
3

CHAPTER

An Introduction to 
Database Development

IN THIS CHAPTER
Examining the differences 

between databases, tables, 
records, fields, and values

Discovering why multiple 
tables are used in a database

Creating Access database 
objects

Designing a database system

In this chapter, you learn the concepts and terminology of databases and 
how to design the tables that your Access application’s forms and 
reports will use.

Database development is quite unlike most other ways you work with com-
puters. Unlike Microsoft Word or Excel, where the approach to working 
with the application is easy to understand, good database development 
requires prior knowledge. A beginning user opening Access for the first time 
likely has no idea where to start. Although the opening user interface helps 
you create your first database, from that point on, you’re pretty much on 
your own. Unlike Word or Excel, you can’t just start typing things in at the 
keyboard and see any results.

The fundamental concept underlying Access databases is that data is stored 
in tables. Tables are comprised of rows and columns of data, much like an 
Excel worksheet. In a properly designed database, each table represents a 
single entity, such as a person or product. Each row within a table describes 
a single instance of the entity, such as one person or an individual product. 
Each column in an Access table contains a single type of data, such as text or 
date/time.

As you work with Access, you’ll spend considerable time designing and 
refining the tables in your Access applications. Table design and implemen-
tation are two processes that distinguish database development from most 
other computer activities you may pursue. Unlike a word processor, where 
you can dive right in and start typing words and sentences, building a data-
base table requires some prior knowledge of how databases work.

05_475348-ch01.indd   305_475348-ch01.indd   3 4/1/10   1:43 PM4/1/10   1:43 PM

CO
PYRIG

HTED
 M

ATERIA
L



Part I: Access Building Blocks

4

On the CD-ROM
All the examples presented in this chapter can be found in the sample database CollectibleMiniCars.
accdb on this book’s CD-ROM. If you haven’t yet copied this database to your hard drive, please do so now.

After you understand the basic concepts and terminology, the next important lesson to learn is 
good database design. Without a good design, you may have to constantly rework your tables, 
queries will be difficult to write, and you may not be able to extract the information you want from 
your database. Throughout this book, you learn how to use the basic components of Access appli-
cations, including queries, forms, and reports. You also learn how to design and implement each of 
these objects. Although the Collectible Mini Cars case study provides invented examples, the con-
cepts illustrated by this simple application are not fictitious.

Some of this chapter’s concepts are somewhat complex, especially to people new to Access or data-
base development.

Cross-Reference
If your goal is to get right into Access, you might want to skip to Chapter 2 and read about building tables. If 
you’re fairly familiar with Access but new to designing and creating tables, read the current chapter before 
starting to create tables.

The Database Terminology of Access
Before examining the table examples in this book, it’s a good idea to have a firm understanding of 
the terminology used when working with databases — especially Access databases. Microsoft 
Access follows most, but not all, traditional database terminology. The terms database, table, record, 
field, and value indicate a hierarchy from largest to smallest. These same terms are used with virtu-
ally all database systems, so you should learn them well.

Databases
Generally, the word database is a computer term for a collection of information concerning a cer-
tain topic or business application. Databases help you organize this related information in a logical 
fashion for easy access and retrieval. Some older database systems used the term database to 
describe individual tables. Current use of database applies to all elements of a database system.

Databases aren’t only for computers. There are also manual databases; we sometimes refer to these as 
manual filing systems or manual database systems. These filing systems usually consist of people, 
papers, folders, and filing cabinets — paper is the key to a manual database system. In a real manual 
database system, you probably have in/out baskets and some type of formal filing method. You access 
information manually by opening a file cabinet, taking out a file folder, and finding the correct piece 
of paper. Users fill out paper forms for input, perhaps by using a keyboard to input information that 
is printed on forms. You find information by manually sorting the papers or by copying information 

05_475348-ch01.indd   405_475348-ch01.indd   4 4/1/10   1:43 PM4/1/10   1:43 PM



Chapter 1: An Introduction to Database Development

5

from many papers to another piece of paper (or even into an Excel spreadsheet). You may use a 
spreadsheet or calculator to analyze the data or display it in new and interesting ways.

An Access database is nothing more than an automated version of the filing and retrieval functions of 
a paper filing system. Access databases store information in a carefully defined structure. Access 
tables store a variety of different kinds of data, from simple lines of text (such as name and address) 
to complex data such as pictures, sounds, or video images. Storing data in a precise format enables a 
database management system (DBMS) like Access to turn data into useful information.

Tables serve as the primary data repository in an Access database. Queries, forms, and reports pro-
vide access to the data, enabling a user to add or extract data, and presenting the data in useful 
ways. Most developers add macros or Visual Basic for Applications (VBA) code to forms and 
reports to make their Access applications easier to use.

