS S - Estimates for 
Multivariate Regression with Bootstrap Inference 

 FRB::FRBpcaMM PCA based on Multivariate MM - 
estimators with Fast and Robust Bootstrap 

 FRB::FRBpcaS PCA based on Multivariate S - 
estimators with Fast and Robust Bootstrap 

 FRB::GSboot_multireg Fast and Robust 
Bootstrap for GS - Estimates 

 FRB::MMboot_loccov Fast and Robust Bootstrap 
for MM - estimates of Location and Covariance 

 FRB::MMboot_multireg Fast and Robust 
Bootstrap for MM - Estimates of Multivariate 
Regression 

 FRB::MMboot_twosample Fast and Robust 
Bootstrap for Two - Sample MM - estimates of Location 
and Covariance 

 FRB::Sboot_loccov Fast and Robust Bootstrap 
for S - estimates of location/covariance 
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 FRB::Sboot_multireg Fast and Robust 
Bootstrap for S - Estimates of Multivariate 
Regression 

 FRB::Sboot_twosample Fast and Robust 
Bootstrap for Two - Sample S - estimates of Location 
and Covariance 

 ftsa::fbootstrap Bootstrap independent and 
identically distributed functional data 

 gmvalid::gm.boot.coco Graphical model 
validation using the bootstrap (CoCo). 

 gmvalid::gm.boot.mim Graphical model 
validation using the bootstrap (MIM) 

 gPdtest::gPd.test Bootstrap goodness - of - fi t 
test for the generalized Pareto distribution 

 hierfstat::boot.vc Bootstrap confi dence 
intervals for variance components 

 Hmisc::areg Additive Regression with Optimal 
Transformations on Both Sides using Canonical 
Variates 

 Hmisc::aregImpute Multiple Imputation using 
Additive Regression, Bootstrapping, and 
Predictive Mean Matching 

 Hmisc::bootkm Bootstrap Kaplan - Meier 
Estimates 

 Hmisc::fi nd.matches Find Close Matches 

 Hmisc::rm.boot Bootstrap Repeated 
Measurements Model 

 Hmisc::smean.cl.normal Compute Summary 
Statistics on a Vector 

 Hmisc::transace Additive Regression and 
Transformations using ace or avas 

 Hmisc::transcan Transformations/Imputations 
using Canonical Variates 

 homtest::HOMTESTS Homogeneity tests 

 hopach::boot2fuzzy function to write 
MapleTree fi les for viewing bootstrap estimated 
cluster membership probabilities based on hopach 
clustering results 

 hopach::bootplot function to make a barplot 
of bootstrap estimated cluster membership 
probabilities 

 hopach::boothopach functions to perform non - 
parametric bootstrap resampling of hopach 
clustering results 
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 ICEinfer::ICEcolor Compute Preference Colors 
for Outcomes in a Bootstrap ICE Scatter within a 
Confi dence Wedge 

 ICEinfer::ICEuncrt Compute Bootstrap 
Distribution of ICE Uncertainty for given Shadow 
Price of Health, lambda 

 ICEinfer::plot.ICEcolor Add Economic 
Preference Colors to Bootstrap Uncertainty 
Scatters within a Confi dence Wedge 

 ICEinfer::plot.ICEuncrt Display Scatter for 
a possibly Transformed Bootstrap Distribution of 
ICE Uncertainty 

 ICEinfer::print.ICEuncrt Summary Statistics 
for a possibly Transformed Bootstrap Distribution 
of ICE Uncertainty 

 ipred::bootest Bootstrap Error Rate 
Estimators 

 maanova::consensus Build consensus tree out 
of bootstrap cluster result 

 Matching::ks.boot Bootstrap Kolmogorov - 
Smirnov 

 MBESS::ci.reliability.bs Bootstrap the 
confi dence interval for reliability coeffi cient 

 MCE::RProj The bootstrap - then - group 
implementation of the Bootstrap Grouping 
Prediction Plot for estimating R. 

