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INTRODUCTION

This book is all about image and video compression. Chapter 1 simply introduces the
overall ideas behind data compression by way of pictorial and graphical examples to
motivate the readers. Detailed discussions on various compression schemes appear
in subsequent chapters. One of the goals of this book is to present the basic principles
behind image and video compression in a clear and concise manner and develop the
necessary mathematical equations for a better understanding of the ideas. A further
goal is to introduce the popular video compression standards such as Joint Photo-
graphic Experts Group (JPEG) and Moving Picture Experts Group (MPEG) and ex-
plain the compression tools used by these standards. Discussions on semantics and
data transportation aspects of the standards will be kept to a minimum. Although the
readers are expected to have an introductory knowledge in college-level mathematics
and systems theory, clear explanations of the mathematical equations will be given
where necessary for easy understanding. At the end of each chapter, problems are
given in an increasing order of difficulty to make the understanding firm and lasting.

In order for the readers of this book to benefit further, MATLAB codes for sev-
eral examples are included. To run the M-files on your computers, you should in-
stall MATLAB software. Although there are other software tools such as C++ and
Python to use, MATLAB appears to be more readily usable because it has a lot of
built-in functions in various areas such as signal processing, image and video pro-
cessing, wavelet transform, and so on, as well as simulation tools such as MATLAB
Simulink. Moreover, the main purpose of this book is to motivate the readers to
learn and get hands on experience in video compression techniques with easy-to-
use software tools, which does not require a whole lot of programming skills. In the
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2 INTRODUCTION

remainder of the chapter, we will briefly describe various compression techniques
with some examples.

1.1 WHAT IS SOURCE CODING?

Images and videos are moved around the World Wide Web by millions of users al-
most in a nonstop fashion, and then, there is television (TV) transmission round the
clock. Analog TV has been phased out since February 2009 and digital TV has taken
over. Now we have the cell phone era. As the proverb a picture is worth a thousand
words goes, the transmission of these visual media in digital form alone will require
far more bandwidth than what is available for the Internet, TV, or wireless networks.
Therefore, one must find ways to format the visual media data in such a way that it
can be transmitted over the bandwidth-limited TV, Internet, and wireless channels in
real time. This process of reducing the image and video data so that it fits into the
available limited bandwidth or storage space is termed data compression. It is also
called source coding in the communications field. When compressed audio/video
data is actually transmitted through a transmission channel, extra bits are added to
it to counter the effect of noise in the channel so that errors in the received data, if
present, could be detected and/or corrected. This process of adding additional data
bits to the compressed data stream before transmission is called channel coding. Ob-
serve that the effect of reducing the original source data in source coding is offset to
a small extent by the channel coding, which adds data rather than reducing it. How-
ever, the added bits by the channel coder are very small compared with the amount
of data removed by source coding. Thus, there is a clear advantage of compressing
data.

We illustrate the processes of compressing and transmitting or storing a video
source to a destination in Figure 1.1. The source of raw video may come from a video
camera or from a previously stored video data. The source encoder compresses the
raw data to a desired amount, which depends on the type of compression scheme
chosen. There are essentially two categories of compression—lossless and lossy. In
a lossless compression scheme, the original image or video data can be recovered
exactly. In a lossy compression, there is always a loss of some information about the
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Figure 1.1 Source coding/decoding of video data for storage or transmission.
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original data and so the recovered image or video data suffers from some form of dis-
tortion, which may or may not be noticeable depending on the type of compression
used. After source encoding, the quantized data is encoded losslessly for transmis-
sion or storage. If the compressed data is to be transmitted, then channel encoder is
used to add redundant or extra data bits and fed to the digital modulator. The digital
modulator converts the input data into an RF signal suitable for transmission through
a communications channel.

The communications receiver performs the operations of demodulation and chan-
nel decoding. The channel decoded data is fed to the entropy decoder followed by
source decoder and is finally delivered to the sink or stored. If no transmission is
used, then the stored compressed data is entropy decoded followed by source decod-
ing as shown on the right-hand side of Figure 1.1.

