In This Part

Chapter 1: The Context of Cryptography
Chapter 2: Introduction to Cryptography

CHAPTER

1

The Context of Cryptography

Cryptography is the art and science of encryption. At least, that is how it
started out. Nowadays it is much broader, covering authentication, digital
signatures, and many more elementary security functions. It is still both an
art and a science: to build good cryptographic systems requires a scientific
background and a healthy dose of the black magic that is a combination of
experience and the right mentality for thinking about security problems. This
book is designed to help you cultivate these critical ingredients.
Cryptography is an extremely varied field. At a cryptography research
conference, you can encounter a wide range of topics, including computer
security, higher algebra, economics, quantum physics, civil and criminal law,
statistics, chip designs, extreme software optimization, politics, user interface
design, and everything in between. In some ways, this book concentrates on
only a very small part of cryptography: the practical side. We aim to teach you
how to implement cryptography in real-world systems. In other ways, this
book is much broader, helping you gain experience in security engineering
and nurturing your ability to think about cryptography and security issues
like a security professional. These broader lessons will help you successfully
tackle security challenges, whether directly related to cryptography or not.
The variety in this field is what makes cryptography such a fascinating area
to work in. It is really a mixture of widely different fields. There is always
something new to learn, and new ideas come from all directions. It is also one
of the reasons why cryptography is so difficult. It is impossible to understand
itall. There is nobody in the world who knows everything about cryptography.
There isn’t even anybody who knows most of it. We certainly don’t know

Part 1 » Introduction

everything there is to know about the subject of this book. So here is your
first lesson in cryptography: keep a critical mind. Don’t blindly trust anything,
even if itis in print. You'll soon see that having this critical mind is an essential
ingredient of what we call “professional paranoia.”

1.1 The Role of Cryptography

Cryptography by itself is fairly useless. It has to be part of a much larger
system. We like to compare cryptography to locks in the physical world. A
lock by itself is a singularly useless thing. It needs to be part of a much
larger system. This larger system can be a door on a building, a chain, a safe,
or something else. This larger system even extends to the people who are
supposed to use the lock: they need to remember to actually lock it and to not
leave the key around for anyone to find. The same goes for cryptography: it is
just a small part of a much larger security system.

Even though cryptography is only a small part of the security system, it
is a very critical part. Cryptography is the part that has to provide access to
some people but not to others. This is very tricky. Most parts of the security
system are like walls and fences in that they are designed to keep everybody
out. Cryptography takes on the role of the lock: it has to distinguish between
“good” access and ““bad”” access. This is much more difficult than just keeping
everybody out. Therefore, the cryptography and its surrounding elements
form a natural point of attack for any security system.

This does not imply that cryptography is always the weak point of a system.
In some cases, even bad cryptography can be much better than the rest of the
security system. You have probably seen the door to a bank vault, at least in
the movies. You know, 10-inch-thick, hardened steel, with huge bolts to lock
it in place. It certainly looks impressive. We often find the digital equivalent
of such a vault door installed in a tent. The people standing around it are
arguing over how thick the door should be, rather than spending their time
looking at the tent. It is all too easy to spend hours arguing over the exact
key length of cryptographic systems, but fail to notice or fix buffer overflow
vulnerabilities in a Web application. The result is predictable: the attackers find
a buffer overflow and never bother attacking the cryptography. Cryptography
is only truly useful if the rest of the system is also sufficiently secure against
the attackers.

There are, however, reasons why cryptography is important to get right,
even in systems that have other weaknesses. Different weaknesses are useful
to different attackers in different ways. For example, an attacker who breaks
the cryptography has a low chance of being detected. There will be no traces
of the attack, since the attacker’s access will look just like a “good”” access. This

&

Chapter 1 = The Context of Cryptography

is comparable to a real-life break-in. If the burglar uses a crowbar to break in,
you will at least see that a break-in has occurred. If the burglar picks the lock,
you might never find out that a burglary occurred. Many modes of attack leave
traces, or disturb the system in some way. An attack on the cryptography can
be fleeting and invisible, allowing the attacker to come back again and again.

1.2 The Weakest Link Property

Print the following sentence in a very large font and paste it along the top of
your monitor.

A security system is only as strong as its weakest link.

Look at it every day, and try to understand the implications. The weakest
link property is one of the main reasons why security systems are so fiend-
ishly hard to get right.

Every security system consists of a large number of parts. We must assume
that our opponent is smart and that he is going to attack the system at the
weakest part. It doesn’t matter how strong the other parts are. Just as in a
chain, the weakest link will break first. It doesn’t matter how strong the other
links in the chain are.

