
Williams c01.tex V3 - 07/31/2009 2:53pm Page 1

1
First Steps with XSLT

In this chapter you will get started with XSLT by developing two stylesheets. In the first stylesheet
you’ll see how to generate an XHTML web page from an XML document.

The second stylesheet illustrates how to transform one XML data format to another, in this case
from the Atom 1.0 syndication format to RSS 1.0.

You’ll learn about:

❑ Key XSLT elements and structure

❑ Built-in template rules

❑ XPath expressions for matching and selection

❑ Different ways to invoke a stylesheet processor

Transforming an XML Document to a Web
Page

Probably the most common application of XSLT is to generate one or more pages of a website from
an XML source of some kind. For example, you might want to split a large file into chapters, each
with a separate page, or display a news feed.

There are a couple of ways to accomplish this: You might want to rely on a browser’s client-side
processor to transform the content; alternatively, you could generate static content for a server to
render.

Let’s start with an example that relies on a browser’s built-in processor. It is drawn from the case
study that you will work on later in this book.

The case study in Chapter 11 illustrates the production of a website from a set of XML source doc-
uments that describe each of the XSLT elements and functions. The same information was used to
produce the XSLT Quick Reference in Appendix C.

CO
PYRIG

HTED
 M

ATERIA
L

Williams c01.tex V3 - 07/31/2009 2:53pm Page 2

Chapter 1: First Steps with XSLT

If you haven’t already done so, download the source code for this book from this book’s web page at
www.wrox.com. You’ll be using the source files from now on in the examples that follow. When you’ve
unzipped the download, open the folder for Chapter 1 and locate the file xml_stylesheet.xml.

Listing 1-1 shows a pared-down version of the source document describing the <xsl:stylesheet>
element.

Listing 1-1
<?xml version="1.0" encoding="UTF-8"?>
<reference>

<body>
<title>xsl:stylesheet</title>
<purpose>

<p>The root element of a stylesheet.</p>
</purpose>
<usage>

<p>The <element>stylesheet</element> is always the root element, even if
a stylesheet is included in, or imported into, another. It must have a
<attr>version</attr> attribute, indicating the version of XSLT that the
stylesheet requires.</p>

<p>For this version of XSLT, the value should normally be "2.0". For a
stylesheet designed to execute under either XSLT 1.0 or XSLT 2.0, create a core
module for each version number; then use <element>xsl:include</element> or
<element>xsl:import</element> to incorporate common code, which should specify
<code>version="2.0"</code> if it uses XSLT 2.0 features, or
<code>version="1.0"</code> otherwise.</p>

<p>The <element>xsl:transform</element> element is allowed as a synonym.</p>
<p>The namespace declaration <code>xmlns:xsl="http//www.w3.org/1999/XSL/

Transform</code> by convention uses the prefix <code>xsl</code>.</p>
<p>An element occurring as a child of the <element>stylesheet</element>

element is called a declaration. These top-level elements are all optional, and
may occur zero or more times.</p>

</usage>
</body>

</reference>

In the quick reference documents I use an XML grammar based on the Darwin Information Typing
Architecture (DITA) reference content model. DITA is finding increasing support among the larger pub-
lishers of technical documentation. It differs considerably from the longer-established DocBook format,
using a more modular approach, covering the concept/task/reference pattern often found in software
help systems. You can look ahead to see details of the schema in Chapter 11. In addition to markup
like <body>, <p> and <code>, which you’ll recognize from XHTML, note that the root element in this
example is <reference>. To keep the example simple, only the sections on <purpose> and <usage> are
included, as are the inline <attr> (attribute) and <element> names. In later chapters I’ll introduce
more elements from the reference vocabulary.

Using a Browser
To run any transform inside a browser, you need to add a processing instruction to the source document,
which will give the browser the location of the stylesheet you want to use. This goes immediately after
the XML declaration in xsl_stylesheet.xml. Save the update while you start work on the stylesheet.

2

Williams c01.tex V3 - 07/31/2009 2:53pm Page 3

Chapter 1: First Steps with XSLT

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="browser.xsl" type="text/xsl"?>
<reference>
...
</reference>

You may have used processing instructions in other XML applications; what appear to be attributes in
the instruction are in fact known as pseudo-attributes. The href pseudo-attribute locates the stylesheet
(browser.xsl). The file extension .xsl is a convention, which some applications may rely on for iden-
tification. The type pseudo-attribute defines the content type (text/xsl). In this case you use a relative
URI, for a stylesheet in the same directory as the source document. (In this book I use the more general
term URI, which is an identifier that may not imply a specific location, whereas the term URL implies a
location from which you can obtain a representation of a resource such as an HTML page.

The W3C recommendation for this processing instruction is separate from the XSLT specifications, and is
at www.w3.org/TR/xml-stylesheet/.

The semantics of pseudo-attributes is the same as that of the attributes used in <link
rel="stylesheet"> in HTML.

The content type expressed need not be XSLT, and this processing instruction is often used to specify
multiple CSS files to handle different types of media using the value ‘text/css’. The content type
for XSLT 1.0 was never specified in the W3C recommendation. Microsoft invented the ‘text/xsl’
value for Internet Explorer, which seems to have stuck in practice, though browsers may also accept
other values, such as ‘text/xml’. The XSLT 2.0 recommendation formally registers the media type
‘application/xslt+xml’.

Built-in Rules
We can now process the sample by writing a bare-bones transform. It is not very exciting, but it illustrates
the default behavior of a processor using a built-in template rule, specified in the XSLT specification.