1.2 WHY IS COMPRESSION NECESSARY?

An image or still image to be precise is represented in a computer as an array of
numbers, integers to be more specific. An image stored in a computer is called a
digital image. However, we will use the term image to mean a digital image. The
image array is usually two dimensional (2D) if it is black and white (BW) and three
dimensional (3D) if it is a color image. Each number in the array represents an in-
tensity value at a particular location in the image and is called a picture element or
pixel, for short. The pixel values are usually positive integers and can range between
0 and 255. This means that each pixel of a BW image occupies 1 byte in a computer
memory. In other words, we say that the image has a grayscale resolution of 8 bits
per pixel (bpp). On the other hand, a color image has a triplet of values for each pixel:
one each for the red, green, and blue primary colors. Hence, it will need 3 bytes of
storage space for each pixel. The captured images are rectangular in shape. The ratio
of width to height of an image is called the aspect ratio. In standard-definition tele-
vision (SDTV) the aspect ratio is 4:3, while it is 16:9 in a high-definition television
(HDTV). The two aspect ratios are illustrated in Figure 1.2, where Figure 1.2a cor-
responds to an aspect ratio of 4:3 while Figure 1.2b corresponds to the same picture
with an aspect ratio of 16:9. In both pictures, the height in inches remains the same,

2"
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(a) (b)
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Figure 1.2 Aspect ratio: (a) 4:3 and (b) 16:9. The height is the same in both the pictures.
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which means that the number of rows remains the same. So, if an image has 480
rows, then the number of pixels in each row will be 480 × 4/3 = 640 for an aspect
ratio of 4:3. For HDTV, there are 1080 rows and so the number of pixels in each
row will be 1080 × 16/9 = 1920. Thus, a single SD color image with 24 bpp will
require 640 × 480 × 3 = 921,600 bytes of memory space, while an HD color image
with the same pixel depth will require 1920 × 1080 × 3 = 6,220,800 bytes. A video
source may produce 30 or more frames per second, in which case the raw data rate
will be 221,184,000 bits per second for SDTV and 1,492,992,000 bits per second for
HDTV. If this raw data has to be transmitted in real time through an ideal communi-
cations channel, which will require 1 Hz of bandwidth for every 2 bits of data, then
the required bandwidth will be 110,592,000 Hz for SDTV and 746,496,000 Hz for
HDTV. There are no such practical channels in existence that will allow for such a
huge transmission bandwidth. Note that dedicated channels such as HDMI capable
of transferring uncompressed data at this high rate over a short distance do exist, but
we are only referring to long-distance transmission here. It is very clear that efficient
data compression schemes are required to bring down the huge raw video data rates
to manageable values so that practical communications channels may be employed
to carry the data to the desired destinations in real time.

1.3 IMAGE AND VIDEO COMPRESSION TECHNIQUES

1.3.1 Still Image Compression

Let us first see the difference between data compression and bandwidth compression.
Data compression refers to the process of reducing the digital source data to a desired
level. On the other hand, bandwidth compression refers to the process of reducing the
analog bandwidth of the analog source. What do we really mean by these terms? Here
is an example. Consider the conventional wire line telephony. A subscriber’s voice
is filtered by a lowpass filter to limit the bandwidth to a nominal value of 4 kHz. So,
the channel bandwidth is 4 kHz. Suppose that it is converted to digital data for long-
distance transmission. As we will see later, in order to reconstruct the original analog
signal that is band limited to 4 kHz exactly, sampling theory dictates that one should
have at least 8000 samples per second. Additionally, for digital transmission each
analog sample must be converted to a digital value. In telephony, each analog voice
sample is converted to an 8-bit digital number using pulse code modulation (PCM).
Therefore, the voice data rate that a subscriber originates is 64,000 bits per second.
As we mentioned above, in an ideal case this digital source will require 32 kHz of
bandwidth for transmission. Even if we employ some form of data compression to
reduce the source rate to say, 16 kilobits per second, it will still require at least 8 kHz
of channel bandwidth for real-time transmission. Hence, data compression does not
necessarily reduce the analog bandwidth. Note that the original analog voice requires
only 4 kHz of bandwidth. If we want to compress bandwidth, we can simply filter
the analog signal by a suitable filter with a specified cutoff frequency to limit the
bandwidth occupied by the analog signal.
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Figure 1.3 Original cameraman picture.

