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CHAPTER 1
Introduction

1.1 THE NEED FOR BETTER F INANCIAL MODEL ING
OF ASSET PRICES

Major debacles in financial markets since the mid-1990s such as the Asian
financial crisis in 1997, the bursting of the dot-com bubble in 2000, the
subprime mortgage crisis that began in the summer of 2007, and the days
surrounding the bankruptcy of Lehman Brothers in September 2008 are con-
stant reminders to risk managers, portfolio managers, and regulators of how
often extreme events occur. These major disruptions in the financial markets
have led researchers to increase their efforts to improve the flexibility and
statistical reliability of existing models that seek to capture the dynamics of
economic and financial variables. Even if a catastrophe cannot be predicted,
the objective of risk managers, portfolio managers, and regulators is to limit
the potential damages.

The failure of financial models has been identified by some market ob-
servers as a major contributor—indeed some have argued that it is the single
most important contributor—for the latest global financial crisis. The alle-
gation is that financial models used by risk managers, portfolio managers,
and even regulators simply did not reflect the realities of real-world finan-
cial markets. More specifically, the underlying assumption regarding asset
returns and prices failed to reflect real-world movements of these quantities.
Pinpointing the criticism more precisely, it is argued that the underlying
assumption made in most financial models is that distributions of prices
and returns are normally distributed, popularly referred to as the “nor-
mal model.” This probability distribution—also referred to as the Gaussian
distribution and in lay terms the “bell curve”—is the one that dominates
the teaching curriculum in probability and statistics courses in all business
schools. Despite its popularity, the normal model flies in the face of what
has been well documented regarding asset prices and returns. The prepon-
derance of the empirical evidence has led to the following three stylized facts
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2 FINANCIAL MODELS WITH LÉVY PROCESSES AND VOLATILITY CLUSTERING

regarding financial time series for asset returns: (1) they have fat tails (heavy
tails), (2) they may be skewed, and (3) they exhibit volatility clustering.

The “tails” of the distribution are where the extreme values occur. Em-
pirical distributions for stock prices and returns have found that the extreme
values are more likely than would be predicted by the normal distribution.
This means that between periods where the market exhibits relatively mod-
est changes in prices and returns, there will be periods where there are
changes that are much higher (i.e., crashes and booms) than predicted by
the normal distribution. This is not only of concern to financial theorists,
but also to practitioners who are, in view of the frequency of sharp market
down turns in the equity markets noted earlier, troubled by, in the words
of Hoppe (1999), the “. . . compelling evidence that something is rotten in
the foundation of the statistical edifice . . . used, for example, to produce
probability estimates for financial risk assessment.” Fat tails can help ex-
plain larger price fluctuations for stocks over short time periods than can
be explained by changes in fundamental economic variables as observed by
Shiller (1981).

The normal distribution is a symmetric distribution. That is, it is a
distribution where the shape of the left side of the probability distribution
is the mirror image of the right side of the probability distribution. For a
skewed distribution, also referred to as a nonsymmetric distribution, there
is no such mirror imaging of the two sides of the probability distribution.
Instead, typically in a skewed distribution one tail of the distribution is
much longer (i.e., has greater probability of extreme values occurring) than
the other tail of the probability distribution, which, of course, is what we
referred to as fat tails. Volatility clustering behavior refers to the tendency
of large changes in asset prices (either positive or negative) to be followed
by large changes, and small changes to be followed by small changes.

The attack on the normal model is by no means recent. The first fun-
damental attack on the assumption that price or return distribution are not
normally distributed was in the 1960s by Mandelbrot (1963). He strongly
rejected normality as a distributional model for asset returns based on his
study of commodity returns and interest rates. Mandlebrot conjectured that
financial returns are more appropriately described by a non-normal sta-
ble distribution. Since a normal distribution is a special case of the stable
distribution, to distinguish between Gaussian and non-Gaussian stable dis-
tributions, the latter are often referred to as stable Paretian distributions
or Lévy stable distributions.1 We will describe these distributions later in
this book.