A relational database management system (RDBMS), such as Access, stores data in related tables. 
For example, a table containing employee data (names and addresses) may be related to a table 
containing payroll information (pay date, pay amount, and check number). Queries allow the user 
to ask complex questions (such as “What is the sum of all paychecks issued to Jane Doe in 2012?”) 
from these related tables, with the answers displayed as onscreen forms and printed reports.

In fact, one of the fundamental differences between a relational database and a manual filing sys-
tem is that, in a relational database system, data for a single individual person or item may be 
stored in separate tables. For example, in a patient management system, the patient’s name, 
address, and other contact information is likely to be stored in a different table than the table hold-
ing patient treatments. In fact, the treatment table holds all treatment information for all patients, 
and a patient identifier (usually a number) is used to look up an individual patient’s treatments in 
the treatment table.

In Access, a database is the overall container for the data and associated objects. It’s more than the 
collection of tables, however — a database includes many types of objects, including queries, 
forms, reports, macros, and code modules.

Access works a single database at a time. As you open an Access database, the objects (tables, que-
ries, and so on) in the database are presented for you to work with. You may open several copies of 
Access at the same time and simultaneously work with more than one database, if needed.

Many Access databases contain hundreds, or even thousands, of tables, forms, queries, reports, 
macros, and modules. With a few exceptions, all the objects in an Access database reside within a 
single file with an extension of .accdb, .accde, or .adp.

Cross-Reference
The .adp file format is a special database format used by Access to act as a front end to work with SQL Server 
data. Chapter 37 covers Access Data Projects in detail.

05_475348-ch01.indd   505_475348-ch01.indd   5 4/1/10   1:43 PM4/1/10   1:43 PM



Part I: Access Building Blocks

6

Tables
A table is just a container for raw information (called data), similar to a folder in a manual filing 
system. Each table in an Access database contains information about a single entity, such as a per-
son or product, and the data in the table is organized into rows and columns.

Figure 1.1 shows the Products table from the Collectible Mini Cars database application. The 
Products table is typical of the tables found in Access applications. Each row defines a single prod-
uct. In Figure 1.1, the row containing information on the die-cast model of a 2003 Volkswagen 
Beetle is selected.

 FIGURE 1.1

The Collectible Mini Cars products table

In the “A Five-Step Design Method” section, later in this chapter, I show you a successful tech-
nique for planning Access tables.

Cross-Reference
In Chapters 2 and 3, you learn the very important rules governing relational table design and how to incorpo-
rate those rules into your Access databases. These rules and guidelines ensure your applications perform with 
the very best performance while protecting the integrity of the data contained within your tables.

In fact, it’s very important that you begin to think of the objects managed by your applications in 
abstract terms. Because each Access table defines an entity, you have to learn to think of the table 
as the entity. As you design and build Access databases, or even when working with an existing 
application, you must think of how the tables and other database objects represent the physical 
entities managed by your database and how the entities relate to one another.

05_475348-ch01.indd   605_475348-ch01.indd   6 4/1/10   1:43 PM4/1/10   1:43 PM



Chapter 1: An Introduction to Database Development

7

After you create a table, you view the table in a spreadsheet-like form, called a datasheet, compris-
ing rows and columns (known as records and fields, respectively — see the following section, 
“Records and fields”). Figure 1.2 shows the Datasheet view of the customers table in the Collectible 
Mini Cars application. Although a datasheet and a spreadsheet are superficially similar, a datasheet 
is a very different type of object. Chapter 6 discusses Access datasheets, and the differences 
between datasheets and spreadsheets are explained in detail.

 FIGURE 1.2

A table displayed as a datasheet

The customers table represents people who work with Collectible Mini Cars. Notice how the table 
is divided into horizontal (left-to-right) rows, and vertical (top-to-bottom) columns of data. Each 
row (or record) defines a single customer, while each column (or field) represents one type of infor-
mation associated with customers.

For example, the top row in tblCustomers contains data describing Fun Zone, including the 
address, and phone number. Each bit of information describing Fun Zone is a field 
(CompanyName, Address, Phone, and so on). Fields are combined to form a record, and 
records are grouped to build the table. (Each row in a table constitutes a record.)

Each field in an Access table includes many properties that specify the type of data contained 
within the field, and how Access should handle the field’s data. These properties include the name 
of the field (Company) and the type of data in the field (Text). A field may include other proper-
ties as well. For example, the Address field’s Size property tells Access the maximum number of 
characters allowed for the address.

Cross-Reference
You learn much more about fields and field properties in Chapter 2.

