
SQL Server Architecture

WHAT’S IN THIS CHAPTER

Understanding database transactions and the ACID properties ➤

Architectural components used to fulfi ll a read request ➤

Architectural components used to fulfi ll an update request ➤

Database recovery and the transaction log ➤

Dirty pages, checkpoints, and the lazywriter ➤

Where the SQLOS fi ts in and why it’s needed ➤

A basic grasp of SQL Server’s architecture is fundamental to intelligently approach trouble-
shooting a problem, but selecting the important bits to learn about can be challenging, as SQL
Server is such a complex piece of software.

This chapter distills the core architecture of SQL Server and puts the most important compo-
nents into the context of executing a simple query to help you understand the fundamentals of
the core engine.

You will learn how SQL Server deals with your network connection, unravels what you’re
asking it to do, decides how it will execute your request, and fi nally how data is retrieved and
modifi ed on your behalf.

You will also discover when the transaction log is used and how it’s affected by the confi gured
recovery model; what happens when a checkpoint occurs and how you can infl uence the fre-
quency; and what the lazywriter does.

1

84289c01.indd 184289c01.indd 1 11/23/09 4:11:23 PM11/23/09 4:11:23 PM

CO
PYRIG

HTED
 M

ATERIA
L

2 ❘ CHAPTER 1 SQL SERVER ARCHITECTURE

The chapter starts by defi ning a “transaction” and what the requirements are for a database system
to reliably process them. You’ll then look at the life cycle of a simple query that reads data, taking a
walk through the components employed to return a result set, before looking at how the process dif-
fers when data needs to be modifi ed.

Finally, you’ll read about the components and terminology that support the recovery process in SQL
Server, and the SQLOS “framework” introduced in SQL Server 2005 that consolidates a lot of the
low-level functions required by many SQL Server components.

Some areas of the life cycle described in this chapter are intentionally shallow in
order to keep the fl ow manageable, and where that’s the case you are directed to
the chapter or chapters that cover the topic in more depth.

DATABASE TRANSACTIONS

A transaction is a unit of work in a database that typically contains several commands that read
from and write to the database. The most well-known feature of a transaction is that it must com-
plete all of the commands in their entirety or none of them. This feature, called atomicity, is just one
of four properties defi ned in the early days of database theory as requirements for a database trans-
action, collectively known as ACID properties.

ACID Properties

The four required properties of a database transaction are atomicity, consistency, isolation, and
durability.

Atomicity

Atomicity means that all the effects of the transaction must complete successfully or the changes are
rolled back. A classic example of an atomic transaction is a withdrawal from an ATM machine; the
machine must both dispense the cash and debit your bank account. Either of those actions complet-
ing independently would cause a problem for either you or the bank.

Consistency

The consistency requirement ensures that the transaction cannot break the integrity rules of the
database; it must leave the database in a consistent state. For example, your system might require
that stock levels cannot be a negative value, a spare part cannot exist without a parent object, or the
data in a sex fi eld must be male or female. In order to be consistent, a transaction must not break
any of the constraints or rules defi ned for the data.

84289c01.indd 284289c01.indd 2 11/23/09 4:11:23 PM11/23/09 4:11:23 PM

The Life Cycle of a Query ❘ 3

Isolation

Isolation refers to keeping the changes of incomplete transactions running at the same time separate
from one another. Each transaction must be entirely self-contained, and changes it makes must not
be readable by any other transaction, although SQL Server does allow you to control the degree of
isolation in order to fi nd a balance between business and performance requirements.

Durability

Once a transaction is committed, it must persist even if there is a system failure — that is, it must be
durable. In SQL Server, the information needed to replay changes made in a transaction is written to
the transaction log before the transaction is considered to be committed.

SQL Server Transactions

There are two types of transactions in SQL Server that are differentiated only by the way they are
created: implicit and explicit.

Implicit transactions are used automatically by SQL Server to guarantee the ACID properties of
single commands. For example, if you wrote an update statement that modifi ed 10 rows, SQL Server
would run it as an implicit transaction so that the ACID properties would apply, and all 10 rows would
be updated or none of them would.

Explicit transactions are started by using the BEGIN TRANSACTION T-SQL command and are stopped
by using the COMMIT TRANSACTION or ROLLBACK TRANSACTION commands.