 MCE::groupbootMCE The group - then - bootstrap 
implementation of the Bootstrap Grouping 
Prediction Plot for estimating MCE 

 MCE::groupbootR The group - then - bootstrap 
implementation of the Bootstrap Grouping 
Prediction Plot for estimating R 

 MCE::jackafterboot Jackknife - After - Bootstrap 
Method of MCE estimation 

 MCE::mceBoot Bootstrap - After - Bootstrap 
estimate of MCE 

 MCE::mceProj The bootstrap - then - group 
implementation of the Bootstrap Grouping 
Prediction Plot for estimating MCE. 

 meboot::meboot Generate Maximum Entropy 
Bootstrapped Time Series Ensemble 

 meboot::meboot.default Generate Maximum 
Entropy Bootstrapped Time Series Ensemble 

 meboot::meboot.pdata.frame Maximum Entropy 
Bootstrap for Panel Time Series Data 
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 meifl y::lmboot Bootstrap linear models 

 mixreg::bootcomp Perform a bootstrap test 
for the number of components in a mixture of 
regressions. 

 mixstock::genboot Generate bootstrap 
estimates of mixed stock analyses 

 mixstock::mixstock.boot Bootstrap samples of 
mixed stock analysis data 

 mixtools::boot.comp Performs Parametric 
Bootstrap for Sequentially Testing the Number of 
Components in Various Mixture Models 

 mixtools::boot.se Performs Parametric 
Bootstrap for Standard Error Approximation 

 MLDS::simu.6pt Perform Bootstrap Test on 6 - 
point Likelihood for MLDS FIT 

 MLDS::summary.mlds.bt Method to Extract 
Bootstrap Values for MLDS Scale Values 

 msm::boot.msm Bootstrap resampling for 
multi - state models 

 mstate::msboot Bootstrap function in multi - 
state models 

 multtest::boot.null Non - parametric bootstrap 
resampling function in package  ′ multtest ′  

 ncf::mSynch the mean (cross - )correlation 
(with bootstrap CI) for a panel of spatiotemporal 
data 

 nFactors::eigenBootParallel Bootstrapping of 
the Eigenvalues From a Data Frame 

 nlstools::nlsBoot Bootstrap resampling 

 np::b.star Compute Optimal Block Length for 
Stationary and Circular Bootstrap 

 nsRFA::HOMTESTS Homogeneity tests 

 Oncotree::bootstrap.oncotree Bootstrap an 
oncogenetic tree to assess stability 

 ouch::browntree Fitted phylogenetic Brownian 
motion model 

 ouch::hansentree - methods Methods of the 
 ″ hansentree ″  class 

 pARccs::Boot_CI Bootstrap confi dence 
intervals for (partial) attributable risks (AR 
and PAR) from case - control data 

 PCS::PdCSGt.bootstrap.NP2 Non - parametric 
bootstrap for computing G - best and d - best PCS 
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 PCS::PdofCSGt.bootstrap5 Parametric 
bootstrap for computing G - best and d - best PCS 

 PCS::PofCSLt.bootstrap5 Parametric bootstrap 
for computing L - best PCS 

 peperr::complexity.ipec.CoxBoost Interface 
function for complexity selection for CoxBoost 
via integrated prediction error curve and the 
bootstrap 

 peperr::complexity.ipec.rsf_mtry Interface 
function for complexity selection for random 
survival forest via integrated prediction error 
curve and the bootstrap 

 pgirmess::difshannonbio Empirical confi dence 
interval of the bootstrap of the difference 
between two Shannon indices 

 pgirmess::piankabioboot Bootstrap Pianka ′ s 
index 

 pgirmess::shannonbioboot Boostrap Shannon ′ s 
and equitability indices 

 phangorn::bootstrap.pml Bootstrap 

 phybase::bootstrap Bootstrap sequences 

 phybase::bootstrap.mulgene Bootstrap 
sequences from multiple loci 

 popbio::boot.transitions Bootstrap observed 
census transitions 

 popbio::countCDFxt Count - based extinction 
probabilities and bootstrap confi dence intervals 

 prabclus::abundtest Parametric bootstrap 
test for clustering in abundance matrices 

 prabclus::prabtest Parametric bootstrap test 
for clustering in presence - absence matrices 

 pvclust::msfi t Curve Fitting for Multiscale 
Bootstrap Resampling 

 qgen::dis Bootstrap confi dence intervals 

 qpcR::calib2 Calculation of qPCR effi ciency 
by dilution curve analysis and bootstrapping of 
dilution curve replicates 

 qpcR::pcrboot Bootstrapping and jackknifi ng 
qPCR data 

 qtl::plot.scanoneboot Plot results of 
bootstrap for QTL position 

 qtl::scanoneboot Bootstrap to get interval 
estimate of QTL location 
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 qtl::summary.scanoneboot Bootstrap 
confi dence interval for QTL location 