XSLT defines built-in rules for processing templates, and the rule for document and element nodes
ensures that the root element and all of its children will be handled recursively, even if there are no
element-specific templates.

This book generally specifies XSLT version 2.0 for stylesheets. However, in the following Try It Out you’ll
create an XSLT 1.0 transform using a single root <xsl:stylesheet> element to demonstrate this built-in
behavior.

Try It Out A Root Element Stylesheet
To create the transform, follow these steps:

1. In the Oxygen IDE, mentioned in this book’s Introduction, create a new document by choosing
New � Stylesheet (XSL) File.

2. In the dialog that appears, select 1.0 as the Stylesheet version.

3

Williams c01.tex V3 - 07/31/2009 2:53pm Page 4

Chapter 1: First Steps with XSLT

3. Enter browser.xsl as the filename and click Finish. The new file should open with the following
contents:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

</xsl:stylesheet>

Because this stylesheet is an XML document, it must begin with an XML declaration, specifying the
version number and the encoding. The root element in a stylesheet is <xsl:stylesheet>, though the
synonym <xsl:transform> may also be used. You must always specify the XSLT namespace, and it is
important to set the version attribute correctly to match the type of processing required.

After you’ve declared the namespace, all the XSLT element names require the namespace prefix, which
is xsl: by convention. The prefix also makes it clear which element is referenced if other namespaces are
in use.

Browsers that I have used will not complain about the version number, and many version 1.0 features
are unchanged in version 2.0. In any case, it is good practice to document your intentions.

You can now process the sample. Open the xsl_stylesheet.xml file from a browser using the File �
Open menu command. You should see something like the output shown in Listing 1-2.

Listing 1-2
xsl:stylesheetThe root element of a stylesheet.The xsl:stylesheet element is
always the root element, even if a stylesheet is included in, or imported
into, another. It must have a version attribute, indicating the version of
XSLT that the stylesheet requires. For this version of XSLT, the value should
normally be "2.0". For a stylesheet designed to execute under either XSLT 1.0
or XSLT 2.0, create a core module for each version number; then use xsl:include
or xsl:import to incorporate common code, which should specify version="2.0" if
it uses XSLT 2.0 features, or version="1.0" otherwise.The xsl:transform element
is allowed as a synonym.The namespace declaration
xmlns:xsl="http//www.w3.org/1999/XSL
/Transform by convention uses the prefix xsl. An element occurring as a child of
the xsl:stylesheet element is called a declaration. These top-level elements are
all optional, and may occur zero or more times.

What has happened here? Without any further instructions, the processor has output all the text nodes
from the source document.

Safari 3.4 on Windows reports an empty stylesheet error and renders nothing, which suggests that
something may not be quite right with the implementation of built-in rules. Google Chrome produces the
same result, presumably because it is based on the same core engine.

Defining an Output Method
You can provide hints to the stylesheet processing by adding some output specifications to your
stylesheet. Unless otherwise specified as HTML or XHTML, the output will be in XML format. It is also
possible to add user-defined methods.

4

Williams c01.tex V3 - 07/31/2009 2:53pm Page 5

Chapter 1: First Steps with XSLT

You can define the type of output in the declaration <xsl:output>. You saw the schema definition in
this book’s introduction, but here it is as a reminder. The attribute list is quite extensive, but for now I’d
like to focus on just a few attributes:

<xs:element name="output" substitutionGroup="xsl:declaration">
<xs:complexType mixed="true">

<xs:complexContent mixed="true">
<xs:extension base="xsl:generic-element-type">

<xs:attribute name="name" type="xsl:QName"/>
<xs:attribute name="method" type="xsl:method"/>
<xs:attribute name="byte-order-mark" type="xsl:yes-or-no"/>
<xs:attribute name="cdata-section-elements" type="xsl:QNames"/>
<xs:attribute name="doctype-public" type="xs:string"/>
<xs:attribute name="doctype-system" type="xs:string"/>
<xs:attribute name="encoding" type="xs:string"/>
<xs:attribute name="escape-uri-attributes" type="xsl:yes-or-no"/>
<xs:attribute name="include-content-type" type="xsl:yes-or-no"/>
<xs:attribute name="indent" type="xsl:yes-or-no"/>
<xs:attribute name="media-type" type="xs:string"/>
<xs:attribute name="normalization-form" type="xs:NMTOKEN"/>
<xs:attribute name="omit-xml-declaration" type="xsl:yes-or-no"/>
<xs:attribute name="standalone" type="xsl:yes-or-no-or-omit"/>
<xs:attribute name="undeclare-prefixes" type="xsl:yes-or-no"/>
<xs:attribute name="use-character-maps" type="xsl:QNames"/>
<xs:attribute name="version" type="xs:NMTOKEN"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>
</xs:element>

In XSLT 1.0, the method attribute can take the values "xml", "html", or "text". For instance, you
would use the "text" method to output a CSV file, which you’ll learn how to do in Chapter 9. You
would use "xml" as a value for SVG output, and also for PDF because it requires transforming to the
XSLFO format as an intermediate step. The XSLT 2.0 specification adds "xhtml"to the possible attribute
values.

However, in the next XSLT 1.0 example you’ll use "xml" as a value, as the output is XHTML.

The version attribute on the <xsl:stylesheet> element is rather confusing. It has absolutely nothing
to do with the version of XSLT; rather, it refers to the version of XML to be output.

