
Information Systems
Modeling

To provide a foundation for the discussions throughout this book, this chapter begins by defining
what is actually meant by the term information system. The focus is on model-driven engineering
of the software component of information systems. This chapter also introduces and describes the
very notion of modeling. The chapter concludes with a brief discussion about software engineering
processes, an important aspect of building successful information systems.

Definition of Information Systems
Information systems have played a key role in the history of computers and their use in every-
day human activities. It is hard to imagine even a small company, institution, or organization that
does not have a need for storing and using information of a different kind. We are all witnesses
of the tremendous improvement of computer and communication technology, which support
ever-increasing demands of human community for interchanging and utilizing information. It
is not necessary to discuss the role and importance of information systems such as healthcare
systems, enterprise systems, banking and financial systems, educational information systems,
customer-support systems, governmental systems, and many other kinds of information systems
(see Figure 1-1).

Trying to catch up with the importance and ever-emerging demand for improved functionality
and performance of such systems, the hardware and software technology for their implementation
seem to constantly stay behind. It has always been a question of how to improve the technology
(especially that for software development) to meet the users’ needs. Because this question defines
the scope of this book, before trying to answer it, it is necessary to set up the context and define what
information systems really are.

First and foremost, information systems are systems. A system is a set of elements organized to
cooperate in order to accomplish a specific purpose. Elements of a system collaborate synergistically,
in a manner that provides a behavior and quality bigger than the sum of its parts. It is likely that a

CO
PYRIG

HTED
 M

ATERIA
L

Part I: Introduction

particular part of a complex information system (such as a piece of hardware or software) may be of no
use if it is taken without the other parts. Only a complex interaction of such parts accomplishes the real
purpose of the entire system.

Fin
an

ce

Banking

Commerce

Co
nt

en
t M

an
ag

em
en

t

Customer
Relationship
Management

Manufacturing

In
ve

nt
or

y

Bu
si

ne
ss

 to
 B

us
in

es
s Healthcare

Geographic

Engineering

Enterprise
Resource
Planning

Figure 1-1: Information systems

Moreover, information systems are computer-based systems, meaning that their elements encompass
hardware, communication equipment, various software subsystems, information, and users. The
software of almost every information system is also a complex subsystem, comprised of communication
software, the operating system, the database management system, different application modules,
presentation modules, and so on. Because information systems generally assume storing and processing
of large amounts of data, computer technology is irreplaceable for their implementation.

Next, information systems deal with information. Avoiding more complex and abstract definitions and
focusing on computer-based information only, information can be understood as a piece of data that is
structured, stored, transferred, processed, and presented in a proper manner, and at a right time, so that
it has a certain meaning and accomplishes a specific purpose for its users. Therefore, information is not
just a simple fact, but a piece of data that is shaped properly and provided timely to meet the specific
user’s needs.

For example, the fact that a certain patient has blood type A has no importance to the accountant
using a hospital information system. To the accountant, it is much more important to present the
total quantity of blood type A used for transfusions in a certain period. On the other hand, the same fact
is key for a doctor who must organize the transfusion for that patient. However, if that fact relates to a
patient that was hospitalized 50 years ago, it may be of no importance even to the doctor. If, however,
the fact relates to a patient who just arrived in the Emergency Room, it has the crucial importance and
represents the right information at the right time.

In summary, an information system is a computer-based system primarily dealing with pieces of data
that are structured, stored, transferred, processed, and presented in a proper manner, and at the right
time, so that they have a certain meaning and accomplish a specific purpose for the system’s users.

For a more in-depth discussion of the variety of characteristics of information systems (characteristics
that can more precisely describe the nature of information systems, as well as their engineering aspects),
see Chapter 20 in the Supplement.

4

Chapter 1: Information Systems Modeling

Section Summary

❑ An information system is a computer-based system primarily dealing with
large amounts of data that are structured, stored, transferred, processed, and
presented in a proper manner, and at a right time, so that they have a certain
meaning and accomplish a specific purpose for the system’s users.

Models and Modeling Paradigms, Languages,
and Tools

Model-driven software engineering is a modern discipline that covers the building of software based on
models, using modeling languages and tools. However, the notions and principles of this discipline have
roots in other engineering approaches. This section further explores these topics.

