
1 Review of Fundamentals

The following brief notes cover some of the more important points which students
have met in previous courses on thermodynamics.

A principal objective of thermodynamics is to provide relations between cer-
tain equilibrium properties of matter. These relations lead to predictions about
unmeasured properties. Thus, redundant measurements can be avoided, as the
following sketch illustrates.

Properties 
D, E, F

Properties 
A, B, C

Thermodynamic 
relations

Prediction

Measure separately

or, go
this way

These thermodynamic relations sometimes connect quantities which might not
appear to be related at first glance. An important example in regard to the subject
of this book is illustrated in the following sketch:

Properties 
ΔH, cp, m

Phase 
diagram

Thermodynamic 
relations

Prediction

Measure separately

or, go
this way

It is not immediately obvious that the phase diagram shown in the sec-
ond sketch, traditionally obtained from thermal analysis measurements, can be
calculated, in principle, from appropriate thermochemical measurements: Ther-
modynamics is concerned with the macroscopic properties of substances and
systems at equilibrium (the definition of equilibrium is given later). Statistical
mechanics is concerned with interpreting the equilibrium macroscopic properties
in terms of microscopic properties, that is, in terms of atoms, electrons, bonds
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2 REVIEW OF FUNDAMENTALS

between atoms, and so on. Specification of a microscopic state requires ≈1023

independent variables, usually called degrees of freedom in thermodynamics,
whereas specification of a macroscopic state requires only a few independent
variables (two in the case of a pure substance undergoing p–V work only). The
reason for this enormous reduction in the number of independent variables is
that the macroscopic properties are determined by the time average of the many
possible microscopic states.

Most of this course is concerned with macroscopic thermodynamics, but we
will also cover some elementary aspects of statistical mechanics.

Historical Perspective Newton (1687) quantified the concepts of force and
physical work (= force × distance) but never mentioned energy. This concept
came much later from Thomas Young (1807) and Lord Kelvin (1851), the latter
appreciating that energy was the primary principle of physics. The science of
mechanics is concerned with applying the conservation of energy to physical
work problems.

Energy is the capacity to do work, potential energy being the form by virtue
of position and kinetic energy being the form by virtue of motion.

There is no mention of heat in mechanics. The early calorific theory of heat had
to be discarded following the experiments of Count Rumford (1798) and Joule
(ca. 1850), who showed the equivalence of work transfer and heat transfer; that
is, they are simply different forms of energy transfer. Work is energy transferred
such that it can, in principle, be used to raise a weight, while heat is energy
transferred as a result of a temperature difference. Atomistically, in work transfer,
the atoms move in a uniform fashion while in heat transfer the atoms are moving
in a disorganized fashion.

The equivalence of work transfer and heat transfer led to a broadening of the
meaning of the conservation of energy and this became the first law in the new
science of thermodynamics.

Later developments came from Carnot, Lord Kelvin, Clausius, and Boltzmann
with the realization that there are some limitations in the heat transfer–work
transfer process. This led to the idea of the quality of energy and the introduction
of a new quantity, entropy. The limitations on different processes could be
understood in terms of whether there is an overall increase in the thermal and/or
positional disorder.

1.1 SYSTEMS, SURROUNDINGS, AND WORK

In thermodynamics we consider the system and its surroundings. It is up to the
thermodynamicist to define the system and the surroundings. The two might be

(i) isolated from one another, an isolated system;
(ii) in mechanical contact only, an adiabatic system;

(iii) in mechanical and thermal contact, a closed system; or
(iv) also able to exchange matter, an open system.
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By mechanical contact we mean that work can be exchanged between the
system and the surroundings. As is illustrated schematically in Figure 1.1, work
is always measured in the surroundings and not in the system. For the moment,
we consider only mechanical work; other types of work are consider later in
Section 1.5.2.

Convention Work done by the system on the surroundings is taken as positive.
Mechanical work is defined as the product of a generalized force f and its
conjugate displacement variable dX:

δw = fsurr dX (1.1)

The subscript surr refers to the surroundings.