You can define an encoding attribute, which specifies the preferred character encoding of the output
document. All XSLT processors (and XML parsers) are required to support UTF-8 and UTF-16. Clearly,
processing Chinese or Japanese content with UTF-8 encoding would produce corrupt output.

On this occasion, you’ll set it to ‘UTF-8’. You can also add two more attributes specifying the XHTML
doctype-system and doctype-public attribute values. These will result in the processor generating
correct declarations in the output, before the <html> element:

<xml version="1.0" encoding="UTF-8"/>
<xsl:stylesheet

xmlns:xsl=http://www.w3.org/1999/XSL/Transform

5

Williams c01.tex V3 - 07/31/2009 2:53pm Page 6

Chapter 1: First Steps with XSLT

version="1.0">
<xsl:output

method="xml"
encoding="UTF-8"
doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"/>

...
</xsl:stylesheet>

An XSLT 2.0 stylesheetstylesheet may contain multiple <xsl:output> declarations and may include or
import stylesheet modules that also contain <xsl:output> declarations. This enables you to use one or
more stylesheets to output results using different methods. So you might, for instance, output both a CSV
file and a web page in one pass.

If you use multiple declarations in this way, the name attribute must be specified on each
<xsl:output> element to identify it. These names should match a set of format attribute values
on <xsl:result-document> instructions, which I discuss in Chapter 7, in the stylesheet. The following
snippet briefly illustrates how this might work:

<xsl:output name="web" method="xhtml" encoding="UTF-8"/>
<xsl:output name="csv" method="text"/>

<xsl:template match="/">
<xsl:result-document format="web">

...
</xsl:result-document>
<xsl:result-document format="csv">

...
</xsl:result-document>

</xsl:template>

The form of name attributes on XSLT elements is defined as a lexical QName or namespace qualified
name. It applies, for example, to templates, attribute sets, variables, parameters, and so on. Typically
this is a simple name, but it may also be qualified with a namespace prefix such as <xsl:function
name="xm:getentry-by-id">. If two qualified names are compared, the namespace URI that is
declared with the prefix and the local name is used.

Main Template
The <xsl:template> element, which is covered in more detail in Chapter 3, is a basic building block of a
stylesheet. This element is used to declare templates that match elements in the XML source, and to gen-
erate nodes in a result tree. Usually a stylesheet has a main template with the match attribute, set to "/":

<xsl:template match="/">
...
<xsl:apply-templates select="reference/body"/>
...

</xsl:template>

This value is an XPath expression that means ‘‘match the root of the source tree.’’ Note that this is not
the same thing as the root element of the source document. The root of the source tree is outside of
everything, including the containing top-level element.

6

Williams c01.tex V3 - 07/31/2009 2:53pm Page 7

Chapter 1: First Steps with XSLT

This means that processing will begin right at the start of the XML source tree, outside the <reference>
element. Path expressions in this context will be relative to this location.

The contained <xsl:apply-templates> instruction selects the <body> element in the source document
(see Listing 1-1) for processing, showing the relative XPath expression "reference/body" in the select
attribute. This means that the <body> element and everything inside it have been selected for processing.
This instruction simply defines a set of nodes to be processed using the template rules for each source
node to be matched.

You are not restricted to following the nested nodes as shown in this example. You might
want to select all the paragraphs in the source document for processing, in which case you
would use <xsl:apply-templates select= "//p"/>. There’s more on XPath expressions in
Chapter 2.

Literal Result Elements
You have two options when it comes to generating the element names that will be output. Usually,
the most straightforward is to create what is called a literal result element by typing the element name
with start and end tags straight into the stylesheet, and then populating the new elements with selected
content from the source XML.

Literal result elements are treated as data to be copied from the result tree directly to the output. These
elements can have any name, and the content may be XSLT instructions, nested literal result elements, or
text. If you set attributes on the literal result elements, they will also be copied to the output.

This gives you considerable freedom to construct output from any source in your target XML vocabulary.
For this XHTML page, you will start with something like the following skeleton:

<xsl:template match="/">
<html>
<head>

<title>
<xsl:value-of select="reference/body/title"/>

</title>
</head>
<body>

<p>The body goes here</p>
</body>

</html>
</xsl:template>

The preceding code will render the following output:

<html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>xsl:stylesheet</title>

</head>
<body>

<p>The body goes here.</p>
</body>

<html>

7

Williams c01.tex V3 - 07/31/2009 2:53pm Page 8

Chapter 1: First Steps with XSLT

Selecting Source Content
To output source content, you select from the element to be transformed, using the <xsl:value-of>
instruction. The select attribute defines the XPath expression to use. The next code snippet shows
how:

<h1 class="section"><xsl:value-of select="title"/></h1>

As you learned in the introduction to this book, the <xsl:value-of> element is a sequence constructor,
which is a series of XSLT instructions. This is the schema declaration:

<xs:element name="value-of" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">

<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="select" type="xsl:expression"/>
<xs:attribute name="separator" type="xsl:avt"/>
<xs:attribute name="disable-output-escaping" type="xsl:yes-or-no" default=

"no"/>
</xs:extension>

</xs:complexContent>
</xs:complexType>

</xs:element>

Processing Specific Source Elements
The processor’s built-in template rules have a lower priority than other templates, so by adding rules for
individual elements, you can override the defaults.

Now you can add specific templates for the structural elements in the XML source: <title>, <purpose>,
<usage>, and <p>. The match attribute identifies the element, and the output is specified with literal
result elements. The select attribute value "." for the <title> element is an XPath expression that
refers to the current node being processed. Because both the <purpose> and the <usage> elements can
contain paragraphs, we apply processing to all the <p> content and its inline markup.