05_475348-ch01.indd   705_475348-ch01.indd   7 4/1/10   1:43 PM4/1/10   1:43 PM



Part I: Access Building Blocks

8

Records and fields
As Figure 1.2 shows, the datasheet is divided into rows (called records) and columns (called fields), 
with the first row (the heading on top of each column) containing the names of the fields in the 
database. In Figure 1.2, the fields are named CustomerID, Company, Address, City, State, 
and so on. Each row is a single record containing fields that are related to that record. In a manual 
system, the rows are individual forms (sheets of paper), and the fields are equivalent to the blank 
areas on a printed form that you fill in.

Note
When working with Access, the term field is used to refer to an attribute stored in a record. In many other 
database systems, including SQL Server, column is the expression you’ll hear most often in place of field. Field 
and column mean the same thing. The exact terminology used relies somewhat on the context of the database 
system underlying the table containing the record.

Values
At the intersection of a record and a field is a value — the actual data element. For example, Fun 
Zone, the company name in the first record, represents one data value. Certain rules (discussed in 
Chapters 2 and 3) govern how data is contained in an Access table. For example, in a properly 
designed database, the Fun Zone record occurs only once because each row in a table must be 
unique in some way. A table may contain more than one company named Fun Zone, but something 
about each company (such as the address) must be different. If rows in a table are not unique, 
Access has no way to distinguish between the duplicate rows, and the data can’t be trusted or man-
aged properly.

Relational Databases
Microsoft Access is a relational database development system. Access data is stored in related 
tables, where data in one table (such as customers) is related to data in another table (such as 
orders). Access maintains the relationships between related tables, making it easy to extract a cus-
tomer and all the customer’s orders, without losing any data or pulling order records not owned by 
the customer.

Note
In the following sections (in fact, in the rest of this book), you’ll see references to things such a “the customers 
table” or “the tblCustomers table.” In the former, “the customers table” refers to the database table con-
taining customer data, while “the tblCustomers table” (or just “tblCustomers”) refers to the database 
table named tblCustomers. Different developers have different ways of naming things. For example, in my 
database, I may use tblCustomers as the name of the customers table, while another person might use 
Customers as the name for the same table. When working with a database it’s very important to understand 
exactly which object is referenced by a name or description.

05_475348-ch01.indd   805_475348-ch01.indd   8 4/1/10   1:43 PM4/1/10   1:43 PM



Chapter 1: An Introduction to Database Development

9

Multiple tables simplify data entry and reporting by decreasing the input of redundant data. By 
defining two tables for an application that uses customer information, for example, you don’t need 
to store the customer’s name and address every time the customer purchases an item.

After you’ve created the tables, they need to be related to each other. For example, if you have a 
customers table (tblCustomers) and a sales table (tblSales), you must relate tblCus-
tomers to tblSales in order to see all the sales records for a customer. If you had only one 
table, you would have to repeat the customer name and address for each sale record. Two tables let 
you look up information in tblCustomers for each sale by using the related fields CustomerID 
(in tblCustomers) and CustomerID (in tblSales). This way, when a customer changes 
address, for example, the address changes only in one record in tblCustomers. When sales 
information is onscreen, the correct contact address is always visible.

Separating data into multiple tables within a database makes the system easier to maintain because 
all records of a given type are within the same table. By taking the time to properly segment data 
into multiple tables, you experience a significant reduction in design and work time. This process 
is known as normalization.

Cross-Reference
You can read about normalization in Chapter 3.

Later in this chapter, in the section titled “A Five-Step Design Process,” you can work through a 
case study for Collectible Mini Cars that consists of five tables.

The prospect of creating multiple tables almost always intimidates beginning database users. Most 
often, beginners want to create one huge table that contains all the information they need — for exam-
ple, a customer table with all the sales placed by the customer and the customer’s name, address, and 
other information. After all, if you’ve been using Excel to store data so far, it may seem quite reasonable 
to take the same approach when building tables in Access.

A single large table for all customer information quickly becomes difficult to maintain. You have to 
input the customer information for every sale a customer makes (repeating the name and address infor-
mation over and over again in every row). The same is true for the items purchased for each sale when 
the customer has purchased multiple items as part of a single purchase. This makes the system more 
inefficient and prone to data-entry mistakes. The information in the table is inefficiently stored — cer-
tain fields may not be needed for each sales record, and the table ends up with a lot of empty fields.

You want to create tables that hold the minimum of information while still making the system easy to 
use and flexible enough to grow. To accomplish this, you need to consider making more than one 
table, with each table containing fields that are only related to the focus of that table. Then, after you 
create the tables, you link them so that you’re able to glean useful information from them. Although this 
process sounds extremely complex, the actual implementation is relatively easy.

Why create multiple tables?