Committing a transaction effectively means making the changes within the transaction permanent,
whereas rolling back a transaction means undoing all the changes that were made within the trans-
action. Explicit transactions are used to group together changes to which you want to apply the
ACID properties as a whole, which also enables you to roll back the changes at any point if your
business logic determines that you should cancel the change.

THE LIFE CYCLE OF A QUERY

To introduce the high-level components of SQL Server’s architecture, this section uses the example
of a query’s life cycle to put each component into context in order to foster your understanding and
create a foundation for the rest of the book.

It looks at a basic SELECT query fi rst in order to reduce the scope to that of a READ operation, and
then introduces the additional processes involved for a query that performs an UPDATE operation.
Finally, you’ll read about the terminology and processes that SQL Server uses to implement recovery
while optimizing performance.

Figure 1-1 shows the high-level components that are used within the chapter to illustrate the life
cycle of a query.

84289c01.indd 384289c01.indd 3 11/23/09 4:11:23 PM11/23/09 4:11:23 PM

4 ❘ CHAPTER 1 SQL SERVER ARCHITECTURE

Cmd Parser

Query Executor

Access Methods

Transaction
Mgr

Buffer
Manager

Optimizer SNI
SQL Server

Network Interface

Protocol
LayerRelational Engine

Storage Engine Buffer Pool

Plan Cache

Data Cache
Data file

Transaction Log

FIGURE 1-1

The Relational and Storage Engines

As shown in Figure 1-1, SQL Server is split into two main engines: the Relational Engine and the
Storage Engine.

The Relational Engine is also sometimes called the query processor because its primary function is
query optimization and execution. It contains a Command Parser to check query syntax and pre-
pare query trees, a Query Optimizer that is arguably the crown jewel of any database system, and a
Query Executor responsible for execution.

The Storage Engine is responsible for managing all I/O to the data, and contains the Access Methods
code, which handles I/O requests for rows, indexes, pages, allocations and row versions, and a
Buffer Manager, which deals with SQL Server’s main memory consumer, the buffer pool. It also
contains a Transaction Manager, which handles the locking of data to maintain Isolation (ACID
properties) and manages the transaction log.

The Buff er Pool

The other major component you need to know about before getting into the query life cycle is the
buffer pool, which is the largest consumer of memory in SQL Server. The buffer pool contains all

84289c01.indd 484289c01.indd 4 11/23/09 4:11:23 PM11/23/09 4:11:23 PM

The Life Cycle of a Query ❘ 5

the different caches in SQL Server, including the plan cache and the data cache, which is covered
as the sections follow the query through its life cycle.

The buffer pool is covered in detail in Chapter 2.

A Basic Select Query

The details of the query used in this example aren’t important — it’s a simple SELECT statement with
no joins, so you’re just issuing a basic read request. Start at the client, where the fi rst component you
touch is the SQL Server Network Interface (SNI).

SQL Server Network Interface

The SQL Server Network Interface (SNI) is a protocol layer that establishes the network connec-
tion between the client and the server. It consists of a set of APIs that are used by both the database
engine and the SQL Server Native Client (SNAC). SNI replaces the net-libraries found in SQL Server
2000 and the Microsoft Data Access Components (MDAC), which are included with Windows.

Late in the SQL Server 2005 development cycle, the SQL Server team decided
to eliminate their dependence on MDAC to provide client connectivity. MDAC
is owned by the SQL Server team but ships in the box with Windows, which
means its shipped ‘out-of-band’ with SQL Server. With so many new features
being added in SQL Server 2005, it became cumbersome to coordinate updates
to MDAC with Windows releases, and SNI and SNAC were the solutions cre-
ated. This meant that the SQL Server team could add support for new features
and release the new code in-line with SQL Server releases.

SNI isn’t confi gurable directly; you just need to confi gure a network protocol on the client and the
server. SQL Server has support for the following protocols:

Shared memory: ➤ Simple and fast, shared memory is the default protocol used to connect from
a client running on the same computer as SQL Server. It can only be used locally, has no con-
fi gurable properties, and is always tried fi rst when connecting from the local machine.

TCP/IP: ➤ TCP/IP is the most commonly used access protocol for SQL Server. It enables you
to connect to SQL Server by specifying an IP address and a port number. Typically, this hap-
pens automatically when you specify an instance to connect to. Your internal name resolu-
tion system resolves the hostname part of the instance name to an IP address, and either you
connect to the default TCP port number 1433 for default instances or the SQL Browser ser-
vice will fi nd the right port for a named instance using UDP port 1434.