 QuantPsyc::distInd.ef Complex Mediation for 
use in Bootstrapping 

 QuantPsyc::proxInd.ef Simple Mediation for 
use in Bootstrapping 

 quantreg::boot.crq Bootstrapping Censored 
Quantile Regression 

 quantreg::boot.rq Bootstrapping Quantile 
Regression 

 r4ss::SS_splitdat Split apart bootstrap data 
to make input fi le. 

 relaimpo::boot.relimp Functions to Bootstrap 
Relative Importance Metrics 

 ResearchMethods::bootSequence A 
demonstration of how bootstrapping works, taking 
multiple bootstrap samples and watching how the 
means of those samples begin to normalize. 

 ResearchMethods::bootSingle A demonstration 
of how bootstrapping works step by step for one 
function. 

 rms::anova.rms Analysis of Variance (Wald 
and F Statistics) 

 rms::bootcov Bootstrap Covariance and 
Distribution for Regression Coeffi cients 

 rms::calibrate Resampling Model Calibration 

 rms::predab.resample Predictive Ability 
using Resampling 

 rms::validate Resampling Validation of a 
Fitted Model ′ s Indexes of Fit 

 rms::validate.cph Validation of a Fitted Cox 
or Parametric Survival Model ′ s Indexes of Fit 

 rms::validate.lrm Resampling Validation of a 
Logistic Model 

 rms::validate.ols Validation of an Ordinary 
Linear Model 

 robust::rb Robust Bootstrap Standard Errors 

 rqmcmb2::rqmcmb Markov Chain Marginal 
Bootstrap for Quantile Regression 

 sac::BootsChapt Bootstrap (Permutation) Test 
of Change - Point(s) with One - Change or Epidemic 
Alternative 

 sac::BootsModelTest Bootstrap Test of the 
Validity of the Semiparametric Change - Point Model 
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 SAFD::btest.mean One - sample bootstrap test 
for the mean of a FRV 

 SAFD::btest2.mean Two - sample bootstrap test 
on the equality of mean of two FRVs 

 SAFD::btestk.mean Multi - sample bootstrap 
test for the equality of the mean of FRVs 

 scaleboot::sboptions Options for Multiscale 
Bootstrap 

 scaleboot::plot.scaleboot Plot Diagnostics 
for Multiscale Bootstrap 

 scaleboot::sbconf Bootstrap Confi dence 
Intervals 

 scaleboot::sbfi t Fitting Models to Bootstrap 
Probabilities 

 scaleboot::scaleboot - package Approximately 
Unbiased P - values via Multiscale Bootstrap 

 scaleboot::scaleboot Multiscale Bootstrap 
Resampling 

 scaleboot::summary.scaleboot P - value 
Calculation for Multiscale Bootstrap 

 sem::boot.sem Bootstrap a Structural 
Equation Model 

 shapes::resampletest Tests for mean shape 
difference using complex arithmetic, including 
bootstrap and permutation tests. 

 shapes::iglogl Internal function(s) 

 shapes::testmeanshapes Tests for mean shape 
difference, including permutation and bootstrap 
tests 

 simpleboot::hist.simpleboot Histograms for 
bootstrap sampling distributions. 

 simpleboot::lm.boot Linear model bootstrap. 

 simpleboot::summary.lm.simpleboot Methods 
for linear model bootstrap. 

 simpleboot::loess.boot 2 - D Loess bootstrap. 

 simpleboot::fi tted.loess.simpleboot Methods 
for loess bootstrap. 

 simpleboot::one.boot One sample bootstrap of 
a univariate statistic. 

 simpleboot::pairs.boot Two sample bootstrap. 

 simpleboot::perc Extract percentiles from a 
bootstrap sampling distribution. 

 simpleboot::plot.lm.simpleboot Plot method 
for linear model bootstraps. 
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 simpleboot::plot.loess.simpleboot Plot 
method for loess bootstraps. 