05_475348-ch01.indd   905_475348-ch01.indd   9 4/1/10   1:43 PM4/1/10   1:43 PM



Part I: Access Building Blocks

10

Access Database Objects
If you’re new to databases (or even if you’re an experienced database user), you need to understand 
a few key concepts before starting to build Access databases. The Access database contains six 
types of top-level objects, which consist of the data and tools that you need to use Access:

l Table: Holds the actual data.

l Query: Searches for, sorts, and retrieves specific data.

l Form: Lets you enter and display data in a customized format.

l Report: Displays and prints formatted data.

l Macro: Automates tasks without programming.

l Module: Contains programming statements written in the Visual Basic for Applications 
(VBA) programming language.

Datasheets
Datasheets are one of the many ways by which you can view data in Access. Although not a perma-
nent database object, a datasheet displays a table’s content in a row-and-column format similar to a 
Microsoft Excel worksheet. A datasheet displays a table’s information in a raw form, without trans-
formations or filtering. The Datasheet view is the default mode for displaying all fields for all 
records. (Figures 1.1 and 1.2 earlier in this chapter are Datasheet views of Access tables.)

You scroll through the datasheet using the directional keys on your keyboard. You can also display 
related records in other tables while in a datasheet. In addition, you can make changes to the dis-
played data.

Caution
Be careful when you’re making changes or allowing a user to modify data in Datasheet view. When a datasheet 
record is updated, the data in the underlying table is permanently changed.

Queries
Queries extract information from a database. A query selects and defines a group of records that 
fulfill a certain condition. Most forms and reports are based on queries that combine, filter, or sort 
data before it’s displayed. Queries are often called from macros or VBA procedures to change, add, 
or delete database records.

An example of a query is when a person at the sales office tells the database, “Show me all custom-
ers, in alphabetical order by name, who are located in Massachusetts and bought something over 
the past six months.” or “Show me all customers who bought Chevrolet car models within the past 
six months and display them sorted by customer name and then by sale date.”

05_475348-ch01.indd   1005_475348-ch01.indd   10 4/1/10   1:43 PM4/1/10   1:43 PM



Chapter 1: An Introduction to Database Development

11

Instead of asking the question in English words, a person uses the query by example (QBE) 
method. When you enter instructions into the Query Designer window and run the query, the 
query translates the instructions into Structured Query Language (SQL) and retrieves the desired 
data.

Cross-Reference
Chapter 4 discusses the Query Designer window and building queries.

In the first example, the query first combines data from tblSales and tblCustomers, using 
CustomerID as a link between the tables. Next, it retrieves the customer name, address, and any 
other data you want to see. Access then filters the records, selecting only those in which the sales 
date is within six months of the current date. The query sorts the resulting records by the custom-
er’s name. Finally, the resulting records are displayed as a datasheet. Figure 1.3 shows just such a 
query in Design view. In this figure, the user is requesting all customers from Connecticut who’ve 
placed an order in the previous six months.

 FIGURE 1.3

A typical Access query

After you run a query, the resulting set of records may be used in a form that is displayed onscreen 
or printed on a report. In this way, user access is limited to the data that meets the criteria in the 
returned records.

Data-entry and display forms
Data-entry forms help users get information into a database table quickly, easily, and accurately. 
Data-entry and display forms provide a more structured view of the data than what a datasheet 
provides. From this structured view, database records can be viewed, added, changed, or deleted. 
Entering data through the data-entry forms is the most common way to get the data into the data-
base table.

05_475348-ch01.indd   1105_475348-ch01.indd   11 4/1/10   1:43 PM4/1/10   1:43 PM



Part I: Access Building Blocks

12

Data-entry forms restrict access to certain fields within the table. Forms can also check the validity 
of your data before it’s added to the database table.

Most users prefer to enter information into data-entry forms rather than Datasheet views of tables. 
Forms often resemble familiar paper documents and can aid the user with data-entry tasks. Forms 
make data-entry easy to understand by guiding the user through the fields of the table being 
updated.

Read-only screens and forms are often used for inquiry purposes. These forms display certain fields 
within a table. Displaying some fields and not others means that you can limit a user’s access to 
sensitive data while allowing access to other fields within the same table.

Reports
Reports present your data in printed format. Access supports several different types of reports. A 
report may list all records in a given table (such as a customers table) or may contain only the 
records meeting certain criteria, such as all customers living in Arizona. You do this by basing the 
report on a query that selects only the records needed by the report.

Reports often combine multiple tables to present complex relationships among different sets of 
data. An example is printing an invoice. The customers table provides the customer’s name and 
address (and other relevant data) and related records in the sales table to print the individual line-
item information for each product ordered. The report also calculates the sales totals and prints 
them in a specific format. Additionally, you can have Access output records into an invoice report, a 
printed document that summarizes the invoice.

Tip
When you design your database tables, keep in mind all the types of information that you want to print. Doing 
so ensures that the information you require in your various reports is available from within your database 
tables.