These templates are located at the top level like the main template you have just written, but their order
is not significant. The XSLT processor treats the source elements in document order and will look in the
templates for matches as it goes. I generally put them in rough document order in simple stylesheets:

<xsl:template match="title">
<h1>

<xsl:value-of select="."/>
</h1>

</xsl:template>

<xsl:template match="purpose">
<h2>Purpose</h2>
<xsl:apply-templates select="p"/>

</xsl:template>

<xsl:template match="usage">
<h2>Usage</h2>
<xsl:apply-templates select="p"/>

</xsl:template

8

Williams c01.tex V3 - 07/31/2009 2:53pm Page 9

Chapter 1: First Steps with XSLT

<xsl:template match="p">
<p><xsl:apply-templates/></p>

</xsl:template>

In the next template you match the XML source <attr> (attribute) and <element> names using the
XPath union operator "|", and output a containing <code> literal result element. The union operator
performs a logical OR, matching either of the source element names:

<xsl:template match="attr | element">
<code>

<xsl:value-of select="."/>
</code>

</xsl:template>

The output for an element name will look like this:

<p>An element occurring as a child of the
<code>xsl:stylesheet</code> element is called a
declaration. These top-level elements are all optional, and may
occur zero or more times.

</p>

Copying Content
When content in both the source and the output should be identical, you can simply copy the source
nodes to the result. With the <xsl:copy> instruction, you copy the source <code> element name and its
content to the output:

<xsl:template match="code">
<xsl:copy>

<xsl:apply-templates/>
</xsl:copy>

</xsl:template>

Here is the schema definition:

<xs:element name="copy" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">

<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="copy-namespaces" type="xsl:yes-or-no" default="yes"/>
<xs:attribute name="inherit-namespaces" type="xsl:yes-or-no" default=

"yes"/>
<xs:attribute name="use-attribute-sets" type="xsl:QNames" default=""/>
<xs:attribute name="type" type="xsl:QName"/>
<xs:attribute name="validation" type="xsl:validation-type"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>
</xs:element>

There are two copy instructions in XSLT. The <xsl:copy> instruction is a shallow copy, and copies
only the context node, but nothing under it. You specify the output in the sequence constructor inside
<xsl:copy>. This instruction is most useful when copying element nodes.

9

Williams c01.tex V3 - 07/31/2009 2:53pm Page 10

Chapter 1: First Steps with XSLT

It causes the current XML node in the source document to be copied to the output. The actual effect
depends on whether the node is an element, an attribute, or a text node. For an element, the start and
end element tags are copied; the attributes, character content, and child elements are copied only if
xsl:apply-templates is used within xsl:copy.

In contrast, if you use <xsl:copy-of>, each new node will contain copies of all the children, attributes,
and namespaces of the original node, recursively. This is often called a deep copy. This instruction has a
select attribute, providing you with more flexibility in selection:

<xs:element name="copy-of" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">

<xs:extension base="xsl:versioned-element-type">
<xs:attribute name="select" type="xsl:expression" use="required"/>
<xs:attribute name="copy-namespaces" type="xsl:yes-or-no" default="yes"/>
<xs:attribute name="type" type="xsl:QName"/>
<xs:attribute name="validation" type="xsl:validation-type"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>
</xs:element>

Listing 1-3 shows the completed stylesheet. Save this version as local.xsl.

Listing 1-3
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">
<xsl:output method="html"

encoding="UTF-8"
doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"/>

<xsl:template match="/">
<html>

<head>
<title>

<xsl:value-of select="reference/body/title"/>
</title>

</head>
<body>

<xsl:apply-templates select="reference/body"/>
</body>

</html>
</xsl:template>

<xsl:template match="title">
<h1>

<xsl:value-of select="."/>
</h1>

</xsl:template>

<xsl:template match="purpose">
<h2>Purpose</h2>
<xsl:apply-templates select="p"/>

</xsl:template>

10

Williams c01.tex V3 - 07/31/2009 2:53pm Page 11

Chapter 1: First Steps with XSLT

<xsl:template match="usage">
<h2>Usage</h2>
<xsl:apply-templates select="p"/>

</xsl:template>

<xsl:template match="p">
<p>

<xsl:apply-templates/>
</p>

</xsl:template>

<xsl:template match="attr | element">
<code>

<xsl:value-of select="."/>
</code>

</xsl:template>

<xsl:template match="code">
<xsl:copy>

<xsl:apply-templates/>
</xsl:copy>

</xsl:template>

</xsl:stylesheet>

Transforming Locally
This time you’ll run the stylesheet processor ‘‘locally,’’ rather than on the browser. The setup suggestions
that follow make further use the Oxygen IDE . You’ll also look briefly at invoking the Java command-line
interface for the Saxon processor.

Try It Out Configuring a Transformation
You can use the Oxygen IDE to set up a transformation, providing a range of configuration values.
Essentially, you provide input and output values, which are associated with the source file and saved
automatically for reuse. To avoid typing long paths, you can use editor variables recognized by the
application, such as ‘‘${cfdu}’’ for ‘‘current file directory URL.’’

1. Open xsl_stylesheet.xml in the XML editor.

2. Choose XML � Configure Stylesheet Transformation.

3. Click New in the dialog that opens, and name the scenario xml2xhtml in the Edit Scenario dialog
that appears, as shown in Figure 1-1. By default, the variable "${currentFileURL}" is used for
the XML URL setting.