 simpleboot::samples Extract sampling 
distributions from bootstrapped linear/loess 
models. 

 simpleboot::two.boot Two sample bootstrap of 
differences between univariate statistics. 

 sm::sm.binomial.bootstrap Bootstrap 
goodness - of - fi t test for a logistic regression 
model. 

 sm::sm.poisson.bootstrap Bootstrap goodness - 
of - fi t test for a Poisson regression model 

 spls::ci.spls Calculate bootstrapped 
confi dence intervals of SPLS coeffi cients 

 spls::correct.spls Correct the initial SPLS 
coeffi cient estimates based on bootstrapped 
confi dence intervals 

 Stem::covariates2 Stem internal objects 

 Stem::Stem.Bootstrap Parametric bootstrap 

 survey::bootweights Compute survey bootstrap 
weights 

 tractor.base::angleBetweenVectors 
Undocumented functions 

 TSA::arima.boot Compute the Bootstrap 
Estimates of an ARIMA Model 

 tsDyn::TVAR.sim Simulation and bootstrap of 
multivariate Threshold Autoregressive model 

 tsDyn::TVECM.sim Simulation and bootstrap of 
bivariate VECM/TVECM 

 tsDyn::extendBoot extension of the bootstrap 
replications 

 tsDyn::setar.sim Simulation and bootstrap of 
Threshold Autoregressive model 

 tseries::tsbootstrap Bootstrap for General 
Stationary Data 

 ttrTests::bootstrap Generates a Bootstrap 
Sample from Raw Data 

 ttrTests::generateSample Generates a 
Bootstrap Sample from Price Data 

 TWIX::bootTWIX Bootstrap of the TWIX trees 

 UsingR::cfb Bootstrap sample from the Survey 
of Consumer Finances 

 varSelRF::varSelRFBoot Bootstrap the 
variable selection procedure in varSelRF 
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 vegetarian::bootstrap Estimates 
Uncertainties with Bootstrapping 

 verifi cation::table.stats.boot Percentile 
bootstrap for 2 by 2 table 

 vrtest::AutoBoot.test Wild Bootstrapping of 
Automatic Variance Ratio Test 

 vrtest::Boot.test Bootstrap Variance Ratio 
Tests 

 waveslim::dwpt.boot Bootstrap Time Series 
Using the DWPT 

 wmtsa::wavBootstrap Adaptive wavelet - based 
bootstrapping 

 wmtsa::wavDWPTWhitest Seeks the whitest 
transform of a discrete wavelet packet transform 
(DWPT)  

 The part of the name before  “  ::  ”  is the  “ package ”  name (class), which installs a library 
that has the  “  function  ”  object whose name follows the  “  :: . ”  The above list should 
indicate both the breadth of applications of the bootstrap and the breadth of its imple-
mentation in the R system. 

 R comes with some basic packages preinstalled. Most special application packages 
have to be downloaded by the user via the menu line command Packages | Install Pack-
ages. This makes the chosen packages(s) part of the R software on your computer. 
To actually bring the package into use in your environment, you will also need the 
require() or library() functions. Two packages of note related to bootstrapping are the 
 “  bootstrap  ”  package, which is documented by the book  An Introduction to the Boot-
strap  by B. Efron and R. J. Tibshirani, and the  “  boot  ”  package, which is documented 
by  Bootstrap Methods and Their Application  by A. C. Davison and D. V. Hinkley. For 
example, you can require the  “  boot  ”  library by

  >  require( ′ boot ′ ) 
 Loading required package: boot  

 R is a vectorized and object - oriented language. Most operations are most effi cient when 
done as vector operations instead of on individual elements. For example,

  >  x <  -  1:10 
  >  y <  -  21:30 
  >  x 
 [1] 1 2 3 4 5 6 7 8 9 10 

  >  y 
 [1] 21 22 23 24 25 26 27 28 29 30 

  >  x + y 
 [1] 22 24 26 28 30 32 34 36 38 40 
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  >  x/y 
 [1] 0.04761905 0.09090909 0.13043478 