Database objects
To create database objects, such as tables, forms, and reports, you first complete a series of design 
tasks. The better your design is, the better your application will be. The more you think through 
your design, the faster and more successfully you can complete any system. The design process is 
not some necessary evil, nor is its intent to produce voluminous amounts of documentation. The 
sole intent of designing an object is to produce a clear-cut path to follow as you implement it.

A Five-Step Design Method
Figure 1.4 is a version of a common design method modified especially for use with Microsoft 
Access. This five-step method is a top-down approach, starting with the overall system design and 
ending with the forms design.

05_475348-ch01.indd   1205_475348-ch01.indd   12 4/1/10   1:43 PM4/1/10   1:43 PM



Chapter 1: An Introduction to Database Development

13

 FIGURE 1.4

The five-step design flowchart. This design methodology is particularly well-suited for Access databases.

Overall System Design

Report Design (Output)

Basic Data Design

Table Design

User Interface Design

These five design steps, along with the database system illustrated by the examples in this book, 
teach a great deal about Access and provide a great foundation for creating database applications — 
including tables, queries, forms, reports, macros, and simple VBA modules.

The time you spend on each step depends entirely on the circumstances of the database you’re 
building. For example, sometimes users give you an example of a report they want printed from 
their Access database, and the sources of data on the report are so obvious that designing the 
report takes a few minutes. Other times, particularly when the users’ requirements are complex, or 
the business processes supported by the application require a great deal of research, you may 
spend many days on Step 1.

As you read through each step of the design process, always look at the design in terms of outputs 
and inputs. Although you see actual components of the system (products, customers, and transac-
tions), remember that the focus of this chapter is how to move through each step. As you watch 
the Collectible Mini Cars database being designed, pay particular attention to the design process, 
not the actual system.

Step 1: The overall design — from concept to reality
All software developers face similar problems, the first of which is determining how to meet the 
needs of the end user. It’s important to understand the overall user requirements before zeroing in 
on the details.

05_475348-ch01.indd   1305_475348-ch01.indd   13 4/1/10   1:43 PM4/1/10   1:43 PM



Part I: Access Building Blocks

14

The five-step design method shown in Figure 1.4 helps you to create the system that you need, at 
an affordable price (measured in time or dollars). The Collectible Mini Cars database, for example, 
allows the client to sell items (vehicles and parts) to customers and supports the following tasks:

l Entering and maintaining customer information (name, address, and financial history)

l Entering and maintaining sales information (sales date, payment method, total amount, 
customer identity, and other fields)

l Entering and maintaining sales line-item information (details of items purchased)

l Viewing information from all the tables (sales, customers, sales line items, and payments)

l Asking all types of questions about the information in the database

l Producing a monthly invoice report

l Producing a customer sales history

l Producing mailing labels and mail-merge reports

These eight tasks have been described by the users. You may need to consider other tasks as you 
start the design process.

Most of the information that is necessary to build the system comes from the users. This means 
that you need to sit down with them and learn how the existing process works. To accomplish this 
you must do a thorough needs analysis of the existing system and how you might automate it.

One way to accomplish this is to prepare a series of questions that give insight to the client’s busi-
ness and how the client uses his data. For example, when considering automating any type of busi-
ness, you may consider asking these questions:

l What reports and forms are currently used?

l How are sales, customers, and other records currently stored?

l How are billings processed?

As you ask these questions and others, the client will probably remember other things about the 
business that you should know.

A walkthrough of the existing process is also helpful to get a feel for the business. You may have to 
go back several times to observe the existing process and how the employees work.

As you prepare to complete the remaining steps, keep the client involved — let the users know 
what you’re doing and ask for input on what to accomplish, making sure it’s within the scope of 
the user’s needs.

Step 2: Report design
Although it may seem odd to start with reports, in many cases, users are more interested in the 
printed output from a database than they are in any other aspect of the application. Reports often 

05_475348-ch01.indd   1405_475348-ch01.indd   14 4/1/10   1:43 PM4/1/10   1:43 PM



Chapter 1: An Introduction to Database Development

15

include every bit of data managed by an application. Because reports tend to be comprehensive, 
reports are often the best way to gather important information about a database’s requirements. In 
the case of the Collectible Mini Cars database, the printed reports contain detailed and summarized 
versions of most of the data in the database.

After you’ve defined the Collectible Mini Cars’ overall systems in terms of what must be accom-
plished, you can begin report design.

When you see the reports that you’ll create in this section, you may wonder, “Which comes first — 
the chicken or the egg?” Does the report layout come first, or do you first determine the data items 
and text that make up the report? Actually, these items are considered at the same time.

It isn’t important how you lay out the data in a report. The more time you take now, however, the 
easier it will be to construct the report. Some people go so far as to place gridlines on the report so 
that they know exactly where they want each bit of data to be.