Niels used to work in an office building where all the office doors were
locked every night. Sounds very safe, right? The only problem was that the
building had a false ceiling. You could lift up the ceiling panels and climb over
any door or wall. If you took out the ceiling panels, the whole floor looked
like a set of tall cubicles with doors on them. And these doors had locks. Sure,
locking the doors made it slightly harder for the burglar, but it also made it
harder for the security guard to check the offices during his nightly rounds.
It isn’t clear at all whether the overall security was improved or made worse
by locking the doors. In this example, the weakest link property prevented
the locking of the doors from being very effective. It might have improved
the strength of a particular link (the door), but there was another link (the
ceiling) that was still weak. The overall effect of locking the doors was at best
very small, and its negative side effects could well have exceeded its positive
contribution.

To improve the security of a system, we must improve the weakest link.
But to do that, we need to know what the links are and which ones are weak.
This is best done using a hierarchical tree structure. Each part of a system has
multiple links, and each link in turn has sublinks. We can organize the links
into what we call an attack tree [113]. We give an example in Figure 1.1. Let’s
say that we want to break into a bank vault. The first-level links are the walls,
the floor, the door, and the ceiling. Breaking through any one of them gets

Part 1 » Introduction

us into the vault. Let’s look at the door in more detail. The door system has
its own links: the connection between the door frame and the walls, the lock,
the door itself, the bolts that keep the door in the door frame, and the hinges.
We could continue by discussing individual lines of attack on the lock, one of
which is to acquire a key, which in turn leads to a whole tree about stealing
the key in some way.

enter

vault
through through through through
walls floor door ceiling
C(E?l:](:eucgt]ir:)n defeat break disable break
door-wall lock door bolts hinge

AN AN AN AN AN

Figure 1.1: Example attack tree for a vault

We can analyze each link and split it up into other links until we are left
with single components. Doing this for a real system can be an enormous
amount of work. If we were concerned about an attacker stealing the diamonds
stored in the vault, then Figure 1.1 is also just one piece of a larger attack tree;
an attacker could trick an employee into removing the diamonds from the
vault and steal them once removed. Attack trees provide valuable insight as
to possible lines of attack. Trying to secure a system without first doing such
an analysis very often leads to useless work. In this book, we work only on
limited components—the ones that can be solved with cryptography—and
we will not explicitly talk about their attack trees. But you should be certain
to understand how to use an attack tree to study a larger system and to assess
the role of cryptography in that system.

The weakest link property affects our work in many ways. For example, it
is tempting to assume that users have proper passwords, but in practice they
don’t. They often choose simple short passwords. Users may go to almost any
length not to be bothered by security systems. Writing a password on a sticky
note and attaching it to their monitor is just one of many things they might do.
You can never ignore issues like this because they always affect the end result.
If you design a system that gives users a new 12-digit random password every
week, you can be sure they will stick it on their monitors. This weakens an
already weak link, and is bad for the overall security of the system.

&

Chapter 1 = The Context of Cryptography

Strictly speaking, strengthening anything but the weakest link is useless.
In practice, things are not so clear-cut. The attacker may not know what the
weakest link is and attack a slightly stronger one. The weakest link may be
different for different types of attackers. The strength of any link depends on
the attacker’s skill and tools and access to the system. The link an attacker
might exploit may also depend on the attacker’s goals. So which link is the
weakest depends on the situation. It is therefore worthwhile to strengthen any
link that could in a particular situation be the weakest. Moreover, it’s worth
strengthening multiple links so that if one link does fail, the remaining links
can still provide security—a property known as defense in depth.

1.3 The Adversarial Setting

One of the biggest differences between security systems and almost any other
type of engineering is the adversarial setting. Most engineers have to contend
with problems like storms, heat, and wear and tear. All of these factors affect
designs, but their effect is fairly predictable to an experienced engineer. Not
so in security systems. Our opponents are intelligent, clever, malicious, and
devious; they’ll do things nobody had ever thought of before. They don’t play
by the rules, and they are completely unpredictable. That is a much harder
environment to work in.

Many of us remember the film in which the Tacoma Narrows suspension
bridge wobbles and twists in a steady wind until it breaks and falls into the
water. It is a famous piece of film, and the collapse taught bridge engineers
a valuable lesson. Slender suspension bridges can have a resonance mode in
which a steady wind can cause the whole structure to oscillate, and finally
break. How do they prevent the same thing from happening with newer
bridges? Making the bridge significantly stronger to resist the oscillations
would be too expensive. The most common technique used is to change the
aerodynamics of the bridge. The deck is made thicker, which makes it much
harder for the wind to push up and down on the deck. Sometimes railings are
used as spoilers to make the bridge deck behave less like a wing that lifts up in
the wind. This works because wind is fairly predictable, and does not change
its behavior in an active attempt to destroy the bridge.

A security engineer has to take a malicious wind into account. What if
the wind blows up and down instead of just from the side, and what if it
changes directions at the right frequency for the bridge to resonate? Bridge
engineers will dismiss this kind of talk out of hand: “Don’t be silly, the wind
doesn’t blow that way.”” That certainly makes the bridge engineers’ jobs much
easier. Cryptographers don’t have that luxury. Security systems are attacked
by clever and malicious attackers. We have to consider all types of attack.