0.16666667 0.20000000 0.23076923 0.25925926 
0.28571429 0.31034483 0.33333333 

  >  x * y 
 [1] 21 44 69 96 125 156 189 224 261 300 

  >  sqrt(x) 
 [1] 1.000000 1.414214 1.732051 2.000000 

2.236068 2.449490 2.645751 2.828427 3.000000 
3.162278 

  >  exp(x) 
 [1] 2.718282 7.389056 20.085537 54.598150 

148.413159 403.428793 1096.633158 2980.957987 
8103.083928 

 [10] 22026.465795 

  >  x[2] 
 [1] 2 

  >  x[2] + y[3] 
 [1] 25  

 Note that individual elements are indicated by subscripts within brackets  “  [] , ”  and 
 “  n:m  ”  is shorthand for the vector whose elements are the sequence of integers from  n  
to  m . 

 One function in the basic R packages that lies at the heart of resampling is the 
sample() function, whose syntax is

 sample(x, size, replace  =  FALSE, prob  =  NULL)  

 The fi rst argument  “  x  ”  is the vector of data, that is, the original sample.  “  size  ”  is the 
size of the resample desired.  “  replace  ”  is  “  TRUE  ”  if resampling is with replacement, 
and  “  FALSE  ”  if not (the default).  “  prob  ”  is a vector of probability weights if the equal -
 weight default is not used. Any arguments omitted will assume the default. If  “  size  ”  
is omitted, it will default to the length of  “  x . ”  

 For our purposes, it will usually be easiest to resample the indices of the data from 
a sample of size  n , rather than the data itself. For example, if we have fi ve data in our 
set, say

  >  x <  -  c( - 0.3, 0.5, 2.6, 1.0,  - 0.9) 
  >  x 
 [1]  - 0.3 0.5 2.6 1.0  - 0.9 

 then 

  >  i <  -  sample(1:5, 5, replace = TRUE) 
  >  i 
 [1] 3 2 3 2 2 
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  >  x[i] 
 [1] 2.6 0.5 2.6 0.5 0.5  

 is the resample of the original data. 
 As we move through the text, more features of R related to the bootstrap will be 

illustrated in context, as we need them.  

   1.5    HISTORICAL NOTES 

 Bootstrap research began in earnest in the late 1970s, although some key developments 
can be traced back to earlier times. The theory took off in the early 1980s after Efron 
 (1979) . The fi rst proofs of the consistency of the bootstrap estimate of the sample mean 
came in 1981 with the papers of Singh  (1981)  and Bickel and Freedman  (1981) . 

 The signifi cance of Efron  (1979)  is best expressed in Davison and Hinkley  (1997)  
who wrote  “  The publication in 1979 of Bradley Efron ’ s fi rst article on bootstrap 
methods was a major event in Statistics, at once synthesizing some of the earlier resa-
mpling ideas and establishing a new framework for simulation - based statistical analy-
sis. The idea of replacing complicated and often inaccurate approximations to biases, 
variances and other measures of uncertainty by computer simulation caught the imagi-
nation of both theoretical researchers and users of statistical methods. ”  

 Regarding the precursors of the bootstrap, Efron pointed out some of the early 
work of R. A. Fisher (in the 1920s on maximum likelihood estimation) as the inspira-
tion for many of the basic ideas. The jackknife was introduced by Quenouille  (1949)  
and popularized by Tukey  (1958) . Miller  (1974)  provided an excellent review of jack-
knife methods. Extensive coverage of the jackknife as developed up to 1972 can be 
found in Gray and Schucany  (1972) . 

 As noted earlier, Bickel and Freedman  (1981)  and Singh  (1981)  were the fi rst to 
show consistency of the bootstrap estimate of the sample mean under certain regularity 
conditions. In their paper, Bickel and Freedman  (1981)  also provided an example where 
the bootstrap estimate is not consistent. Gine and Zinn  (1989)  provided necessary but 
not suffi cient conditions for the consistency of the bootstrap mean. 

 Athreya  (1987a, b) , Knight  (1989) , and Angus  (1993)  all provided examples where 
the bootstrap fails due to the fact that the necessary conditions were not satisfi ed. In 
some of these cases the inconsistency is shown by deriving the actual limiting distribu-
tion for the bootstrap estimator normalized and by showing that it is not degenerate but 
differs from the limiting distribution for the original parameter estimate. 