The reports in Figures 1.5 and 1.6 were created with two different purposes. The report in Figure 
1.5 displays information about the Collectible Mini Cars products while the report in Figure 1.6 is 
an invoice with billing and customer information. The design and layout of each report is driven 
by the report’s purpose and the data it contains.

 FIGURE 1.5

A product information report

Cross-Reference
You can read more about the reports for the Collectible Mini Cars database in this book’s introduction and in 
Chapters 9 and 20.

05_475348-ch01.indd   1505_475348-ch01.indd   15 4/1/10   1:43 PM4/1/10   1:43 PM



Part I: Access Building Blocks

16

 FIGURE 1.6

A sales invoice report containing sales information

Step 3: Data design
The next step in the design phase is to take an inventory of all the information needed by the 
reports. One of the best methods is to list the data items in each report. As you do so, take careful 
note of items that are included in more than one report. Make sure that you keep the same name 
for a data item that is in more than one report because the data item is really the same item.

Another method is to separate the data items into a logical arrangement. Later, these data items are 
grouped into table structures and then mapped onto data-entry screens (forms). You should enter 
customer data, for example, as part of a customers table process, not as part of a sales entry.

Customer information
First, look at each report you’ve roughed out for your database. For the Collectible Mini Cars data-
base, start with the customer data and list the data items, as shown in Table 1.1.

 TABLE 1.1

Customer-Related Data Items Found in the Reports
Customers Report Invoice Report

Customer Name Customer Name

Street Street

City City

State State

05_475348-ch01.indd   1605_475348-ch01.indd   16 4/1/10   1:43 PM4/1/10   1:43 PM



Chapter 1: An Introduction to Database Development

17

Customers Report Invoice Report

ZIP Code ZIP Code

Phone Numbers Phone Number

E-Mail Address

Web Site Information

Discount Rate

Customer Since

Last Sales Date

Sales Tax Rate

Credit Information (four fields)

As you can see by comparing the type of customer information needed for each report, there are 
many common fields. Most of the customer data fields are found in both reports. Table 1.1 shows 
only some of the fields that are used in each report — those related to customer information. 
Because the related row and the field names are the same, you can easily make sure that you have 
all the data items. Although locating items easily is not critical for this small database, it becomes 
very important when you have to deal with large tables containing many fields.

Sales information
After extracting the customer data, you can move on to the sales data. In this case, you need to 
analyze only the Invoice report for data items that are specific to the sales. Table 1.2 lists the fields 
in the report that contain information about sales.

 TABLE 1.2

Sales Data Items Found in the Reports
Invoice Report Line Item Data

Invoice Number

Sales Date

Invoice Date

Payment Method

Salesperson

Discount (overall for sale)

Tax Location

Tax Rate

continued

05_475348-ch01.indd   1705_475348-ch01.indd   17 4/1/10   1:43 PM4/1/10   1:43 PM



Part I: Access Building Blocks

18

 TABLE 1.2 (continued)

Invoice Report Line Item Data

Product Purchased (multiple lines) Product Purchased

Quantity Purchased (multiple lines) Quantity Purchased

Description of Item Purchased (multiple lines) Description of Item Purchased

Price of Item (multiple lines) Price of Item

Discount for each item (multiple lines) Discount for Each Item

Payment Type (multiple lines)

Payment Date (multiple lines)

Payment Amount (multiple lines)

Credit Card Number (multiple lines)

Expiration Date (multiple lines)

As you can see when you examine the type of sales information needed for the report, a few items 
(fields) are repeating (for example, the Product Purchased, Quantity Purchased, and 
Price of Item fields). Each invoice can have multiple items, and each of these items needs the 
same type of information — number ordered and price per item. Many sales have more than one 
purchased item. Also, each invoice may include partial payments, and it’s possible that this pay-
ment information will have multiple lines of payment information, so these repeating items can be 
put into their own grouping.

Line-item information
You can take all the individual items that you found in the sales information group in the preced-
ing section and extract them to their own group for the invoice report. Table 1.2 shows the infor-
mation related to each line item.

Looking back at the report in Figure 1.6, you can see that the data from Table 1.2 doesn’t list the 
calculated field amount. The amount is dynamically calculated as the report prints, rather than 
storing the value in the database.

Tip
Unless a numeric field needs to be specifically stored in a table, simply recalculate it when you run the report 
(or form). You should avoid creating fields in your tables that can be created based on other fields — calcu-
lated data can be easily created and displayed in a form or report.

Cross-Reference
As you’ll read in Chapter 2, storing calculated values in database tables leads to data maintenance problems.