Named Pipes: ➤ TCP/IP and Named Pipes are comparable protocols in the architectures in
which they can be used. Named Pipes was developed for local area networks (LANs) but it
can be ineffi cient across slower networks such as wide area networks (WANs).

84289c01.indd 584289c01.indd 5 11/23/09 4:11:23 PM11/23/09 4:11:23 PM

6 ❘ CHAPTER 1 SQL SERVER ARCHITECTURE

To use Named Pipes you fi rst need to enable it in SQL Server Confi guration Manager (if
you’ll be connecting remotely) and then create a SQL Server alias, which connects to the
server using Named Pipes as the protocol.

Named Pipes uses TCP port 445, so ensure that the port is open on any fi rewalls between
the two computers, including the Windows Firewall.

VIA: ➤ Virtual Interface Adapter is a protocol that enables high-performance communica-
tions between two systems. It requires specialized hardware at both ends and a dedicated
connection.

Like Named Pipes, to use the VIA protocol you fi rst need to enable it in SQL Server Con-
fi guration Manager and then create a SQL Server alias that connects to the server using
VIA as the protocol.

Regardless of the network protocol used, once the connection is established, SNI creates a
secure connection to a TDS endpoint (described next) on the server, which is then used to
send requests and receive data. For the purpose here of following a query through its life
cycle, you’re sending the SELECT statement and waiting to receive the result set.

TDS (Tabular Data Stream) Endpoints

TDS is a Microsoft-proprietary protocol originally designed by Sybase that is used to interact with a
database server. Once a connection has been made using a network protocol such as TCP/IP, a link
is established to the relevant TDS endpoint that then acts as the communication point between the
client and the server.

There is one TDS endpoint for each network protocol and an additional one reserved for use by the
dedicated administrator connection (DAC). Once connectivity is established, TDS messages are used
to communicate between the client and the server.

The SELECT statement is sent to the SQL Server as a TDS message across a TCP/IP connection
(TCP/IP is the default protocol).

Protocol Layer

When the protocol layer in SQL Server receives your TDS packet, it has to reverse the work of the
SNI at the client and unwrap the packet to fi nd out what request it contains. The protocol layer
is also responsible for packaging up results and status messages to send back to the client as TDS
messages.

Our SELECT statement is marked in the TDS packet as a message of type “SQL Command,” so it’s
passed on to the next component, the Query Parser, to begin the path toward execution.

Figure 1-2 shows where our query has gone so far. At the client, the statement was wrapped in a
TDS packet by the SQL Server Network Interface and sent to the protocol layer on the SQL Server
where it was unwrapped, identifi ed as a SQL Command, and the code sent to the Command Parser
by the SNI.

84289c01.indd 684289c01.indd 6 11/23/09 4:11:24 PM11/23/09 4:11:24 PM

The Life Cycle of a Query ❘ 7

Cmd Parser

Query ExecutorOptimizer SNI
SQL Server

Network Interface

Protocol
LayerRelational Engine

TDS

Language Event

FIGURE 1-2

Command Parser

The Command Parser’s role is to handle T-SQL language events. It fi rst checks the syntax and
returns any errors back to the protocol layer to send to the client. If the syntax is valid, then the next
step is to generate a query plan or fi nd an existing plan. A query plan contains the details about how
SQL Server is going to execute a piece of code. It is commonly referred to as an execution plan.

To check for a query plan, the Command Parser generates a hash of the T-SQL and checks it against
the plan cache to determine whether a suitable plan already exists. The plan cache is an area in the
buffer pool used to cache query plans. If it fi nds a match, then the plan is read from cache and passed
on to the Query Executor for execution. (The following section explains what happens if it doesn’t
fi nd a match.)

Plan Cache

Creating execution plans can be time consuming and resource intensive, so it makes sense that if
SQL Server has already found a good way to execute a piece of code that it should try to reuse it for
subsequent requests.

The plan cache, part of SQL Server’s buffer pool, is used to store execution plans in case they are
needed later. You can read more about execution plans and plan cache in Chapters 2 and 5.

If no cached plan is found, then the Command Parser generates a query tree based on the T-SQL. A
query tree is an internal structure whereby each node in the tree represents an operation in the query
that needs to be performed. This tree is then passed to the Query Optimizer to process.

Our basic query didn’t have an existing plan so a query tree was created and passed to the Query
Optimizer.

