
PART I

ELECTRONIC AND SPIN STATES

CO
PYRIG

HTED
 M

ATERIA
L





1
UV–VISIBLE ABSORPTION AND
EMISSION ENERGIES IN CONDENSED
PHASE BY PCM/TD-DFT METHODS

ROBERTO IMPROTA

CNR—Consiglio Nazionale dellaRicerche, IstitutoBiostrutture e Bioimmagini, Naples, Italy

1.1 Introduction

1.2 Quantum Mechanical Methods for Study of Electronic Excited States

1.3 Time-Dependent DFT

1.3.1 Foundations of Time-Dependent DFT

1.3.2 Limitations of Time-Dependent DFT

1.4 Solvation Models

1.4.1 SS-PCM/TD-DFT

1.4.2 LR-PCM/TD-DFT

1.5 Computing Spectra: Theory

1.5.1 Choice of Functional

1.5.2 Choice of Basis Set

1.5.3 Choice of Solvation Model

1.6 Computing Spectra: Applications

1.6.1 Selected Examples

1.6.1.1 Bases of Nucleic Acids

1.6.1.2 Coumarins

1.6.2 Dealing with Supramolecular Interactions: Optical Properties of DNA

1.7 Concluding Remarks

References

Computational Strategies for Spectroscopy: From Small Molecules to Nano Systems, First Edition.
Edited by Vincenzo Barone.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

39



1.1 INTRODUCTION

The absorption and emission of light in the ultraviolet–visible (UV–vis) energy range

(200–750 nm, 6.2–1.6 eV) are probably the ‘most popular’ spectroscopic processes

which are continuously experienced by living beings in every-day life. For example,

the existence of colors and the possibility of seeing depend on these processes.

From a scientific perspective, absorption and fluorescence spectra are a source of

fundamental information in many chemical–physical molecular features [1–3]. First,

they are two of the most straightforward methods of identifying a compound and thus

represent key analytical techniques. Furthermore, advances in pump–probe time-

resolved experiments havemade absorption and fluorescence spectroscopy ideal tools

to monitor the time evolution and outcome of many reactive processes [4]. These

techniques can also provide indications of the electronic structure of molecules, their

ground- and excited-state geometry, and the most relevant vibrational features, just to

name a few basic properties.

From a complementary point of view, absorption spectra are often recorded to

investigate the interactions between a molecule and its environment, and part of these

interactions are indeed revealed by modifications of diagnostic molecular vibra-

tions [5, 6]. Measuring absorption and fluorescence spectra is thus one of the first and

key steps in many different areas of molecular and biological physics and nanotech-

nology science.

UV–vis absorption and emission are also extremely important from a technological

and industrial point of view, as shown, for example, by the huge efforts made in the

design of new dyes [7] or new photovoltaicmaterials [8], in the fields of light-emitting

diodes [9] and phototropic materials, or, concerning pharmaceutical research, in the

fields of photodynamic therapy [10] and molecular imaging [11].

The absorption and emission of light by molecules obviously depend on a basic

quantum mechanical property, that is, the existence of discrete energy levels. It is not

surprising that these processes have also been investigated from a theoretical/

computational point of view. Computation of absorption and emission spectra is

thus a very well developed research field, and an increasing number of theoretical and

computational advances have made computational approaches a fundamental com-

plement of experiments [12–32]. Schematically, we can say that computations have

been shown to be able to:

1. Significantly help in the assignment of experimental spectra. Consider, for

example, a complex organic reaction with multiple possible products (or a

mixture of products), exhibiting different, though similar, absorption (or

fluorescence) spectra. Comparison between the spectra computed for the most

likely products and the experimental ones often provides fundamental infor-

mation for identifying the products [33].

2. Increase the amount of information derived from experiments. Due to the large

number and complexity of the effects that can potentially influence absorption

and emission spectra, it is not always easy to disclose all the information

thereby contained, limiting the potentialities of these techniques. This is true
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especially in the condensed phase, where many fundamental features are often

somewhat hidden in broad and structureless spectra. In such a scenario, being

able to accurately compute spectra (possibly vibrationally resolved) is ex-

tremely useful.

3. Shed light on the relationship between the structure of a compound and

its spectral properties. Computations can more easily dissect the different

chemical–physical effects (intrinsic and environmental) modulating the spec-

tral properties of molecule. They can thus help the design of new compounds

with specifically tailored features (e.g., new dyes), with significant benefits for

industrial research.

On the other hand, notwithstanding the huge theoretical and computational efforts,

a reliable calculation of absorption and emission spectra, especially when dealing

with sizable molecules, is not a trivial task. In fact, while it is relatively easy to

approach the so-called chemical accuracy for molecules in the ground electronic

states, an accurate determination of the energy of the excited electronic states is

computationally and theoretically much more demanding. Indeed, excited electronic

states are often quite close in energy: The energy ordering often depends on fine

details of the adopted computational method (e.g., the size of the basis set). The

breaking of the Born–Oppenheimer approximation is rather common, and nonadia-

batic couplings cannot be safely neglected [13]. Furthermore, not only for computing

emission spectra but also for obtaining the Franck–Condon factors between the

ground and the electronic excited states, the excited-state stationary points are needed,

and, thus, performing excited-state geometry optimizations is often necessary. In this

respect, analytical excited-state gradients are available only for a limited number of

methods (CIS, CASSCF, CASPT2, SAC-CI, CC2) [29–40].1 Finally, the most

accurate ab initio methods are too computationally expensive for studying the excited

states of most systems of technological and biological processes, which are usually

medium/large-size molecules.

The usefulness of computational methods would of course be quite limited if

environmental effects could not be taken into proper account, since almost all of the

above-mentioned processes occur in solution. As a consequence, even a qualitative

agreement with experiments requires the use of a suitable solvation model.

The inclusion of environmental effects involves additional difficulties: Not only

should the solvationmodel be able to provide an accuracy comparable to that attained

in vacuo, but in solution any problem involving excited states becomes intrinsically

dynamic [41]. The solvent reaction field couples the ground-state density with the

density correction and the orbital relaxation arising from the electronic transition.

Furthermore, the coupling is modulated by the solvent relaxation times [41].

However, thanks to very recent methodological and computational advances

[especially in the methods rooted in the time-dependent density functional theory

1Configuration interaction singles (CISs); complete active-space self-consistent field (CASSCF) and its

second-order perturbation counterpart (CASPT2); symmetry-adapted cluster configuration interaction

(SAC-CI); double coupled cluster (CC2).
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(TD-DFT)][17, 18] it is nowadays possible to compute remarkably accurate absorp-

tion and emission spectra of sizable molecules in solution. Furthermore, the inclusion

of these methods in user-friendly computational methods has made these techniques

available to nonspecialists.

In this chapter we shall thus discuss some suitable strategies for computing the

absorption and emission spectra of medium–large systems in “complex” environ-

ment, focusing on the computation of the vertical excitation energies and

the vertical emission energies. Treatment of the lineshape can be found in the

Chapters 8 and 10.

1.2 QUANTUM MECHANICAL METHODS FOR STUDY OF

ELECTRONIC EXCITED STATES

A real “panoplia” of quantum mechanical methods for computing the properties

(energy, oscillator strengths, eventually the minima, etc.) of the excited electronic

states of medium-size molecules is currently available. A detailed discussion of the

main features of each computational approach is obviously outside the scope of this

chapter, and many interesting books and review articles are already available within

the literature [12–32, 42, 43]. Very schematically, we can distinguish between

wavefunction-based methods and electron-density-based methods. In some methods

of the former family, such as single-reference configuration interaction (CI) or

multiconfigurational-based ones—multiconfigurational SCF (MCSCF), for example,

the CASSCF, CASPT2 [14–16], or multireference CI [19]—any electronic state is

described as the combination of several Slater determinants corresponding to

different electronic configurations (i.e., different occupation schemes of the molecu-

lar orbitals,MOs). The expansion coefficients of the different Slater determinants and,

in multiconfigurational SCF approaches, the expansion coefficients of theMOs in the

Slater determinants are then variationally computed.

A different approach is followed by other wavefunction-based methods as those

belonging to the coupled-cluster (CC) family [20, 21, 28]. CCmodels are based on the

single-referencewavefunction and allow us to compute excitation energies within the

equation-of-motion [24–26] and linear response [27] CC formalisms (EOM-CC and

LR-CC, respectively). AccuracyofCC results depends on the level of truncation in the

CC expansion. In this respect, extensions of CC theory for excited states to include

triplet excitations within both iterative and noninterative schemes [26, 27] allow for

very accurate computations of excited-state properties. However, due to their high

computational cost, these methods cannot be applied to large molecules. Recently,

promising results have been obtained by an approximated single and double CC

method, which, exploiting the resolution of the identity (RI) approximation for two

electron integrals, can be applied to fairly large systems with a good degree of

accuracy [22, 23]. Additionally, the SAC-CI approach [34], being formally equivalent

to EOM-CC and LR-CC models, introduces some approximations by neglecting the

unimportant unlinked terms and the perturbation selection of the linked operators. By

doing so, the computations become more efficient and allow studies of larger and
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more complex systems, which are further facilitated by the availability of SAC-CI

analytical gradients [35].

The simplerwavefunctionmethod is CIS,where the excited states are computed by

considering only single excited Slater determinants using the HF MO to describe the

ground state. Despite exhibiting some advantages (limited computational cost, size

consistency, availability of analytical first and second derivatives), CIS excitation

energies are not very accurate, being usually overestimated by 0.5–2 eV (see Dreuw

and Head-Gordon [29] for a more detailed discussion).

A second class of methods is instead based on the knowledge of the electron

density in a theoretical framework similar to that of the DFT. In DFT the effects of the

exchange and of the electronic correlation are included by the so-called exchange-

correlation (xc) functional, which is obtained by an empirical fit of experimental data

or by imposing some physical constrains based on the behavior of some “limit”model

systems [44]. For the excited states, the TD-DFT [17, 18] recently emerged as a very

effective tool, since, when coupled to suitable density functionals, it often reaches

an accuracy comparable to that of the most sophisticated (but expensive) post-

Hartree–Fock methods [45–59], with a much more limited computational cost. As a

consequence in the last years an increasing number of TD-DFT applications have

appeared in the literature, also because this method can be used as a “blackbox” and is

thus also easily accessible to nonspecialists.