Note that we write δw and not dw because work exchanged between system
and surroundings is a path-dependent quantity. Paths may be drawn in state space
(the space spanned by the chosen independent variables) with many different
paths being possible in the joining of two points. Consider, for example, the two
paths in going from A to B in Figure 1.2. Clearly, if we go along the path ACB the
work done (

∫
p dV ) is different from when we go along the path ADB . No work

is done along the paths AC and BD (the volume is constant) with these transitions
being made possible by heat transfer. This path dependence demonstrates that
work is not a state function. which is defined as one which is path independent
when considering movement between two points in state space.

Any state function Y , being path independent, is zero when a system is put
through a cyclic path or loop, that is, for a state function,

∮
dY = 0

Especially important is the path where equilibrium is maintained, between sys-
tem and surroundings, at all points as the path is traversed—a quasi-static or
reversible path. Although impossible to achieve in practice, since we would have
to go infinitely slowly, it is a very useful concept. When fsurr = f , the latter being

System

w

Surroundings

Figure 1.1 Work is measured in the surroundings and not in the system. On our con-
vention, work done by the system is taken as positive.
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A

C

B

D

p

V

Figure 1.2 Work is not a state function; it depends on the path taken. The work done
on going from A to B via ACB is different from that along the path ADB .

the value in the system, we can write

δwrev = f dX (1.2)

An equation of state (EOS) is a relation between conjugate (defined later) work
variables for a body in equilibrium. Some well-known examples of approximate
EOS are

σ = kε (Hooke’s law)

pV = nRT (perfect gas law)

p = −BT

V0
�V (solid compression)

Given an EOS, we can then evaluate wrev = ∫
δwrev along quasi-static or

reversible paths. For the above EOS examples

wrev =
∫

σ dε =
∫

kε dε = 1

2
kε2

(wrev)T = −
∫

p dV = nRT loge

(
V2

V1

)

wrev = −
∫

p dV = 1

2

BT

V0
(�V )2

1.2 THERMODYNAMIC PROPERTIES

Thermodynamic properties may be classified into being either extensive or inten-
sive.

1. The meaning of extensive is clear. If M is mass and k a constant, then, in
the case of volume, for example,

V (kM) = kV (M) (1.3)
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Mathematically, extensive properties like V are said to be homogenous
functions of the first degree.

2. Intensive properties can be divided into two types and it is important to
distinguish between the two:
(a) Field : T , p, μ (much more later about this function)
(b) Density : Vm = V/Ntotal, Hm = H/Ntotal, and mole fraction xi =

Ni/Ntotal

There is an important distinction between these two kinds of intensive variables
in that a field variable takes on identical values in any coexisting phases at
equilibrium, a density variable does not.

1.3 THE LAWS OF THERMODYNAMICS

The laws of thermodynamics can be introduced historically via experimental
observations and many equivalent statements are possible. Alternatively, they
may be stated as postulates, axiomatic statements, or assumptions based on
experience. In this approach, the existence of some new state functions (bulk
properties) is postulated with a recipe given for how to measure each of them.
This latter approach is adopted here.

(a) Zeroth Law Thermodynamic temperature T is a state function.
Recipe The thermodynamic temperature is equal to the ideal gas tempera-

ture, pVm/R. It is possible, therefore, to define T in terms of mechanical
ideas only, with no mention of heat. Note, however, that the thermody-
namic temperature is selected as a primary quantity in the SI system.

(b) First Law The internal energy U is a state function.
Recipe If we proceed along an adiabatic path in state space, then

dU = −δwadiabatic (1.4)

The negative sign here arises since, if work is done by the system, its
energy is lowered. Note that only changes in U can be measured. This
applies to all energy-based extensive thermodynamic quantities.

The first law leads to the definition of heat. Heat should only be
referred to as an energy transfer and not as an energy or heat content ;
that is, heat is not a noun, heat flow is a process.

For a nonadiabatic process, the change in U is no longer given by
the work done on the system. The missing contribution defines the heat
transferred:

dU = δq − δw (first law) (1.5)
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Just as δw is path dependent, δq is also path dependent; that is, q is not
a state function, whereas U is.