Figure 1-3 shows the plan cache added to the diagram, which is checked by the Command Parser for
an existing query plan. Also added is the query tree output from the Command Parser being passed
to the optimizer because nothing was found in cache for our query.

84289c01.indd 784289c01.indd 7 11/23/09 4:11:24 PM11/23/09 4:11:24 PM

8 ❘ CHAPTER 1 SQL SERVER ARCHITECTURE

Cmd Parser

Query ExecutorOptimizer SNI

SQL Server
Network Interface

Protocol
LayerRelational Engine

Buffer Pool

Plan Cache

Data Cache

TDS

Query Plan

Language EventQuery Tree

FIGURE 1-3

Optimizer

The Optimizer is the most prized possession of the SQL Server team and one of the most complex
and secretive parts of the product. Fortunately, it’s only the low-level algorithms and source code
that are so well protected (even within Microsoft), and research and observation can reveal how the
Optimizer works.

It is what’s known as a “cost-based” optimizer, which means that it evaluates multiple ways to
execute a query and then picks the method that it deems will have the lowest cost to execute. This
“method” of executing is implemented as a query plan and is the output from the optimizer.

Based on that description, you would be forgiven for thinking that the optimizer’s job is to fi nd the
best query plan because that would seem like an obvious assumption. Its actual job, however, is to
fi nd a good plan in a reasonable amount of time, rather than the best plan. The optimizer’s goal is
most commonly described as fi nding the most effi cient plan.

If the optimizer tried to fi nd the “best” plan every time, it might take longer to fi nd the plan than it
would to just execute a slower plan (some built-in heuristics actually ensure that it never takes lon-
ger to fi nd a good plan than it does to just fi nd a plan and execute it).

84289c01.indd 884289c01.indd 8 11/23/09 4:11:24 PM11/23/09 4:11:24 PM

The Life Cycle of a Query ❘ 9

As well as being cost based, the optimizer also performs multi-stage optimization, increasing the
number of decisions available to fi nd a good plan at each stage. When a good plan is found, optimi-
zation stops at that stage.

The fi rst stage is known as pre-optimization, and queries drop out of the process at this stage when
the statement is simple enough that the most effi cient plan is obvious, obviating the need for addi-
tional costing. Basic queries with no joins are regarded as “simple,” and plans produced as such
have zero cost (because they haven’t been costed) and are referred to as trivial plans.

The next stage is where optimization actually begins, and it consists of three search phases:

Phase 0: ➤ During this phase the optimizer looks at nested loop joins and won’t consider parallel
operators (parallel means executing across multiple processors and is covered in Chapter 5.

The optimizer will stop here if the cost of the plan it has found is < 0.2. A plan generated at
this phase is known as a transaction processing, or TP, plan.

Phase 1: ➤ Phase 1 uses a subset of the possible optimization rules and looks for common pat-
terns for which it already has a plan.

The optimizer will stop here if the cost of the plan it has found is < 1.0. Plans generated in
this phase are called quick plans.

Phase 2: ➤ This fi nal phase is where the optimizer pulls out all the stops and is able to use all
of its optimization rules. It will also look at parallelism and indexed views (if you’re running
Enterprise Edition).

Completion of Phase 2 is a balance between the cost of the plan found versus the time spent
optimizing. Plans created in this phase have an optimization level of “Full.”

HOW MUCH DOES IT COST?

The term Cost doesn’t translate into seconds or anything meaningful and is just
an arbitrary number used to assign a value representing the resource cost for a
plan. However, its origin was a benchmark on a desktop computer at Microsoft
early in SQL Server’s life (probably 7.0).

The statistics that the optimizer uses to estimate cost aren’t covered here because
they aren’t relevant to the concepts illustrated in this chapter but you can read
about them in Chapter 5.

Because our SELECT query is very simple, it drops out of the process in the pre-optimization
phase because the plan is obvious to the optimizer. Now that there is a query plan, it’s on to the
Query Executor for execution.

Query Executor

The Query Executor’s job is self-explanatory; it executes the query. To be more specifi c, it executes
the query plan by working through each step it contains and interacting with the Storage Engine to
retrieve or modify data.

84289c01.indd 984289c01.indd 9 11/23/09 4:11:24 PM11/23/09 4:11:24 PM

10 ❘ CHAPTER 1 SQL SERVER ARCHITECTURE

The interface to the Storage Engine is actually OLE DB, which is a legacy from
a design decision made in SQL Server’s history. The development team’s origi-
nal idea was to interface through OLE DB to allow different Storage Engines to
be plugged in. However, the strategy changed soon after that.