TD-DFT has often been criticized for not being a first-principle nonempirical

method (in analogy with its “parent” DFT), not showing uniform accuracy in

treating electronic transitions with different characters, and delivering a qualita-

tively wrong description of the crossing region between different electronic

excited states (see below). On the other hand, although wavefunction-based

methods have known impressive methodological advances, significantly increas-

ing their range of applicability, they suffer from very high computational costs. As

a consequence, some compromises concerning the basis set or, for MC methods,

the active space employed are often necessary, not only decreasing the expected

accuracy but also introducing a significant degree of arbitrariness in formally

rigorous methods. Furthermore, semiempirical parameters are often also present in

sophisticated calculations, such as CASPT2, which often include the so-called

IPEA shift. This empirical parameter has been introduced to compensate for

systematic errors in CASPT2 ionization potentials (IPs) and electron affinities

(EAs). Its application typically increases the computed CASPT2 excitation ener-

gies by about 0.1–0.3 eV and corrects for the known tendency of CASPT2 to

slightly underestimate excitation energies.

In our opinion, eachmethod has its own advantages and limitations, and the choice

of quantum mechanical (QM) method depends on the phenomena/system investigat-

ed. As discussed in the introduction, a method coupling accuracy and computational

feasibility is necessarywhen treating systems of biological and technological interest.

On the grounds of our experience, we think that TD-DFT probably represents the best

compromise between accuracy and computational cost for describing the excited-

state behavior in medium/large-size molecules. As a consequence it will be used as

reference computational method in this chapter.
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1.3 TIME-DEPENDENT DFT

1.3.1 Foundations of Time-Dependent DFT

TD-DFT has been reviewed in several excellent papers [17, 18]. We thus limit

ourselves to its basic foundations.

TD-DFT is rooted in the Runge–Gross theorem [60] (which is not valid for the

degenerate ground state), allowing the extension of the Hohemberg–Kohn–Sham

formulation of the TD-DFT theory to the treatment of time-dependent phenomena:

CðtÞ ¼ e� ifðtÞC½r;C0�ðtÞ ð1:1Þ
The Runge–Gross theorem implies that:

(a) A functional of the time dependent charge density, r, determines the wave-

function up to a time-dependent phase factor.

(b) All the observables can be calculated with knowledge of the time-dependent

one-body density.

When dealingwith time-independent processes, we can determine the ground state

of a given system by minimizing its total energy. In time-dependent systems no

variational principle based on the energy can be exploited, since the total energy is not

a conserved quantity. It is possible, however, to resort to another quantity, that is, the

quantum mechanical action:

C½ � ¼
ðt1
t0

dthCðtÞj @
@t

�ĤðtÞjCðtÞi ð1:2Þ

The true time-dependent density is that making the action stationary:

dA
drðr; tÞ ¼ 0 ð1:3Þ

On the grounds of the Runge–Grosse theorem, it is then quite straightforward to

derive the time-dependent Kohn–Sham equation, in analogy with the procedure used

in TD-DFT. For adiabatically introduced perturbations, whose frequency does not

exceed the highest occupied–lowest occupied molecular orbital (HOMO–LUMO)

gap, it is possible thus to assume the existence of a potential neff (r, t) for an

independent particle system whose orbitals ci (r, t) yield the same charge density

r (r, t) as for the interacting system,

rðr; tÞ ¼
X
i

fijciðr; tj2 ð1:4Þ

Minimizing the action, we then obtain

� 1

2
r2 þ neffðr; tÞ

� �
ciðr; tÞ ¼ i

@ciðr; tÞ
@t

ð1:5Þ

44 UV–VISIBLE ABSORPTION AND EMISSION ENERGIES IN CONDENSED PHASE



The first term on the left-hand side of Eq. 1.5 represents the kinetic energy of the

electrons, whereas the second one, neff, is given as

neff ¼ nextðr; tÞþ
ð
rðr; tÞ
r� r0j j dr

0 þ nxcðr; tÞ ð1:6Þ

where next is the external potential (electron–nuclei interaction), the second termgives

account of the electron–electron Coulomb interaction, and the third one, nxc,
represents the time-dependent counterpart of the stationary exchange–correlation

functionals

nxcðr; tÞ ¼ dAxc½r�
drðr; tÞ ð1:7Þ

Axc ¼
ðt1
t0

Exc½rt�dt ð1:8Þ

Up to this point, no approximation has been made in TD-DFT: As in DFT, the only

problem is the knowledge of the xc functional. However, in the most commonly used

approaches, the determination of the time-dependent xc functional involves addi-

tional approximations. The simplest approximation is the adiabatic approximation,

which can be applied if the external potential varies slowly in time [61]. It is a local

approximation in time, assuming that nxc is determined only by the density r(t) at the
same time,

nxc r½ �ðr; tÞ ¼ @Axc½r�
@rðr; tÞ ’¼ @Exc r½ �

@rtðrÞ
¼ nxc rt½ �ðrÞ ð1:9Þ

From the physical point view, the adiabatic approximation assumes that the

reaction of the SCF to temporal changes in r is instantaneous, neglecting all the

retardation effects.

Most of the TD-DFTimplementations compute the excitation energies relying on a

second approximation, based on the linear response theory.

For a small external time-dependent potential it is not necessary to solve the full

time-dependent KS equation, but most time-dependent properties can be calculated

from the first-order variation of the density:

dPijðoÞ ¼ nj � ni

o�ðEi � EjÞ dmextðoÞþ dnscfðoÞ½ � ð1:10Þ

where dPij is the linear response of the density matrix in the frequency domain and

dnscf is the linear response of the SCF due to the change in the charge density.

On the other hand, dnscf depends on the response of the density matrix,

dnijscf ¼
X
k;l

Kij;klðoÞ dPkl ð1:11Þ
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The above equations are usually expressed in matrix from:

A B
B A

� �
X
Y

� �
¼ o

1 0

0 �1
� �

X
Y

� �
ð1:12Þ

where vectorsX andY represent the linear response of the density matrix to the time-

dependent perturbation,

Aai;bj ¼ dabdij Ea � Eið ÞþKai;bj ð1:13Þ

and

Bai;bj ¼ Kai;jb ð1:14Þ

where E is the energy of the time-independent KS orbitals (c), i, j referring to the

occupied and a, b to the virtual orbitals.

Excitation energies are thus computed as poles of the dynamic polarizability, that

is, as the values of o leading to zero eigenvalues on the left-hand side of the matrix

of Eq. 1.12. In the framework of the above equations, an efficient “fast” iterative

solution for the lowest eigenvalue/excitation energies can be attained [62].

Oscillator strengths can also be obtained by the eigenvectors of Eq. 1.12, as

explained by Casida [17].

The recent implementation of TD-DFT analytical gradients [38–40] allows for

the determination of the excited-state stationary points and their properties (e.g., the

multipolemoments). Harmonic frequencies can be obtained by performing numerical

differentiation of the analytic gradients, enabling us to perform the same kind of

vibrational analysis performed in the ground electronic state [45–50].

TD-DFT calculations thus allow determining the energy and the properties of the

excited states with a limited computational cost. As a consequence, it is usually not

necessary to impose any symmetry constraint, very large basis sets can be used, and no

ad hoc choice (see, e.g., the active space in CASSCF/CASPT2 calculations) is usually

necessary, also when dealing with large-size systems. These are important features:

On the one hand, it is possible to treat different systems (e.g., a supramolecular system

and its component) and different kinds of transitions (e.g., np� and pp�) with a similar

degree of accuracy, putting the analysis of the computational results on firmer ground.

On the other hand, they make TD-DFTa very user-friendly method easily accessible

to nonspecialists. As a consequence in the last years the number of TD-DFT studies

has continuously increased, allowing important advances in our knowledge of

the potentialities and the limitations of this method. It is nowadays well assessed

that TD-DFT, when employing a suitable density functional, can provide fairly

accurate results (with 0.2–0.3 eV the experimental results) in several classes of

systems, despite the limited computational cost [51–58].

It is important, however, to remember that TD-DFT cannot be considered a

blackbox method, since the accuracy of its results depends on several factors

(functional, basis set, etc.) which have to be properly addressed. Furthermore, as
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discussed in the next section, there are several systems/processes for which TD-DFT

has often shown significant failures.

1.3.2 Limitations of Time-Dependent DFT

TD-DFT is a mono-determinantal method, and thus it cannot be applied to electronic

states with an intrinsic multireference character [2]. Analogously, TD-DFT can

exhibit deficiencies in treating electronic transitions with substantial contributions

fromdouble excitations [63–66], although interesting attempts to overcome the above

limitations have been proposed [65–71]. In several cases, however, an electronic

transition exhibits a multireference character (or a significant contribution from

double excitations) just because of a poor description of the ground-state MO by HF

orbitals, and such features are not presentwhenusingMOs computed at theDFT level.

Another traditional failure of TD-DFT concerns the treatment of long-range

charge transfer (CT) transitions between zero-overlap donor–acceptor pair. Standard

functionals significantly underestimate the transition energy and fail to reproduce

the correct 1/R trend when the donor/acceptor distance (R) increases [29].

However, in the last fiveyears new functionals have been developed,which are able

to deliver a correct estimate also of the long-range CT transitions [72–76]. Further-

more, it is worth noting that for electronic transitions which involve only partial CT

character, the underestimate of the excitation energies by TD-DFTmay be controlled

by the use of hybrid functionals, whereas the performances of pure functionals are

much poorer (see next sections). Therefore, some of the deficiencies ascribed to TD-

DFTare not intrinsic features of themethod but depend on the choice of the functional.