Modeling
The engineering disciplines that are much more mature than software engineering (such as civil, mechan-
ical, or electrical engineering) require that the designers of a new system build simplified representa-
tions of the system under construction in order to analyze the future system’s characteristics before
it is built, as well as to convey their design to the implementers. Such a simplified representation of
the system under construction is called a model of the system, and the process of its creation is called
modeling.

Models can be expressed in abstract terms, such as, for example, mathematical models, schemas, or
blueprints. On the other hand, models can be physical, usually small copies made of plastic, wood,
or other materials. Models allow the designers to experiment with the design and test its characteristics
before the system is actually built. Such an approach reduces the risk of faulty construction of the real
system with potentially disastrous or costly consequences.

There is no reason why software engineering would not follow these good practices of other engineering
disciplines and exploit models and modeling in building complex software systems. One crucial dif-
ference is that in software engineering, the ‘‘material’’ that models are made of can be the same as the
ultimate system — the model can be a formal and unambiguous specification that can be either directly
interpreted by another software system, or transformed into a form that can be executed by hardware
or interpreted by another software system. In that case, the model is executable and represents, when
complete, the very system under construction.

A model is a simplified representation of the real world. It is built to provide a better understanding of a
complex system being developed. Models of complex systems are built because such systems cannot be
comprehended in their entirety. By modeling, four aims are achieved [Booch, 1999]:

❑ Models help to visualize a system as it is, or as designers want it to be (visualization).

❑ Models permit the designer to specify the structure and behavior of the system (specification).

5

Part I: Introduction

❑ Models give templates that guide in constructing systems (construction).

❑ Models document the design decisions that have been made during development
(documentation).

Basically, programs created in traditional programming languages may be treated as models because they
specify the software system in a formal and executable way. However, programs created in traditional
programming languages are not considered as being models, because of the following:

❑ Models basically deal with more abstract notions, while programs deal with subtle implementa-
tion details.

❑ Models may often be incomplete or imprecise, especially in early analysis phases, although this
does not prevent them from being executable. Programs are ultimate artifacts of software devel-
opment.

❑ Models are usually specified in visual (diagrammatic) notations, combined with textual (se-
quential) parts, while traditional programming languages predominantly presume textual
(sequential) forms.

The software engineering discipline in which models are the central artifacts of development, which are
used to construct the system, communicate design decisions, and generate other design artifacts, is called
model-driven engineering (MDE), while the development of systems that exploit MDE is called model-driven
development (MDD).

Modeling Languages
To build models, developers must know the vocabulary that can be used in modeling. The vocabulary
available for modeling (that is, the set of concepts, along with the semantics of these concepts, their
properties, relationships, and the syntax) form the definition of the modeling language. Using a certain
modeling language, developers build sentences in that language, creating models that way. Therefore,
a modeling language is the key tool available to developers for building models because there is no
purpose in making models without understanding their meaning. Hence, a modeling language provides
a common means for communication between developers.

To be successful, a modeling language must be carefully balanced to meet somewhat opposing demands.

On one hand, a modeling language must be simple enough to be easily understandable and usable by
modelers. If the modeling language were too complex to be comprehensible, it would not be widely
accepted by the software community. Additionally, it is very desirable that users who pose the re-
quirements also understand the modeling language, at least the part that is used in specification of
requirements. This property may significantly reduce the risk of misunderstandings between users and
modelers during requirements specification.

On the other hand, a modeling language should not be too simple or too specific. If the modeling lan-
guage were not general enough, it could not cover all situations that could arise in the real world.

In addition, a modeling language must be abstract enough to be conceptually close to the problem
domain. A modeling language that is not abstract enough suffers from a large conceptual distance

6

Chapter 1: Information Systems Modeling

from the problem domain. In that case, the development requires a big mental effort because the modelers
must take the conceptual mapping from the problem domain into the model. In other words, the lan-
guage must be expressive enough.

Expressiveness is a descriptive property of a language that measures the ‘‘quantity’’ of meaning
of certain language concepts. An expressive language consists of concepts that have rich semantics
and, thus, have plentiful manifestation at the system’s execution time. Models in an expressive
language may be concise, and yet provide lots of run-time manifestations that correspond to the
posed requirements. Expressiveness is, in other words, a measure of conciseness with which a
particular logical design may be expressed in a certain language. Put more simply, it measures how
many (or few) words you must say in the given language in order to express some logical design or
intention.