Having clarified the terms data compression and bandwidth compression, let us
look into some basic data compression techniques known to us. Henceforth, we will
use the terms compression and data compression interchangeably. All image and
video sources have redundancies. In a still image, each pixel in a row may have a
value very nearly equal to a neighboring pixel value. As an example, consider the
cameraman picture shown in Figure 1.3. Figure 1.4 shows the profile (top figure)
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Figure 1.4 Profile of cameraman image along row number 164. The top graph shows pixel
intensity, and the bottom graph shows corresponding normalized correlation over 128 pixel
displacements.
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and the corresponding correlation (bottom figure) of the cameraman picture along
row 164. The MATLAB M-file for generating Figure 1.4 is listed below. Observe
that the pixel values are very nearly the same over a large number of neighboring
pixels and so is the pixel correlation. In other words, pixels in a row have a high cor-
relation. Similarly, pixels may also have a high correlation along the columns. Thus,
pixel redundancies translate to pixel correlation. The basic principle behind image
data compression is to decorrelate the pixels and encode the resulting decorrelated
image for transmission or storage. A specific compression scheme will depend on
the method by which the pixel correlations are removed.

Figure1 4.m
% Plots the image intensity profile and pixel correlation
% along a specified row.
clear
close all
I = imread(’cameraman.tif’);
figure,imshow(I),title(’Input image’)
%
Row = 164; % row number of image profile
x = double(I(Row,:));
Col = size(I,2);
%
MaxN = 128; % number of correlation points to calculate
Cor = zeros(1,MaxN); % array to store correlation values
for k = 1:MaxN

l = length(k:Col);
Cor(k) = sum(x(k:Col) .* x(1:Col-k+1))/l;

end
MaxCor = max(Cor);
Cor = Cor/MaxCor;
figure,subplot(2,1,1),plot(1:Col,x,’k’,’LineWidth’,2)
xlabel(’Pixel number’), ylabel(’Amplitude’)
legend([’Row’ ’ ’ num2str(Row)],0)
subplot(2,1,2),plot(0:MaxN-1,Cor,’k’,’LineWidth’,2)
xlabel(’Pixel displacement’), ylabel(’Normalized corr.’)

One of the earliest and basic image compression techniques is known as the dif-
ferential pulse code modulation (DPCM) [1]. If the pixel correlation along only one
dimension (row or column) is removed, then the DPCM is called one-dimensional
(1D) DPCM or row-by-row DPCM. If the correlations along both dimensions are
removed, then the resulting DPCM is known as 2D DPCM. A DPCM removes
pixel correlation and requantizes the residual pixel values for storage or transmis-
sion. The residual image has a variance much smaller than that of the original image.



P1: OTA/XYZ P2: ABC
c01 JWBS049-Thyagarajan September 22, 2010 16:13 Printer Name: Yet to Come

1.3 IMAGE AND VIDEO COMPRESSION TECHNIQUES 7

Further, the residual image has a probability density function, which is a double-
sided exponential function. These give rise to compression.

The quantizer is fixed no matter how the decorrelated pixel values are. A variation
on the theme is to use quantizers that adapt to changing input statistics, and therefore,
the corresponding DPCM is called an adaptive DPCM. DPCM is very simple to
implement, but the compression achievable is about 4:1. Due to limited bit width of
the quantizer for the residual image, edges are not preserved well in the DPCM. It
also exhibits occasional streaks across the image when channel error occurs. We will
discuss DPCM in detail in a later chapter.