Also “long-range” corrected functionals are not able, however, to accurately treat

other classes of compounds such as cyanines, especially when the length of the

ethylenic bridge connecting the two NH2
þ /NH2 moieties increases. This failure is

likely due to the intrinsic multideterminantal character of the electronic transitions in

such molecules [58, 77].

1.4 SOLVATION MODELS

As anticipated in the introduction, sincemost of theUV–vis spectra are recorded in the

condensed phase, suitable theoretical models, able to include the effect of the solvent

on the absorption and the emission spectra, are necessary. This topic has been

discussed in detail in several reviews, and thus, also in this case, we limit our

discussion to some basic aspects [41, 78]. The most direct procedure to compute the

spectra of a given molecule (the solute) in solution consists in including in the

calculations a certain number of explicit solvent molecules [79, 80]. However, this

approach has to face two severe difficulties: (i) the number of solvent molecules

necessary to reproduce the bulk properties of a liquid (say, its macroscopic dielec-

tric constant) is very large; (ii) a dynamical treatment averaging all the possible

configurations of the solvent molecules is in principle necessary. As a consequence,

this approach has a large computational cost, especially when used for studying
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excited states, which, as discussed above, need rather expensive QM computational

methods. As a consequence, this “purely supramolecular” approach usually relies on

an approximate description of the solvent molecules by using classical force fields

within a mixed quantum mechanics/molecular mechanics (QM/MM) mixed ap-

proach. However, correct placement of the first solvation shell molecule is required,

which can often be a difficult task for the standard molecular mechanics force

field [81]. Furthermore, a large number of QM/MM calculations are necessary to

reach converged excitation energies.

Complementing the results obtained for the study of ground electronic states in

solution, many computational studies indicate that approaches exploiting continuum

solvation models are very effective tools for evaluating the solvent effect on the

excited-state properties. Among continuummodels, the polarizable continuummodel

(PCM) is probably the one most commonly used. In the following, we thus focus

mainly on this method [78, 82].

In the PCM the solvent is described as a homogeneous dielectric which is polarized

by the solute. The latter is placed within a cavity in the solvent medium (built as the

envelope of spheres centered on the solute atoms) and the proper electrostatic problem

at the cavity surface is solved using a boundary element approach [78]. In the PCM

framework, the solvent loses its molecularity and, especially in hydrogen-bonding

solvents, the explicit inclusion of solute–solvent interactions is very important for

getting accurate results. In these cases, as discussed in detail in the next section,mixed

discrete/continuum models, where a limited number of solvent molecules are

included in the computational model, usually provide accurate results.

Inclusion of the solvent effect within a continuum model in time-dependent

processes as absorption or emission poses several problems. On the one hand, the

solution of the electrostatic problem is highly nonlinear. Indeed, the solvent reaction

field should be variationally determined together with all the other parameters in the

electronic method used (MO coefficients, CI coefficients, excitation amplitudes, etc),

but all those parameters do depend on the solvent reaction field. Different approaches

have been envisaged to tackle the above problem. The most used can be classified in

two classes, that is, state-specific (SS) and linear response (LR) approaches [83–86].

In SS methods (e.g., CASSCF/PCM) a different effective Shr€odinger equation is

solved for each state of interest, achieving a fully variational formulation of solvent

effect on the excited-state properties. In the methods exploiting the LR response

formalism (as TD-DFT) the excitation energies are “directly” determined without

computing the exact excited electron density. As discussed in more detail in the next

sections, SS and LRmethods can provide very different estimates of the solvent effect

on the excited-state properties and dynamical solvation effects. This point should thus

be treated very carefully when using PCM in excited-state calculations.

Dynamical Solvent Effect Another critical topic to be considered when studying

excited states in solution is the dynamical solvent effect. Electron excitation is an

intrinsically dynamic process: The full equilibration of solvent degrees of freedom to

the excited-state density requires a finite time. It is thus fundamental that the

characteristic times of solvent degrees of freedom are properly taken into account.
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Several theoretical approaches to the description of dynamical solvent effects have

been proposed within the framework of PCM of other continuum models [41]. The

simplest, andmost commonly used, treatment involves the definition of two limit time

regimes: equilibrium (EQ) and nonequilibrium (NEQ). In the former all the solvent

degrees of freedom are in equilibrium with the electron density of the excited-state

density, and the solvent reaction field depends on the static dielectric constant of the

embedding medium. In the latter, only solvent electronic polarization (fast degrees of

freedom) is in equilibrium with the excited-state electron density of the solute, while

the slow solvent degrees of freedom remain equilibrated with the ground-state

electron density. In the NEQ time regime the “fast” solvent reaction field is ruled

by the dielectric constant at optical frequency (Eopt, usually related to the square of the
solvent refractive index).

The NEQ limit is the most suitable to the treatment of the absorption process.

The study of the fluorescence process is instead more complex, since in this case

dynamical solvent effects cannot be rigorously decoupled from the intramolecu-

lar effects due to the motion of the wave-packet (WP) on the excited-state

surface. However, it is possible to define some limit reference models, and

intuitive consideration of the properties of the solvent and/or the excited potential

energy surface is often sufficient to define what is the most suitable to the treat

the case under study (see next sections). PCM can be used in conjunction with all

the most important excited-state electronic methods. Since we selected TD-DFT

as our reference electronic method, we shall treat PCM/TD-DFT in more detail in

the next sections.

1.4.1 SS-PCM/TD-DFT

The solvent reaction field contribution to the solute free energy (G) can be expressed

in PCM as

G ¼ 1

2
V†q ð1:15Þ

where vector V collects the values of the solute’s electrostatic potential and q is the

apparent surface charge placed at the center of the surface tesserae (i.e., the small tiles

which the cavity surface is finely subdivided in), where also V is computed.

In the latest version of the method [78] the polarization charges depend on the

solute’s electrostatic potential and, thus, on its density through a general relationship

of the form

q ¼ �DV ð1:16Þ

where the square matrix D is related to cavity geometric parameters and the solvent

dielectric constant E.
Consider a generic excited electronic state (2) together with the corresponding

ground state (1). As discussed by Improta et al. [86], in SS methods the excited-state

equilibrium [Geqð2Þ] free energy in solution thus explicitly depends on the excited
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state (2) density:

Gð2Þ
eq ¼ 1

2

X
i

q
ð2Þ
i V

ð2Þ
i;r ¼ 1

2

X
i

q
ð2Þ
i;f V

ð2Þ
i;r þ 1

2

X
i

q
ð2Þ
i;s V

ð2Þ
i;r ð1:17Þ

The nonequilibrium (Gð2Þ
neq) free energy in solution involves an explicit dependence

on the density of the ground state (1):

Gð2Þ
neq ¼ 1

2

X
i

q
ð2Þ
i;f V

ð2Þ
i;r þ

X
i

q
ð1Þ
i;s V

ð2Þ
i;r � 1

2

X
i

q
ð1Þ
i;s V

ð1Þ
i;r

0
@

1
A

þ 1

2

X
i

q
ð1Þ
i;s V

ð2Þ
i;f � 1

2

X
i

q
ð1Þ
i;s V

ð1Þ
i;f

0
@

1
A

ð1:18Þ

In the above equations qf /qs and Vf /Vs are the polarization charges and the

corresponding potentials relative to the “fast” and “slow” solvent degrees of freedom.

The potential generated by the density of state (n) is given as V
ðnÞ
r .

The absorption process is ruled by nonequilibrium solvation, and thus the solvent

contribution to the vertical excitation energy can be computed by using the following

relationship:

DGabs ¼ Gð2Þ
neq �Gð1Þ

eq ð1:19Þ

Soon after the electronic transition has occurred, the system starts evolving on the

excited-state potential energy surface (PES) toward its energyminimum. At the same

time, slow solvent degrees of freedom start equilibrating on the excited-state electron

density. These two processes cannot be rigorously decoupled, especially when they

exhibit similar time scales, and we cannot thus expect that a single strategy is suitable

to all the possible emission processes. In many cases, however, this complex scenario

can be simplified by means of qualitative considerations on the properties of the

solvent and/or the excited potential energy surface. The equilibration of intramolec-

ular degrees of freedom is faster than solvent equilibration except for very flat PESs or

when many low-frequency motions are involved (large-amplitude torsional motions,

inversions, etc.). This is especially true in polar solvents and for electronic transitions

involving significant variations of the excited-state electron density. In such cases,

indeed, time-resolved experiments suggest that the equilibration of the slow solvent

degrees of freedom occurs on the picosecond time scale. This time should be long

enough to assume that the excited electronic state has reached its minimum. A simple

limiting case is that of ultrafast excited-state decay when only fast solvent degrees of

freedom are expected to be in equilibrium with the excited-state density. In this limit,

DGem can be computed exactly in the same way as DGabs [86]:

DGem ¼ Gð2Þ
neq �Gð1Þ

eq ð1:20Þ
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Of course, in this case excited-state geometry optimizations should also be performed

in the nonequilibrium limit.

Another simple limit is that of “very long” excited-state lifetimes, which charac-

terize, for instance, strongly fluorescent species. In this case, we can assume that

all the solvent degrees of freedom are in equilibrium with the excited-state density.

The ground-state (Gð1Þ
neq) nonequilibrium free energy in solution describing the

emission process can thus be obtained from Eq. 1.18, interchanging labels 1 and

2. The fast solvent degrees of freedom are equilibrated with the ground-state electron

density, whereas the slow ones are kept frozen at the value obtained in the equilibrium

calculation of the excited state.

In this limit, excited-state geometry optimizations should be performed with the

solvent equilibrium limit, and the solvent contribution to the fluorescence energy

(DGem) is given as

DGem ¼ Gð2Þ
eq �Gð1Þ

neq ð1:21Þ

The above relationship is themost suitable for treating phosphorescence, where states

(2) and (1) correspond to T1 and S0, respectively.

The computation of the quantities involved in Eqs. 1.20 and 1.21 is straightforward

using a generalization of the SS-PCM/TD-DFT method presented elsewhere [86],

where the nonlinear problem of determining the polarization charges corresponding

to the excited-state density is solved by using a self-consistent iterative procedure.