4. On the XSLT tab, insert ${cfdu}local.xsl in the XSL URL control.

5. Choose Saxon6.5.5 in the Transformer drop-down. Figure 1-1 shows the settings.

6. On the Output tab, accept the default setting Save as ${cfn}.html, which will save the XHTML
file in the same directory as the source, with the current filename.

7. Check Show in Browser and click OK.

8. In the main dialog, click Transform Now.

11

Williams c01.tex V3 - 07/31/2009 2:53pm Page 12

Chapter 1: First Steps with XSLT

Figure 1-1

The transformed document should open in your browser.

Figure 1-2 shows the browser output, and Listing 1-4 shows the XHTML source code.

Figure 1-2

12

Williams c01.tex V3 - 07/31/2009 2:53pm Page 13

Chapter 1: First Steps with XSLT

Listing 1-4
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>
<head>

<title>xsl:stylesheet</title>
</head>
<body>

<h1>xsl:stylesheet</h1>
<h2>Purpose</h2>
<p>The root element of a stylesheet.</p>
<h2>Usage</h2>
<p>The <code>stylesheet</code> is always the root element, even if a

stylesheet is included in, or imported into, another. It must have a <code>
version</code> attribute, indicating the version of XSLT that
the stylesheet requires.</p>

<p>For this version of XSLT, the value should normally be <code>"2.0"</code>.
For a stylesheet designed to execute under either
XSLT 1.0 or XSLT 2.0, create a core module for each version number;
then use <code>xsl:include</code> or <code>xsl:import</code> to
incorporate common code, which should specify <code>version="2.0"</code> if it uses
XSLT 2.0 features, or <code>version="1.0"</code> otherwise.</p>

<p>The <code>xsl:transform</code> element is allowed as a synonym.</p>
<p>The namespace declaration <code>xmlns:xsl="http//www.w3.org/1999/XSL

/Transform</code> by convention uses the prefix <code>xsl</code>.</p>
<p>An element occurring as a child of the <code>stylesheet</code> element is

called a declaration. These top-level elements are all optional, and may occur
zero or more times.</p>

</body>
</html>

Using the Command Line
Another way to invoke a stylesheet processor is to use a command-line interface. The specifics of the
interface will vary according to which processor you use.

The next example uses the Saxon CLI for the open-source version on the local.xsl. If you intend to use
the CLI frequently, you may prefer to run it from an open-source tool like jEdit (www.jedit.org), rather
than from the file system console.

If you are using the Oxygen IDE and just want to experiment with the CLI, you will find the .jar file
in the lib directory. If you are not using a bundled version of Saxon, you can download the Java ver-
sion of the Saxon processor from SourceForge (http://sourceforge.net/project/showfiles.php?
groupid=29872).

Unzip the download to a convenient directory. Add the saxon9.jar file to the classpath so that the
command in the following Try It Out will locate the main program net.sf.saxon. The schema-aware
version is com.saxonica.

Full documentation is available on the Saxonica site, which you should consult for installation and con-
figuration instructions (www.saxonica.com/documentation/contents.html).

13

Williams c01.tex V3 - 07/31/2009 2:53pm Page 14

Chapter 1: First Steps with XSLT

Try It Out The Saxon CLI
Enter the following code on the command line and execute it:

java net.sf.saxon.Transform -s:xsl_stylesheet.xml -xsl:local.xsl
-o:xsl_stylesheet.html

The options in the example have the following meanings:

-s:filename: The source XML file

-xsl:filename: The XSL stylesheet to use

-o:filename: The output filename

The remaining Saxon CLI options are extensive and quite powerful. If you are interested in pursuing the
CLI approach, you should review the Saxon documentation at your leisure before using them.

Transforming XML Data to XML
The next example illustrates how simple it can be to transform content from one XML format to another.
A common transform problem is that two similar schemas will use different names for identical content
values. Another problem is that in one case an attribute is used for a value, while another uses an element
for the same purpose.

The next stylesheet uses two common metadata vocabularies that express information in roughly the
same manner. One is the Atom 1.0 format, increasingly used for blogs and news feeds; the other is RSS
1.0, which uses a combination of the Dublin Core Metadata Initiative vocabulary and RDF/XML.

There is also a version 2.0 ‘‘branch’’ of RSS. Although it is often assumed that RSS 2.0 supersedes
RSS 1.0, it doesn’t; and the versions are incompatible in several ways. RSS 2.0 is also in widespread
use, but we won’t be using it in this chapter. If you want to explore the structure of RSS 2.0, go to
http://cyber.law.harvard.edu/rss/rss.html.

Of course, you wouldn’t bother serializing either of these feeds to XML if the data were in a SQL database
or an RDF triple store. However, if you are aggregating the data from feed URLs, or you have been
provided with source data in XML, you won’t have much choice.

Atom and RSS Elements
The next two tables compare the feed elements and entry elements in the Atom 1.0 schema with the
equivalents in RDF Site Summary (RSS) 1.0. The pros and cons of the different ways to describe metadata
can be a contentious issue, but just now we need not be concerned with the details.

The following table lists the top-level elements that define the properties of the Atom feed in the <feed>
and RSS 1.0 <channel> elements. The matches are quite weak at this level, perhaps reflecting the history

14

Williams c01.tex V3 - 07/31/2009 2:53pm Page 15

Chapter 1: First Steps with XSLT

of how these structures were developed. The Atom specification provides a richer set of values on the
whole.