Another popular and more efficient compression scheme is known by the generic
name transform coding. Remember that the idea is to reduce or remove pixel correla-
tion to achieve compression. In transform coding, a block of image pixels is linearly
transformed into another block of transform coefficients of the same size as the pixel
block with the hope that only a few of the transform coefficients will be significant
and the rest may be discarded. This implies that storage space is required to store
only the significant transform coefficients, which are a fraction of the total number
of coefficients and hence the compression. The original image can be reconstructed
by performing the inverse transform of the reduced coefficient block. It must be
pointed out that the inverse transform must exist for unique reconstruction. There are
a number of such transforms available in the field to choose from, each having its own
merits and demerits. The most efficient transform is one that uses the least number of
transform coefficients to reconstruct the image for a given amount of distortion. Such
a linear transform is known as the optimal transform where optimality is with respect
to the minimum mean square error between the original and reconstructed images.
This optimal image transform is known by the names Karhunen–Loève transform
(KLT) or Hotelling transform. The disadvantage of the KLT is that the transform
kernel depends on the actual image to be compressed, which requires a lot more side
information for the receiver to reconstruct the original image from the compressed
image than other fixed transforms. A highly popular fixed transform is the familiar
discrete cosine transform (DCT). The DCT has very nearly the same compression
efficiency as the KLT with the advantage that its kernel is fixed and so no side in-
formation is required by the receiver for the reconstruction. The DCT is used in
the JPEG and MPEG video compression standards. The DCT is usually applied on
nonoverlapping blocks of an image. Typical DCT blocks are of size 8 × 8 or 16 × 16.
One of the disadvantages of image compression using the DCT is the blocking
artifact. Because the DCT blocks are small compared with the image and because
the average values of the blocks may be different, blocking artifacts appear when
the zero-frequency (dc) DCT coefficients are quantized rather heavily. However, at
low compression, blocking artifacts are almost unnoticeable. An example showing
blocking artifacts due to compression using 8 × 8 DCT is shown in Figure 1.5a.
Blockiness is clearly seen in flat areas—both low and high intensities as well as un-
dershoot and overshoot along the sharp edges—see Figure 1.5b. A listing of M-file
for Figures 1.5a,b is shown below.
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Figure 1.5 (a) Cameraman image showing blocking artifacts due to quantization of the DCT
coefficients. The DCT size is 8 × 8. (b) Intensity profile along row number 164 of the
image in (a).
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% Figure1 5.m
% Example to show blockiness in DCT compression
% Quantizes and dequantizes an intensity image using
% 8x8 DCT and JPEG quantization matrix
close all
clear
I = imread(’cameraman.tif’);
figure,imshow(I), title(’Original Image’)
%
fun = @dct2; % 2D DCT function
N = 8; % block size of 2D DCT
T = blkproc(I,[N N],fun); % compute 2D DCT of image using NxN blocks
%
Scale = 4.0; % increasing Scale quntizes DCT coefficients heavily
% JPEG default quantization matrix
jpgQMat = [16 11 10 16 24 40 51 61;

12 12 14 19 26 58 60 55;
14 13 16 24 40 57 69 56;
14 17 22 29 51 87 80 62;
18 22 37 56 68 109 103 77;
24 35 55 64 81 194 113 92;
49 64 78 87 103 121 120 101;
72 92 95 98 121 100 103 99];

Qstep = jpgQMat * Scale; % quantization step size
% Quantize and dequantize the coefficients
for k = 1:N:size(I,1)

for l = 1:N:size(I,2)
T1(k:k+N-1,l:l+N-1) = round(T(k:k+N-1,l:l+N-1)./ Qstep).*Qstep;

end
end
% do inverse 2D DCT
fun = @idct2;
y = blkproc(T1,[N N],fun);
y = uint8(round(y));
figure,imshow(y), title(’DCT compressed Image’)
% Plot image profiles before and after compression
ProfRow = 164;
figure,plot(1:size(I,2),I(ProfRow,:),’k’,’LineWidth’,2)
hold on
plot(1:size(I,2),y(ProfRow,:),’-.k’,’LineWidth’,1)
title([’Intensity profile of row ’ num2str(ProfRow)])
xlabel(’Pixel number’), ylabel(’Amplitude’)
%legend([’Row’ ’ ’ num2str(ProfRow)],0)
legend(’Original’,’Compressed’,0)

A third and relatively recent compression method is based on wavelet transform.
As we will see in a later chapter, wavelet transform captures both long-term and
short-term changes in an image and offers a highly efficient compression mechanism.
As a result, it is used in the latest versions of the JPEG standards as a compression
tool. It is also adopted by the SMPTE (Society of Motion Pictures and Television
Engineers). Even though the wavelet transform may be applied on blocks of an im-
age like the DCT, it is generally applied on the full image and the various wavelet
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Figure 1.6 A two-level 2D DWT of cameraman image.

coefficients are quantized according to their types. A two-level discrete wavelet trans-
form (DWT) of the cameraman image is shown in Figure 1.6 to illustrate how the 2D
wavelet transform coefficients look like. Details pertaining to the levels and subbands
of the DWT will be given in a later chapter. The M-file to implement multilevel 2D
DWT that generates Figure 1.6 is listed below. As we will see in a later chapter, the
2D DWT decomposes an image into one approximation and many detail coefficients.
The number of coefficient subimages corresponding to an L-level 2D DWT equals
3 × L + 1. Therefore, for a two-level 2D DWT, there are seven coefficient subim-
ages. In the first level, there are three detail coefficient subimages, each of size 1

4
the original image. The second level consists of four sets of DWT coefficients—one
approximation and three details, each 1