Starting from a TD-DFT calculation, a first approximation to the state-specific

reaction field is computed using the electron density of the state of interest by solving

Eq. 1.16. In the next step, a TD-DFT calculation is performed in the presence of this

first set of polarization charges, providing an updated excited-state density and,

consequently, a new set of polarization charges. This iterative procedure is continued

until convergence on the reaction field is achieved. In the cases examined until now,

4/5 iterations are usually sufficient to reach a convergence �0.0001 a.u. on the

final energy.

The final equilibrium and nonequilibrium energies of the state of interest are easily

determined by adding the corrections obtained by Eq. 1.17 or 1.18 to the excited-state

energy provided by the TD calculation.

1.4.2 LR-PCM/TD-DFT

In LR-PCM/TD-DFT the excitation energies are “directly” determined without

computing the excited-state density by plugging in a PCM contribution in the

TD-DFT equations reported in Section 3.1 [87]. The coupling matrix K of Eq. 1.11

can thus be decomposed in two terms, the former being related to the gas-phase

calculation, the second related to PCM:

Kst;uv ¼ K0
ai;bj þKPCM

ai;bj ð1:22Þ
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The PCM contributions to the time-dependent Kohn–Sham equations depend [87]

on the term dfðs0;oÞ,

dfðs0;oÞ ¼
ð
R3

drelðr0;oÞ
s0 � r0j j dr0 ð1:23Þ

which formally corresponds to an electrostatic potential computed using the electron

density variation (drel) associated with the electronic transition in place of a specific
electron density (rel). The contribution from the PCM operator is then defined as

vPCM drel
� �ðrÞ ¼

ð
G

ð
G
dfðs0;oÞQðEopt; s0; sÞ 1

s� rj j ds ds
0 ð1:24Þ

if only the fast solvation degrees of freedom are equilibrated with the excited-state

density of the solute, and

vPCM drel
� �ðrÞ ¼

ð
G

ð
G
dfðs0;oÞQðE; s0; sÞ 1

s� rj j ds ds
0 ð1:25Þ

when treating equilibrium solvation. In the nonequilibrium case, the PCM response

matrixQ depends on the dielectric constant at optical frequency (Eopt), whereas in the
equilibrium case it depends on E.

A significant part of solvent effect on the excited-state energies is recovered

by LR approaches using MO orbitals computed in solution (and, thus, including

the polarization due to the solvent reaction field) [83]. However, since the exact

excited-state electron density is never computed, all the solvent contributions

depending on the variation of the multipole moment upon excitation are missing

in LR computations. An additional PCM correction is instead introduced which

depends on the ground–excited state transition density [83]. As a consequence,

the treatment of dynamical solvent effects is completely different with respect to

that made by SS-PCM (in Eq. 1.18 explicit reference is made to the excited-state

density). Furthermore, in the LR-PCM method the ground state is thus always

fully equilibrated with the solvent degrees of freedom. As a consequence, in

the nonequilibrium case the solvation contribution to the emission energy is

computed as

DGemðLRÞ ¼ Gð2Þ
neqðLRÞ�Gð1Þ

eq ð1:26Þ

whereas for long living excited state it is computed as

DGemðLRÞ ¼ Gð2Þ
eq ðLRÞ�Gð1Þ

eq ð1:27Þ

that is, in standard LR-PCM the equilibrium solvation energy for the ground state is

used in both cases, making this method not suitable to an accurate treatment of the

solvent effect on the emission process.
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1.5 COMPUTING SPECTRA: THEORY

1.5.1 Choice of Functional

As anticipated above, results of the many computational studies of excited states

exploiting TD-DFT have clearly highlighted that the accuracy of the computed

vertical excitation energy (VEE) remarkably depends on the adopted functional.

Several studies show that the local density approximation (LDA) (the exchange/

correlation energy is a function of only the local value of the electron density)

underestimates the VEE of valence transitions in organic molecules [89]. In particu-

lar, there is a marked deterioration of the results for high-lying bound states [51–58].

Better results are obtained by functionals exploiting the generalized gradient

approximation (GGA, the functional depends on both the density and its gradient),

such as BLYP [90], PBE [91], or HCTH [92]. These functionals have limited

computational requirements, they can be easily implemented in ab initio molecular

dynamics methods like Car–Parrinello, and in some systems, such as metals, they can

provide rather reliable excitation energies. However, a huge number of computational

studies indicate that they are usually outperformed by their “hybrid” analogues, that

is, functionals, including a fraction of “exact” exchange, computed at the Hartree–

Fock level of theory. The most popular hybrid functionals, such as B3LYP [93] or

PBE0 [94–96], contain, in each point of the space, the same percentage of HF

exchange, and they can thus be labeled as “global hybrids”. These functionals,

especially B3LYP, are surely the most commonly used functionals not only for

ground-state DFT but also for TD-DFT excited-state calculations [53].

Local hybrid (LH) functionals are characterized by a mixing of HF exchange that

depends on the spatial electronic coordinate (as LH-BLYP) [97]. Finally, range-

separated hybrids (RSHs) use a growing fraction of exact exchange as the interelec-

tronic distance increases, giving a long-range correction (LC) to the original DFT

scheme [72, 73]. Functionals such as CAM-B3LYP [72] or LC-oPBE [73] are

representative of this class of functionals. Functionals that depend explicitly on the

semilocal information in the Laplacian of the spin density or of the local kinetic

energy density also have been developed [98]. Such functionals (see, e.g., the

functionals of the M05 or M06 family) [51] are generally referred to as meta-GGA

functionals.

Obviously, a thorough comparison among the performances of the different

functionals is outside the scope of the present chapter (see refs. 51–58 for recent

reviews). On the other hand, it is possible to draw some general guidelines for the

selection of the density functional to use in TD-DFT calculations, summarizing the

requirements for an “optimal” density functional. A first critical feature of a

functional concerns the philosophy underlying its development. According to a first

broad school of thought, once an appropriate functional form has been selected, the

functional is heavily parameterized by reference to experimental data or data from

explicitly correlated ab initio calculations [92]. Alternatively, the exact properties of

the functional (determined to fulfill a series of physical conditions) can be used to

determine both its structure and, eventually, the parameters in its functional form.
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Based on our experience in the field, we think that a density functional with a small

number of (ideally zero) adjustable parameters, and thus tailored according to this

latter approach,would be preferable. Although it can deliverworse performances than

heavily parameterized functionals in several cases, it is safer for studying systems that

could not belong to the class of compounds used in the parameterization procedure.

A suitable functional should obviously also provide reliable results, namely

(i) accurate ground-state geometries/vibrational frequencies, (ii) balanced description

of valence and Rydberg states, (iii) balanced description of bright and dark excited

states, (iv) good excited-state geometries/vibrational frequencies, and (v) a correct

description of charge transfer states.

It is clear that a “perfect” functional fulfilling all the above requirements probably

does not exist. Several different analyses have appeared in the literature comparing the

performance of different functionals, sometimes with contradictory results [51–58].

Actually, it is necessary to pay a lot of attention when analyzing the studies assessing

the performance of the different functionals (or, obviously, of different QMmethods),

especially when they are based on comparison with experimental results. In fact,

(i) the VEE is not an observable and it does not necessarily coincide with the band

maximum; (ii) as a consequence, absolute error is not necessarily the most significant

property; (iii) reproducing trends (i.e., substituent effect) can be more important; and

(iv) most of the experimental results are obtained in solution but most of the

computational studies are performed in vacuo.

However, it is nowadays well assessed that hybrid functionals usually outperform

nonhybrid ones and that themost commonly used hybrid functional, B3LYP, is not the

best one (vide infra) [51–58].

Our previous experience suggests that the PBE0 hybrid functional is a “well-

balanced” functional, usually providing very accurate results. In PBE0 the amount of

exact exchange has been determined in order to fulfill a number of physical conditions

without resorting to any fitting procedure [94]. PBE0, obeying both the Levy

condition [99] and the Lieb–Oxford bound [100], provides a fairly accurate descrip-

tion of the regions characterized by a low electron density but, at the same time, by a

high value of the electron density gradient. A reliable description of this region is

important not only for a system dominated by dispersions interactions (e.g., van der

Waals complexes) but also for higher lying excited states, as, for example, Rydberg

states. For these reasons, TD-PBE0 excitation energies are, on the average, more

accurate than those provided by other commonly used hybrid functionals, such as

B3LYP [96]. The Becke exchange functional, not obeying the Levy condition [99] or

the Lieb–Oxford bound [100], exhibits an incorrect asymptotic limit. Despite the

absence of adjustable parameters, besides providing a reliable description of

the ground-state properties of several classes of compounds, TD-PBE0 results have

shown an overall degree of accuracy comparable with that of the best last-generation

functionals in the description of both bright and dark excitation and both valence and

Rydberg states [53–58]. Furthermore, the vibrational analysis performed on the

ground of TD/PBE0 results (excited-state minima geometry and vibrational frequen-

cies) turned out in remarkable agreementwith the experimental indications for several

classes of compounds [45–50].
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On the other hand, PBE0 (like all the standard density functionals) exhibits

important failures in describing zero-overlap CT transitions. In these cases, a check

using purposely tailored functionals (CAM-B3LYP, M06-2X, LCo-PBE) is highly
recommended.

1.5.2 Choice of Basis Set

As already anticipated, one of advantages of using TD-DFT is that this method does

not exhibit any dramatic dependence on the size of the basis set. For valence

transitions, many studies indicate that a medium-size basis set (valence double-zeta

or triple-zeta adding polarization and diffuse functions) provides VEE close to

convergence [53–58].

Based on our experience, the small 6-31G(d) basis sets provide sufficiently

accurate equilibrium geometries and vibrational frequencies, and 6-31G(d) energy

ordering is usually qualitatively correct, but for Rydberg states. Although the

computed trend depends on the kind of transition considered, the VEE obtained at

the 6-31þG(d,p) level are close to convergence (representing a good compromise

between accuracy and computational cost). Finally, 6-311þG(2d,2p) results can be

considered converged in the great majority of the systems.