 Subsampling methods began with Hartigan  (1969, 1971, 1975)  and McCarthy 
 (1969) . Diaconis and Holmes  (1994)  showed how the Monte Carlo approximation can 
sometimes be avoided through the use of Gray codes. 

 Efron  (1983)  compared several variations with the bootstrap estimate when esti-
mating classifi cation error rates for linear discriminant functions. Other papers that 
showed through simulation the advantage of the bootstrap 632 estimate include Cher-
nick et al.  (1985, 1986, 1988a, b) . For the Pearson VII family, the 632 is not always 
the best bootstrap estimator when the parameter controlling the tail behavior increases 
and the fi rst moment no longer exists (Chernick et al.,  1988b ). Other related papers 
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include Chatterjee and Chatterjee (1983), McLachlan  (1980) , Snapinn and Knoke 
 (1984, 1985a, b, 1988) , Jain et al.  (1987) , and Efron and Tibshirani  (1997) . Many other 
references for the historical development of the bootstrap can be found in Chernick 
(2007) and Chernick and LaBudde  (2010) . 

    1.6    EXERCISES 

       1.    Suppose three mice who are littermates have weights 82, 107, and 93   g.

   (a)     What is the mean weight of the mice?  
  (b)     How many possible bootstrap samples of this sample are there?  
  (c)     List all of the possible bootstrap samples as triples.  
  (d)     Compute the mean of each bootstrap sample.  
  (e)     Compute the mean of the resample means. How does this compare with the 

original sample mean?  
  (f)     What are the high and low values of the resample means?      

    2.    Suppose three mice in Exercise 1.6.1 have maze transit times of 27, 36, and 22   s.

   (a)     What is the mean transit time of the mice?  
  (b)     How many possible bootstrap samples of this sample are there?  
  (c)     List all of the possible bootstrap samples as triples.  
  (d)     Compute the mean of each bootstrap resample.  
  (e)     Compute the mean of the resample means. How does this compare with the 

original sample mean?  
  (f)     What are the high and low values of the resample means?      

    3.    Install the R system on your computer, and install the package  “  bootstrap . ”  Then 
enter the following commands at the prompt:
  > require( ′ bootstrap ′ ) 
  > help( ′ bootstrap ′ )  

 Note the webpage that appears in your browser.   

    4.    Install the R system on your computer, and install the package  “  boot . ”  Then enter 
the following commands at the prompt:
  > require( ′ boot ′ ) 
  > help( ′ boot ′ )  

 Note the webpage that appears in your browser.   

    5.    Afl atoxin residues in peanut butter: In actual testing, 12 lots of peanut butter had 
afl atoxin residues in parts per billion of 4.94, 5.06, 4.53, 5.07, 4.99, 5.16, 4.38, 4.43, 
4.93, 4.72, 4.92, and 4.96.

   (a)     How many possible bootstrap resamples of these data are there?  
  (b)     Using R and the sample() function, or a random number table or generator, 

generate fi ve resamples of the integers from 1 to 12.  
  (c)     For each of the resamples in Exercise 1.6.5b, fi nd the mean of the corresponding 

elements of the afl atoxin data set.  
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  (d)     Find the mean of the resample means. Compare this with the mean of the original 
data set.  

  (e)     Find the minimum and the maximum of the fi ve resample means. This a crude 
bootstrap confi dence interval on the mean. (If you had used 1000 resamples, 
and used the 25th and 975th largest means, this would have given a reasonable 
95% confi dence interval.)      

    6.    Sharpness of a razor blade: In a fi lament cut test, a razor blade was tested six different 
times with ultimate forces corresponding to 8.5, 13.9, 7.4, 10.3, 15.7, and 4.0   g.

   (a)     How many possible bootstrap resamples of these data are there?  
  (b)     Using R and the sample() function, or a random number table or generator, 

generate 10 resamples of the integers from 1 to 6.  
  (c)     For each of the resamples in Exercise 1.6.6b, fi nd the mean of the corresponding 

elements of the sharpness data set.  
  (d)     Find the mean of the resample means. Compare this with the mean of the original 

data set.  
  (e)     Find the minimum and maximum of the 10 resample means. This is a crude 

bootstrap confi dence interval on the mean. (If you had used 1000 resamples, 
and used the 25th and 975th largest means, this would have given a reasonable 
95% confi dence interval.)         
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