Part 1 » Introduction

The adversarial setting is a very harsh environment to work in. There are
no rules in this game, and the deck is stacked against us. We talk about an
“attacker” in an abstract sense, but we don’t know who she is, what she
knows, what her goal is, when she will attack, or what her resources are. Since
the attack may occur long after we design the system, she has the advantage
of five or ten years’ more research, and can use technology of the future
that is not available to us. And with all those advantages, she only has to
find a single weak spot in our system, whereas we have to protect all areas.
Still, our mission is to build a system that can withstand it all. This creates
a fundamental imbalance between the attacker of a system and the defender.
This is also what makes the world of cryptography so exciting.

1.4 Professional Paranoia

To work in this field, you have to become devious yourself. You have to think
like a malicious attacker to find weaknesses in your own work. This affects
the rest of your life as well. Everybody who works on practical cryptographic
systems has experienced this. Once you start thinking about how to attack
systems, you apply that to everything around you. You suddenly see how
you could cheat the people around you, and how they could cheat you.
Cryptographers are professional paranoids. It is important to separate your
professional paranoia from your real-world life so as to not go completely
crazy. Most of us manage to preserve some sanity ... we think.! In fact, we
think that this practical paranoia can be a lot of fun. Developing this mindset
will help you observe things about systems and your environment that most
other people don’t notice.

Paranoia is very useful in this work. Suppose you work on an electronic pay-
ment system. There are several parties involved in this system: the customer,
the merchant, the customer’s bank, and the merchant’s bank. It can be very
difficult to figure out what the threats are, so we use the paranoia model. For
each participant, we assume that everybody else is part of a big conspiracy to
defraud this one participant. And we also assume that the attacker might have
any number of other goals, such as compromising the privacy of a participant’s
transactions or denying a participant’s access to the system at a critical time.
If your cryptographic system can survive the paranoia model, it has at least a
fighting chance of surviving in the real world.

We will interchangeably refer to professional paranoia and the paranoia
model as the security mindset.

'But remember: the fact that you are not paranoid doesn’t mean they are not out to get you or
compromise your system.

&

Chapter 1 = The Context of Cryptography

1.4.1 Broader Benefits

Once you develop a sense of professional paranoia, you will never look at
systems the same way. This mindset will benefit you throughout your career,
regardless of whether you become a cryptographer or not. Even if you don’t
become a cryptographer, you may someday find yourself working on the
design, implementation, or evaluation of new computer software or hardware
systems. If you have the security mindset, then you will be constantly thinking
about what an attacker might try to do to your system. This will nicely position
you to identify potential security problems with these systems early. You may
not always be able to fix all of the security problems by yourself, but that’s
all right. The most important thing is to realize that a security problem might
exist. Once you do that, it becomes a straightforward task to find others to
help you fix the problem. But without the security mindset, you might never
realize that your system has security problems and, therefore, you obviously
can’t protect against those problems in a principled way.

Technologies also change very rapidly. This means that some hot security
mechanisms of today may be outdated in 10 or 15 years. But if you can learn
how to think about security issues and have an appreciation for adversaries,
then you can take that security mindset with you for the rest of your life and
apply it to new technologies as they evolve.

1.4.2 Discussing Attacks

Professional paranoia is an essential tool of the trade. With any new system
you encounter, the first thing you think of is how you can break it. The sooner
you find a weak spot, the sooner you learn more about the new system.
Nothing is worse than working on a system for years, only to have somebody
come up and say: “But how about if I attack it this way ... ?”” You really don’t
want to experience that “Oops”” moment.

In this field, we make a very strict distinction between attacking somebody’s
work and attacking somebody personally. Any work is fair game. If somebody
proposes something, it is an automatic invitation to attack it. If you break one
of our systems, we will applaud the attack and tell everybody about it.> We
constantly look for weaknesses in any system because that is the only way to
learn how to make more secure systems. This is one thing you will have to learn:
an attack on your work is not an attack on you. Also, when you attack a system,
always be sure to criticize the system, not the designers. Personal attacks in
cryptography will get you the same negative response as anywhere else.

But be aware that this acceptance of attacks may not extend to everyone
working on a system—particularly if they are not familiar with the field

2Depending on the attack, we might kick ourselves for not finding the weakness ourselves, but
that is a different issue.

Part 1 » Introduction

of cryptography and computer security. Without experience in the security
community, it is very easy for people to take criticism of their work as a
personal attack, with all the resulting problems. It is therefore important to
develop a diplomatic approach, even if it makes it initially difficult to get the
message across. Being too vague and saying something like “There might be
some issues with the security aspects” may not be productive, since it may
get a noncommittal response like “Oh, we’ll fix it,” even if the basic design is
fundamentally flawed. Experience has shown us that the best way to get the
message across technically is to be specific and say something like “If you do
this and this, then an attacker could do this,” but such a statement may be
felt as harsh by the recipient. Instead, you could begin by asking, “Have you
thought about what might happen if someone did this?”” You could then ease
the designers of the system into a discussion of the attack itself. You might
also consider complimenting them on the remaining strengths of their system,
observe the challenges to building secure systems, and offer to help them fix
their security problems if possible.