The above considerations do not hold when studying excited states with Rydberg

character: These transitions require more extended basis sets [6-31þG(d,p) is the

minimal basis set possible], the inclusion of diffuse functions is mandatory, and their

energies converge more slowly with the size of the basis set.

Analogously, the study of charged species, especially anions, in their electronic

excited states requires, on average, more extended basis sets than that of their neutral

counterpart. In this case, for example, the energy ordering obtained at the 6-31G(d)

level is often misleading.

Particular attention has to be paid to the basis set adopted in PCM/TD-DFT

calculations. The PCMcavity radii most commonly adopted have been parameterized

in order to reproduce solvation energies (i.e., a ground-state property) at a specific

level of theory [HF/6-31G(d), HF/6-31þG(d,p) for the anions, PBE0/6-31G(d),

etc.] [101]. When using different basis sets, different results can be obtained,

especially when thinking that VEE involves virtual molecular orbitals, which are

usually more diffuse than the occupied ones and whose behavior “optimal” radii are

likely different with respect to those used for the ground state. To compute the solvent

effect on the excited states, the safer procedure is using a basis set not too large, similar

to that used for the radii optimizations 6-31G(d), 6-31þG(d,p) for charged species.

1.5.3 Choice of Solvation Model

The two basic choices concern (i) the solvation model and (ii) the method to use. As

discussed above, a continuum model such as PCM offers several advantages over

purely supramolecular methods. On the other hand, PCM is expected to provide a

good estimate of the electrostatic contribution to the solute–solvent interaction,

whereas less accurate results can be obtained when dealing with nonpolar or
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hydrogen-bonding solvents. In the former case, the nonelectrostatic contribution

(dispersion interactions, electronic repulsion) to the solute–solvent interaction is

larger than the electrostatic one. Solvent shift in a nonpolar solvent, for example, can

depend on the variation of the polarizability associated with the electronic transition

more than on the dipole moment shift. Interesting attempts to treat this kind of

problem within the framework of PCM/TD-DFT calculations have been made [102],

but it cannot be taken for granted that standard calculations are able reproduce solvent

effect in nonpolar solution (dielectric constant <4) or when dealing with nonpolar

solutes. For hydrogen-bonding solvents, as anticipated above, the solute–solvent

interactions can be highly directional and have a strongly molecular nature, that is,

that cannot be properly described by simple electrostatic interactions. Consider, for

example, the hydrogen bond formed by a water molecule and the lone pair of a

carbonyl group. Aswe shall verifywhen reporting the results of our study on uracil, an

electronic transition involving the carbonyl lone pair would significantly perturb the

hydrogen bonds in which it participates. An accurate estimate of the effects of the

electronic transition to the hydrogen bond interaction can be obtained only at the QM

level, that is, explicitly including the solvent molecule in the computational model.

Although PCM alone can provide useful hints on the solvent shift in hydrogen-

bonding solvents, an accurate determination of the absorption and emission spectra

requires that the most important solute–solvent interactions, say, the first solvation

shell, are considered in the calculations by means of a mixed discrete-continuum

approach [81]. Although there is no general rule concerning the number and geometry

of the solvent molecules to be considered, as we shall see in the next sections,

combining chemical intuition with experimental results, it is relatively easy to design

a computational model able to provide accurate results.

As discussed above, PCM/TD-DFT being a reference method, it is still necessary

to choose between LR-PCM/TD-DFT and SS-PCM/TD-DFT calculations. It is

however important to remind that several of the following considerations are valid

for many of the LR-PCM and SS-PCM methods.

LR-PCM/TD-DFT is surely the simplest and fastest method for computing

absorption and emission energies in solution, its computational cost being only

marginally larger than the corresponding gas-phase TD-DFT calculation. The

availability of LR-PCM/TD-DFT analytical gradients gives relatively easy access

to excited-state minima, other excited-state properties as the multipole moment, as

well as all the different population analyses available for the ground state. Vibrational

frequencies in solution can be obtained by numerical second derivatives of the energy,

increasing their computational cost. The 6�N PCM/TD-DFT single-point calcula-

tions are indeed necessary to obtain the vibrational frequencies of a molecule

containing N atoms. Furthermore, it is necessary that the procedure is performed

with a lot of caution when in the presence of two close-lying excited states.

The results of a large number of studies indicate that LR-PCM is able to provide a

fairly accurate estimate of theVEE in solution, especially forwhat concerns the bright

excited states [53–58]. On the other hand, LR-PCM has been shown to overestimate

solvent effects on the intensities, especially at the EQ level [85, 86]. The two most

significant limitations of LR-PCM concerns (i) the treatment of the emission process
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(and in general the dynamical solvation effect) and (ii) the study of the electronic

transitions involving a substantial electron density shift [85, 86].

For the emission process, we recall that in LR-PCMcalculations solvent degrees of

freedom are always equilibrated with the ground-state density and in general, this

method provides a less rigorous treatment of dynamical solvent effect than SS-PCM.

For example, the solvent reorganization energy (l), that is, the difference between the
energy of a state in the NEQ and in EQ limits, is not correctly computed by LR-PCM.

In thismethod l is proportional to the square of the transition dipolemoment: It is thus

larger for bright transitions, being zero for dark states. Furthermore, in LR-PCM the

excited-state energy does not exhibit any dependence on the excited-state dipole

moment, and thus the energy of the excited states with a large dipolar character (e.g.,

the CT transitions) is significantly underestimated, especially at the EQ level [85, 86].

On the other hand, most of the above deficiencies are not present in SS approaches,

as SS-PCM/TD-DFT, which instead gives a balanced description of strong and weak

electronic transitions (see also the results reported below). Several studies (see below)

indicate that SS-PCM/TD-DFT provides accurate estimates of dynamical solvent

effects on the absorption and emission processes, of solvent reorganization energy,

and thus of inhomogeneous broadening. For example, in SS-PCM/TD-DFT l is

indeed proportional to the square of the dipole moment shift associated with the

transition, which is indeed expected to be the leading term in a polar solvent [85, 86].

Unfortunately, SS-PCM/TD-DFT excited-state analytical gradients are not avail-

able. Furthermore, SS-PCMhas an iterative implementation which not only increases

the possibility of convergence failures but would also make geometry optimizations

rather cumbersome.

An effective strategy is thus complementing the results of LR-PCM/TD-DFT

geometry optimizations by single-point SS-PCM calculations. In any case, notwith-

standing the above caveat, in many systems a good agreement between LR-PCM/TD-

DFTresults and experimental absorption and emission spectra has been found [53–58,

78]. It has indeed been shown [83] that at the zero order, related to the interactionwith

the slow solvation degrees of freedom, LR and SS approaches are identical [83].

It is necessary, finally, to comment on another factor potentially affecting the

computed spectral parameters, that is, the cavity radii [88]. As we have anticipated

above, the solute cavity within PCM has built as envelope of spheres centered on the

atoms or atomic groups. Different parameters are involved in the building of the

cavity; one of the most important obviously is the radii associated with each sphere,

which rules the volume of the cavity and, thus, the distance between the atoms and the

cavity surface. It is well known that the computed properties depend on the adopted

atomic radii, and this is obviously true also for the excited-state energies. Both SS-

PCMandLR-PCM results depend on the cavitymodel adopted, especially on the radii

used. Additional studies are necessary to shed light on this latter point. Several studies

indicate that using the cavitymodels developed for ground-state computations usually

provides fairly accurate results [53–58]. However, this feature has to be considered

with particular attention when comparing different kinds of transitions. Furthermore,

since the choice of the cavity affects the relative energy of the transition, some critical

features (e.g., the presence of a crossing) can depend on the cavity.
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1.6 COMPUTING SPECTRA: APPLICATIONS

Before examining in detail the results of some TD-DFTapplications to the computa-

tion of the spectra, it is useful to provide some hints about the expected accuracy of

this method and of the different functionals. Although the huge number of studies

makes it almost impossible to give a comprehensive picture, very interesting

indications are provided by the very careful studies of Jacquemin, Adamo, and

colleagues, performed a systematic comparison among the experimental absorption

spectra of several classes of organic dyes of industrial interest (azobenzene, anthra-

quinone, indigos, arylethenes) and the VEE computed at the TD-DFT level using

different density functionals [53–58].

As expected, their analysis shows that the performances of TD-DFT, in general,

and of the different functionals depend on the class of compounds examined. For 189

anthraquinone derivatives solvated invariousmedia (CH2Cl2,methanol, and ethanol),

themean absolute errors (MAEs) are 0.10 eV for both PBE0 andB3LYP [53]. For 304

indigoid derivatives, PCM-TD-PBE0/6-311þG(2d,p)//PCM-PBE0/6-311G(d,p) cal-

culations provide excitation energies with a MAE limited to 0.04 eV with respect to

the experimental band maxima [53].

Including other class of compounds in the analysis, such as azobenzene, coumar-

ins, diaryl-ethenes, and diphenylamine derivatives, does not change significantly the

picture: The best performances are delivered by PBE0, with an average absolute

deviation limited to 0.14 eV/22 nm,which has been proposed to be the expected PCM/

TD-PBE0 accuracy for low-lying excited states of conjugated organic compounds.

The second best approach, CAM-B3LYP, suffers larger deviations (0.26 eV/38 nm)

but appears particularly well suited for studying dyes with a very delocalized excited

state. Furthermore, CAM-B3LYP provides a very good estimate of substituent effect

on the absorption spectra [54].

When class of compounds that are known to be ill-treated by TD-DFT, for example,

cyanine, are included in the set of the experimental data (�500 compounds and more

than 700 excited states), the average error of TD-PBE0 VEE increases up to 0.24 eV,

and a similar value is obtained when the comparison is made with the best theoretical

estimates computed for a smaller set of compounds in the gas phase (104 singlet state).

In any case, such a value is an average between that expected for electron transitions

with a monodeterminantal nature, for which PBE0 (and other hybrid functionals

including 20/30% of HF exchange) is remarkably accurate (expected error�0.15 eV),

and those with a strong multideterminantal nature (e.g., cyanine, triphenylmethane,

and acridine derivatives) for which TD-DFT is inadequate [54].