Therefore, the modeling effort and development cost is directly affected by expressiveness. If the lan-
guage is expressive enough, models consist of smaller sentences, and developers make less effort to
specify systems under construction, and vice versa.

Additionally, a modeling language should allow informal, incomplete, or inconsistent models
because the process of modeling in the early phases of requirements specification and system
conception often assumes such models. During the early phases of requirements engineering and
system conception, system analysts and designers have vague and sometimes incorrect visions
of the systems being specified and constructed. Therefore, the analysts should be able to make
sketches in the modeling language, in a way that allows their later refinement. If the modeling
language does not allow such imprecise modeling, it could not be used in the early requirements
specification and conceptualization phase. However, it is very useful if the same language is used in
the entire process of system development, but not just during requirements specification or just during
design.

On the other hand, a modeling language should be simple and primitive enough in order to have precise
semantics that allow transformation of models into an implementation form. Highly abstract models
are usually transformed into lower-level forms that can be either interpreted by other software systems,
or further transformed into even lower-level forms, or ultimately executed by hardware (which also
interprets the binary code in some way).

For example, source code in a traditional textual programming language such as C++, Java, or C# is
transformed (compiled) by other software systems (compilers) into either a binary executable program
(for C++), which is executed by hardware, or into an intermediate form (as in Java or C#), which is
interpreted by other software systems (virtual machines), to provide the running application. Similarly,
a model made in a visual modeling language, such as the Unified Modeling Language (UML), which
is a focus of this book, may be transformed into the target programming language code (for example,
C++, Java, or C#).

The described transformation into a lower-level form can be performed manually, semi-automatically,
or completely automatically, using the corresponding transformer. It is very useful if a highly abstract
model of a system, specified in a modeling language, can be transformed completely automatically (in
one or several steps) into a form that can be executed or interpreted in a way that provides the running
application, following the semantics of the initial model. In that case, the modeling language can be

7

Part I: Introduction

treated as executable, although it is not directly executed by hardware. This is because the model implies
an automatically achievable form that can be ultimately executed by hardware.

In this chain of transformations and intermediate models (for example, source code, intermediate code,
executable code, and so on), the form that can be interpreted by another software system to result in the
running application (such as Java byte code or SQL statements), or that can be automatically compiled
into an executable binary code (such as source code in C++), is referred to as the implementation form, and
the language it is made in is referred to as the implementation language.

In order to be executable, the modeling language must have precise and completely formal seman-
tics, and the model that should be executed (or, more precisely, automatically transformed into an
implementation form), must be formal, unambiguous, and consistent. These are the most important char-
acteristics of the modeling languages that claim to be useable and useful for modeling of any complex
software system in general, and information systems in particular.

The concrete notation of modeling and implementation languages can be textual or visual. Textual
languages allow you to create inherently sequential models. Although textual models (that is, programs
or scripts or sentences written in textual languages) may be visually perceived by the developer in
two dimensions, they are inherently sequential because the transformers parse them as sequences of
characters.

Conversely, visual languages assume making models in two or even three dimensions, most often using
diagrammatic notations combined with textual fragments. It is usually the case that a pictorial, diagram-
matic notation is much more descriptive, intuitive, and easier to perceive than the equivalent sequential
(textual) form. This is why modeling languages with diagrammatic notations are more popular for
abstract modeling.

However, it is not always true that visual languages are more usable than textual ones. Some intentions
can be much more effectively expressed in a textual form than in a visual form. For example, to specify a
simple loop or an expression such as a regular expression or a simple addition of two operands, a textual
form may be much more convenient and concise than an equivalent graphical notation.

In short, both textual and diagrammatic languages have their advantages and drawbacks. Usually, a
combination of both is most efficient in modeling.

Figure 1-2 illustrates the comparison of abstract versus low-level modeling, and visual versus tex-
tual modeling languages. A small piece of a model in a highly abstract, visual language is shown in
Figure 1-2a, whereas the equivalent model in a low-level, textual language is shown in Figure 1-2b. Both
examples model the same simple fact from the problem domain that a person (described with name,
social security number, and address) may work for at most one company (described with name and
address), and a company may employ many persons.