Equation (1.5) is the differential form of the conservation of energy
or first law for any system. Note that there is no specific mention of
p–V work in this statement. It is generally valid.

Convention Heat flow into the system is taken to be positive (Fig. 1.3).
Since both work and heat flow are measured in the surroundings, where
the field variables are taken to be constant, any changes in state in the
surroundings are always considered to be made quasi-statically.

(c) Second Law while the first law is concerned with the conservation of
energy, the second law is concerned with how energy is spread. Any spon-
taneous process occurs in a way so as to maximize the spread of energy
between accessible states of the system and its surroundings . Entropy is the
property which is the measure of this spread.

The second law is usually stated in two parts:

1. Entropy S of the system is a state function.
Recipe If the state of a system is changed reversibly by heat flow,
then the entropy change is given by

dS = δqrev

T
(second law, part 1) (1.6)

2. In a spontaneous process, entropy in the system plus surroundings, some-
times called the universe, is created (energy is spread).

The total entropy change of the system plus surroundings is then
given by

dSuniv = dS + dSsurr ≥ 0 (1.7)

In an isolated system there is no external creation of entropy so that

dSsurr = 0 and dS ≥ 0

q

System

Surroundings

Figure 1.3 Heat flow is measured in the surroundings. In our convention, heat flow into
the system is taken as positive.
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(d) Third Law The third law is not really a law of macroscopic thermody-
namics since its formulation requires some microscopic information. The
word law is too strong for a rule which is known to have exceptions. In a
form due originally to Planck, it can be stated as:
For any pure substance in a stable, perfectly crystalline form at 0 K, S can

be taken to be zero.
Note that:

(i) This is not to say that the entropy has an absolute value of zero.
Given time enough, all systems would undergo intranuclear and
isotopic changes. These are so slow, however, that they may be
considered to make a time-independent contribution; that is, they
contribute an additive constant to the entropy so that it is satisfac-
tory to take this as zero.

(ii) Mixtures are specifically excluded from the defining statement.
Thus glasses, solid solutions, and asymmetric molecules may have
residual entropies at 0 K.

(iii) Pressure is not mentioned in the defining statement. This is because
dS/dp = −dV/dT and the thermal expansivity α = (1/V ) dV/dT

is also zero at 0 K [see (1.28) for the relation between dS/dp and
β].

This wording of the third law means that the entropy of every pure crystalline
substance (element or compound) in its lowest energy state is taken to be zero
at 0 K. This wording does not preclude, for example, that S(C(diamond)) =
S(C(graphite)) = 0 at T = 0 K. Although there is an energy difference between
these two allotropes, the lower energy graphite states are not accessible to dia-
mond at low temperature: Only excitations to other diamond states are possible.
This is why both C(graphite) and C(diamond) can be given zero entropies at 0 K.

It is clear that microscopic (crystallographic) information about the substance
is needed in order to be sure that the substance is in its lowest energy state.
Specifying the composition of the substance alone is not sufficient. This is why
the third law cannot be regarded on the same macroscopic footing as the zeroth,
first, and second laws.

Example 1.1 State Functions
The changes in H (or any other state function) when a system is put through a
cycle is given by

∮
dH = 0

Consider the cycle shown in Figure 1.4. Each stage in the cycle is carried out
at a total pressure of 1 bar. We place no restriction on the steps that take place
(they do not have to be carried out quasi-statically) as long as the system at the
start and end points of each step is in internal equilibrium:
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Si(s) + O2(g) B SiO2(s)

1000 K

C

D

A

SiO2(s)

298 K

Si(s) + O2(g)

Figure 1.4 Enthalpy is a state function.