So the next time someone attacks the security of your system, try not to
take it personally. And make sure that when you attack a system, you only
focus on the technology, you don’t criticize the people behind it, and you are
sensitive to the fact that the designers may not be familiar with the culture of
constructive criticism in the security community.

1.5 Threat Model

Every system can be attacked. There is no such thing as perfect security. The
whole point of a security system is to provide access to some people and not
to others. In the end, you will always have to trust some people in some way,
and these people may still be able to attack your system.

It is very important to know what you are trying to protect, and against
whom you wish to protect it. What are the assets of value? What are the
threats? These sound like simple questions, but it turns out to be a much
harder problem than you’d think. Since there’s really no such thing as perfect
security, when we say that a system is ““secure,” what we are really saying is
that it provides a sufficient level of security for our assets of interest against
certain classes of threats. We need to assess the security of a system under the
designated threat model.

Most companies protect their LAN with a firewall, but many of the really
harmful attacks are performed by insiders, and a firewall does not protect
against insiders at all. It doesn’t matter how good your firewall is; it won't
protect against a malicious employee. This is a mismatch in the threat model.

Another example is SET. SET is a protocol for online shopping with a credit
card. One of its features is that it encrypts the credit card number so that

&

Chapter 1 = The Context of Cryptography

an eavesdropper cannot copy it. That is a good idea. A second feature—that
not even the merchant is shown the customer’s credit-card number—works
less well.

The second property fails because some merchants use the credit card
number to look up customer records or to charge surcharges. Entire commerce
systems have been based on the assumption that the merchant has access to
the customer’s credit card number. And then SET tries to take this access away.
When Niels worked with SET in the past, there was an option for sending the
credit card number twice—once encrypted to the bank, and once encrypted
to the merchant so that the merchant would get it too. (We have not verified
whether this is still the case.)

But even with this option, SET doesn’t solve the whole problem. Most credit
card numbers that are stolen are not intercepted while in transit between the
consumer and the merchant. They are stolen from the merchant’s database.
SET only protects the information while it is in transit.

SET makes another, more serious, mistake. Several years ago Niels’s bank
in the Netherlands offered a SET-enabled credit card. The improved security
for online purchases was one of the major selling points. But this turned
out to be a bogus argument. It is quite safe to order online with a normal
credit card. Your credit card number is not a secret. You give it to every
salesperson you buy something from. The real secret is your signature. That is
what authorizes the transaction. If a merchant leaks your credit card number,
then you might get spurious charges, but as long as there is no handwritten
signature (or PIN code) there is no indication of acceptance of the transac-
tion, and therefore no legal basis for the charge. In most jurisdictions you
simply complain and get your money back. There might be some inconve-
nience involved in getting a new credit card with a different number, but
that is the extent of the user’s exposure. With SET, the situation is different.
SET uses a digital signature (explained in Chapter 12) by the user to autho-
rize the transaction. That is obviously more secure than using just a credit
card number. But think about it. Now the user is liable for any transaction
performed by the SET software on his PC. This opens the user up to huge
liabilities. What if a virus infects his PC and subverts the SET software?
The software might sign the wrong transaction, and cause the user to lose
money.

So from the user’s point of view, SET offers worse security than a plain
credit card. Plain credit cards are safe for online shopping because the user can
always get his money back from a fraudulent transaction. Using SET increases
the user’s exposure. So although the overall payment system is better secured,
SET transfers the residual risk from the merchant and/or bank to the user. It
changes the user’s threat model from It will only cost me money if they forge
my signature well enough” to “It will only cost me money if they forge my
signature well enough, or if a clever virus infects my PC.”

12

Part 1 » Introduction

Threat models are important. Whenever you start on a cryptographic secu-
rity project, sit down and think about what your assets are and against which
threats you wish to protect them. A mistake in your threat analysis can ren-
der an entire project meaningless. We won't talk a lot about threat analysis
in this book, as we are discussing the limited area of cryptography here, but
in any real system you should never forget the threat analysis for each of the
participants.

1.6 Cryptography Is Not the Solution

Cryptography is not the solution to your security problems. It might be
part of the solution, or it might be part of the problem. In some situations,
cryptography starts out by making the problem worse, and it isn’t at all clear
that using cryptography is an improvement. The correct use of cryptography
must therefore be carefully considered. Our previous discussion of SET is an
example of this.

Suppose you have a secret file on your computer that you don’t want others
to read. You could just protect the file system from unauthorized access. Or
you could encrypt the file and protect the key. The file is now encrypted, and
human nature being what it is, you might not protect the file very well. You
might store it on a USB stick and not worry if that USB stick is lost or stolen.
But where can you store the key? A good key is too long to remember. Some
programs store the key on the disk—the very place the secret file was stored
in the first place. But an attack that could recover the secret file in the first
situation can now recover the key, which in turn can be used to decrypt the file.
Further, we have introduced a new point of attack: if the encryption system is
insecure or the amount of randomness in the key is too low, then the attacker
could break the encryption system itself. Ultimately, the overall security has
been reduced. Therefore, simply encrypting the file is not the entire solution.
It might be part of the solution, but by itself it can create additional issues that
need to be solved.