The example shown in Figure 1-3 illustrates a yet more dramatic difference between the abstract visual
model in Figure 1-3a, and its semantic equivalent in a lower-level, textual programming language in
Figure 1-3b. The figure shows the lifecycle model for a course enrollment in an imaginary educational
institution. The diagram in Figure 1-3a depicts how a student’s application for a course is processed until
it gets either rejected or accepted, or suspended (and later resumed) or canceled.

8

Chapter 1: Information Systems Modeling

(a)

(b)

company employee
0..1 ∗worksFor

Company

name : Text
address : Text

class Company {
public:
 String name;
 String address;
 Collection<Person*> employee;
};

class Person {
public:
 String name;
 String ssn;
 String address;
 Company* company;
};

name : Text
ssn : Text
address : Text

Person

Figure 1-2: Abstract vs. low-level modeling and visual vs. textual modeling languages.
(a) A model in a highly abstract, visual language. (b) A model in a low-level, textual
language. Both examples model the same simple fact from the problem domain that a
person (described with name, social security number, and address) may work for at
most one company (described with name and address), and a company may employ
many persons.

Modeling Tools
As in any other engineering discipline, tools are key factors to successful production. In the context of
modeling, different kinds of software systems are used as modeling tools. The system that is used as an
environment for creating and editing models (and that is responsible for their specification, visualization,
and consistency checking) is called the model editor. The tools that transform the models into lower-level
forms are generally called transformers or translators, or specifically generators or compilers, depending on
their target domain.

For example, a tool that transforms a higher-level, abstract, and visual model into a textual source code
in the implementation language (for example, C++, Java, or C#) is often referred to as a code generator,
although it is sometimes called a model compiler.

Finally, the tool that transforms a program written in a textual language (such as C++, Java, or C#) into
the executable (binary) code, or interpretable (intermediate) code, is often called the compiler. Many other
kinds of modeling tools are also used for specific tasks in development, such as model analyzers, model
comparators.

Modeling Paradigms
There are modeling languages that are particularly appropriate for (or the same) problem domains,
such as those that analyze or compare models, and others. These languages, based on the same set of
fundamental concepts, form a modeling paradigm. The languages of the same paradigm may differ in
more or less detail or variations.

9

Part I: Introduction

cancel

accept

reject
takeOver

Processing

Submitted

InApproval

Canceled

Accepted

Rejected

Suspended
suspend
resumeH

(a)

(b)

switch (state) {
 case Submitted:
 switch (event) {
 case takeOver: state = InApproval; break;
 case suspend: prevState = state; state = Suspended; break;
 case cancel: state = Canceled; break;
 };
 break;
 case InApproval:
 switch (event) {
 case reject: state = Rejected; break;
 case accept: state = Accepted; break;
 case suspend: prevState = state; state = Suspended; break;
 case cancel: state = Canceled; break;
 };
 break;
 case Suspended:
 if (event==resume) state = prevState; break;
}

Figure 1-3: Abstract vs. low-level modeling and visual vs. textual modeling
languages. (a) A model in a highly abstract, visual language. (b) A model in a
low-level, textual language. Both examples model the lifecycle of an application
for a course.

For example, the relational modeling paradigm is based on the fundamental concept of mathematical
relation, which is often represented by a table with columns (or fields, properties, attributes) and
rows (records or tuples). Although relational database management systems (RDBMSs) often support
somewhat different languages, varying in other concepts built upon the basic relational concepts, they
are still based on the same paradigm. For additional information about the relational paradigm and
DBMSs, see Chapter 22 in the Supplement.

Similarly, the procedural programming paradigm assumes some common concepts such as data type,
variable, expression, statement, loop, subprogram (procedure or function), argument (formal and actual),

10

Chapter 1: Information Systems Modeling

subprogram invocation, recursion, and so on. Many programming languages that fall in this category
(for example, Algol, Pascal, C, Fortran, and so on) support most of these concepts in very similar ways,
but differ in many other less relevant details.

This book is devoted to a standard modeling language for general software modeling, called the Uni-
fied Modeling Language (UML). This language supports the object paradigm, significantly different from
the relational paradigm, for example. The basic concepts of the object paradigm are summarized in
Chapter 24 of the Supplement, but will also be explained from the beginning in Part II.