(A)
[
H

◦
(1000) − H

◦
(298)

]
Si(s) + [

H
◦
(1000) − H

◦
(298)

]
O2(g)

=
∫ 1000

298
[Cp(Si) + Cp(O2)] dT = 17,075 + 22,694 J

(B) −�f H
◦
(SiO2(s), 1000) = −857,493 J

(C)
[
H

◦
(298) − H

◦
(1000)

]
SiO2

=
∫ 298

1000
Cp(SiO2) dT = −43,611 J

(D) �f H
◦
(SiO2(s), 298.15) = +861,335 J

from which, for the cycle
∮

(A − B − C − D) = 17,075 + 22,694 − 857,493 − 43,611 + 861,335 = 0

The same procedure may be followed for the state properties U, S, A, and G.
For all of these state functions,

∮
dY = 0.

1.4 THE FUNDAMENTAL EQUATION

The combined statement of the first and second laws comes by first expressing
the first law for any process,

δq = dU + δw (1.8)

and then introducing the second law for a reversible process, δqrev = T dS, to
obtain

T dS = dU + δwrev (1.9)

For a closed system of fixed amounts of substances doing p–V work only we can
write δwrev = p dV so that

dU = T dS − p dV (p–V work only, fixed amounts) (1.10)
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Although we have derived this equation by considering reversible processes, it
is applicable to any process as long as the initial and final states are in internal
equilibrium, since it involves state functions only. It is called the fundamental
equation or Gibbs’s first equation and we consider its application later.

It can be seen from (1) that the natural independent variables of the state
function U are S and V .

1.5 OTHER THERMODYNAMIC FUNCTIONS

For systems undergoing p–V work only, we have seen that the primary func-
tions of thermodynamics are the mechanical variables p and V together with
the variables T , U , and S. For convenience, however, many other state func-
tions are defined since it is usually not convenient for the natural variables of a
system to be S and V ; that is, we do not usually hold these variables constant
when carrying out experiments. The introduction of new state functions enable
us to change the natural variables to anything desired (in mathematical terms, we
perform Legendre transformations).

The most important of these new derived functions are as follows:

1. Enthalpy H is defined as

H = U + pV (1.11)

Its usefulness comes from the fact that, at constant p,

dH |p = dU + p dV (1.12)

and, if this equation is compared with

dU = δq − p dV (1.13)

then we see that

dH |p = δq (1.14)

Note that there is nothing in this last equation about maintaining constant T

or carrying out the process reversibly. An enthalpy change can be obtained
from the measured heat flow required to bring about the change at constant
p. This is the basis of calorimetry .

2. Heat capacities Cp and CV are two response functions (partial derivatives
of other functions):

CV =
(

∂U

∂T

)
V

Cp =
(

∂H

∂T

)
p

3. Helmholtz energy A is defined as A = U − T S. For an isothermal process
dA = dU − T dS, but for a reversible process δwrev = −dU + T dS, so
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that, for a reversible, isothermal process,

−dA|T = δwrev (1.15)

that is, in an isothermal process, the decrease in A measures the maximum
work performed by the system.

4. Entropy change has already been defined: δqrev = T dS, where δqrev can
be expressed in terms of the heat capacity at constant pressure. This then
gives

dS|p = δqrev|p
T

= Cp

T
dT (1.16)

and, when this is integrated, advantage is taken of the third law to obtain
absolute entropies:

S|p(T ) =
∫ T

0

Cp

T
dT (1.17)

In practice, it is more useful to do the integration in two stages:

S|p(T ) − S|p(298 K) =
∫ T

298K

Cp

T
dT (1.18)

5. Gibbs energy G is defined as G = U + pV − T S. For an isothermal, iso-
baric process

dG = dU + p dV − T dS (1.19)

For a reversible isothermal, isobaric process (combine with δwrev =
−dU + T dS),

−dG|p,T = δwrev − p dV (1.20)

This is the total reversible work less the p–V work so that, in an isothermal,
isobaric process, the decrease in G measures the maximum non–p–V work
performed . It is the most widely used derived function in materials ther-
modynamics. The non–p–V work of most interest to us is chemical work.