The idea of a pluggable Storage Engine was dropped and the developers started
writing extensions to OLE DB to improve performance. These customizations
are now core to the product, and while there’s now no reason to have OLE
DB, the existing investment and performance precludes any justifi cation to
change it.

The SELECT query needs to retrieve data, so the request is passed to the Storage Engine through
an OLE DB interface to the Access Methods.

Figure 1-4 shows the addition of the query plan as the output from the Optimizer being passed
to the Query Executor. Also introduced is the Storage Engine, which is interfaced by the Query
Executor via OLE DB to the Access Methods (coming up next).

Cmd Parser

Query Executor

Access Methods

Optimizer SNI
SQL Server

Network Interface

Protocol
LayerRelational Engine

Storage Engine

OLE DB

Buffer Pool

Plan Cache

TDS

Query Plan

Language EventQuery Tree

FIGURE 1-4

84289c01.indd 1084289c01.indd 10 11/23/09 4:11:24 PM11/23/09 4:11:24 PM

The Life Cycle of a Query ❘ 11

Access Methods

Access Methods is a collection of code that provides the storage structures for your data and indexes
as well as the interface through which data is retrieved and modifi ed. It contains all the code to
retrieve data but it doesn’t actually perform the operation itself; it passes the request to the Buffer
Manager.

Suppose our SELECT statement needs to read just a few rows that are all on a single page. The Access
Methods code will ask the Buffer Manager to retrieve the page so that it can prepare an OLE DB
rowset to pass back to the Relational Engine.

Buff er Manager

The Buffer Manager, as its name suggests, manages the buffer pool, which represents the majority
of SQL Server’s memory usage.

If you need to read some rows from a page (you’ll look at writes when we look at an UPDATE query) the
Buffer Manager will check the data cache in the buffer pool to see if it already has the page cached in
memory. If the page is already cached, then the results are passed back to the Access Methods.

If the page isn’t already in cache, then the Buffer Manager will get the page from the database on
disk, put it in the data cache, and pass the results to the Access Methods.

The PAGEIOLATCH wait type represents the time it takes to read a data page from
disk into memory. You can read about wait types in Chapter 3.

The key point to take away from this is that you only ever work with data in memory. Every new
data read that you request is fi rst read from disk and then written to memory (the data cache) before
being returned to you as a result set.

This is why SQL Server needs to maintain a minimum level of free pages in memory; you wouldn’t
be able to read any new data if there were no space in cache to put it fi rst.

The Access Methods code determined that the SELECT query needed a single page, so it asked the
Buffer Manager to get it. The Buffer Manager checked to see whether it already had it in the data
cache, and then loaded it from disk into the cache when it couldn’t fi nd it.

Data Cache

The data cache is usually the largest part of the buffer pool; therefore, it’s the largest memory con-
sumer within SQL Server. It is here that every data page that is read from disk is written to before
being used.

The sys.dm_os_buffer_descriptors DMV contains one row for every data page currently held in
cache. You can use this script to see how much space each database is using in the data cache:

SELECT count(*)*8/1024 AS ‘Cached Size (MB)’
 ,CASE database_id
 WHEN 32767 THEN ‘ResourceDb’

84289c01.indd 1184289c01.indd 11 11/23/09 4:11:24 PM11/23/09 4:11:24 PM

12 ❘ CHAPTER 1 SQL SERVER ARCHITECTURE

 ELSE db_name(database_id)
 END AS ‘Database’
FROM sys.dm_os_buffer_descriptors
GROUP BY db_name(database_id) ,database_id
ORDER BY ‘Cached Size (MB)’ DESC

The output will look something like this (with your own databases obviously):

Cached Size (MB) Database
3287 People
34 tempdb
12 ResourceDb
4 msdb

In this example, the People database has 3,287MB of data pages in the data cache.

The amount of time that pages stay in cache is determined by a least recently used (LRU) policy.

The header of each page in cache stores details about the last two times it was accessed, and a peri-
odic scan through the cache examines these values. A counter is maintained that is decremented if
the page hasn’t been accessed for a while; and when SQL Server needs to free up some cache, the
pages with the lowest counter are fl ushed fi rst.

The process of “aging out” pages from cache and maintaining an available amount of free cache
pages for subsequent use can be done by any worker thread after scheduling its own I/O or by the
lazywriter process, covered later in the section “Lazywriter.”

