
1 Things People Do with Censored
Data that Are Just Wrong

Censored observations are low-level concentrations of organic or inorganic chemicals

with values known only to be somewhere between zero and the laboratory’s detection/

reporting limits. The chemical signal on the measuring instrument is small in relation

to the process noise. Measurements are considered too imprecise to report as a single

number, so the value is commonly reported as being less than an analytical threshold,

for example, “<1.” Long considered second-class data, censored observations

complicate the familiar computations of descriptive statistics, of testing differences

among groups, and of correlation coefficients and regression equations.

Statisticians use the term “censored data” for observations that are not quantified,

but are known only to exceed or to be less than a threshold value. Values known only

to be below a threshold (less-thans) are left-censored data. Values known only to

exceed a threshold (greater-thans) are right-censored data. Values known only to be

within an interval (between 2 and 5) are interval-censored data. Techniques for

computing statistics for censored data have long been employed in medical and

industrial studies, where the length of time is measured until an event occurs, such as

the recurrence of a disease or failure of a manufactured part. For some observations

the eventmay not have occurred by the time the experiment ends. For these, the time is

known only to be greater than the experiment’s length, a right-censored “greater-

than” value. Methods for incorporating censored data when computing descriptive

statistics, testing hypotheses, and performing correlation and regression are all

commonly used in medical and industrial statistics, without substituting arbitrary

values. These methods go by the names of “survival analysis” (Klein and Moesch-

berger, 2003) and “reliability analysis” (Meeker and Escobar, 1998). There is no

reasonwhy these samemethods should also not be used in the environmental sciences,

but until recently their use has been relatively rare. Environmental scientists have not

often been trained in survival analysis methods.

Theworst practicewhen dealing with censored observations is to exclude or delete

them. This produces a strong bias in all subsequentmeasures of location or hypothesis

tests. After excluding the 80% of observations that are left-censored nondetects, for

example, the mean of the top 20% of concentrations is reported. This provides almost

no insight into the original data. Excluding censored observations removes the
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primary information contained in them—the proportion of data in each group that lies

below the reporting limit(s). And while better than deleting censored observations,

fabricating artificial values as if these had been measured provides its own inaccura-

cies. Fabrication (substitution) adds an invasive signal to the data that was not

previously there, potentially obscuring the information present in the measured

observations.

Studies 25 years ago found substitution to be a poor method for computing

descriptive statistics (Gilliom and Helsel, 1986). Numerous subsequent articles (see

Chapter 6) have reinforced that opinion. Justifications for using one-half the reporting

limit usually point back toHornung andReed (1990), who only considered estimation

of the mean, and assumed that data below the single reporting limit follow a uniform

distribution. Estimating the mean is not the primary issue. Any substitution of a

constant fraction times the reporting limits will distort estimates of the standard

deviation, and therefore all (parametric) hypothesis tests using that statistic. This is

illustrated in a later section using simulations. Also, justifications for substitution

rarely consider the common occurrence of changing reporting limits. Reporting limits

change over time due to methods changes, change between samples due to changing

interferences, amounts of sample submitted, and other causes. Substituting values that

are tied to changing reporting limits introduces an external (exotic) signal into the data

that was not present in the media sampled. Substituted values using a fraction

anywhere between 0 and 0.99 times the detection limit are equivalently arbitrary,

easy, and wrong.

There have been voices objecting to substitution. In 1967, a USGeological Survey

report by Miesch (1967) stated that substituting a constant for censored observations

created unnecessary errors, instead recommending Cohen’s Maximum Likelihood

procedure. Cohen’s procedure was published in the statistical literature in the late

1950s and early 1960s (Cohen, 1957, 1961), so its movement into an applied field by

1967 is a credit indeed toMiesch. Two other early environmental pioneers ofmethods

for censored data are Millard and Deverel (1988) and Farewell (1989). Millard and