By using the definitions of the derived functions H , A, G, we can derive the
other three Gibbs equations for p–V work only, fixed amounts:

dH = T dS + V dp (1.21)

dA = −S dT − p dV (1.22)

G = −S dT + V dp (1.23)

The natural variables of G are p, T , which are the ones usually controlled in
experiments and this accounts for the importance of this particular state function.
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1.5.1 Maxwell’s Equations

Return to (1.10), which is the total differential of U = U(S, V ). We can rewrite
this equation in terms of partial derivatives as follows:

dU =
(

∂U

∂S

)
V

dS +
(

∂U

∂V

)
S

dV (1.24)

If we compare (1.10) with (1.24), we see that

(
∂U

∂S

)
V

= T (1.25)

(
∂U

∂V

)
S

= −p (1.26)

Application of standard partial differentiation theory like this to the other
Gibbs equations leads to similar relations and further relations can be obtained
from the cross-derivatives, for example,

(
∂2U

∂S ∂V

)
V

=
(

∂2U

∂V ∂S

)
S

(1.27)

which, using (1.25), gives

−
(

∂p

∂S

)
V

=
(

∂T

∂V

)
S

(1.28)

Such relations are called Maxwell’s equations. Their importance lies in the fact
that they can point to the recognition of redundant measurements and offer the
possibility of obtaining difficult-to-measure property variations from variations
in properties which are easier to measure.

All the equations in this section apply to systems performing p–V work only
and are of fixed composition. We must now consider the modifications brought
about by the inclusion of other types of work and the effect of changes in the
amounts of substances which comprise the system.

1.5.2 Defining Other Forms of Work

With the conservation of energy as the fundamental principle, it is possible to
invent other forms of thermodynamic work which can then be incorporated into
the conservation-of-energy equation. By doing this, force and displacement are
used in a much broader sense than they are in mechanical work. Any form of
work which brings about a change in internal energy is to be considered. It may
be a potential times a capacity factor or a field times a polarization.
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Most notably in the present context is the invention, made by Gibbs, of
chemical work. Chemical work can, of course, be considered as originating in
the potential and kinetic energies of the atoms and electrons, but Gibbs realized
that it is more useful to regard it as a separate form of work. In doing so, he
introduced a most important new state function, the chemical potential , and also
extended the fundamental equations to incorporate this new form of work.

The fundamental equations previously given apply to closed systems, that is,
of fixed amounts of substance. They can be extended to include varying amounts,
either for the case of a closed system, in which the amounts of substances are
varying due to chemical reactions occurring within the system, or to open sys-
tems, where substances are being exchanged with the surroundings and in which
reactions may or may not be occurring. In both cases chemical work is involved;
that is, changes in internal energy are occurring.

If the amounts of substances can vary in a system, then, clearly, the state
functions will depend on the ni . In the case of U , for example, we now have
U = U(S, V, n1, n2 . . .). Equation (1.24) will be modified to

dU =
(

∂U

∂S

)
V,nj

dS +
(

∂U

∂V

)
S,nj

dV +
∑

i

(
∂U

∂ni

)
S,V,nj

dni (1.29)

where nj means all the others except i.
In order to be able to write this in a manner similar to (1.10), we need a

symbol for the partial derivative of U with respect to ni . The usual symbol is μi

and its name is the chemical potential (p–V and chemical work only):

dU = T dS − p dV +
∑

i

μi dni (1.30)

The other Gibbs equations may be modified in a similar fashion (p–V and
chemical work only):

dH = T dS + V dp +
∑

i

μi dni (1.31)

dA = −S dT − p dV +
∑

i

μi dni (1.32)

dG = −S dT + V dp +
∑

i

μi dni (1.33)

Note that the definition of μi varies depending on which function is being used:

μi =
(

∂U

∂ni

)
S,V,nj

=
(

∂H

∂ni

)
S,p,nj

=
(

∂A

∂ni

)
T ,V,nj

=
(

∂G

∂ni

)
T ,p,nj

(1.34)
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This extension of thermodynamics from a study of heat engines to its applica-
tion to phase and chemical equilibrium by Gibbs represents one of the greatest
achievements in nineteenth-century science. Recall that, in the application of
thermodynamics to heat engines, the nature of the fluid of the engine is unim-
portant, but in introducing chemical work, the nature of the material constituting
the system becomes all important.