Atom RSS 1.0 Description

feed channel Root element of the feed document

title title Feed title

id Feed identifier

updated Date the feed was most recently updated

subtitle Feed subtitle

generator Application that generated the feed

link link URL for the HTML version of the feed

description Feed description

logo, icon image URI for a feed image

items RDF sequence acting as a table of contents

entry item Feed entry container

The next table shows elements in the Atom <entry> and RSS 1.0 <item> elements. The ‘‘item’’ contents
for RSS 1.0 are in the Dublin Core (DC) namespace. The matches between the schemas are much closer
here, and the differences reflect the fact that the DC format has strong origins in the library community,
and Atom was primarily developed for the requirements of web logs.

Atom DC Description

id identifier Identifier of the resource

title title Name by which the resource is known

published date Date of publication

updated Date updated

author Container for name, e-mail, and URI elements

name creator The person or organization responsible for creating
the resource

email Author’s e-mail address

uri URI associated with the author

contributor contributor Contributor to a work; same structure as author.

Continued

15

Williams c01.tex V3 - 07/31/2009 2:53pm Page 16

Chapter 1: First Steps with XSLT

Atom DC Description

summary description Description of the resource

language Principal language of the resource

content/@type format File format

type Defines either the genre or intellectual type of the
resource

publisher Supplier of the resource

source source Identifier for source material for the resource,
assuming it is derived from another format

content Container of or link to the content

coverage Locations or periods that are subjects of the resource

category subject Subjects of the resource

rights rights Rights information

relation Reference to a related resource

Listing 1-5 shows part of an Atom feed from the xml.com website. We’ll use this document as the source
for the transformation. Some content, an additional namespace declaration, and stylesheet-processing
instructions have been removed for clarity.

The listing shows the <feed> element and its content to the end of the first <entry> element. The code
download is in the file atom.xml.

Listing 1-5
<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">

<title>O’Reilly News: XML</title>
<link rel="alternate" type="text/html" href="http://news.oreilly.com/"/>
<id>tag:news.oreilly.com,2008-08-01://44</id>
<updated>2008-12-17T07:32:30Z</updated>
<subtitle>O’Reilly News - Spreading the knowledge of innovators</subtitle>
<generator uri="http://www.sixapart.com/movabletype/">Movable Type Pro 4.21-en

</generator>
<link rel="self" href="http://feeds.oreilly.com/oreilly/xml"

type="application/atom+xml"/>
<entry>

<title>Defining markup languages using Unicode properties</title>
<link rel="alternate" type="text/html" href="http://feeds.oreilly.com

/∼r/oreilly/xml/∼3/487372046/defining-markup-languages-usin.html"/>
<id>tag:broadcast.oreilly.com,2008://53.34679</id>
<published>2008-12-17T03:01:23Z</published>
<updated>2008-12-17T07:32:30Z</updated>

16

Williams c01.tex V3 - 07/31/2009 2:53pm Page 17

Chapter 1: First Steps with XSLT

<summary>Can we define a family of markup languages that used the Unicode
properties and which could accept a fair imitation of XML and produce
a SAX-like event stream?</summary>

<author>
<name>Rick Jelliffe</name>

</author>
<category term="xml" label="xml"

scheme="http://www.sixapart.com/ns/types#tag"/>
<content type="html" xml:lang="en" xml:base="http://broadcast.oreilly.com/">

Can we define a family of markup languages that used the Unicode
properties and which could accept a
fair imitation of XML and produce a SAX-like event stream?
<img src="http://feeds.oreilly.com/∼r/oreilly/xml/∼4/487372046"

height="1" width="1"/></content>
</entry>
...

</feed>

This feed will be well out of date when you read this. To get a current version, go to
http://feeds.oreilly.com/oreilly/xml, copy the source, and save it as a replacement.
Alternatively, you can load the data directly from the feed site using the URL containing the feed source.

Developing the Stylesheet
As with the XML to HTML transform, we’ll take the development one step at a time. The approach is
essentially the same, with XML as the target rather than HTML. The vocabularies are, of course, different,
but the matching process will work similarly. It is not too important at present to absorb the details of
the Atom and RSS 1.0 formats, but if you would like to do so here are the relevant URLs:

Atom 1.0 www.atomenabled.org/developers/syndication/atom-format-spec.php

RSS 1.0 http://web.resource.org/rss/1.0/spec

I’ll call the top-level elements ‘‘feed elements,’’ and the individual entries ‘‘entry elements,’’ using the
Atom terminology.

Preliminaries
Let’s start with the basics of the stylesheet rss_feed.xsl. This time you’ll set "2.0" as the value of the
stylesheet’s version attribute. Inside the <xsl:stylesheet> element are two namespaces to declare
using the rdf and dc prefixes.

Always check the source file for a default namespace declaration: In this case it is
"http://www.w3.org/2005/Atom". You need to set the xpath-default-namespace
attribute on the <xsl:stylesheet> element to this value; otherwise, nothing from
the source file will be output.

17

Williams c01.tex V3 - 07/31/2009 2:53pm Page 18

Chapter 1: First Steps with XSLT

Next, declare the output method as "xml" and the encoding as "UTF-8". In the main template, create
the literal result elements <rdf:RDF> and <channel>, in that order, as the container for your output. The
namespaces must be declared again on the <rdf:RDF> element:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"

xpath-default-namespace="http://www.w3.org/2005/Atom">

<xsl:output method="xml" encoding="UTF-8"/>
<xsl:template match="/">

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"

<channel>
...
</channel>

</rdf:RDF>
</xsl:template>
...