Deverel (1988) pioneered the use of two-group survival analysis methods in envir-

onmentalwork, testing for differences inmetals concentrations in the groundwaters of

two aquifers. Many censored values were present, at multiple reporting limits. They

found differences in zinc concentrations between the two aquifers using a survival

analysis method called a score test (see Chapter 9). Had they substituted one-half the

reporting limit for zinc concentrations and run a t-test, they would not have found

those differences. Farewell (1989) suggested using nonparametric survival analysis

techniques for estimating descriptive statistics, hypothesis testing, and regression for

censoredwater quality data.Many of his suggestions have been expanded in the pages

of this book. Since that time, a guide to the use of censored data techniques for

environmental studies was published by Akritas (1994) as a chapter in volume 12 of

the Handbook of Statistics. In an applied setting, She (1997) computed descriptive

statistics of organics concentrations in sediments using a survival analysis method

called Kaplan–Meier. Means, medians, and other statistics were computed without

substitutions, even though 20% of data were observations censored at eight different

reporting limits.
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Guidance documents have evolved over the years when recommending methods

to deal with censored observations. In 1991 the Technical Support Document for

Water-Quality Based Toxics Control (USEPA, 1991) recommended use of the delta-

lognormal (also called Aitchison’s or DLOG) method when computing means for

censored data. Gilliom and Helsel (1986) had previously shown that the delta-

lognormal method was essentially the same as substituting zeros for censored

observations, and so its estimated mean was consistently biased low. Hinton

(1993) found that the delta-lognormal method was biased low and had a larger bias

than either Cohen’s MLE or the parametric ROS procedure (see Chapter 6 for more

information on the latter). The 1998Guidance for data quality assessment: Practical

methods for data analysis recommended substitution when there were fewer than

15% censored observations, otherwise using Cohen’s method (USEPA, 1998a).

Cohen’s method, an approximate MLE method using a lookup table valid for only

one reporting limit, may have been innovativewhen proposed byMiesch in 1967, but

by 1998 therewere better methods available.Minnesota’sData Analysis Protocol for

the GroundWater Monitoring and Assessment Program presented an early adoption

of some of the better, simplermethods for censored data (Minnesota PollutionControl

Agency, 1999). In 2002, substitution of the reporting limit was still recommended in

the Development Document for theProposed Effluent Limitations Guidelines and

Standards for the Meat and Poultry Products Industry Point Source Category

(USEPA, 2002c). States have forged their own way at times—in 2005 the California

Ocean Plan recommended use of robust ROS when computing a mean and upper

confidence limit on the mean (UCL95) for determining reasonable potential (Cali-

fornia EPA, 2005, Appendix VI). More recently, the 2009 Stormwater BMP Mon-

itoring Manual (Geosyntec Consultants and Wright Water Engineers, 2009) states

“It is strongly recommended that simple substitution is avoided,” and instead

recommends methods found in this book for estimating summary statistics. And the

2009 Unified Guidance on statistical methods for groundwater quality at RCRA

facilities (USEPA, 2009) recommended the use of survival analysis methods,

although they unfortunately allowed substitution for estimation and hypothesis

testing when the proportion of censored observations was below 15%.

1.1 WHY NOT SUBSTITUTE—MISSING THE SIGNALS THAT
ARE PRESENT IN THE DATA

Statisticians generate simulated data for much the same reasons as chemists prepare

standard solutions—so that the starting conditions are exactly known. Statistical

methods are then applied to the data, and the similarity of their results to the known,

correct values provides ameasure of the quality of eachmethod. Fifty pairs ofX,Y data

were generated by Helsel (2006) with X values uniformly distributed from 0 to 100.

The Y values were computed from a regression equation with slope ¼ 1.5 and

intercept¼ 120. Noisewas then randomly added to each Y value so that points did not

fall exactly on the straight line. The result is data having a strong linear relation

between Y and Xwith a moderate amount of noise in comparison to that linear signal.
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The noise applied to the data represented a “mixed normal” distribution, two

normal distributions where the second had a larger standard deviation than the first.

All of the added noise had a mean of zero, so the expected result over many

simulations is still a linear relationship between X and Y with a slope ¼ 1.5 and

intercept ¼ 120. Eighty percent of data came from the distribution with the smaller

standard deviation, while 20% reflected the second distribution’s increased noise

level, to generate outliers. The 50 generated values are plotted in Figure 1.1a.