Interestingly, the analysis of Jacquemin et al. [54] shows that the accuracy of PBE0

(and of other hybrid functionals containing a similar percentage of HF exchange) for

n ! p� transitions is even larger than that found for p ! p� transitions, the MAE

with respect to the experiments being close to zero. This results, as highlighted by

Jacquemin et al. is probably due to the more local character of np� transitions in the
examined set.

Rydberg excitations are another class of transitions that have been traditionally

considered “not reliably” treated at the TD-DFT level. Actually, several studies
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have shown that, besides the use of at least one diffuse function of the heavy

atoms, the accuracy of TD-DFT calculations dramatically depends on the

adopted functional. Indeed, in order to correctly describe low-density/high-

density gradient regions as those involved in Rydberg excitations, it is necessary

to use an exchange-correlation functional exhibiting a correct asymptotic

behavior:

lim
r!1 nxcðrÞ ¼ � 1

r
ð1:28Þ

When functionals, such as PBE0, fulfilling the above condition are employed, fairly

accurate VEEs are obtained for Rydberg excitations, the MAE being <0.4 eV for

several organic compounds [54].

For metallo-organic systems, to the best of our knowledge, no such systematic

comparisons between TD-DFT and experimental results exist in the literature.

Accurate results have been obtained on several porphyrin-like metal com-

plexes [103]. TD-PBE0 delivers reliable results in the study of several Ru–poly-

pyridine complexes, although its accuracy is lower than that found for organic

molecules (errors in the range 0.15–0.4 eV) [53]. Standard functionals such as

B3LYP have often been successfully applied to interpret the spectra of Ru–dye

complexes of potential interest for the development of solar cells [104]. On the other

hand, studies of [Ni(H2O)6]
2þ complexes show that TD-B3LYP are not fully

reliable, even qualitatively, due to the lack of transitions of double-excitation

character and the wrong treatment of CT transitions (the energy of the LMCT

transitions is significantly underestimated) [105]. In summary, additional studies

are probably necessary to assess the general reliability of TD-DFT for the study of

the visible spectra of metallo-organic systems, since the quality of the results can

depend on several additional factors (proper inclusion of relativistic effects,

pseudopotential employed, spin–orbit coupling) with respect to those examined

for organic molecules.

Both for organic and metallo-organic systems, studies in the literature show that

TD-DFT, also employing a standard hybrid functional such as PBE0, can provide a

remarkably accurate description of transitions with partial CT character (see also

Section 1.6.1.2). In fact, we remind the reader that the failures of TD-DFT calcula-

tions are usually associated with long-range CT between two partners whose

molecular orbitals have a vanishing overlap. On the other hand, CT transitions in

which donor and acceptor have a small but nonzero overlap (e.g., the metal to ligand

charge transfer (MLCT) transitions in several inorganic complexes) can be treated in a

fairly accurate way without resorting to long-range corrected functionals [53].

1.6.1 Selected Examples

To better illustrate the general concepts summarized above, it can be useful to make

explicit reference to the calculation of thevertical absorption and emission energies of

some representative compounds in different environments. Based on previous
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experience, we discuss in some detail the results obtained in the study of nucleic acid

components and one of the most used solvent probes, coumarin C153.

1.6.1.1 Bases of Nucleic Acids

Uracil in Gas Phase Absorption of UV–vis radiation byDNAand its constituents is

a phenomenon of fundamental biological interest. Indeed, since many DNA photo-

lesions are triggered by the population of singlet excited electronic states, the

availability of a fast radiationless decay channel is very important to life [106]. As

a consequence, the excited states of the nucleic acid bases (nucleobases) have been

thoroughly investigated bymany experimental and computational studies, both in the

gas phase and in solution, providing several indications of the performances of the

different computational approaches. Uracil (see Figure 1.1) is probably the nucleo-

base examined more in detail [107–123]. Experiments reveal the presence of a strong

absorption band at�4.8–5.0 eV (depending on the solvent), and computations ascribe

this feature to a p/p� transitions (hereafter Sp), which mainly corresponds to a

HOMO!LUMO excitation [107]. Different computational methods agree in pre-

dicting that Sp is not the lowest energy excited state in the FC region: Indeed, an

underlying dark state is predicted, with np� character (hereafter Sn), which mainly

arises from the excitation of an electron from the lone pair (HOMO-1) of the C4–O8

carbonyl group (see Figure 1.1) to the p� LUMO [108]. The energy difference

between Sn and Sp is thus another quantity of relevant interest, especially when

Figure 1.1 Schematic description (and atom labeling) of uracil�4 H2O model.
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thinking that, according to both experiments and computations, a significant Sp! Sn

population transfer is possible [109, 110].

A thorough study of the uracil in the gas phase has been performed by Matsika

et al., which compared the results obtained by the equation-of-motion coupled-cluster

and multireference configuration interaction methods with those provided by other

computational methods [108]. The completely renormalized EOM-CCSD with the

noniterative triples CR-EOM-CCSD(T)method, based on themethods ofmoments of

coupled-cluster equations, used with the aug-cc-pVTZ basis set, predicts that Sp and

SnVEEs are 5.25 and 5.00 eV, respectively. MRCI(12,9)/aug-ANO-DZ calculations,

including the Davidson correction (the expansion consists of about 330 million

configuration state functions), predicts that SpVEE is 5.32 eV,whereas, at this level of

theory, the authors did not succeed in obtaining the Sn energy due to technical

difficulties. CASPT2(14,10)/6-31G(d,p) calculations provide similar indications, Sp
VEE¼ 5.18 eVand Sn VEE¼ 4.93 eV. Inspection of Table 1.1 clearly shows that the

results provided by the TD-PBE0 method are extremely close to those obtained by

using muchmore computationally demanding methods and muchmore accurate than

other ab initio methods as CC2. The only significant discrepancy with respect to

CCSD(T) predictions concerns the energy difference between Sp and Sn, which is

0.2 eV larger in PBE0, and, in this respect, this prediction looks more consistent with

the experimental indications in water (vide infra). Furthermore, TD-PBE0 results are

much less dependent on the basis set size than those provided by EOM/CCSD(T) or

CASPT2. These two latter methods also exhibit a marked dependence on the size of

the active space included in the calculations. In the wave function method these

features make it much more difficult to treat large-size systems, for which the use of

Table 1.1 Comparison between VEE Computed for Two Lowest Energy Excited States

of Uracil Using Different Computational Approaches

Method Basis Set np� pp�

CR-EOM-CCSD(T) aug-cc-pVTZ 5.00 5.25

CR-EOM-CCSD(T) 6-31G(d) 5.19 5.65

EOM-CCSD aug-cc-pVTZ 5.23(0.00) 5.59(0.20)

CASPT2(14,10) 6-31G(d,p) 4.93(0.00) 5.18(0.20)a

MS(3)-CASPT2(12,10)b 6-31G(d) 5.16(0.00) 5.52

CASPT2//CASSCF(14,10)c ANO 5.02

MRCISDþQ(12,9) aug-ANO-DZ not conv 5.32

CC2 TZVP 4.91 5.52

PBE0 6-311þG(2d,2p) 4.81(0.00) 5.26(0.14)

PBE 6-311þG(2d,2p) 4.00(0.00) 4.76(0.06)

LC-oPBE 6-311þG(2d,2p) 5.06(0.00) 5.40(0.18)

B3LYP 6-311þG(2d,2p) 4.68(0.00) 5.15(0.13)

CAM-B3LYP 6-311þG(2d,2p) 5.08(0.00) 5.40(0.18)

M052X 6-311þG(2d,2p) 5.02(0.00) 5.51(0.20)

a From ref. 111.
b From ref. 112.
c From ref. 113.
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large basis sets and active spaces is rather cumbersome. Inspection of Table 1.1 shows

that, on average, PBE0 exhibits the best performances among the functionals

examined. Long-range corrected functionals, CAM-B3LYP or LC-oPBE, overesti-
mate the VEE of Sp by at least 0.2 eV. A pure density functional such as PBE

significantly underestimates both Sp and Sn VEE. B3LYP provides similar results

as PBE0, but Sn VEE exhibits a larger discrepancy with respect to the most accurate

WF-based methods than that provided by PBE0.

Interestingly, the maximum of the absorption band of uracil in the gas phase is

5.08 eV, that is, 0.1–0.2 eV red shifted with respect to the “best” computational

estimates. In any case, it is important to remember that the shape andmaximum of the

experimental absorption band can be significantly modulated by vibrational and

vibronic effects.

Uracil in Water Solvent noticeably affects the energy of the excited states and their

relative stability. For example, the absorption band maximum of uracil in water is

�0.25 eV red shifted with respect to the vapor phase [114]. Sn is known to be

significantly destabilized in water, and solvent has been shown to modulate the

excited-state dynamics in uracil derivatives [107, 115].

Our studies in the field have already unambiguously shown that proper description

of solvent shifts of uracil excited states in aqueous solution requires that both bulk

solvent effect and solute–solvent hydrogen bond interactions have to be consid-

ered [107, 109, 112, 115, 116]. As shown inTable 1.2, in fact, inclusion of bulk solvent

effects by the PCMmodel decreases by 0.1 eV SpVEE and increases by 0.35 eV that

of Sn. When four water molecules of the first solvation shell are included in the model

(see Figure 1.1), and gas-phase calculations provide similar trends.When both effects

are considered, Sn is strongly destabilized (by �0.5 eV), whereas the computed

solvent red shift for Sp (0.2 eV) approaches that predicted by the experiments

(�0.25–0.3 eV). Inclusion of water molecules is particularly important to correctly

reproduce the solvent effect on Sn: This electronic transition involves the transfer of

an electron from the oxygen LP, which can potentially act as hydrogen bond

acceptors, toward the more diffuse p� molecular orbital, leading to a decrease of

the solute–solvent hydrogen bond strength.