05_475348-ch01.indd   1805_475348-ch01.indd   18 4/1/10   1:43 PM4/1/10   1:43 PM



Chapter 1: An Introduction to Database Development

19

Step 4: Table design
Now for the difficult part: You must determine what fields are needed for the tables that make up 
the reports. When you examine the multitude of fields and calculations that make up the many 
documents you have, you begin to see which fields belong to the various tables in the database. 
(You already did much of the preliminary work by arranging the fields into logical groups.) For 
now, include every field you extracted. You’ll need to add others later (for various reasons), 
although certain fields won’t appear in any table.

It’s important to understand that you don’t need to add every little bit of data into the database’s 
tables. For example, users may want to add vacation and other out-of-office days to the database to 
make it easy to know which employees are available on a particular day. However, it’s very easy to 
burden an application’s initial design by incorporating too many ideas during the initial develop-
ment phases. Because Access tables are so easy to modify later on, it’s probably best to put aside 
noncritical items until the initial design is complete. Generally speaking, it’s not difficult to accom-
modate user requests after the database development project is under way.

After you’ve used each report to display all the data, it’s time to consolidate the data by purpose 
(for example, grouped into logical groups) and then compare the data across those functions. To 
do this step, first look at the customer information and combine all its different fields to create a 
single set of data items. Then you do the same thing for the sales information and the line-item 
information. Table 1.3 compares data items from these three groups of information.

 TABLE 1.3

Comparing the Data Items
Customer Data Invoice Data Line Items

Customer Company Name Invoice Number Product Purchased 

Street Sales Date Quantity Purchased

City Invoice Date Description of Item Purchased

State Payment Method Price of Item 

ZIP Code Discount for Each Item 

Phone Numbers (two fields) Discount (overall for this sale) Taxable?

E-Mail Address Tax Rate

Web Site Payment Type (multiple lines)

Payment Date (multiple lines)

Discount Rate Payment Amount (multiple lines)

Customer Since Credit Card Number (multiple 
lines)

Last Sales Date Expiration Date (multiple lines)

Sales Tax Rate

Credit Information (four fields)

05_475348-ch01.indd   1905_475348-ch01.indd   19 4/1/10   1:43 PM4/1/10   1:43 PM



Part I: Access Building Blocks

20

Consolidating and comparing data is a good way to start creating the individual table definitions 
for Collectible Mini Cars, but you have much more to do.

As you learn more about how to perform a data design, you also learn that the customer data must 
be split into two groups. Some of these items are used only once for each customer, while other 
items may have multiple entries. An example is the Sales column — the payment information can 
have multiple lines of information.

You need to further break these types of information into their own columns, thus separating all 
related types of items into their own columns — an example of the normalization part of the design 
process. For example, one customer can have multiple contacts with the company. One customer 
may make multiple payments toward a single sale. Of course, I’ve already broken the data into 
three categories: customers, invoices, and sales line items.

Keep in mind that one customer may have multiple invoices, and each invoice may have multiple 
line items on it. The invoice category contains information about individual sales and the line items 
category contains information about each invoice. Notice that these three columns are all related; 
for example, one customer can have multiple invoices and each invoice may require multiple detail 
lines (line items).

The relationships between tables can be different. For example, each sales invoice has one and only 
one customer, while each customer may have multiple sales. A similar relationship exists between 
the sales invoice and the line items of the invoice.

Cross-Reference
I cover creating and understanding relationships and the normalization process in Chapter 3.

Database table relationships require a unique field in both tables involved in a relationship. A 
unique identifier in each table helps the database engine to properly join and extract related data.

Only the sales table has a unique identifier (InvoiceNumber), which means that you need to add 
at least one field to each of the other tables to serve as the link to other tables. For example, adding 
a CustomerID field to tblCustomers, adding the same field to the invoice table, and establish-
ing a relationship between the tables through CustomerID in each table. The database engine 
uses the relationship between customers and invoices to connect customers with their invoices. 
Relationships between tables is done through key fields.

Cross-Reference
Creating relationships is explained in Chapter 3.

With an understanding of the need for linking one group of fields to another group, you can add 
the required key fields to each group. Table 1.4 shows two new groups and link fields created for 
each group of fields. These linking fields, known as primary keys and foreign keys, are used to link 
these tables together.

05_475348-ch01.indd   2005_475348-ch01.indd   20 4/1/10   1:43 PM4/1/10   1:43 PM



Chapter 1: An Introduction to Database Development

21

The field that uniquely identifies each row in a table is the primary key. The corresponding field in 
a related table is the foreign key. In our example, CustomerID in tblCustomers is a primary 
key, while CustomerID in tblInvoices is a foreign key.

Let’s assume a certain record in tblCustomers has 12 in its CustomerID field. Any records in 
Invoices with 12 as its CustomerID is “owned” by customer 12.