The 50 observationswere also assigned to one of the two groups in away that group

differences should be discernible. The first group is mostly of early (low X) data and

second of later (high X) data. The mean, standard deviation, correlation coefficient,

regression slope of Y versus X, a t-test between the means of the two groups, and its

p-value for the 50 generated observations in Figure 1.1a were then all computed and

stored. These “benchmark” statistics are the target values to which later estimates are

compared. The later estimates aremade after censoring the points plotted as squares in

Figure 1.1a.

Two reporting limits (at 150 and 300) were then applied to the data, the black dots

of Figure 1.1a remaining as uncensored values with unique numbers, and the squares

becoming censored observations below one of the two reporting limits. In total, 33 of

50 observations, or 66% of observations, were censored below one of the two

reporting limits. This is within the range of amounts of censoring found in many

environmental studies. Use of a smaller percent censoring would producemany of the

same effects as found here, though not as obvious or as strong. All of the data between

150 and the higher reporting limit of 300 were censored as <300. In order to mimic

laboratory results with two reporting limits, data below 150 were randomly selected

and some assigned <150 while others became <300.

1.1.1 Results

Figure 1.1b–g illustrate the results of estimating a statistic or running a hypothesis test

after substituting numbers for censored observations by multiplying the reporting

limit value by a fraction between 0 and 1. Estimated values for each statistic are

plotted on theY-axes,with the fraction of the reporting limit used in substitution on the

X-axes. A fraction of 0.5 on the X axis corresponds to substituting a value of 75 for all

<150s, and 150 for all <300s, for example. On each plot is also shown the value for

that statistic before censoring, as a “benchmark” horizontal line. The same informa-

tion is presented in tabular form in Table 1.1.

Estimates of the mean of Y are presented in Figure 1.1b. The mean Y before

censoring equals 198.1. Afterwards, substitution across the range between 0 and the

detection limits (DL) produces a mean Y that can fall anywhere between 72 and 258.

For this data set, substituting data using a fraction somewhere around 0.7 DL appears

to mimic the uncensored mean. But for another data set with different characteristics,

another fraction might be “best.” And 0.7 is not the “best” for these data to duplicate

the uncensored standard deviation, as shown in Figure 1.1c. Something larger or

smaller, closer to 0.5 or 0.9 would work better for that statistic, for this set of data.

Performance will also differ depending on the proportion of data censored, as
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discussed later. Results for themedian (not shown) were similar to those for themean,

and results for the interquartile range (not shown) were similar to those for the

standard deviation. The arbitrary nature of the choice of fraction, combined with its

large effect on the result, makes the choice of a single fraction an uncomfortable one.

As shown later, it is also an unnecessary one.
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FIGURE 1.1 (a) Data used. Horizontal lines are reporting limits. (b–g) Estimated values for

statistics of censored data (Y) as a function of the fraction of the detection limit (X) used to

substitute values for each nondetect. As an example, 0.5 corresponds to substitution of one-half

the detection limit for all censored values. Horizontal lines are at target values of each statistic

obtained using uncensored values.
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Substitution results in poor estimates of correlation coefficients (Figure 1.1d) and

regression slopes (Figure 1.1e), much further away from their respective uncensored

values than was true for descriptive statistics. The closest match for the correlation

coefficient appears to be near 0.7, while for the regression slope, substituting 0 would

be best!With data having other characteristics, the “best” fractionwill differ. Because

substituted values at a given reporting limit produce a horizontal line, correlation

coefficients and regression slopes are particularly suspect when values are substituted

for censored observations, especially if the statistics are found to be insignificant.

The generated data were split into two groups. In the first group were data with X

values of 0–40 and 60–70, while the second group contained thosewith X values from

40 to 60 and then 70 and above. For the most part, values in the first group plotted on

the left half of Figure 1.1a, and the second group plotted primarily on the right half.

Because the slope change is large relative to the noise, mean Y values for the

two groups are significantly different. Before the data were censored, the two-sided

t-statistic to test equality of the mean Y values was �2.74, with a p-value of 0.009.

This is a small p-value, so before censoring the means for the two groups are

determined to be different.