1The stable Paretian distribution is so-named because the tails of the non-Gaussian
stable distribution have Pareto power-type decay. The Lévy stable distribution is
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Mandelbrot’s early investigations on returns were carried further by
Fama (1963a, 1963b), among others, and led to a consolidation of the
hypothesis that asset returns can be better described as a stable Paretian dis-
tribution. However, there was obviously considerable concern in the finance
profession by the findings of Mandelbrot and Fama. In fact, shortly after the
publication of the Mandelbrot paper, Cootner (1964) expressed his concern
regarding the implications of those findings for the statistical tests that had
been published in prominent scholarly journals in economics and finance.
He warned that (Cootner, 1964, p. 337):

Almost without exception, past econometric work is meaningless.
Surely, before consigning centuries of work to the ash pile, we
should like to have some assurance that all our work is truly useless.
If we have permitted ourselves to be fooled for as long as this into
believing that the Gaussian assumption is a workable one, is it not
possible that the Paretian revolution is similarly illusory?

Although further evidence supporting Mandelbrot’s empirical work was
published, the “normality” assumption remains the cornerstone of many
central theories in finance. The most relevant example for this book is the
pricing of options or, more generally, the pricing of contingent claims. In
1900, the father of modern option pricing theory, Louis Bachelier, pro-
posed using Brownian motion for modeling stock market prices.2 Inspired
by his work, Samuelson (1965) formulated the log-normal model for stock
prices that formed the basis for the well-known Black-Scholes option pricing

named in honor of Paul Lévy for his seminal work introducing and characterizing
the class of non-Gaussian stable distributions.
2There are several reasons why Brownian motion is a popular process. First, Brow-
nian motion is the milestone of the theory of stochastic processes. However, more
realistic general processes that are better suited for financial modeling such as Lévy,
additive or self-similar processes (all of which we discuss in this book) have been de-
veloped only since the mid-1990s (see Samorodnitsky and Taqqu, 1994, Sato, 1999,
and Embrechhts and Maejima, 2002). Most of the practical problems of mathe-
matical finance can be solved by taking into consideration these new processes. For
example, the concept of stochastic integral with respect to Brownian motion was
introduced in 1933 and only in the 1990s has the general theory of stochastic inte-
gration with respect to semimartingale appeared. From a practical point of view, the
second reason for the popularity of Brownian motion is that the normal distribution
allows one to solve real-world pricing problems such as option prices as estimations
and simulations in a few seconds, and most of the problems have a closed-form
solution that can be easily used.
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model. Black and Scholes (1973) and Merton (1974) introduced pricing and
hedging theory for the options market employing a stock price model based
on the exponential Brownian motion. The model greatly influences the way
market participants price and hedge options; in 1997, Merton and Scholes
were awarded the Nobel Prize in Economic Science.

Despite the importance of option theory as formulated by Black,
Scholes, and Merton, it is widely recognized that on Black Monday, Oc-
tober 19, 1987, the Black-Scholes formula failed. The reason for the failure
of the model particularly during volatile periods is its underlying assump-
tions necessary to generate a closed-form solution to price options. More
specifically, it is assumed that returns are normally distributed and that
return volatility is constant over the option’s life. The latter assumption
means that regardless of an option’s strike price, the implied volatility (i.e.,
the volatility implied by the Black-Scholes model based on observed prices
in the options market) should be the same. Yet, it is now an accepted fact
that in the options market, implied volatility varies depending on the strike
price. In some options markets, for example, the market for individual eq-
uities, it is observed that, for options, implied volatility decreases with an
option’s strike price. This relationship is referred to as volatility skew. In
other markets, such as index options and currency options, it is observed that
at-the-money options tend to have an implied volatility that is lower than
for both out-of-the-money and in-the-money options. Since graphically this
relationship would show that implied volatility decreases as options move
from out-of-the-money options to at-the-money options and then increase
from at-the-money options to in-the-money options, this relationship be-
tween strike price and implied volatility is called volatility smile. Obviously,
both volatility skew and volatility smile are inconsistent with the assumption
of a constant volatility.

Consequently, since the mid-1990s there has been growing interest in
non-normal models not only in academia but also among financial prac-
titioners seeking to try to explain extreme events that occur in financial
markets. Furthermore, the search for proper models to price complex finan-
cial instruments and to calibrate the observed prices of those instruments
quoted in the market has motivated studies of more complex models. There
is still a good deal of work to be done on financial modeling using alter-
native non-normal distributions that have recently been proposed in the
finance literature. In this book, we explain these univariate and multivariate
models (both discrete and continuous) and then show their applications to
explaining stock price behavior and pricing options.