You can view how long SQL Server expects to be able to keep a page in cache by looking at the
MSSQL$<instance>:Buffer Manager\Page Life Expectancy counter in Performance Monitor. Page
life expectancy (PLE) is the amount of time, in seconds, that SQL Server expects to be able to keep
a page in cache.

Under memory pressure, data pages are fl ushed from cache far more frequently. Microsoft recom-
mends a minimum of 300 seconds for a good PLE, but for systems with plenty of physical memory
this will easily reach thousands of seconds.

The database page read to serve the result set for our SELECT query is now in the data cache in the
buffer pool and will have an entry in the sys.dm_os_buffer_descriptors DMV. Now that the
Buffer Manager has the result set, it’s passed back to the Access Methods to make its way to the
client.

A Basic select Statement Life Cycle Summary

Figure 1-5 shows the whole life cycle of a SELECT query, described here:

 1. The SQL Server Network Interface (SNI) on the client established a connection to the SNI
on the SQL Server using a network protocol such as TCP/IP. It then created a connection to a
TDS endpoint over the TCP/IP connection and sent the SELECT statement to SQL Server as
a TDS message.

 2. The SNI on the SQL Server unpacked the TDS message, read the SELECT statement, and
passed a “SQL Command” to the Command Parser.

84289c01.indd 1284289c01.indd 12 11/23/09 4:11:24 PM11/23/09 4:11:24 PM

The Life Cycle of a Query ❘ 13

 3. The Command Parser checked the plan cache in the buffer pool for an existing, usable
query plan. When it didn’t fi nd one, it created a query tree based on the SELECT statement
and passed it to the Optimizer to generate a query plan.

 4. The Optimizer generated a “zero cost” or “trivial” plan in the pre-optimization phase
because the statement was so simple. The query plan created was then passed to the
Query Executor for execution.

 5. At execution time, the Query Executor determined that data needed to be read to complete
the query plan so it passed the request to the Access Methods in the Storage Engine via an
OLE DB interface.

 6. The Access Methods needed to read a page from the database to complete the request from
the Query Executor and asked the Buffer Manager to provision the data page.

 7. The Buffer Manager checked the data cache to see if it already had the page in cache. It
wasn’t in cache so it pulled the page from disk, put it in cache, and passed it back to the
Access Methods.

 8. Finally, the Access Methods passed the result set back to the Relational Engine to send to
the client.

Cmd Parser

Query Executor

Access Methods

Buffer
Manager

Optimizer SNI
SQL Server

Network Interface

Protocol
LayerRelational Engine

Storage Engine

OLE DB

Buffer Pool

Plan Cache

Data Cache
Data file

TDS

TDS

Query Plan

Language EventQuery Tree

FIGURE 1-5

84289c01.indd 1384289c01.indd 13 11/23/09 4:11:24 PM11/23/09 4:11:24 PM

14 ❘ CHAPTER 1 SQL SERVER ARCHITECTURE

A Simple Update Query

Now that you understand the life cycle for a query that just reads some data, the next step is to
determine what happens when you need to write data. To answer that, this section takes a look
at a simple UPDATE query that modifi es the data that was read in the previous example.

The good news is that the process is exactly the same as the process for the SELECT statement you
just looked at until you get to the Access Methods.

The Access Methods need to make a data modifi cation this time, so before it passes on the I/O
request the details of the change need to be persisted to disk. That is the job of the Transaction
Manager.

Transaction Manager

The Transaction Manager has two components that are of interest here: a Lock Manager and a Log
Manager. The Lock Manager is responsible for providing concurrency to the data, and it delivers
the confi gured level of isolation (as defi ned in the ACID properties at the beginning of the chapter)
by using locks.

The Lock Manager is also employed during the SELECT query life cycle covered
earlier, but it would have been a distraction, and is only mentioned here because
it’s part of the Transaction Manager. Locking is covered in depth in Chapter 6.

The real item of interest here is actually the Log Manager. The Access Methods code requests that
the changes it wants to make are logged, and the Log Manager writes the changes to the transaction
log. This is called Write-Ahead Logging.

Writing to the transaction log is the only part of a data modifi cation transaction that always needs
a physical write to disk because SQL Server depends on being able to reread that change in the event
of system failure (you’ll learn more about this in the “Recovery” section coming up).