Figure 1.1f and g, and Table 1.1 report the results of two-group t-tests following

substitution of values for censored observations. The t-statistics never reach as large a

negative value as for the uncensored data, and the p-values are therefore never as

significant. At no time do the p-values go below 0.05, the traditional cutoff for

statistical significance. Results of t-tests after using substitution, if found to be

insignificant, should not be relied on. Much of the power of the test has been lost, as

substitution is a poor method for recovering the information contained in censored

observations. Figure 1.1f and g show a strong drop-off in performance when the best

choice of substituted fraction, which in practice is always unknown, is not chosen.

Clearly, no single fraction of the reporting limit, when used as substitution for a

nondetect, does an adequate job of reproducing more than one of these statistics. This

exercise should not be used to pick 0.7 or some other fraction as “best”; different

fractions may do a better job for data with different characteristics. The process of

substituting a fraction of the reporting limits has repeatedly been shown to produce

TABLE 1.1 Statistics and Test Results Before and After Censoring

Procedure Before Censoring

Range Using

Substitution Using MLE

Mean 198.1 72–258 191.3

Standard deviation 52.4 41–106 54.0

Correlation coefficient 0.77 0.29–0.54 0.55

Regression slope 1.46 0.62–1.12 1.46

t Statistic �2.74 �1.8 to �0.68 �1.81

p-value for t 0.009 0.08–0.50 0.07

Data in the middle two columns are also shown in Figure 1.1. The right column reports the results of MLE

tests expressly designed to work with censored data, without requiring substitution for censored

observations.
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poor results in simulation studies (Gilliom and Helsel, 1986; Singh and Nocerino,

2002; and many others—see Chapter 6). As demonstrated by the long list of research

findings and this simple exercise, substitution of a fraction of the reporting limit for

censored observations should rarely be considered acceptable in a quantitative

analysis. There are better methods available.

When substitution might be acceptable? Research scientists tend to use chemical

analyses with relatively high precision and low reporting limits. These chemical

analyses are often performed by only one operator and piece of equipment, and

reporting limits stay fairly constant. Research data sets may include hundreds of data

points, and in comparison our 50 observations appears small. For large data sets with

a censoring percentage below 60% censored observations, the consequences of

substitution should be less severe than those presented here. In contrast, scientists

collecting data for regulatory purposes rarely have as many as 50 observations in

any one group; sizes near 20 are much more common. Reporting limits in monitoring

studies can be relatively high compared to ambient levels, so that 60% or greater

censored observations is not unusual. Multiple reporting limits arise from several

common causes, all of which are generally unrelated to concentrations of the

analyte(s) of interest. These include using data from multiple laboratories, varying

dilutions, and varying sample characteristics such as dissolved solids concentrations

or amounts of lipids present. Resulting data like that of She (1997) with 8 different

reporting limits out of 11 censored observations is quite typical. In this situation, the

cautions given here must be taken very seriously, and results based on substitution

severely scrutinized before publication. Reviewers should suggest that the better

methods available from survival analysis be used instead.

Is there a censoring percentage below which the use of substitution can be

tolerated? The short answer is “who knows?” The US Environmental Protection

Agency (USEPA) has recommended substitution of one-half the reporting limit when

censoring percentages are below 15% (USEPA, 1998a). This appears to be based on

opinion rather than any published article. Even in this case, answers obtained with

substitutionwill havemore error than those using bettermethods (see Chapter 6).Will

the increase in error with substitution be small enough to be offset by the cost of

learning to use better, widely available methods of survival analysis? Answering that

question depends on the quality of result needed, but substitution methods should be

considered at best “semiquantitative,” to be used only when approximate answers are

required. Their current frequency of use in research publications is certainly

excessive, in light of the availability of methods designed expressly for analysis of

censored data.

1.1.2 Statistical Methods Designed for Censored Data

Methods designed specifically for handling censored data are standard procedures in

medical and industrial studies. Results for the current data using one of thesemethods,

maximum likelihood estimation (MLE), are reported in the right-hand column of

Table 1.1. The method assumes that data have a particular shape (or distribution),

which in Table 1.1 was a normal distribution, the familiar bell-shaped curve.
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The right-hand column of Table 1.1 shows that a method designed for censored

data produces values for each statistic as good or better than the best of the estimates

produced by substitution. MLE accomplishes this without substituting arbitrary

values for censored observations. Instead, it fits a distribution to the data that matches

both the values for uncensored observations, and the proportion of observations

falling below each reporting limit. The information contained in censored observa-

tions is efficiently captured by the proportion of data falling below each reporting

limit. The specific procedures used, such as the likelihood r correlation coefficient, are

described in subsequent chapters. Table 1.1 shows that for two-group tests, correlation

coefficients and regression slopes, true differences and nonzero slopes can be

missed when substitution is used for censored observations.