Cryptography has many uses. It is a crucial part of many good security
systems. It can also make systems weaker when used in inappropriate ways.
In many situations, it provides only a feeling of security, but no actual security.
It is tempting to stop there, since that is what most users want: to feel secure.
Using cryptography in this manner can also make a system comply with
certain standards and regulations, even if the resulting system isn’t actually
secure. In situations like this (which are all too common), any voodoo that the
customer believes in would provide the same feeling of security and would
work just as well.

&

Chapter 1 = The Context of Cryptography

13

1.7 Cryptography Is Very Difficult

Cryptography is fiendishly difficult. Even seasoned experts design systems that
are broken a few years later. This is common enough that we are not surprised
when it happens. The weakest-link property and the adversarial setting con-
spire to make life for a cryptographer—or any security engineer—very hard.

Another significant problem is the lack of testing. There is no known way of
testing whether a system is secure. In the security and cryptography research
community, for example, what we try to do is publish our systems and then
get other experts to look at them. Note that the second part is not automatic;
there are many published systems that nobody has even glanced at after they
were published, and the conference and journal review process alone isn’t
sufficient to preemptively identify all potential security issues with a system
prior to publication. Even with many seasoned eyes looking at the system,
security deficiencies may not be uncovered for years.

There are some small areas of cryptography that we as a community
understand rather well. This doesn’t mean they are simple; it just means that
we have been working on them for a few decades now, and we think we know
the critical issues. This book is mostly about those areas. What we have tried to
do in this book is to collect the information that we have about designing and
building practical cryptographic systems, and bring it all together in one place.

For some reason, many people still seem to think that cryptography is easy.
It is not. This book will help you understand the challenges to cryptography
engineering and help propel you on the road to overcoming those challenges.
But don’t go out and build a new cryptographic voting machine or other critical
security system right away. Instead, take what you learn here and work with
others—especially seasoned cryptography experts—to design and analyze
your new system. Even we, despite our years of experience in cryptography
and security, ask other cryptography and security experts to review the
systems that we design.

1.8 Cryptography Is the Easy Part

Even though cryptography itself is difficult, it is still one of the easy parts
of a security system. Like a lock, a cryptographic component has fairly
well-defined boundaries and requirements. An entire security system is much
more difficult to clearly define, since it involves many more aspects. Issues like
the organizational procedures used to grant access and the procedures used
to check that the other procedures are being followed are much harder to deal

14

Part 1 » Introduction

with, as the situation is always changing. Another huge problem in computer
security is the quality of much software. Security software cannot be effective
if the software on the machine contains numerous bugs that lead to security
holes.

Cryptography is the easy part, because there are people who know how
to do a reasonably good job. There are experts for hire who will design a
cryptographic system for you. They are not cheap, and they are often a pain
to work with. They insist on changing other parts of the system to achieve
the desired security properties. Still, for all practical purposes, cryptography
poses problems that we know how to solve, and this book will give you a
sense for how to go about solving them.

The rest of the security system contains problems we don’t know how
to solve. Key management and key storage is crucial to any cryptographic
system, but most computers have no secure place to store a key. Poor software
quality is another problem. Network security is even harder. And when you
add users to the mix, the problem becomes harder still.

1.9 Generic Attacks

It is also important to realize that some security problems can’t be solved.
There are black box or generic attacks against certain types of systems. A
classic example of this is the analog hole for digital rights management
(DRM) systems. These DRM systems try to control the copying of digital mate-
rials, such as a picture, song, movie, or book. But no technology —cryptography
or otherwise—can protect against a generic attack outside the system. For
example, an attacker could take a photo of a computer screen to create a copy
of the picture, or use a microphone to re-record the song.

It is important to identify what the generic attacks against a system are.
Otherwise, you might spend a lot of time trying to fix an unfixable problem.
Similarly, when someone claims that they’ve secured a system against a generic
attack, you know to be skeptical.

1.10 Security and Other Design Criteria

Security is never the only design criterion for a system. Instead, security is but
one of many criteria.

1.10.1 Security Versus Performance

The bridge over the Firth of Forth in Scotland has to be seen to be believed.
A 19th-century engineering marvel, it is mind-numbingly large (and there-
fore expensive) compared to the trains that cross it. It is so incredibly

&

Chapter 1 = The Context of Cryptography

15

over-engineered it is hard to believe your eyes. Yet the designers did the right
thing. They were confronted with a problem they had not solved successfully
before: building a large steel bridge. They did an astoundingly good job. They
succeeded spectacularly; their bridge is still in use today over a century later.
That’s what good engineering looks like.