In the balance of this chapter we describe some background information
that is used in the chapters ahead. At the end of the chapter we provide an
overview of the book.
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1.2 THE FAMILY OF STABLE DISTRIBUTION AND
ITS PROPERTIES

As noted earlier, Mandelbrot and Fama observed fat tails for many asset
price and return data. For assets whose returns or prices exhibit fat-tail at-
tributes, non-normal distribution models are required to accurately model
the tail behavior and compute probabilities of extreme returns. The candi-
dates for non-normal distributions that have been proposed for modeling
extreme events in addition to the α-stable Paretian distribution include mix-
tures of two or more normal distributions, Student t-distributions, hyper-
bolic distributions, and other scale mixtures of normal distributions, gamma
distributions, extreme value distributions. The class of stable Paretian dis-
tributions (which includes α-stable Paretian distribution as a special case)
are simply referred to as stable distributions.

Although we cover the stable distribution in considerable detail in Chap-
ter 3, here we only briefly highlight the key features of this distribution.

1.2.1 Parameterizat ion of the Stable Distr ibut ion

In only three cases does the density function of a stable distribution have
a closed-form expression. In the general case, stable distributions are de-
scribed by their characteristic function that we describe in Chapter 3. A
characteristic function provides a third possibility (besides the cumulative
distribution function and the probability density function) to uniquely define
a probability distribution. At this point, we just state the fact that know-
ing the characteristic function is mathematically equivalent to knowing the
probability density function or the cumulative distribution function. What
is important to understand is that the characteristic function (and thus the
density function) of a stable distribution is described by four parameters: µ,
σ , α, and β.3

The µ and σ parameters are measures of central location and scale,
respectively. The parameter α determines the tail weight or the distribu-
tion’s kurtosis with 0 < α ≤ 2. The β determines the distribution’s skew-
ness. When the β of a stable distribution is zero, the distribution is sym-
metric around µ. Stable distributions allow for skewed distributions when
β �= 0 and fat tails; this means a high probability for extreme events rela-
tive to the normal distribution when α < 0. The value of β can range from

3There are many different possible parameterizations of stable distributions. For an
overview the reader is referred to Zolotarev (1986). The parameterization used here
is the one introduced by Samorodnitsky and Taqqu (1994).
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−1 to +1. When β is positive, a stable distribution is skewed to the right;
when β is negative, a stable distribution is skewed to the left. Figure 1.1
shows the effect on tail thickness of the density as well as peakedness at
the origin relative to the normal distribution (collectively the “kurtosis” of
the density) for the case of where µ = 0, σ = 1, and β = 0. As the values
of α decrease, the distribution exhibits fatter tails and more peakedness at
the origin. Figure 1.1 illustrates the influence of β on the skewness of the
density function for the case where α = 1.5, µ = 0, and σ = 1. Increasing
(decreasing) values of β result in skewness to the right (left).

There are only four stable distributions that possess a closed-form ex-
pression for their density function. The case where α = 2 (and β = 0, which
plays no role in this case) and with the re-parameterization in the scale pa-
rameter σ , yields the normal distribution. Thus, the normal distribution is
one of the four special cases of the stable distribution, one that possesses a
closed-form expression. The second occurs when α = 1 and β = 0. In this
case we have the Cauchy distribution, which, although symmetric, is char-
acterized by much fatter tails than the normal distribution. When we have
α = 0.5 and β = 1, the resulting density function is the Lévy distribution.4
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F IGURE 1.1 Stable Density: µ = 0, σ = 1, β = 0, and varying α (left); α = 1.5,
µ = 0, σ = 1, and varying β (right)

4The probability mass of the Lévy distribution is concentrated on the interval
(µ, +∞). The phenomenon that the domain of a stable distribution differs from
the whole real line can only occur for values of α strictly less than one and in the
case of maximal skewness, that is, for β = +1 or β = −1. In the former case, the
support of the distribution equals the interval (µ, +∞) whereas in the latter case it
equals (−∞, µ).
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And finally, the fourth case with a closed-form density is the reflected Lévy
distribution with parameters α = 0.5 and β = −1, so-called because this
distribution can be obtained from the Lévy distribution by reflecting the
graph of the density at the vertical axis.