16 the original image. As the name implies the
approximation coefficients are lower spatial resolution approximations to the original
image. The detail coefficients capture the discontinuities or edges in the image with
orientations in the horizontal, vertical, and diagonal directions. In order to compress,
an image using 2D DWT we have to compute the 2D DWT of the image up to a given
level and then quantize each coefficient subimage. The achievable quality and com-
pression ratio depend on the chosen wavelets and quantization method. The visual
effect of quantization distortion in DWT compression scheme is different from that
in DCT-based scheme. Figure 1.7a is the cameraman image compressed using 2D
DWT. The wavelet used is called Daubechies 2 (db2 in MATLAB) and the number
of levels used is 1. We note that there are no blocking effects, but there are patches
in the flat areas. We also see that the edges are reproduced faithfully as evidenced
in the profile (Figure 1.7b). It must be pointed out that the amount of quantization
applied in Figure 1.7a is not the same as that used for the DCT example and that the
two examples are given only to show the differences in the artifacts introduced by
the two schemes. An M-file listing to generate Figures 1.7a,b is shown below.
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Figure 1.7 (a) Cameraman image compressed using one-level 2D DWT. (b) Intensity profile of
image in Figure 1.8a along row number 164.
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% Figure1 6.m
% 2D Discrete Wavelet Transform (DWT)
% Computes multi-level 2D DWT of an intensity image
close all
clear
I = imread(’cameraman.tif’);
figure,imshow(I), title(’Original Image’)
L = 2; % number of levels in DWT
[W,B] = wavedec2(I,L,’db2’); % do a 2-level DWT using db2 wavelet
% declare level-1 subimages
w11 = zeros(B(3,1),B(3,1));
w12 = zeros(B(3,1),B(3,1));
w13 = zeros(B(3,1),B(3,1));
% declare level-2 subimages
w21 = zeros(B(1,1),B(1,1));
w22 = zeros(B(1,1),B(1,1));
w23 = zeros(B(1,1),B(1,1));
w24 = zeros(B(1,1),B(1,1));
% extract level-1 2D DWT coefficients
offSet11 = 4*B(1,1)*B(1,2);
offSet12 = 4*B(1,1)*B(1,2)+B(3,1)*B(3,2);
offSet13 = 4*B(1,1)*B(1,2)+2*B(3,1)*B(3,2);
for c = 1:B(2,2)

for r = 1:B(2,1)
w11(r,c) = W(offSet11+(c-1)*B(3,1)+r);
w12(r,c) = W(offSet12+(c-1)*B(3,1)+r);
w13(r,c) = W(offSet13+(c-1)*B(3,1)+r);

end
end
% extract level-2 2D DWT coefficients
offSet22 = B(1,1)*B(1,2);
offSet23 = 2*B(1,1)*B(1,2);
offSet24 = 3*B(1,1)*B(1,2);
for c = 1:B(1,2)

for r = 1:B(1,1)
w21(r,c) = W((c-1)*B(1,1)+r);
w22(r,c) = W(offSet22+(c-1)*B(1,1)+r);
w23(r,c) = W(offSet23+(c-1)*B(1,1)+r);
w24(r,c) = W(offSet24+(c-1)*B(1,1)+r);

end
end
% declare output array y to store all the DWT coefficients
%y = zeros(261,261);
y = zeros(2*B(1,1)+B(3,1),2*B(1,2)+B(3,2));
y(1:B(1,1),1:B(1,1))=w21;
y(1:B(1,1),B(1,1)+1:2*B(1,1))=w22;
y(B(1,1)+1:2*B(1,1),1:B(1,1))=w23;
y(B(1,1)+1:2*B(1,1),B(1,1)+1:2*B(1,1))=w24;
%
y(1:B(3,1),2*B(1,1)+1:261)=w11;
y(2*B(1,1)+1:261,1:129)=w12;
y(2*B(1,1)+1:261,2*B(1,1)+1:261)=w13;
figure,imshow(y,[]),title([num2str(L) ’-level 2D DWT’])

% Figure1 7.m
% An example to show the effect of quantizing the 2D DWT
% coefficients of an intensity image along with intensity
% profile along a specified row
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%
close all
clear
I = imread(’cameraman.tif’);
figure,imshow(I), title(’Original Image’)
% do a 1-level 2D DWT
[W,B] = wavedec2(I,1,’db2’);
w11 = zeros(B(1,1),B(1,2));
w12 = zeros(B(1,1),B(1,2));
w13 = zeros(B(1,1),B(1,2));
w14 = zeros(B(1,1),B(1,2));
%
offSet12 = B(1,1)*B(1,2);
offSet13 = 2*B(1,1)*B(1,2);
offSet14 = 3*B(1,1)*B(1,2);
% quantize only the approximation coefficients
Qstep = 16;
for c = 1:B(1,2)