The VEEs of uracil in water solution have also been studied by other ap-

proaches [117–120]. MRCI/cc-pVDZ/MM calculations (considering 257 water

molecules as fixed charges, whose position is averaged by means of MD simulation)

predicts that in water SpVEE is red shifted by�0.05–0.1 eVand SnVEE blue shifted

Table 1.2 Comparison between the VEE Computed for Two Lowest Energy Excited

State of Uracil Using Different Models

Excited State Gas Phase Gas Phaseþ 4 H2O Water PCM Water PCMþ 4 H2O

Sn 4.81(0.00) 5.11(0.00) 5.15(0.00) 5.32(0.00)

Sp 5.26(0.14) 5.19(0.15) 5.16(0.20) 5.10(0.20)

Note: PBE0/6-311þG(2d,2p)//PBE0/6-31G(d) calculations.
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by �0.4 eV with respect to the gas phase [117]. The use of the fragment molecular

orbital multiconfigurational self-consistent field (FMO-MCSCF), which partially

includes quantum effects in the description of the solute–solvent interactions,

provides solvent shifts closer to the experimental estimates and to our computational

results: for Sp��0.15/�0.18 eV, for Sn�þ 0.42/þ 0.47 eV. EOM-CCSD(T)/MM

calculations provide a þ 0.44 blue shift for Sn and a þ 0.05 blue shift for Sp, and this
latter result is in qualitatively disagreement with experiments. Using Monte Carlo

simulations on 200 water molecules to generate solvent configurations around uracil,

which have then been used for intermediate neglect of differential overlap (INDO)

excited-state calculations, indicate þ 0.5-eVand �0.19-eV solvent shifts for Sn and

Sp, respectively [119]. On the balance, it seems that a mixed discrete–continuum

approach, notwithstanding by far the computationally less demanding, provides the

most accurate predictions.On average,we can thus estimate that, when going from the

gas phase towater, Sn is destabilized by�0.7 eVwith respect to Sp. As a consequence,
in the FC region Sn is less stable than Sp by �0.2 eVonly. Such a difference is fully

compatible with the partial Sp! Sn population transfer evidenced by time-resolved

experiments for uracil in water [109, 110]. On the other hand, if we assume that in the

gas phase Sn is less stable than Sp by�0.25 eVonly (as predicted by EOM-CCSD(T)

or CASPT2 calculations), the energy difference in water would be �0.5 eV, a value

which would make the population transfer much less likely. Those considerations

clearly show that careful study of the solvent effect is mandatory in order to use

computational results obtained in the gas phase to study processes occurring in

solution or just to assess the reliability of a given computational method.

Actually, our mixed discrete–continuum model is not limited to the study of

UV–vis spectra, but it has been already successfully employed to model solvent

effects on several different spectral properties, such as electron paramagnetic reso-

nance (EPR) hyperfine coupling constants, nuclear magnetic resonance (NMR)

chemical shifts, and so on [45, 121].

The only point not unambiguously defined in our model concerns the number and

position of the solvent molecules to be explicitly included in the calculations.

Although it is not possible to define strict and general rules, a suitable combination

between experimental and computational indications and chemical intuition in most

of cases allows for obtaining reliable results. For uracil in water, for example, NMR

experiments indicate that no water molecule is strongly bonded to C5 and C6 carbon

atoms and that O7 and O8 are coordinated by two and one water molecules,

respectively [122]. Car–Parrinello dynamics suggest that the first coordination shell

of uracil (up to 2.5A
	
) is formed by sixwatermolecules, four in themolecular plane (as

in Figure 1.1) and two more or less perpendicular to it [123]. Although a full

description of the first solvation shell in solution requires, of course, a proper dynamic

treatment, a number of studies have confirmed that the PCM is able to accurately

account for the effect of water molecules that aremore distant and/or not directionally

bound to the carbonyl oxygen lone pairs. The model depicted in Figure 1.1 thus

appears a reasonable guess, to be further refined by means of PCM geometry

optimizations. Furthermore, our previous experience suggests that inclusion of bulk

solvent effects by means of PCM significantly decreases the dependence of the
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computed VEE on the “exact” coordination geometry of the first solvation shell, and,

in many cases, also on the number of solvent molecules considered. Geometry

arrangements that in the gas phase are predicted to have significantly different energy

and/or spectral properties appear almost isoenergetic at the PCM level, which is able

to correctly reproduce the energetic effect of the outer solvation shells.

Guanine in Water at Strongly Acidic pH According to our model, in both ground,

and excited-state geometry, optimizations, the first solvation shell is fully optimized,

that is, it is treated like solute degrees of freedom. Since outer solvation shells are not

included in our calculations, this choice is expected to overestimate the conforma-

tional flexibility of the water molecules of the cybotactic region, suggesting that

particular attention has to be paid when investigating dynamical solvation effects. In

some cases the number of solvent molecules included in the model can also affect the

computed excitation energies. An example of this feature is provided by our recent

study of the excited-state dynamics of guanine monophosphate (G) [124]. In this

study it is shown that protonation of nitrogen N7 (see Figure 1.2) in strongly acidic

conditions noticeably affects the behavior of the lowest energy bright state (La). We

have compared the results obtained by including five (G-Wa5) or 6 (G-Wa6) water

molecules in our computational model.While for the neutral compound nominimum

is found in the path leading from the FC to the CoI with S0, for the protonated

Figure 1.2 Schematic description of the minima of the lowest excited state of 9-methyl-

guanine in water in strongly acidic conditions, computed in water at the PCM/TD-PBE0/

6-31G(d) level by using a model including five (up) or six (down) water molecules.
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compound a minimum is found, where the N7 and C8 hydrogens are out of the

molecular plane (see Figure 1.2), with concomitant motion of water molecules in the

first solvation shell. Interestingly, the out-of-plane distortion is larger for the model

with G-Wa5, since in G-Wa6, due the presence of an additional hydrogen bond

between the solvent molecules of the first solvation shell, the motion of the water

molecule hydrogen bonded to the N7-H group is more restrained. The different

geometry of the excited-state minimum is obviously mirrored in the computed

emission energy, which is larger by �2200 cm�1 for G-Wa5, since distortion from

planarity significantly destabilizes S0. It is thus clear that, especially for excited-state

geometry optimizations, there are situations where different choices of the solvation

shell can noticeably affect the computed spectra. On the other hand, it is important to

remind that both G-Wa5 and G-Wa6 models are able to reproduce the effect of the

protonation on the emission spectra, disclosing the underlying chemical–physical

effects. In fact, experiments show that the Stokes shift is significantly larger (by

�4000 cm�1) for the protonated compound, in line with computational predictions.

1.6.1.2 Coumarins The results obtained in the study of coumarin, especially that

of C153, allows getting additional insights on the treatment of non-hydrogen-bonding

solvents. In coumarins (see Figure 1.3), the S0 ! S1 transition has a p ! p�

character, and it essentially corresponds to a HOMO ! LUMO transition [46, 47].

However, while the HOMO is delocalized on the whole molecule, with significant

contributionby thep orbitals of the “central” benzene ring and of the nitrogen atom, the

LUMO is mainly localized on the “quinone like” terminal ring with significant

contribution of the p� orbital of the carbonyl group. As a consequence, the S0 ! S1
transitionhas a partial intramolecular charge transfer character (from thenitrogen atom

to the carbonyl group), and S1 has a partial zwitterionic character (with the nitrogen

Figure 1.3 Schematic drawing of anticonformer of coumarin C153.
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atom and the oxygen of the carbonyl group bearing a formal positive and negative

charge, respectively). This results in a significant solvent shift of this transition, which,

coupled to the molecular rigidity, makes coumarin and, in particular, C153 ideal tools

for investigating the different solvation rates by time-resolved spectroscopic techni-

ques, being the most used “molecular probes” of crucial dynamical aspects of

solvation [125, 126].

Starting our analysis from the gas phase, the picture of the C153 excited states

obtained at the TD-PBE0 level is in remarkable agreement with the experimental one.

The 0–0 transition energies computed in the gas phase by the PBE0 functional for the

nearly isoenergetic syn and anti isomers ofC153 (25,680 and 25,660 cm�1) are indeed

in almost quantitative agreement with the experimental values (25,898 and

25,710 cm�1, respectively) [127]. The calculated values for the oscillator strength

(0.36 and 0.37, respectively) match their experimental counterpart (0.37) [128].

Finally, PCM/TD-PBE0 calculations predict that in both dimethyl sulfoxide (DMSO)

and cyclohexane the dipole moment shift (Dm) associated with the electronic

transition is 
6.0 D (see also ref. 85). This value is in good agreement with the

estimates based on electroabsorption experiments [129] and slightly underestimated

with respect to the experimental determination in the gas phase [130].

The very good agreement between experimental and computational results could

seem at a first sight surprising due to the partial CT character of the S0–S1 transition.

On the other hand, the C153 lowest energy transition involves only partial intra-

molecular CT and can be correctly treated by hybrid functionals, as shown by the

results obtained on dimethylaminobenzonitrile [131]. In this respect, it is noteworthy

that for C153 conventional GGA functionals provide much less accurate results than

their hybrid counterpart: For instance, the PBE functional [91] provides gas-phase

0–0 transition energies of 19,845 and 19,931 cm�1 for the syn and anti isomer, with a

significant underestimation (
6000 cm�1) with respect to experimental results.