1.2.2 Desirable Propert ies of the Stable
Distr ibut ions

An attractive feature of stable distributions, not shared by other probability
distribution models, is that they allow generalization of financial theories
based on normal distributions and, thus, allow construction of a coherent
and general framework for financial modeling. These generalizations are
possible only because of two specific probabilistic properties that are unique
to stable distributions (both normal and non-normal): (1) the stability prop-
erty and (2) the Central Limit Theorem.

The stability property was briefly mentioned before and denotes the fact
that the sum of two independent α-stable random variables follows—up to
some correction of scale and location—again the same stable distribution.
This property, which is well known for the special case of the normal distri-
bution, becomes important in financial applications such as portfolio choice
theory or when measuring returns on different time-scales. The second prop-
erty, also well known for the normal distribution, generalizes to the stable
case. Specifically, by the Central Limit Theorem, appropriately normalized
sums of independent and identically distributed (i.i.d.) random variables
with finite variance converge weakly5 to a normal random variable, and
with infinite variance, the sums converge weakly to a stable random vari-
able. This gives a theoretical basis for the use of stable distributions when
heavy tails are present and stable distributions are the only distributional
family that has its own domain of attraction—that is, a large sum of ap-
propriately standardized i.i.d. random variables will have a distribution that
converges to a stable one. This is a unique feature and its fundamental im-
plications for financial modeling are the following: If changes in a stock
price, interest rate, or any other financial variable are driven by many inde-
pendently occurring small shocks, then the only appropriate distributional
model for these changes is a stable model (normal or non-normal stable).

5Weak converge of a sequence of random variables to a distribution function F
means that the distribution functions F1, F2, . . . of X1, X2, . . . converge pointwise in
every point of continuity of F to the distribution function F .
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1.2.3 Considerat ions in the Use of the Stable
Distr ibut ion

Despite the empirical evidence rejecting the normal distribution and in sup-
port of the stable distribution, there have been several barriers to the ap-
plication of stable distribution models, both conceptual and technical. The
major problem is that the variance of the stable non-normal distributions
equals infinity. This fact can be explained by the tail behavior of stable dis-
tributions. One can show that the density function of a stable distribution
with index of stability α “behaves like” |x|−α−1 and consequently all mo-
ments E|X|p with p ≥ α do not exist. In particular, the mean only exists for
α > 1.

A second criticism of the stable distribution concerns the fact that with-
out a general expression for stable probability densities—except the four
cases identified above—one cannot directly implement estimation method-
ologies for fitting these densities. Today, because of advances in computa-
tional finance, there are methodologies for fitting densities for stable distri-
butions that we describe in later chapters. Nevertheless, there remains the
problem of using the α-stable distribution in option pricing models because
of its infinite moments of order higher than α.

Finally, the empirical evidence of observed market returns, although in-
consistent with the normal distribution and better explained by the α-stable
distribution, still is not a good fit to that distribution. More specifically,
the tails of the distribution for asset returns are heavier than the normal
distribution but thinner than the α-stable distribution.6

To overcome the drawbacks of the α-stable distribution, the tails of an
α-stable random variable can be appropriately tempered or truncated in or-
der to obtain a proper distribution that can be utilized to price derivatives.
Several alternatives to the α-stable distribution have been proposed in the lit-
erature. One alternative is the classical tempered stable (CTS) distribution—
introduced under the names truncated Lévy flight, KoBoL, and CGMY7—
and its extension, the KR distribution. The modified tempered stable (MTS)
distribution is another alternative.8 These distributions, sometimes called
the tempered stable distributions,9 have not only heavier tails than the

6See Grabchak and Samorodnitsky (2010).
7The truncated Lévyflight, KoBol, and CGMY were introduced by Koponen (1995),
Boyarchenko and Levendorskiĭ (2000), and Carr et al. (2002), respectively.
8The KR and the MTS distribution are analyzed in Kim et al. (2008) and Kim et al.
(2009), respectively.
9Rosiński (2007) extended CTS distribution under the name of the tempered stable
distribution, and KR distribution is included in this extension, but MTS distribution
is not (see Bianchi et al., 2010).
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normal distribution and thinner than the α-stable distribution, but also have
finite moments for all orders and exponential moments of some order. Thus
an exponential Lévy model can be constructed. Recently, Menn and Rachev
(2009) introduced the so-called smoothly truncated stable (STS) random
variable in order to provide a practical framework to extend option pricing
theory to the α-stable model.