for r = 1:B(1,1)
W((c-1)*B(1,1)+r) = floor(W((c-1)*B(1,1)+r)/Qstep)*Qstep;
%{
W(offSet12+(c-1)*B(1,1)+r) = floor(W(offSet12+(c-1)*B(1,1)+r)/8)*8;
W(offSet13+(c-1)*B(1,1)+r) = floor(W(offSet13+(c-1)*B(1,1)+r)/8)*8;
W(offSet14+(c-1)*B(1,1)+r) = floor(W(offSet14+(c-1)*B(1,1)+r)/8)*8;
%}

end
end
% do inverse 2D DWT
y = waverec2(W,B,’db2’);
figure,imshow(y,[])
% plot profile
ProfRow = 164;
figure,plot(1:size(I,2),I(ProfRow,:),’k’,’LineWidth’,2)
hold on
plot(1:size(I,2),y(ProfRow,:),’-.k’,’LineWidth’,1)
title([’Profile of row ’ num2str(ProfRow)])
xlabel(’Pixel number’), ylabel(’Amplitude’)
%legend([’Row’ ’ ’ num2str(ProfRow)],0)
legend(’Original’,’Compressed’,0)

1.3.2 Video Compression

So far our discussion on compression has been on still images. These techniques try
to exploit the spatial correlation that exists in a still image. When we want to com-
press video or sequence images we have an added dimension to exploit, namely, the
temporal dimension. Generally, there is little or very little change in the spatial ar-
rangement of objects between two or more consecutive frames in a video. Therefore,
it is advantageous to send or store the differences between consecutive frames rather
than sending or storing each frame. The difference frame is called the residual or
differential frame and may contain far less details than the actual frame itself. Due
to this reduction in the details in the differential frames, compression is achieved. To
illustrate the idea, let us consider compressing two consecutive frames (frame 120
and frame 121) of a video sequence as shown in Figures 1.8a,b, respectively (see
M-file listing shown below). The difference between frames 121 and 120 is shown
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Figure 1.8 Compressing a video sequence: (a) frame 120 of a table tennis video sequence;
(b) frame 121 of the video sequence; (c) difference between frames 121 and 120; (d) histogram
of frame 121; (e) histogram of the difference of frames; (g) quantized difference frame; and (h)
Reconstructed frame 121 by adding the quantized difference frame to frame 120.
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in Figure 1.8c. The differential frame has a small amount of details corresponding to
the movements of the hand and the racket. Note that stationary objects do not appear
in the difference frame. This is evident from the histogram of the differential frame
shown in Figure 1.8e, where the intensity range occupied by the differential pixels is
much smaller. Compare this with the histogram of frame 121 in Figure 1.8d which
is much wider. The quantized differential frame and the reconstructed frame 121 are
shown in Figures 1.8f,g, respectively. We see some distortions in the edges due to
quantization.

When objects move between successive frames, simple differencing will intro-
duce large residual values especially when the motion is large. Due to relative motion
of objects, simple differencing is not efficient from the point of view of achievable
compression. It is more advantageous to determine or estimate the relative motions
of objects between successive frames and compensate for the motion and then do
the differencing to achieve a much higher compression. This type of prediction is
known as motion compensated prediction. Because we perform motion estimation
and compensation at the encoder, we need to inform the decoder about this motion
compensation. This is done by sending motion vectors as side information, which
conveys the object motion in the horizontal and vertical directions. The decoder then
uses the motion vectors to align the blocks and reconstruct the image.