Section Summary

❑ A model is an abstract, simplified, or incomplete description of the system being
constructed.

❑ The language used for creating models is called the modeling language. It
encompasses concepts used for creating models of systems, their semantics,
properties, and relationships, along with the syntax for creating correct
models.

❑ A modeling language should be simple enough to be easily comprehensible
and usable by modelers. On the other hand, the language should not be too
simple or too specific.

❑ A modeling language must be expressive and abstract enough to be concep-
tually close to the problem domain. However, the language should be simple
and primitive enough to have precise semantics that allow transformation of
models into implementation forms.

❑ If the concepts of a modeling language have formal semantics that enable mod-
els to be transformed completely automatically into forms that can be executed
or interpreted in a way that results in running applications, the language is
called executable.

❑ The form that can be interpreted by another software system that provides
the running application, or can be automatically compiled into an executable
binary code, is referred to as the implementation form, and the language it is
made in is called the implementation language.

❑ The concrete syntax of modeling languages can be visual (diagrammatic) or
textual (sequential).

❑ The software engineering discipline in which models are the central artifacts
of development (which are used to construct the system, communicate design
decisions, and generate other design artifacts) is called model-driven engineering
(MDE), while the development of systems that exploits MDE is called model-
driven development (MDD).

❑ The tool that is used for creating and editing models, responsible for their spec-
ification, visualization, and consistency checking, is called the model editor.

❑ The set of languages based on the same set of fundamental concepts form a
modeling paradigm.

11

Part I: Introduction

Processes and Methods
A modeling language is just a vehicle for modeling. It only specifies the concepts that can be used in
modeling, as well as their semantics and the rules for forming correct models. However, the language
itself does not give any direction how to specify requirements, create models, or develop a system. In
other words, the process of development is not defined by the language itself.

In general, a process is a set of partially ordered steps intended to reach a goal. In software engineering,
the goal is to efficiently and predictably deliver a software product that meets the users’ needs [Booch,
1999].

In software production, at least two types of processes can be distinguished, depending on their scale
and focus.

First, there is a higher-level project management process that deals with planning, organizing, supervising,
and controlling phases and iterations during the entire project, interacting with the customers, managing
resources, as well as defining milestones and artifacts of development phases. It is mostly independent
of which modeling language or paradigm is exploited.

On the other hand, there is a lower-level design process that deals with how the modeling language and
other technology is used and applied in different situations, as well as other things such as selecting
or inventing suitable design patterns for given design situations, refactoring techniques, ways of using
tools, and the like. To successfully build systems, designers must follow a proper design process that, in
conjunction with the used modeling language, forms the modeling (or design) method.

For more information about the characteristics of project management process models, see Chapter 21 in
the Supplement section. Part IV describes some elements of the design process proposed for the modeling
method described in this book.

At this point, let’s just briefly summarize some of the key properties of the proposed design method.

First, the proposed design method is based on the object paradigm in all its phases and all its artifacts.
Second, it is oriented to production of abstract models instead of paper documents, as the principal
artifacts of software development.

In addition, it encourages reuse of different artifacts and relies on a formal, executable modeling language
as much as possible, and as early as possible. Such orientation can improve software production dramat-
ically. Namely, if an executable model of the system being constructed can be obtained early enough,
as soon as the requirements are captured, but without exhausting conceptual mappings, the ultimate
implementation can then be reached automatically and rapidly. As already stated, the basic precondition
for this is a highly abstract, but formal and executable modeling language, as well as a design process
that supports its use. This is also one of the key focuses of this book.

12

Chapter 1: Information Systems Modeling

Section Summary

❑ A process is a set of partially ordered steps intended to efficiently and pre-
dictably deliver a software product that meets users’ needs.

❑ The project management process deals with planning, organizing, supervising,
and controlling phases and iterations during the entire project, interacting with
the customers, managing resources, as well as defining milestones and artifacts
of development phases.

❑ The design process deals with how the modeling language is used and applied
in different situations, as well as other things such as selecting or inventing
suitable design patterns for given design situations, refactoring techniques,
ways of using tools, and the like.

❑ The design method proposed in this book relies on using formal and
executable models, as well as producing such models as early as possible.

13

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