1.3 OPTION PRIC ING WITH VOLATIL ITY
CLUSTERING

The arbitrage pricing of options is based on the martingale approach de-
scribed in Harrison and Kreps (1979) and subsequently by Harrison and
Pliska (1981). According to this approach, option prices can be obtained by
taking the expectation for the payoff function of the given underlying asset
under a so-called risk-neutral measure (or equivalent martingale measure),
which generally differs from the market measure estimated from histori-
cal data. The option price is effected by the risk-neutral measure. In the
Black-Scholes model, for example, the return distribution is assumed to be
a normal distribution and the price of a European call and put option given
by a simple explicit form that depends on two main parameters: the risk-free
rate and the variance.

Practitioners prefer to use the word volatility (the square root of the
variance). Two types of volatilities can be observed in the market: (1) the
volatility that can be inferred from stock prices, and (2) the so-called implied
volatility (which we mentioned earlier in this chapter) that is embedded in
option prices. The former is the volatility defined under the market measure,
and the latter is usually viewed as a predictor of the future stock market
volatility, and it can be considered as the risk-neutral volatility. Furthermore,
one can assume a constant volatility or a time-varying one, depending on
the statistical model one wants to employ. In particular, as observed by
Corcuera et al. (2009), the implied volatility, calculated by inverting the
formula of a given pricing model, strictly depends on the model selected.

Exponential Lévy models have been proposed to overcome the prob-
lems arising from the Black-Scholes model. Unfortunately, in spite of the
skewness and the heavy-tail properties of the price-driving process, the ex-
ponential Lévy model has been rejected based on empirical evidence because
it cannot explain the volatility clustering effect of a time series of observed
returns. As noted in section 1.1, volatility clustering behavior refers to the
tendency of large changes in asset prices (either positive or negative) to be fol-
lowed by large changes and small changes to be followed by small changes.
Furthermore, Lévy models provide a suitable fit to observed option prices
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for a single maturity, but not over all the maturities simultaneously.10 That
is, the volatility surface cannot be exactly fit with these kinds of models.
In order to overcome this deficiency of Lévy-based models, one can utilize
both stochastic volatility models and discrete-time generalized autoregres-
sive conditional heteroscedastic (GARCH) models to price derivatives under
the assumption of unknown volatility.

Understanding the behavior of return volatility is important for fore-
casting as well as pricing option-type derivative instruments since volatility
is a proxy for risk. There are two important directions in the literature for
modeling for non constant volatility: (1) continuous-time stochastic volatil-
ity processes11 represented in general by a bivariate diffusion process and
(2) the discrete-time autoregressive conditionally heteroscedastic (ARCH)
model of Engle (1982) or its generalization (GARCH) as first defined by
Bollerslev (1986).

There are different ways to construct continuous-time stochastic volatil-
ity models. The first way changes the volatility parameter of the Black-
Scholes model to a stochastic one and considers a bivariate diffusion pro-
cess. Hull and White (1987) and Heston (1993) used an Itô process as the
volatility process. Recently, Barndorff-Nielsen and Shephard (2001) defined
the squared volatility process as an Ornstein-Uhlenbeck process driven by
a Lévy subordinator. The second way to build models with dependence
in increments is to time change a Lévy process by a positive increasing
process with dependent increments. This second way to construct stochas-
tic volatility model goes back to Mandelbrot and Taylor (1967) and Clark
(1973) who modeled the asset models price as a geometric Brownian motion
subordinated by an independent Lévy subordinator. Mandelbrot and Taylor
assumed an α-stable distributed subordinator and Clark a log-normal one.12

Based on the previous construction, a stochastic time driven by a pos-
itive increasing Lévy process with dependent increments can be taken into
consideration.13 They take homogeneous Lévy processes and generate the
desired volatility properties by subordinating them to the time integral of
a Cox-Ingersoll-Ross (CIR) process.14 The randomness of the CIR process
induces stochastic volatility, while mean reversion in this process induces
volatility clustering.