% Figure1 8.m
% generates a differential frame by subtracting two
% temporally adjacent intensity image frames
% quantizes the differential frame and reconstructs
% original frame by adding quantized differential frame
% to the other frame.
close all
clear
Frm1 = ’tt120.ras’;
Frm2 = ’tt121.ras’;
I = imread(Frm1); % read frame # 120
I1 = im2single(I); % convert from uint8 to float single
I = imread(Frm2); % read frame # 121
figure,imhist(I,256),title([’Histogram of frame ’ num2str(121)])
xlabel(’Pixel Value’), ylabel(’Pixel Count’)
I2 = im2single(I); % convert from uint8 to float single
clear I
figure,imshow(I1,[]), title([num2str(120) ’th frame’])
figure,imshow(I2,[]), title([num2str(121) ’st frame’])
%
Idiff = imsubtract(I2,I1); % subtract frame 120 from 121
figure,imhist(Idiff,256),title(’Histogram of difference image’)
xlabel(’Pixel Value’), ylabel(’Pixel Count’)
figure,imshow(Idiff,[]),title(’Difference image’)
% quantize and dequantize the differential image
IdiffQ = round(4*Idiff)/4;
figure,imshow(IdiffQ,[]),title(’Quantized Difference image’)
y = I1 + IdiffQ; % reconstruct frame 121
figure,imshow(y,[]),title(’Reconstructed image’)
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A video sequence is generally divided into scenes with scene changes marking
the boundaries between consecutive scenes. Frames within a scene are similar and
there is a high temporal correlation between successive frames within a scene. We
may, therefore, send differential frames within a scene to achieve high compression.
However, when the scene changes, differencing may result in much more details
than the actual frame due to the absence of correlation, and therefore, compression
may not be possible. The first frame in a scene is referred to as the key frame, and
it is compressed by any of the above-mentioned schemes such as the DCT or DWT.
Other frames in the scene are compressed using temporal differencing. A detailed
discussion on video compression follows in a later chapter.

1.3.3 Lossless Compression

The above-mentioned compression schemes are lossy because there is always a loss
of some information when reconstructing the image from the compressed image.
There is another category of compression methods wherein the image decoding or
reconstruction is exact, that is, there is no loss of any information about the orig-
inal image. Although this will be very exciting to a communications engineer, the
achievable compression ratio is usually around 2:1, which may not always be suf-
ficient from a storage or transmission point of view. However, there are situations
where lossless image and video compression may be necessary. Digital mastering
of movies is done by lossless compression. After editing a movie, it is compressed
with loss for distribution. In telemedicine, medical images need to be compressed
losslessly so as to enable a physician at a remote site to diagnose unambiguously.
In general, a lossless compression scheme considers an image to consist of a finite
alphabet of discrete symbols and relies on the probability of occurrence of these sym-
bols to achieve lossless compression. For instance, if the image pixels have values
between 0 and 255, then the alphabet consists of 256 symbols one for each inte-
ger value with a characteristic probability distribution that depends on the source.
We can then generate binary codeword for each symbol in the alphabet, wherein the
code length of a symbol increases with its decreasing probability in a logarithmic
fashion. This is called a variable-length coding. Huffman coding [2] is a familiar
example of variable-length coding. It is also called entropy coding because the av-
erage code length of a large sequence approaches the entropy of the source. As an
example, consider a discrete source with an alphabet A = {a1, a2, a3, a4} with re-
spective probabilities of 1

8 , 1
2 , 1

8 , and 1
4 . Then one possible set of codes for the sym-

bols is shown in the table below. These are variable-length codes, and we see that no
code is a prefix to other codes. Hence, these codes are also known as prefix codes.
Observe that the most likely symbol a2 has the least code length and the least prob-
able symbols a1 and a3 have the largest code length. We also find that the average
number of bits per symbol is 1.75, which happens to be the entropy of this source. We
will discuss source entropy in detail in Chapter 5. One drawback of Huffman coding
is that the entire codebook must be available at the decoder. Depending on the num-
ber of codewords, the amount of side information about the codebook to be trans-
mitted may be very large and the coding efficiency may be reduced. If the number
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Table 1.1 Variable-length codes

Symbol Probability Code

a1 1/8 110
a2 1/2 0
a3 1/8 111
a4 1/4 10

of symbols is small, then we can use a more efficient lossless coding scheme called
arithmetic coding. Arithmetic coding does not require the transmission of codebook
and so achieves a higher compression than Huffman coding would. For compressing
textual information, there is an efficient scheme known as Lempel–Ziv (LZ) cod-
ing [3] method. As we are concerned only with image and video compression here,
we will not discuss LZ method further.

With this short description of the various compression methods for still image and
video, we can now look at the plethora of compression schemes in a tree diagram as
illustrated in Figure 1.9. It should be pointed out that lossless compression is always
included as part of a lossy compression even though it is not explicitly shown in
the figure. It is used to losslessly encode the various quantized pixels or transform
coefficients that take place in the compression chain.

1.4 VIDEO COMPRESSION STANDARDS

Interoperability is crucial when different platforms and devices are involved in the
delivery of images and video data. If for instance images and video are compressed
using a proprietary algorithm, then decompression at the user end is not feasible un-
less the same proprietary algorithm is used, thereby encouraging monopolization.

Lossless

Compression methods

Huffman
coding

Arithmetic
coding

Lossy

Predictive
coding

Transform
coding—
DCT, etc.