</xsl:styleheet>

Specifying Attributes
Both the <channel> and <item> elements require the rdf:about attribute.

An attribute can be set directly on a literal result element if you know its value ahead of time, but in
this case you need to use another approach, with the <xsl:attribute> instruction. This element should
always come first in any set of sequence constructor instructions. You can use either the element content
or the select attribute, but note that these approaches are mutually exclusive.

The XSLT 2.0 schema definition looks like this:

<xs:element name="attribute" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">

<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="name" type="xsl:avt" use="required"/>
<xs:attribute name="namespace" type="xsl:avt"/>
<xs:attribute name="select" type="xsl:expression"/>
<xs:attribute name="separator" type="xsl:avt"/>
<xs:attribute name="type" type="xsl:QName"/>
<xs:attribute name="validation" type="xsl:validation-type"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>
</xs:element>

To add the rdf:about attribute to the <channel> element, enter the <xsl:attribute> element
right after the <channel> element, and use the <xsl:value-of> instruction to obtain the link URL
http://news.oreilly.com/ from the href attribute on the source feed’s <link> element:

18

Williams c01.tex V3 - 07/31/2009 2:53pm Page 19

Chapter 1: First Steps with XSLT

<channel>

<xsl:attribute name="rdf:about">
<xsl:value-of>feed/link/@href<.xsl:value-of>

</xsl:attribute>

...
</channel>

Completing the Feed Elements
Adding a title is straightforward, again using the element <xsl:value-of>; you could also have used
<xsl:copy-of> because the elements are identical in each vocabulary:

<title>
<xsl:value-of select="feed/title"/>

</title>

There’s nothing you can use to fill the <description> element except perhaps the feed’s subtitle, but that
might not be a good idea because it is optional in the Atom schema.

Next you come to the <link> element in the RSS feed . . . but wait — you’ve just used the required value
in the rdf:about attribute. Let’s backtrack and create a reusable template variable $feedurl.

You can also refine the selection to choose the link that has the rel attribute set to ‘self’, because there
are two link elements in the source. To do this you use a predicate inside square brackets: "[]". You’ll
learn more about predicates in the next chapter. Change the code to look like this:

<channel>

<xsl:variable name="feedurl" select="feed/link[@rel=’self’]/@href"/>
<xsl:attribute name="rdf:about">

<xsl:value-of select="$feedurl"/>
</xsl:attribute>
<title>

<xsl:value-of select="feed/title"/>
</title>

<link><xsl:value-of select="$feedurl"/></link>
...

</channel>

Item Listing
To create an item listing to act as a table of contents, enter the literal result element <items> and an
RDF sequence element, rdf:Seq. The sequence constructor <xsl:for-each> will take the processor to
all of the matching nodes one by one, changing the context node as it goes. You will learn more about
<xsl:for-each> in Chapter 4.

By selecting with the XPath expression feed//entry (using "//"), you operate on all the entry elements
in the feed. For each entry, you add an RDF list item, rdf:li, and set its rdf:resource attribute value
from the <link> element in each individual entry:

<items>
<rdf:Seq>

19

Williams c01.tex V3 - 07/31/2009 2:53pm Page 20

Chapter 1: First Steps with XSLT

<xsl:for-each select="feed//entry">
<rdf:li>

<xsl:attribute name="rdf:resource">
<xsl:value-of select="link/@href"/>

</xsl:attribute>
</rdf:li>

</xsl:for-each>
</rdf:Seq>

</items>

Entry Elements
Still in the main template, you need to loop through the entries again to create a series of complete <item>
elements in the output:

<xsl:for-each select="//entry">
<xsl:apply-templates select="."/>

</xsl:for-each>

In a template matching <entry> elements, you can handle the translation from Atom to Dublin
Core. Most of the translations are straightforward. Dublin Core doesn’t have an equivalent of the
<atom:updated> element, so you use that value in <dc:date>. The language can be obtained from the
<content> element’s xml:lang attribute. Another point to note is that there can be multiple categories
in entries, just as there can be multiple <dc:subject> elements. Therefore, you need to select the label
attribute on the <category> element inside another <xsl:for-each> loop that creates the subject
elements.

In neither of these two schemas does the order of elements matter, or the number of occurrences, so you
can simply let the source sequence drive the process:

<xsl:template match="entry">
<item>
<xsl:attribute name="rdf:about">

<xsl:value-of select="id"/>
</xsl:attribute>
<link>

<xsl:value-of select="link/@href"/>
</link>
<dc:identifier>

<xsl:value-of select="id"/>
</dc: identifier >
<dc:language>

<xsl:value-of select="content/@xml:lang"/>
</dc:language>
<dc:title>

<xsl:value-of select="title"/>
</dc:title>
<dc:date>

<xsl:value-of select="published"/>
</dc:date>
<dc:creator>

<xsl:value-of select="author/name"/>
</dc:creator>

20

Williams c01.tex V3 - 07/31/2009 2:53pm Page 21

Chapter 1: First Steps with XSLT

<dc:description>
<xsl:value-of select="summary"/>

</dc:description>
<dc:format>

<xsl:value-of select="content/@type"/>
</dc:format>
<xsl:for-each select="category">

<dcsubject>
<xsl:value-of select="./@label"/>
</dc:subject>
</xsl:for-each>

</item>
</xsl:template>

The full stylesheet is shown in Listing 1-6.