10See Corcuera et al. (2009).
11Schoutens (2003) examined the performance of various stochastic volatility models.
See also Cont and Tankov (2004).
12See De Giovanni et al. (2008).
13This stochastic volatility model has been proposed in Carr et al. (2002).
14This model is introduced in Cox et al. (1985).
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The main advantage of the continuous-time models is that a closed-form
solution for European option prices is available; in contrast, in general, this
is not a property of discrete models. However, in GARCH models, volatility
is observable at each time point, thereby making the estimation procedure
a much easier task than the one in continuous-time models. Duan (1995)
investigated the pricing problem in the presence of lognormal stock returns
and a GARCH volatility dynamic. Duan’s result relies on the existence of a
representative agent with constant relative risk aversion or constant absolute
risk aversion. Heston and Nandi (2000), derived a semi-analytical pricing
formula for European options for a normal GARCH model. The advantage
of their closed-form solution is that the calibration technique is much easier
to implement, even if the explanatory power of the model is poor.

Even if GARCH models are a bit mechanical, the methodology is useful
since their diffusion limits contain many well-known stochastic volatility
models. From an estimation perspective, GARCH models may have distinct
advantages over stochastic volatility models. Continuous-time stochastic
volatility models are difficult to implement because, with discrete obser-
vations on the underlying asset price process, the volatility is not readily
identifiable. Furthermore, time-continuity models impose the possibility of
continuous trading in order to construct the hedge portfolio this is not fea-
sible in reality. To overcome this problem, implied volatilities are extracted
from current option prices. In contrast, GARCH models have the advantage
that volatility is observable from the history of asset prices. Consequently,
it is possible to price options solely on the basis of observable history of the
underlying asset process without requiring information on derivative prices.

In this book, we test performance of option pricing models using the
S&P 500 index (SPX) option and the S&P 100 index (OEX) option. The
former is a European style option while the latter is American style. Both
options are traded on the Chicago Board Options Exchange. All market data
are obtained from Option Metrics’s Ivy DB in the Wharton Research Data
Services.

1.3.1 Non-Gaussian GARCH Models

When fitting GARCH models to return series, it is often found that the resid-
uals still tend to be heavy tailed. One reason is that the normally distributed
innovation is insufficient to describe the residual of return distributions. In
general, the skewness and leptokurtosis observed for financial data cannot
be captured by a GARCH model with innovations that are normally dis-
tributed. To allow for particularly heavy-tailed conditional (and uncondi-
tional) return distributions, GARCH processes with non-normal distribution
have been considered (see Mittnik et al., 1998).
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Although asset return distributions are known to be conditionally lep-
tokurtic, only a few studies have investigated the option pricing problem
with GARCH dynamics and non-Gaussian innovations. Menn and Rachev
(2009) considered smoothly truncated stable innovations and Christoffersen
et al. (2010) investigated GARCH option pricing with inverse Gaussian and
skewed variance-gamma innovations.15 Kim et al. (2010) studied parametric
models based on tempered stable distributions.

Another important direction in the financial literature is to estimate the
risk-neutral return distribution and risk-neutral return volatility dependence
using nonparametric techniques. Barone-Adesi et al. (2008) proposed the so-
called filtered historical simulation method in which a random choice among
the observed historical innovation sample is used to simulate the future
innovation behavior.16

1.4 MODEL DEPENDENCIES

An important topic in quantitative finance is obtaining a reliable estimate of
dependencies among financial instruments. This is fundamental in solving
portfolio allocation problems or finding a fair price for derivatives whose
underlying is a basket of instruments. Multivariate normal distributions are
usually considered to model these dependencies, and the correlation matrix
becomes the most important parameter to look at. However, correlation
cannot explain joint extreme events since it can deal only with linear depen-
dencies. More sophisticated techniques are needed to model the dependency
structures observed in financial markets, particularly after the recent finan-
cial crisis that highlighted the failure of the Gaussian one-factor copula
model in pricing collateralized debt obligations (CDOs).17

The more intuitive approach considers non-normal multivariate distri-
butions by looking at a more flexible structure.18 A second approach consid-
ers the copula framework,19 which involves modeling the joint multivariate
distribution in two steps: first by selecting a function to model the depen-
dency structure, and second by selecting a proper model for the marginals.
The first approach has its foundation in distribution theory and, in a cer-
tain sense, it is more elegant; the second approach offers a framework that
can easily be understood by practitioners and offers sufficient flexibility that

15See also Christoffersen et al. (2006).
16See also Ait-Sahalia and Lo (2000), and Badescu and Kulperger (in press).
17See Brigo et al. (2010).
18See McNeil et al. (2005).
19See Embrechts et al. (2003) and references therein.
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allows its adaption to stylized empirical facts observed in financial markets.
The benefits of the copula framework are that it is quite simple to estimate
and simulate, and for this reason in recent years it has become popular
among financial practitioners.