Comparison between vertical excitation and emission energies computed at the

SS-PCM/TD-PBE0 and LR-PCM/TD-PBE0 levels confirms that the former method

is significantly more accurate than the latter, especially for the emission energy in

DMSO and, consequently, for estimating both the solvatochromic shift and the Stokes

shift in DMSO. In fact, the predicted Stokes shift in DMSO, which is underestimated

by 1200 cm�1 at the SS level, is underestimated by 3000 cm�1 at the LR level and, in

the same way, the solvatochromic effect DMSO–cyclohexane for fluorescence

(overestimated by 400 cm�1 at the SS level) is underestimated by 2200 cm�1 at

theLR level [47]. These results confirm that it is important to resort to SS-PCMsingle-

point calculations for an accurate evaluation of the emission process and of the

dynamical solvent effects. On the other hand, the very good agreement between

the computed and experimental lineshapes supports the general accuracy of the

equilibrium structures and vibrational frequencies provided by LR-PCM/TD-DFT

calculations [45–50]. From the general point of view, our studies on coumarins (not

only on C153 but also on other coumarin derivatives) [86] shows that, as already

stated, solvent models based on a polarizable continuum, at least when dealing with

non-hydrogen-bonding solvents, are able to capture the “physics” of time-dependent

phenomena in solution.
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1.6.2 Dealing with Supramolecular Interactions: Optical Properties of DNA

In the examples considered until now, we have tackled the study of a medium-size

molecule (a single chromophore) in solution. The theoretical/computational frame-

workwe have outlined can be rather easily applied to other several systems, such as, for

example, a chromophore embedded in a protein. In this latter case, the chromophore

can be treated by using themethods described above, and the only difference concerns

the inclusion of environmental effects. Mixed QM/MM methods are indeed usually

more suitable than continuummodels for treating highly nonisotropic environments as

proteins [132]. Many processes of biological or technological interest, however,

depend on multiple chromophores arranged in supramolecolar structures. The optical

properties of those systems are traditionally treated by semiempirical methods, where

the interaction among the chromophores is included at a simplified level (e.g., by

considering the dipolar/dipolar coupling between the excited-state transitions in the

isolated chromophore). However, it is nowadays possible to attain a fully quantum

mechanical description of the optical properties of complex supramolecular structures,

as shown by the results obtained on DNA single and double strands [133–136].

The computation of nucleic acid UV–vis spectra is an ideal test case for theoretical

and computational models. Not only are a large number of experimental results (also

time resolved) available [106], but, since the DNA monomers have been thoroughly

studied, it is possible to assess the accuracy of the different theoretical approaches in

describing the effect that the subtle balance of supramolecular interactions (such as p
stacking and hydrogen bonds) has on the excited-state behavior.

The study of p-stacked systems in their excited states is particularly challenging.

Indeed, simpler models describing multichromophore spectra on the basis of excita-

tions localized on the chromophore, weakly coupled by exciton coupling, are not fully

adequate to describe strongly interacting systems, that is, face-to-face p-stacked
systems close to their van der Waals minimum (intermonomer distance �3–4A

	
). In

these latter systems, the frontier orbitals can have a substantial overlap and the

resulting electronic transitions delocalized overmultiple bases. This is indeed the case

of the lowest energy bright electronic transitions of stacked adenine nucleobases in

polyAde single and double strands [133–136]. In this latter case, our studies in the

field provide encouraging indications about the reliability of TD-DFT calculations

when based on a suitable functional for the treatment of the excited states in p-stacked
nucleobases. Both in stacked adenine dimer and in Ade2�Thy2 stacked tetramer [133–

136], PCM/TD-PBE0 calculations (at both the SS-PCM and LR-PCM levels) fully

reproduce all the features that experiments show polyAde�polyThy oligomers always

exhibit when compared to the spectrum of equimolar mixtures of the corresponding

monomers [137, 138]:(i) aweak blue shift of the bandmaximum, (ii) a strong decrease

of the absorption intensity, and (iii) a noticeable shoulder in its redwing. Interestingly

different functionals are able to reproduce the above features, but PCM/TD-PBE0

VEE are closer to the experimental bandmaximum. Those results have been obtained

also on a system explictly including the phosphoribose backbone (see Figure 1.4),

providing useful indications on the effect of the backbone on the absorption spectrum

of DNA.
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The transition energy of several dark-excited states falls within the absorption band

of the tetramer and the Ade dimer. Some of them have a clear-cut Ade!Ade or

Ade!Thy CT character, and their energy is significantly underestimated by PBE0

with respect toCAM-B3LYPorM052X. Inorder to investigate this point inmoredetail,

we have optimized the (9Methyl-Ade)�(1Methyl-Thy)Watson–Crick hydrogen-bond-

ed pair in the gas phase, computing the lowest energy transitions by using different

density functionals [133].M052XandCAM-B3LYPfunctionals predict that theA! T

CT transition is less stable by�0.8 eV than the bright excited state localized on T. This

result agrees within 0.15 eV with predictions of ab initio CC2 methods [139, 140].

PBE0 overestimates the stability of intrastrand CT transitions, although the amount

of the overestimation is smaller than what was found for Ade!Thy interstrand CT

transitions. We recall indeed that the most dramatic failures of “standard” density

functionals in treatingCT transitions occur in the case of zero overlapbetween theMOs

of the donor and the acceptor molecule [17]. We have computed the absorption

spectrum of (9Methyl-Ade)2 in the gas phase by using the B-DNA-like ground-state

minimum, optimized in aqueous solution, as reference geometry. CAM-B3LYP and

M05-2X predict that the lowest energy 9Methyl-Ade! 9Methyl-Ade CT transition is

�0.45 eV less stable than the excited states corresponding to themost intenseelectronic

transition.This estimate is inagoodagreementwith the0.64eVvalueprovidedbyCC2/

TZVP calculations on a similar system (twoAmolecules adopting the experimental B-

DNA structure) [139]. As anticipated above, PBE0 instead predicts that the CT

transition is �0.25 eV more stable than the bright excited state, with a smaller discre-

pancywith respect to the CC2 results than that found for the interstrand CT transition.

Although the above results confirm that PBE0 suffers from the same deficiencies as

standard functionals in properly treating CT transitions, it is expected to deliver a

better description of the stacked systems (in both the ground and excited states)

than other commmonly used functionals, such as B3LYP, which do not exhibit the

correct asymptotic limit. In fact, when applied to the study of cytosine-stacked dimer,

TD-PBE0 provides a very accurate description of the dependence of the S1 energy on

the intermonomer distance, in very good agreement with that obtained at the CASPT2

level [141].

Figure 1.4 Schematic drawing of the (dT)2�(dA)2 tetramer, adopting the B-DNA conforma-

tion. The PCM cavity used for calculations in solution is also shown.
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As a consequence, a suitable approach for the study of large-size systems could be

that of using TD-PBE0 for predicting and interpreting the behavior of the bright

excited states or of the “local” dark transitions (e.g., n! p� excitations) but correcting
the estimate of the CT transitions energy using results from such long-range corrected

functionals as CAM-B3LYP and M062X. An alternative could be that of resorting

only to these latter functionals, although the description of the bright excited states

could be less accurate than that obtained at the TD-PBE0 level.

In any case, it is clear that proper treatment of the solvent effect, both static and

dynamical, is fundamental for reliable evaluation of the CT transition’s stability in the

condensed phase. When using continuum solvation models, a state-specific approach

combinedwith an accurate description of the excited-state electron density (averaging

procedures of the excited-state density such as those usually employed in CASPT2

should be avoided) is mandatory, since LR-PCM/TD-DFT strongly underestimates

the stability of transition with even partial CT character.

1.7 CONCLUDING REMARKS

In this chapter we have tried to provide a methodological and computational frame-

work for the calculation of the vertical excitation and emission energies of medium/

large molecules in solution. Despite its limitations, TD-DFT appears to be a very

promising method. It has a very limited computational cost, it is “user friendly,” and,

when using a suitable functional (PBE0, CAM-B3LYP, M062X, depending on the

system/process under investigation), it provides absorption and emission energies

within the 0.2–0.3-eV rangeof the corresponding experimental peaks.Contemporarily,

PCM has shown to be a very effective method for including the solvent effect in the

calculation of the optical properties. On this ground, we can sketch the basic steps to

follow when computing the absorption and emission spectra of a given compound:

1. Ground-state geometry optimization and frequency calculations. DFT/6-31G

(d) (in the gas phase) and PCM/DFT/6-31G(d) (in solution) calculations,

employing a global hybrid density functional, usually, provide reliable results.

For Absorption Process

2. TD-PBE0/6-31þG(d,p) (in the gas phase) and LR-PCM/TD-PBE0/6-31þ
G(d,p) (in solution) should provide a good estimate of theVEE, but for Rydberg

states where a TZV basis is needed.

3. When looking for amore accurate estimate of the energy difference between the

different excited states in solution: (i) SS-PCM/TD-DFT/6-31þG(d,p) calcu-

lations and, for hydrogen bonding solvent, (ii) including in the calculation the

molecules of the first solvation shell.

For Emission Process

4. Computing the excited-state geometry. TD-PBE0/6-31G(d) (in the gas phase) and

LR-PCM/TD-PBE0/6-31G(d) calculations should provide a reliable geometry.
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5. TD-PBE0/6-31þG(d,p) (in the gas phase) and LR-PCM/TD-PBE0/6-31þ
G(d,p) (in solution) should provide a good estimate of the emission energy,

although, in solution, a SS-PCM/TD-PBE0/6-31þG(d,p) check is highly

recommended.

6. For supramolecular systems TD-PBE0 can understimate the VEE of CT

transition. A check using other functionals (as CAM-B3LYP or M06-2X) or

computational approaches is highly recommended.

7. When treating hydrogen-bonding solvents, accurate absorption and emission

energies can be obtained only when the cybotactic region is explicitly included

in the calculations. Mixed continuum–discrete approaches are very effective.

Sometimes the choice of the model is not unambiguous but, in any case, for

reasonable choices the results are much more accurate than that obtained by

using only PCM or purely supramolecular approaches in the gas phase.

In most cases, the above recipes can be directly applied to supramolecular systems

containing up to�150 atoms, providing fairly accurate results. On the other hand, it

is important to be aware that any computational approach, when used as a blackbox,

can lead to disappointing results, especially when dealing with complex systems/

processes. The approaches we have described in this chapter do not yet enable,

instead, the calculation of the optical and electronic properties of very large

supramolecular systems at the nanoscale. However, the possibility of accurately

computing the properties of “meaningful” building blocks (see, e.g., the Ade2�Thy2
tetramer for AT DNA) is an important step toward the definition of effective and

reliable multiscale models.
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