1.2 WHY NOT SUBSTITUTE?—FINDING SIGNALS THAT

ARE NOT THERE

Comparing two groups of data, one a possibly contaminated test group and the other a

control group, is a basic design in environmental science. Trace metal concentrations

in the bodies of mayflies in pristine streams could be contrasted to those in streams

with industrial outfalls. Particulates in the atmosphere are compared inside and

outside of a national park. Cadmium concentrations in soils are tested upwind and

downwind of an old smelter site. Blood lead levels in children are contrasted between

homes with old and peeling paint to those in homes with lead-free paint. Are

concentrations in the test group higher than in the control group?

The classic approach for this design is the two-sample t-test. If data distributions do

not follow a normal distribution, the nonparametric Mann–Whitney (also called

Wilcoxon rank-sum) test is used instead. With either test, a roadblock looms in the

data shown in Table 1.2—there are values below detection limits; several

detection limits.

Substitution for the Table 1.2 data produces the data of Table 1.3, and a

Mann–Whitney test p-value of 0.015. The equivalence of the groups is rejected, and

the test group is declared higher than the control group. Expensive remediation

actions might be mandated for conditions that have caused the elevated concentra-

TABLE 1.2 Contaminant Concentrations with Multiple

Reporting Limits in a Test and a Control Group

Control Group Test Group

<1 <1 <2 <5

<1 <1 <2 <5

<1 <1 3.3 <5

<1 4.1 3.4 <5

1.0 7.0 <2 4.7

1.8 7.5 12.2 <5

2.2 15.4 <5 22.5

<2 6.6

8 THINGS PEOPLE DO WITH CENSORED DATA THAT ARE JUST WRONG



tions in the test group. Soil is removed. Industrial equipment is modified. Wells are

abandoned. People are given new medications.

Now let us pull back a curtain. These data were not field data, but were computer

generated. By generating data, the true situation is known. All of the data in Table 1.2

came from the same distribution—there is actually NO difference in their mean or

median levels (see Figure 1.2). For the original uncensored data, the Mann–Whitney

test produced a one-sided p-value of 0.43, stating that there is no evidence for

difference between the two groups. Any reasonable method for analyzing the data

with censored observations should also find no difference in the two groups. For

example, in Chapter 9 a Wilcoxon score test is presented, a nonparametric test to

compare two groups of datawith multiple thresholds. No substitution is involved, and

the test produces a p-value of 0.47 for the censored Table 1.2 data. No difference. No

contamination.No remediation. But following substitution, a differencewas declared.

The examples in these two sections have demonstrated that substitution for

censored observations can lead to “finding” either false differences that are not

there, or false no-differenceswhen data are truly not equivalent. Substitution implants

TABLE 1.3 Contaminant Concentrations in a Test and a

Control Group After Substituting One-Half the Reporting

Limit for Censored Observations

Control Group Test Group

0.5 0.5 1.0 2.5

0.5 0.5 1.0 2.5

0.5 0.5 3.3 2.5

0.5 4.1 3.4 2.5

1.0 7.0 1.0 4.7

1.8 7.5 12.2 2.5

2.2 15.4 2.5 22.5

1.0 6.6
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FIGURE 1.2 Boxplots for data of Table 1.2 prior to setting artificial reporting limits.

Mann–Whitney test p-value (uncensored data) ¼ 0.43.
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an invasive pattern into the data that may be quite different than the pattern of the data

itself. Substitution is not neutral.

1.3 SO WHY NOT SUBSTITUTE?

The only conclusion possible based on these two simulations is that substitution of

values tied to the reporting limit, still the most commonly used method in environ-

mental studies today, is NOTa reasonable method for interpreting censored data. The

first simulation demonstrated that an invasive pattern not present in the original data

was implanted by substitution, hiding signals that are really there. Causes of

contamination are missed, and human or ecosystem health is needlessly endangered.