Over the years, bridge designers have learned how to build such bridges
much more cheaply and efficiently. But the first priority is always to get a
bridge that is safe and that works. Efficiency, in the form of reducing cost, is a
secondary issue.

We have largely reversed these priorities in the computer industry. The
primary design objective all too often includes very strict efficiency demands.
The first priority is always speed, even in areas where speed is not important.
Here speed might be the speed of the system itself, or it might be the speed
with which the system can be brought to market. This leads to security cost-
cutting. The result is generally a system that is somewhat efficient, yet is not
sufficiently secure.

There is another side to the Firth of Forth bridge story. In 1878, Thomas
Bouch completed the then-longest bridge in the world across the Firth of Tay
at Dundee. Bouch used a new design combining cast iron and wrought iron,
and the bridge was considered to be an engineering marvel. On the night of
December 28, 1879, less than two years later, the bridge collapsed in a heavy
storm as a train with 75 people on board crossed the bridge. All perished. It
was the major engineering disaster of the time.®> So when the Firth of Forth
bridge was designed a few years later, the designers put in a lot more steel,
not only to make the bridge safe but also to make it look safe to the public.

We all know that engineers will sometimes get a design wrong, especially
when they do something new. And when they get it wrong, bad things can
happen. But here is a good lesson from Victorian engineers: if it fails, back off
and become more conservative. The computer industry has largely forgotten
this lesson. When we have very serious security failures in our computer
systems, and we have them all too frequently, it is very easy to just plod along,
accepting it as if it were fate. We rarely go back to the drawing board and
design something more conservative. We just keep throwing a few patches
out and hoping this will solve the problem.

By now, it will be quite clear to you that we will choose security over
efficiency any time. How much CPU time are we willing to spend on security?
Almost all of it. We wouldn’t care if 90% of our CPU cycles were spent on a
reliable security system if the alternative was a faster but insecure system. The
lack of computer security is a real hindrance to us, and to most users. That is

SWilliam McGonagall wrote a famous poem about the Tay Bridge disaster, ending with the
lines For the stronger we our houses do build/The less chance we have of being killed. This advice is still
highly relevant today.

16

Part 1 » Introduction

why people still have to send pieces of paper around with signatures, and why
they have to worry about viruses and other attacks on our computers. Digital
crooks of the future will know much more and be much better equipped,
and computer security will become a larger and larger problem. We are still
only seeing the beginnings of the digital crime wave. We need to secure our
computers much better.

There are of course many ways of achieving security. But as Bruce extensively
documented in Secrets and Lies, good security is always a mixture of prevention,
detection, and response [114]. The role for cryptography is primarily in the
prevention part, which has to be very good to ensure that the detection and
response parts (which can and should include manual intervention) are not
overwhelmed. Cryptography can, however, be used to provide more secure
detection mechanisms, such as strong cryptographic audit logs. Cryptography
is what this book is about, so we’ll concentrate on that aspect.

Yes, yes, we know, 90% still sounds like a lot. But there is some consolation.
Remember first that we are willing to spend 90% of our CPU on security if
the alternative is an insecure system. Fortunately, in many cases the costs of
security can be hidden from the user. We can only type around 10 characters
per second—on a good day—and even the slow machines of a decade ago
had no trouble keeping up with that. Today’s machines are over a thousand
times faster. If we use 90% of the CPU for security, the computer will appear
one-tenth as fast. That is about the speed that computers were five years ago.
And those computers were more than fast enough for us to get our work
done. We may not always have to spend so many cycles on security. But we're
willing to, and that’s the point.

There are only a few situations in which we have to wait on the computer.
These include waiting for Web pages, printing data, starting certain programs,
booting the machine, etc. A good security system would not slow down any of
these activities. Modern computers are so fast that it is hard to figure out how
to use the cycles in a useful manner. Sure, we can use alpha-blending on screen
images, 3D animations, or even voice recognition. But the number-crunching
parts of these applications do not perform any security-related actions, so they
would not be slowed down by a security system. It is the rest of the system,
which is already as fast as it can possibly get on a human time scale, that will
have the overhead. And we don’t care if it goes at one-tenth the speed if it
increases security. Most of the time, you wouldn’t even notice the overhead.
Even in situations where the overhead would be significant, that is just the
cost of doing business.

It will be clear by now that our priorities are security first, second, and
third, and performance somewhere way down the list. Of course, we still want
the system to be as efficient as possible, but not at the expense of security.
We understand that this design philosophy is not always possible in the real
world. Often the realities of the marketplace trump the need for security.

&

Chapter 1 = The Context of Cryptography

17

Systems can rarely be developed from scratch, and often need to be secured
incrementally or after deployment. Systems need to be backward-compatible
with existing, insecure, systems. The three of us have designed many security
systems under these constraints, and we can tell you that it’s practically
impossible to build a good security system that way. The design philosophy
of this book is security first and security foremost. It's one we’d like to see
adopted more in commercial systems.

1.10.2 Security Versus Features

Complexity is the worst enemy of security, and it almost always comes in the
form of features or options.