Chemical work is not the only possible form of work which might have to
be considered. Some examples of different types of thermodynamic work are
given in the accompanying table. In order to emphasize the fact that (1.10) is a
restricted form of the fundamental equation, let us write down a more complete
statement which takes into account some other possible types of work:

dU = T dS − p dV +
N∑

i=1

μi dni + φ dm

+
N∑

i=1

ψi dQi + σ dε + γ dAs + · · · (1.35)

In writing the equation in this form it is assumed that the various types of work
are independent of one another. This may not always be the case; often, two or
more work terms are coupled .

A complete new set of Maxwell’s equations can also be obtained from the
fundamental equations for systems undergoing these various forms of work.

Type of Field Extensive Differential
Work Variable Variable Work in dU

Mechanical

Pressure–volume −p V −p dV

Elastic τij V ηij V
∑

τij dηij

Gravitational φ = gh m = ∑
Mini φ dm = ∑

ghMi dni

Surface γ As γ dAs

Electromagnetic

Charge transfer ψi Qi ψi dQi

Electric polarization E p E · dpi

Magnetic polarization B m B · dm

Chemical

No reactions μi ni species
∑

i μi dni

With reactions μi ξ extent of
∑

i νiμi dξ

reaction
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1.6 EQUILIBRIUM STATE

A precise definition of a system in equilibrium is not straightforward. To define a
system as being in equilibrium when its properties are not changing with time is
unacceptable—the state which involves a steady flow of heat or matter through
a system is a time-independent state but systems in which these processes are
occurring are not in equilibrium; there are field gradients. We need a better
definition and one is discussed below.

The second law, part 2, states that dSuniv ≥ 0, with the inequality referring to
spontaneous processes and the equality to reversible processes, the latter corre-
sponding with the system being in equilibrium.

If we consider an isolated system (no work or heat flow and, therefore, constant
U and V ), then dSsurr = 0 so that

dS|U,V = dSuniv ≥ 0 (1.36)

In other words, for an isolated system, S reaches a maximum at the equilibrium
state, making this state function the appropriate thermodynamic potential for
isolated systems. The important point here is that, under certain constraints, we
have replaced a property of the universe (system + surroundings) by a property
of the system alone.

Of more practical interest is to obtain the appropriate thermodynamic potential
for constant p and T conditions and the nature of the extrema conditions. We
can do this as follows:

G = U + pV − T S (1.37)

dG = dU + p dV + V dp − T dS − S dT (1.38)

= δq − psurr dV + p dV + V dp − T dS − S dT (1.39)

and at constant p and T where psurr = p we have

dG|p,T = −T dSsurr − T dS

= −T dSuniv ≤ 0 (1.40)

From the general statement of the second law, dSuniv is a maximum at
equilibrium, it follows from (1.40) that the appropriate thermodynamic potential
for conditions of constant p and T is the Gibbs energy and G evolves to a
minimum at equilibrium . Since these conditions are the most frequently met, the
Gibbs energy is usually the most important thermodynamic potential of interest.
Note that, again, a property of the universe has been replaced by a property of
the system alone.

For small excursions from an equilibrium state, we can expand any function
for G as a Taylor series in the state space variables. As illustrated in Figure 1.5,
which shows G as a function of only two state space variables, the extrema in
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Local minimum

Maximum

Saddle point

Global minimum

Figure 1.5 Local and global equilibrium, drawn using Matlab®.

multidimensional space can be maxima, minima, or saddle points (a maximum in
some directions, a minimum in others). The required conditions for the extremum
to be a minimum when there are two such variables, x and y, can be written as

∂2G

∂x2
and

∂2G

∂y2
> 0 (1.41)

∂2G

∂x2

∂2G

∂y2
>

(
∂2G

∂x ∂y

)2

(1.42)

Failure of the condition given in (1.40) implies a saddle point.
These conditions only apply, however, for small excursions from the equilib-

rium point. As shown in Figure 1.5, it is possible to have a local minimum which
fulfils the above conditions, but it is not the global minimum which we seek in
our thermodynamic calculation.