Cross-Reference
As you’ll see in Chapters 2 and 3, special rules apply to choosing and managing keys. The notion of primary 
and foreign keys is the single most important concept behind relational databases.

 TABLE 1.4

Tables with Keys
Customers Data Invoice Data Line Items Data Sales Payment Data

CustomerID InvoiceID InvoiceID InvoiceID

Customer Name CustomerID Line Number Payment Type

Street Invoice Number Product Purchased Payment Date

City Sales Date Quantity Purchased Payment Amount

State Invoice Date Description of Item Purchased Credit Card Number

ZIP Code Payment Method Price of Item Expiration Date

Phone Numbers (two fields) Salesperson Discount for Each Item

E-Mail Address

Web Site Information

Discount Rate

Customer Since

Last Sales Date

Sales Tax Rate Tax Rate

With the key fields added to each table, you can now find a field in each table that links it to other 
tables in the database. For example, Table 1.4 shows CustomerID in both the customers table 
(where it’s the primary key) and the Invoice table (where it’s a foreign key).

You’ve identified the core of the three primary tables for your system, as reflected by the first three 
columns in Table 1.4. This is the general, or first, cut toward the final table designs. You’ve also 
created an additional table to hold the sales payment data. Normally, payment details (such as the 
credit card number) are not part of a sales invoice.

05_475348-ch01.indd   2105_475348-ch01.indd   21 4/1/10   1:43 PM4/1/10   1:43 PM



Part I: Access Building Blocks

22

Taking time to properly design your database and the tables contained within it is arguably the 
most important step in developing a database-oriented application. By designing your database 
efficiently, you maintain control of the data — eliminating costly data-entry mistakes and limiting 
your data entry to essential fields.

Although this book is not geared toward teaching database theory and all its nuances, this is a 
good point to briefly describe the art of database normalization. You’ll read the details of normal-
ization in Chapter 3, but in the meantime you should know that normalization is the process of 
breaking data down into constituent tables. Earlier in this chapter you read about how many 
Access developers add dissimilar information, such as customers, invoice data, and invoice line 
items, into one large table. A large table containing dissimilar data quickly becomes unwieldy and 
hard to keep updated. Because a customer’s phone number appears in every row containing that 
customer’s data, multiple updates must be made when the phone number changes.

Step 5: Form design
After you’ve created the data and established table relationships, it’s time to design your forms. 
Forms are made up of the fields that can be entered or viewed in Edit mode. Generally speaking, 
your Access screens should look a lot like the forms used in a manual system.

When you’re designing forms, you need to place three types of objects onscreen:

l Labels and text-box data-entry fields. The fields on Access forms and reports are called 
controls.

l Special controls (multiple-line text boxes, option buttons, list boxes, check boxes, busi-
ness graphs, and pictures).

l Graphical objects to enhance the forms (colors, lines, rectangles, and three-dimensional 
effects).

Ideally, if the form is being developed from an existing printed form, the Access data-entry form 
should resemble the printed form. The fields should be in the same relative place on the screen as 
they are in the printed counterpart.

Labels display messages, titles, or captions. Text boxes provide an area where you can type or dis-
play text or numbers that are contained in your database. Check boxes indicate a condition and are 
either unchecked or checked. Other types of controls available with Access include list boxes, 
combo boxes, option buttons, toggle buttons, and option groups.

Cross-Reference
Chapter 7 covers the various types of form controls available in Access.

05_475348-ch01.indd   2205_475348-ch01.indd   22 4/1/10   1:43 PM4/1/10   1:43 PM



Chapter 1: An Introduction to Database Development

23

In this book, you create several basic data-entry forms:

l Clusters: Contains several different types of controls

l Sales: Combines data from multiple tables

l Products: Adds products to the Collectible Mini Cars database

You’ll encounter each of these forms as you read through the following chapters. Although 
Collectible Mini Cars is just one small example of an Access database application, the principles 
you learn building the Collectible Mini Cars tables, queries, forms, reports, and other database 
objects are applicable to virtually any other Access project.

Summary
This chapter introduces the concepts and considerations driving database development. There is 
no question that data is important to users. Most companies simply can’t operate without their cus-
tomer and product lists, accounts receivable and accounts payable, and payroll information. Even 
very small companies must efficiently manage their business data.

Good database design means much more than sitting down and knocking together a few tables. 
Very often, poor database design habits come back to haunt developers and users in the form of 
missing or erroneous information on screens and printed reports. Users quickly tire of reentering 
the same information over and over again, and business managers and owners expect database 
applications to save time and money, not contribute to a business’s overhead.

05_475348-ch01.indd   2305_475348-ch01.indd   23 4/1/10   1:43 PM4/1/10   1:43 PM



05_475348-ch01.indd   2405_475348-ch01.indd   24 4/1/10   1:43 PM4/1/10   1:43 PM