Here is the basic argument. Imagine a computer program with 20 different
options, each of which can be either on or off. That is more than a million
different configurations. To get the program to work, you only need to test
the most common combination of options. To make the program secure, you
must evaluate each of the million possible configurations that the program can
have, and check that each configuration is secure against every possible form
of attack. That is impossible to do. And most programs have considerably
more than 20 options. The best way to have confidence in building something
secure is to keep it simple.

A simple system is not necessarily a small system. You can build large
systems that are still fairly simple. Complexity is a measure of how many
things interact at any one point. If the effect of an option is limited to a small
part of the program, then it cannot interact with an option whose effect is
limited to another part of the program. To make a large, simple system you
have to provide a very clear and simple interface between different parts of
the system. Programmers call this modularization. This is all basic software
engineering. A good simple interface isolates the rest of the system from the
details of a module. And that should include any options or features of the
module.

One of the things we have tried to do in this book is define simple interfaces
for cryptographic primitives. No features, no options, no special cases, no extra
things to remember, just the simplest definition we could come up with. Some
of these definitions are new; we developed them while writing the book. They
have helped us shape our thinking about good security systems, and we hope
they will help you, too.

1.10.3 Security Versus Evolving Systems

One of the other biggest problems for security is that the full system continues
to evolve even after the underlying security mechanisms are put in place. This
means that the designer of the security mechanism needs not only to exhibit

Part 1 » Introduction

professional paranoia and consider a wide range of attackers and attack goals,
but also to anticipate and prepare for future uses of the system. This can also
create enormous challenges, and is an issue that systems designers need to
keep in mind.

1.11 Further Reading

Anyone interested in cryptography should read Kahn'’s The Codebreakers [67].
This is a history of cryptography, from ancient times to the 20th century. The
stories provide many examples of the problems engineers of cryptographic
systems face. Another good historical text, and a pleasurable read, is The Code
Book [120].

In some ways, the book you're holding is a sequel to Bruce’s first book,
Applied Cryptography [112]. Applied Cryptography covers a much broader range
of subjects, and includes the specifications of all the algorithms it discusses.
However, it does not go into the engineering details that we talk about in this
book.

For facts and precise results, you can’t beat the Handbook of Applied Cryp-
tography, by Menezes, van Oorschot, and Vanstone [90]. It is an encyclopedia
of cryptography and an extremely useful reference book; but just like an
encyclopedia, it’s hardly a book to learn the field from.

If you're interested in the theory of cryptography, an excellent sequence of
texts is Foundations of Cryptography, by Goldreich [55, 56]. Another excellent
text is Introduction to Modern Cryptography, by Katz and Lindell [68]. There are
also numerous excellent university course notes available online, such as the
course notes from Bellare and Rogaway [10].

Bruce’s previous book Secrets and Lies [114] is a good explanation of computer
security in general, and how cryptography fits into that larger picture. And
there’s no better book on security engineering than Ross Anderson’s Security
Engineering [2]. Both are essential to understand the context of cryptography.

There are a number of good online resources for staying abreast of
recent issues in cryptography and computer security. We suggest subscribing
to Bruce’s Crypto-Gram newsletter, http: //www.schneier.com/crypto-gram
.html, and reading Bruce’s blog, http: //www.schneier.com/blog/.

1.12 Exercises for Professional Paranoia

They say that one of the best ways to learn a foreign language is to immerse
yourself in it. If you want to learn French, move to France. This book is
designed to immerse you in the language and mindset of cryptography and

&

Chapter 1 = The Context of Cryptography

19

computer security. The following exercises will help immerse you further.
They will force you to think about security on a regular basis, such as when
you're reading news articles, talking with friends about current events, or
reading the description of a new product on Slashdot. Thinking about security
will no longer be a chore relegated to the time when you are specifically tasked
with thinking about security. You may even start thinking about security while
you're out walking your dog, in the shower, or at a movie. In short, you will
be developing the professional paranoia mindset and will start thinking like a
security professional.

It is also extremely important for a computer security practitioner (and,
actually, all computer scientists) to be aware of the broader contextual issues
surrounding technology. Technologies don’t exist in isolation. Rather, they
are one small aspect of a larger ecosystem consisting of people, economics,
ethics, cultural differences, politics, law, and so on. These exercises will also
give you an opportunity to discuss and explore these bigger picture issues as
they relate to security.

We suggest that you regularly return to the exercises below. Try to do
these exercises as often as possible. For example, you might do these exercises
every week for a month straight, or after you finish every few chapters in
this book, whichever is more frequent. The exercises might seem laborious
and tedious at first. But if you're dedicated to this practice, you will soon
find yourself doing these exercises automatically whenever you encounter
a security-related news article or see a new product. This is the professional
paranoia mindset. Further, if you continue to do these exercises as you read
this book, you will notice that your ability to evaluate the technical properties
of systems will mature over time.