Listing 1-6
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xpath-default-namespace="http://www.w3.org/2005/Atom">
<xsl:output method="xml"/>
<xsl:variable name="site">testurl</xsl:variable>
<xsl:template match="/">

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">
<channel>

<xsl:variable name="feedurl" select="feed/link[@rel=’self’]/@href"/>
<xsl:attribute name="rdf:about">

<xsl:value-of select="$feedurl"/>
</xsl:attribute>
<title>

<xsl:value-of select="feed/title"/>
</title>
<link>

<xsl:value-of select="$feedurl"/>
</link>
<items>

<rdf:Seq>
<xsl:for-each select="feed//entry">

<rdf:li>
<xsl:attribute name="rdf:resource">

<xsl:value-of select="id"/>
</xsl:attribute>

</rdf:li>
</xsl:for-each>

</rdf:Seq>
</items>
<xsl:for-each select="//entry">

<xsl:apply-templates select="."/>
</xsl:for-each>

</channel>

Continued

21

Williams c01.tex V3 - 07/31/2009 2:53pm Page 22

Chapter 1: First Steps with XSLT

Listing 1-6: (continued)

</rdf:RDF>
</xsl:template>
<xsl:template match="entry">

<item>
<xsl:attribute name="rdf:about">

<xsl:value-of select="id"/>
</xsl:attribute>
<link>

<xsl:value-of select="link/@href"/>
</link>
<dc:language>

<xsl:value-of select="content/@xml:lang"/>
</dc: language >
<dc:title>

<xsl:value-of select="title"/>
</dc:title>
<dc:date>

<xsl:value-of select="updated"/>
</dc:date>
<dc:creator>

<xsl:value-of select="author/name"/>
</dc:creator>
<dc:description>

<xsl:value-of select="summary"/>
</dc:description>
<dc:format>

<xsl:value-of select="content/@type"/>
</dc:format>
<xsl:for-each select="category">

<dc:subject>
<xsl:value-of select="./@label"/>

</dc:subject>
</xsl:for-each>

</item>
</xsl:template>

</xsl:stylesheet>

RSS 1.0 Results
To run the transform, add a scenario in the Oxygen IDE, using atom.xml as the source, and rss_feed.xsl
as the stylesheet.

Listing 1-7 shows a matching fragment of the transformed RSS 1.0 feed.

Listing 1-7
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<channel rdf:about="http://feeds.oreilly.com/oreilly/xml">

<title>O’Reilly News: XML</title>

22

Williams c01.tex V3 - 07/31/2009 2:53pm Page 23

Chapter 1: First Steps with XSLT

<link>http://feeds.oreilly.com/oreilly/xml</link>
<items>

<rdf:Seq>
<rdf:li rdf:resource="tag:broadcast.oreilly.com,2008://53.34667"/>
<rdf:li rdf:resource="tag:broadcast.oreilly.com,2008://53.34679"/>
<rdf:li rdf:resource="tag:broadcast.oreilly.com,2008://53.34620"/>
<rdf:li rdf:resource="tag:broadcast.oreilly.com,2008://53.34524"/>
<rdf:li rdf:resource="tag:broadcast.oreilly.com,2008://53.34508"/>
...

</rdf:Seq>
</items>
<item rdf:about="tag:broadcast.oreilly.com,2008://53.34667">

<link>http://feeds.oreilly.com/∼r/oreilly/xml/∼3/487860677
/xforms-a-pause-for-reflection.html</link>

<dc:language>en</dc: language >
<dc:title>XForms, a pause for reflection</dc:title>
<dc:date>2008-12-17T18:05:12Z</dc:date>
<dc:creator>Philip Fennell</dc:creator>
<dc:description>The other day I had what could only be described as a

’Roy Scheider moment’, you know the bit in the film Jaws where the camera
tracks-in whilst zooming-out at the same time. Well, whilst debugging an
XForms enabled application, the Mozilla XForms plug-in had exposed the host
document, XForms and all, as the content of the empty xf:instance. How odd.
I mean, what good is that? That’s when it struck me in a Roy Scheider sort
of way; this was Reflection, the ability of a program to look at itself and
change its behaviour.</dc:description>

<dc:format>html</dc:format>
<dc:subject>xforms</dc:subject>
<dc:subject>xml</dc:subject>
<dc:subject>xrx</dc:subject>

</item>
...

</channel>
</rdf:RDF>

Summary
In this chapter you created two stylesheets, the first of which handled a typical document transformation
from XML to XHTML.

The second transform was a little more complex, involving two different schemas. You used an XSLT
version 2.0 stylesheet with XML output, and learned about using the <xsl:for-each> instruction to
handle repeating uniform data structures.

You used three methods to invoke your first stylesheet: the <?xsl-stylesheet?> processing instruction,
the Oxygen IDE, and the Saxon CLI.

Along the way, you learned about the main structural XSLT elements, defining output methods, match-
ing nodes in source documents, and selecting content to transform. You also encountered some common
XPath syntax, more of which is introduced in Chapter 2.

23

Williams c01.tex V3 - 07/31/2009 2:53pm Page 24

Chapter 1: First Steps with XSLT

Key Points

❑ A stylesheet processor uses built-in rules for processing by default.

❑ You override these rules by using specific template rules to match elements
in an XML source document with XPath expressions.

❑ You can specify different output methods in a stylesheet — XML, XHTML,
HTML and text — and define the preferred character encoding too.

❑ Literal result elements and attributes are often used to define output struc-
tures.

❑ Output element content is usually specified by selecting values in the source
with XPath expressions.

❑ Always check for default namespace declarations in source files and set the
xpath-default-namespace attribute on the <xsl:stylesheet> element to
this value.

24