A model must have three fundamental characteristics: (1) It has to be
sophisticated enough to try to explain the major phenomena observed in
financial markets; (2) it has to be simple enough to be calibrated; and (3) it
has to be easily understood by practitioners. For these reasons, the normal
distribution is a cornerstone in quantitative finance. Even if good a number
of researchers found good results in applications to finance, only a few of
these models have become market standards for the financial industry. Fur-
thermore, it is not always true that the best model is the most popular. In this
book, we will introduce two examples of nonstandard multivariate models
for stock returns, with an application to portfolio selection. In particular,
in Chapters 9 and 10 we analyze a multi-tail t-distribution and propose an
algorithm to calibrate and simulate it, and then employ a skewed-t copula
together with a one-dimensional time-series process allowing for volatility
clustering in order to take into account the stylized facts of the time series
of log-returns.

1.5 MONTE CARLO

Even if we consider the return process of assets modeled by a Brownian
motion (that is, the return distribution is assumed to be normal), we do not
have a closed-form solution to price complex path-dependent options. In
GARCH models, explicit-form solutions are not given for options possessing
a complex payoff function and even for European call/put. If we do not have
an efficient analytical solution for pricing options, a classical way to price
them is to employ the Monte Carlo method.20

Monte Carlo integration methods are based on the generation of a large
number of simulations. These methods are based on the idea of evaluating an
expectation (that is, an integral) by sampling from a set of possible scenar-
ios. For this reason, the generation of random numbers is the fundamental
tool used in the Monte Carlo integration method. Algorithms for generating
normal and Poisson distributed random numbers are well known and easy
to find in the literature. However, more sophisticated methods are required
for more complex distributions, such as α-stable and tempered stable distri-
butions. Approximation by a compounded Poisson distribution or a series

20A detailed introduction is provided in Glasserman (2004).
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representation are two possible methods to simulate Lévy processes.21 In
order to be able to price financial instruments in a non-normal setting, in
this book we provide an overview of the simulation algorithm that can be
utilized to generate random samples starting from simple uniform random
variable and ending with more complex infinitely divisible distributions.

1.6 ORGANIZATION OF THE BOOK

In this book we mainly focused on the application of non-normal distri-
butions for modeling the behavior of stock price returns (more specifically,
log returns). Both univariate and multivariate models are analyzed from a
practical point of view, explaining the necessary theory to to understand
these models.

This book includes a brief introduction to fundamental probability dis-
tributions that will be used in later chapters. In particular, the α-stable and
tempered stable distributions are described in detail from both a theoretical
and empirical perspective.

Starting from the notion of a distribution, we describe some fundamental
stochastic processes such as Brownian motion and Poisson process. Then,
we introduce Lévy processes, giving examples of pure jump processes and
time-changed Brownian motion. For these stochastic processes, the change
of measure problem is discussed in order to provide a tool to find the link
between the market measure and a risk-neutral measure, and thereby for
pricing, to price financial derivatives within a Lévy framework.

In Chapters 6 and 7, we go into depth regarding recent results for
continuous-time modeling of stock prices with Lévy processes. Commencing
with the Black-Scholes model, we investigate time changed, exponential
tempered stable, and stochastic volatility models.

Chapter 8 provides a wide spectrum of methods for the simulation
of infinitely divisible distributions and Lévy processes with a view toward
option pricing.

In Chapters 9 and 10, we investigate two approaches to deal with
non-normal multivariate distributions. Both chapters provide insight into
portfolio allocation assuming a multi-tail t-distribution and a non-Gaussian
multivariate model. The use of a copula function together with time-series
analysis needed for modeling joint extreme events and volatility clustering
is the subject of Chapter 10.

21See Asmussen and Glynn (2007) for a complete overview.
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The last part is the core of the book: discrete option pricing models with
volatility clustering. Non-Gaussian GARCH models for option pricing are
investigated in detail. In particular, we critically assess different approaches
to price options by using the information content of historical time series
for the underling. In the book’s final chapter, Chapter 15, we provide an
algorithm to price American-style options under non-normal discrete-time
models with volatility clustering.
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