The second simulation shows that the invasive pattern of substitution can introduce a

signal that is not there in the data. Expensive cleanup measures may be implemented

where none are needed. Substituting values as “real data” that are a function of the

process used by the laboratory, are a function of time, or of the dilution of the samples,

or of interferences in some samples but not others, or of themass ofmaterial submitted

to the laboratory, can easily impose an artificial, invasive pattern that originally was

not there. The result is not just an incorrect conclusion by a hypothesis test. In the real

world, contamination goes unnoticed. Remediation goes undone. Public health is

unknowingly threatened.

There are better ways.

1.4 OTHER COMMON MISUSES OF CENSORED DATA

In addition to the two previous misuses of censored data:

(1) deleting/ignoring nondetects and computing the mean of what’s left, or

(2) substituting a fraction of the reporting limit for censored observations,

these two flawed approaches to evaluating censored data are fairly common:

. substituting a value for the variance, standard deviation, or coefficient of

variation (CV)

. interpreting changes in the percent of detections while the reporting limit is

changing.

There are methods for estimating the variability of censored data (see Chapter 6),

and measures of location such as mean and median. Unknowingly, people have

instead fabricated a number that seems “reasonable” to them. Fabricated values have

made their way into some environmental regulations, where 0.6 for the CV (the ratio

of the standard deviation to the mean) is currently popular. Douglas Adams would no

doubt have chosen 0.42. These guessed values could be very far off, with unwarranted

consequences either to human or ecological health, or to the cost of monitoring

programs. The three methods in Chapter 6—MLE, Kaplan–Meier, and ROS—will

each estimate the mean and standard deviation, and so the CV, for censored

environmental data. There is little reason to guess a value.
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Scientists also draw conclusions based on the percent of detected values, as that

statistic changes between groups or through time. We will recommend the practice

later in this book. However, this analysis is suspect when the definition of “detection”

changes—the reporting limit changes—between groups or through time. Envision

two sets of identical concentrations where the first wasmeasured 10 years ago, and the

second measured this year. They are exactly the same concentrations. There has been

no physical or chemical change. The early data were censored with a mix of two

reporting limits, at 1 and 10 mg/L:

<1 <1 <1 3 5 7 9 <10 <10 <10 <10 <10

while this year’s data were measured with better instruments. Now the only reporting

limit is at 1mg/L:

<1 <1 <1 3 5 7 9 <1 2 2 3 5

The analyst then computes that there were only 33% detects 10 years ago, but now

there are 67% detects of this dangerous chemical. The percentage has dramatically

increased, and something must be done to correct it! As you can see, this change is

entirely due to the change in the mix of reporting limits used in the two groups.

Comparing percent detections between groups, over space or over time only makes

sense when the mix of reporting limits is constant.

Government agencies have routinely reported percent detections of pesticides and

other organics in drinking water supplies, surface waters, or ground waters by

compiling existing data from multiple sources. Detection limits for each chemical

usually varies by source of data and over time. Maps of percent detections purport to

give a regional picture of where water quality is better or worse. Decreased detection

rates are cited as evidence for improving quality. Yet with the definition of “detection”

changing, a change in the proportion of data sources or amounts of recent versus

early data at each site can severely skew the resulting statistics. Rather than

summarizing the “percent detections,” statements about “the percent of concentra-

tions above 1mg/L” or another well-defined threshold are much more easily inter-

preted. In the midst of moving detection thresholds, statements such as “Data was

closely checked and itwas confirmed that the detection limit changes did not affect the

trend [in percent detections] significantly” (Ontario Ministry of the Environment,

2010) are hard for a reader to evaluate or believe.

Instead of computing the percent detections above a moving target, this book

recommends either doing so only after recensoring all data to the highest reporting

limit in the data set, a simple procedure but which may lose information, or instead

using survival analysis methods that correctly account for differing reporting limits.

If the metric reported and discussed is the percent of detected observations, inspect

the definition of “detection” to certify that the reporting limit has not changed as in

the small example above. If it has, it and not the underlying concentrations may be the

cause of any shift in the percent of detections observed.
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