We also recommend doing the exercises with a friend or, if you are in a class,
with a classmate as part of group instruction. Discussing security issues with
others can be very enlightening—you will soon realize firsthand that security
is incredibly subtle and that it is very easy to overlook critical weaknesses.

Obviously, if you're not taking a class and doing the formal exercises, then
you may choose to conduct these exercises in your head rather than actually
producing written reports. Still, we suggest producing a written report at
least once; doing so will force you to really think through the relevant issues
completely.

1.12.1 Current Event Exercises

For these exercises, you should critically analyze some event currently in the
news. The event you choose should somehow relate to computer security.
Maybe improved computer security mechanisms would have thwarted the
event. Maybe the event motivates the design of new security mechanisms or
policies.

20

Part 1 » Introduction

The current events retrospective that you write should be short, concise, very
thoughtful, and well written. Assume a general audience. Your goal should
be to write an article that will help the reader learn about and understand the
computer security field and how it fits into the broader context.

You should summarize the current event, discuss why the current event
arose, reflect on what could have been done differently prior to the event
arising (to perhaps prevent, deter, or alter the consequences of the event),
describe the broader issues surrounding the current event (such as ethical
issues or societal issues), and propose possible reactions to the current event
(e.g., how the public, policy makers, corporations, the media, or others should
respond).

1.12.2 Security Review Exercises

These exercises deal with developing your security mindset in the context of

real products or systems. Your goal with the security reviews is to evaluate the

potential security and privacy issues of new technologies, evaluate the severity

of those issues, and discuss how to address those security and privacy issues.

These reviews should reflect deeply on the technology that you're discussing,

and should therefore be significantly longer than your current event exercises.
Each security review should contain:

m Summary of the technology that you're evaluating. You may choose to
evaluate a specific product (like a recently introduced wireless im-
plantable drug pump) or a class of products with some common goal
(like the set of all implantable medical devices). This summary should be
at a high level, around one or two paragraphs in length. State the aspects
of the technology that are relevant to your observations in the following
bullets.

For these exercises, it is acceptable to make assumptions about how the
products work. However, if you do make assumptions about a product,
then you should make it clear that you are doing so, and you should
explicitly state what those assumptions are.

Being able to clearly summarize a product (even with explicitly stated
assumptions) is very important. If you don’t understand the technology
well enough to provide a crisp and clear summary, then you probably
don’t understand the technology well enough to evaluate its security and
privacy.

m State at least two assets and, for each asset, a corresponding security
goal. Explain why the security goals are important. You should produce
around one or two sentences per asset/goal.

&

Chapter 1 = The Context of Cryptography

21

m State at least two possible threats, where a threat is defined as an action
by an adversary aimed at compromising an asset. Give an example
adversary for each threat. You should have around one or two sentences
per threat/adversary.

m State at least two potential weaknesses. Again, justify your answer using
one or two sentences per weakness. For the purposes of these exercises,
you don’t need to fully verify whether these potential weaknesses are
also actual weaknesses.

m State potential defenses. Describe potential defenses that the system
could use or might already be using to address the potential weaknesses
you identified in the previous bullet.

m Evaluate the risks associated with the assets, threats, and potential
weaknesses that you describe. Informally, how serious do you think
these combinations of assets, threats, and potential weaknesses are?

m Conclusions. Provide some thoughtful reflections on your answers
above. Also discuss relevant ““bigger picture” issues (ethics, likelihood
the technology will evolve, and so on).

Some examples of past security reviews are online at http: //www.schneier

.com/ce.html.

1.13 General Exercises

Exercise 1.1 Create an attack tree for stealing a car. For this and the
other attack tree exercises, you can present your attack tree as a figure (like
Figure 1.1), or you can present your attack tree as a list numbered in outline
form (e.g.,1,1.1,1.2,1.21,1.22,13, ...).

Exercise 1.2 Create an attack tree for getting into a gym without paying.

Exercise 1.3 Create an attack tree for getting food from a restaurant without
paying.

Exercise 1.4 Create an attack tree for learning someone’s online banking
account name and password.

Exercise 1.5 Create an attack tree for reading someone else’s e-mail.

Exercise 1.6 Create an attack tree for preventing someone from being able to
read his own e-mail.

22

Part 1 » Introduction

Exercise 1.7 Create an attack tree for sending e-mail as someone else. Here,
the attacker’s goal is to convince an e-mail recipient that an e-mail she receives
is from someone else (say, Bob), when in fact Bob never sent that e-mail.

Exercise 1.8 Find a new product or system that was announced or released
within the last three months. Conduct a security review of that product or
system as described in Section 1.12. Pick one of the assets that you identified
and construct an attack tree for compromising that asset.

Exercise 1.9 Provide a concrete example, selected from media reports or your
personal experiences, in which attackers compromised a system by exploiting
something other than the weakest link. Describe the system, describe what
you view the weakest link of the system to be and why, and describe how the
system was compromised.

Exercise 1.10 Describe a concrete example, excluding the ones given in this
chapter, where improving the security of a system against one type of attack
can increase the likelihood of other attacks.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