Wavelet-
domain
coding

Still image
compression

Video
compression

Moving
frame
coding

Key frame
coding

Figure 1.9 A taxonomy of image and video compression methods.
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This, therefore, calls for a standardization of the compression algorithms as well as
data transportation mechanism and protocols so as to guarantee not only interoper-
ability but also competitiveness. This will eventually open up growth potential for
the technology and will benefit the consumers as the prices will go down. This has
motivated people to form organizations across nations to develop solutions to inter-
operability.

The first successful standard for still image compression known as JPEG
was developed jointly by the International Organization for Standardization (ISO)
and International Telegraph and Telephone Consultative Committee (CCITT) in
a collaborative effort. CCITT is now known as International Telecommunication
Union—Telecommunication (ITU-T). JPEG standard uses DCT as the compression
tool for grayscale and true color still image compression. In 2000, JPEG [4] adopted
2D DWT as the compression vehicle.

For video coding and distribution, MPEG was developed under the auspicious
of ISO and International Electrotechnical Commission (IEC) groups. MPEG [5] de-
notes a family of standards used to compress audio-visual information. Since its in-
ception MPEG standard has been extended to several versions. MPEG-1 was meant
for video compression at about 1.5 Mb/s rate suitable for CD ROM. MPEG-2 aims
for higher data rates of 10 Mb/s or more and is intended for SD and HD TV appli-
cations. MPEG-4 is intended for very low data rates of 64 kb/s or less. MPEG-7 is
more on standardization of description of multimedia information rather than com-
pression. It is intended for enabling efficient search of multimedia contents and is
aptly called multimedia content description interface. MPEG-21 aims at enabling
the use of multimedia sources across many different networks and devices used by
different communities in a transparent manner. This is to be accomplished by defin-
ing the entire multimedia framework as digital items. Details about various MPEG
standards will be given in Chapter 10.

1.5 ORGANIZATION OF THE BOOK

We begin with image acquisition techniques in Chapter 2. It describes image sam-
pling and quantization schemes followed by various color coordinates used in the
representation of color images and various video formats. Unitary transforms, espe-
cially the DCT, are important compression vehicles, and so in Chapter 3, we will
define the unitary transforms and discuss their properties. We will then describe im-
age transforms such as KLT and DCT and illustrate their merits and demerits by way
of examples. In Chapter 4, 2D DWT will be defined along with methods of its com-
putation as it finds extensive use in image and video compression. Chapter 5 starts
with a brief description of information theory and source entropy and then describes
lossless coding methods such as Huffman coding and arithmetic coding with some
examples. It also shows examples of constructing Huffman codes for a specific image
source. We will then develop the idea of predictive coding and give detailed descrip-
tions of DPCM in Chapter 6 followed by transform domain coding procedures for
still image compression in Chapter 7. Chapter 7 also describes JPEG standard for still
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image compression. Chapter 8 deals with image compression in the wavelet domain
as well as JPEG2000 standard. Video coding principles will be discussed in Chapter
9. Various motion estimation techniques will be described in Chapter 9 with several
examples. Compression standards such as MPEG will be discussed in Chapter 10
with examples.

1.6 SUMMARY

Still image and video sources require wide bandwidths for real-time transmission
or large storage memory space. Therefore, some form of data compression must be
applied to the visual data before transmission or storage. In this chapter, we have
introduced terminologies of lossy and lossless methods of compressing still images
and video. The existing lossy compression schemes are DPCM, transform coding,
and wavelet-based coding. Although DPCM is very simple to implement, it does
not yield high compression that is required for most image sources. It also suffers
from distortions that are objectionable in applications such as HDTV. DCT is the
most popular form of transform coding as it achieves high compression at good vi-
sual quality and is, therefore, used as the compression vehicle in JPEG and MPEG
standards. More recently 2D DWT has gained importance in video compression be-
cause of its ability to achieve high compression with good quality and because of
the availability of a wide variety of wavelets. The examples given in this chapter
show how each one of these techniques introduces artifacts at high compression
ratios.

In order to reconstruct images from compressed data without incurring any loss
whatsoever, we mentioned two techniques, namely, Huffman and arithmetic coding.
Even though lossless coding achieves only about 2:1 compression, it is necessary
where no loss is tolerable, as in medical image compression. It is also used in all
lossy compression systems to represent quantized pixel values or coefficient values
for storage or transmission and also to gain additional compression.
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