For both the local and global minima, a small fluctuation from the equilibrium
point will result in dG|p,T > 0 and the system will wish to return to its equilibrium
point. In both cases also the field variables (T , p, μA) are constant throughout
the system. This means that we can apply the equations of thermodynamics
equally well to the metastable local equilibrium and the stable global equilibrium
situations if we ensure that there are no large-scale fluctuations which will take
us from the local to the global equilibrium.

The global equilibrium, that is, the true equilibrium state, is when �G|p,T > 0
for any excursions from that state, providing the start and end states are main-
tained in internal equilibrium by the imposition of extra constraints. It is this
definition of the equilibrium state which is mainly used throughout these chapters,
but, as has been indicated previously, other thermodynamic potentials fulfil the
same role as G for other conditions.

EXERCISES

1.1 Starting from Al(s) and O2(g) at 298 K and 1 bar, use the data given below
and the cycle illustrated in Figure 1.6 to confirm that

∮
dS = 0:
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2Al(l) + 1.5O2(g) B Al2O3(s)

1000 K

C

D

A

298 K

2Al(s) + 1.5O2(g) Al2O3(s)

Figure 1.6 Cycle to be considered.

Tfus(Al) = 933 K �fusHm = 10460 J mol−1

Cp = a + bT + cT 2 + dT −2

a b/103 c/106 d/10−5 S
◦
(298)/J K−1 mol−1

Al(s) 20.7 12.4 0 0 28.3
Al(l) 31.8 0 0 0 0
O2(g) 30 4.184 0 −1.67 205.0
Al2O3(s) 106.6 17.78 0 −28.53 51.0

1.2 Starting with CaCO3(s) at 298 K and 1 bar: .

(a) Calculate the heat transferred in producing 1 mol of CaO(s) at 1200 K
and 1 mol of CO2(g) at 500 K.

(b) Calculate the standard entropy change for this process.

1.3 .(a) Write down the full equations required for evaluation of the standard
enthalpy and Gibbs energy for the reaction equation

CaCO3(s) = CaO(s) + CO2(g)

(b) Determine the temperature at which �G
◦ = 0 for this reaction equation.

(c) Calculate the enthalpy of reaction at the temperature for which the
equilibrium pressure of CO2 is 1 bar.

Cp = a + bT + cT 2 + dT −2/J K−1 mol−1

�f H
◦
(298K)/ S◦

(1000K)/

Substance kJ mol−1 J K−1 mol−1 a b × 103 c × 105 d × 10−5

CaO(s) −634.92 96.96 57.75 −107.79 0.53 −11.51
CO2(g) −393.51 269.19 44.14 9.04 0 −8.54
CaCO3(s) −1206.60 220.21 99.55 27.14 0 −21.48
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1.4 Given the following data:
Note that 〈C◦

p〉 refers to the average values of C
◦
p over the range 298–

1000 K. Calculate: .

(a) The standard entropy of oxidation of Si(s) to SiO2(s) at 1000 K.
(b) The same using the values of 〈C◦

p〉. Compare with the result from (a).

S
◦(s, 298 K)/ S

◦
1000 − S

◦
298)/ 〈C◦

p〉/
Substance J K−1 mol−1 J K−1 mol−1 J K−1 mol−1

Si(s) 18.81 28.69 23.23
O2(g) 209.15 38.43 32.10
SiO2(s) 27.78 72.15 56.02

(c) �f H
◦
(SiO2, 1000 K) using the value of �f H

◦
(SiO2, 298 K) in the

text.

1.5 Derive (1.21), (1.22), and (1.23) from (1.10) and the definitions of the
functions H , A and G.

1.6 .(a) If the entropy of transition of a pure substance A, �
β
αS

◦
(A), at constant

p is constant, show that the corresponding enthalpy change, �
β
αH

◦
(A),

is also constant.
(b) If the phase transition of a pure substance is a function of T and p and

the value of �
β
αS

◦
(A) is independent of the change in conditions, show

that the value of �
β
αH

◦
(A) is no longer constant, as was the case for

the constraint of constant p. (Hint : Use the Maxwell relationships.)