What’s actually stored in the transaction log isn’t a list of modifi cation statements but only details of
the page changes that occurred as the result of a modifi cation statement. This is all that SQL Server
needs in order to undo any change, and why it’s so diffi cult to read the contents of a transaction log
in any meaningful way, although you can buy a third-party tool to help.

Getting back to the UPDATE query life cycle, the update operation has now been logged. The actual
data modifi cation can only be performed when confi rmation is received that the operation has been
physically written to the transaction log. This is why transaction log performance is so crucial.
Chapter 4 contains information on monitoring transaction log performance and optimizing the
underlying storage for it.

Once the Access Methods receives confi rmation, it passes the modifi cation request on to the Buffer
Manager to complete.

84289c01.indd 1484289c01.indd 14 11/23/09 4:11:24 PM11/23/09 4:11:24 PM

The Life Cycle of a Query ❘ 15

Figure 1-6 shows the Transaction Manager, which is called by the Access Methods and the transac-
tion log, which is the destination for logging our update. The Buffer Manager is also in play now
because the modifi cation request is ready to be completed.

Transaction Log

Cmd Parser

Query Executor

Access Methods

Transaction
Manager

Buffer
Manager

Optimizer SNI
SQL Server

Network Interface

Protocol
LayerRelational Engine

Storage Engine Buffer Pool

Plan Cache

Data Cache

TDS

Query Plan

Language EventQuery Tree

OLE DB

FIGURE 1-6

Buff er Manager

The page that needs to be modifi ed is already in cache, so all the Buffer Manager needs to do is
modify the page as requested by the Access Methods. The page is modifi ed in the cache, and confi r-
mation is sent back to Access Methods and ultimately to the client.

The key point here (and it’s a big one so pay attention) is that the UPDATE statement has changed the
data in the data cache, not in the actual database fi le on disk. This is done for performance reasons,
and the page is now what’s called a dirty page because it’s different in memory than it is on disk.

It doesn’t compromise the durability of the modifi cation as defi ned in the ACID properties because
you can recreate the change using the transaction log if, for example, you suddenly lost power to the
server and therefore anything in physical RAM (i.e., the data cache). How and when the dirty page
makes its way into the database fi le is covered in the next section.

84289c01.indd 1584289c01.indd 15 11/23/09 4:11:24 PM11/23/09 4:11:24 PM

16 ❘ CHAPTER 1 SQL SERVER ARCHITECTURE

Figure 1-7 shows the completed life cycle for the update. The Buffer Manager has made the modi-
fi cation to the page in cache and has passed confi rmation back up the chain. The database data fi le
was not accessed during the operation, as you can see in the diagram.

Transaction Log

Cmd Parser

Query Executor

Access Methods

Transaction
Manager

Buffer
Manager

Optimizer SNI
SQL Server

Network Interface

Protocol
LayerRelational Engine

Storage Engine Buffer Pool

Plan Cache

Data Cache
Data file

TDS

TDS

Query Plan

Language EventQuery Tree

D

OLE DB

FIGURE 1-7

Recovery

In the previous section you read about the life cycle of an UPDATE query, which introduced Write-
Ahead Logging as the method by which SQL Server maintains the durability of any changes.

Modifi cations are written to the transaction log fi rst and are then actioned in memory only. This
is done for performance reasons and because you can recover the changes from the transaction log
should you need to.

This process introduces some new concepts and terminology that are explored further in this section
on “recovery.”

84289c01.indd 1684289c01.indd 16 11/23/09 4:11:25 PM11/23/09 4:11:25 PM

The Life Cycle of a Query ❘ 17

Dirty Pages

When a page is read from disk into memory it is regarded as a clean page because it’s exactly the
same as its counterpart on the disk. However, once the page has been modifi ed in memory it is
marked as a dirty page.

Clean pages can be fl ushed from cache using dbcc dropcleanbuffers, which can be handy when
you’re troubleshooting development and test environments because it forces subsequent reads to be
fulfi lled from disk, rather than cache, but doesn’t touch any dirty pages.

A dirty page is simply a page that has changed in memory since it was loaded from disk and is now
different from the on-disk page. You can use the following query, which is based on the sys.dm_os_
buffer_descriptors DMV, to see how many dirty pages exist in each database:

SELECT db_name(database_id) AS ‘Database’,count(page_id) AS ‘Dirty Pages’
FROM sys.dm_os_buffer_descriptors
WHERE is_modified =1
GROUP BY db_name(database_id)
ORDER BY count(page_id) DESC

Running this on my test server produced the following results showing that at the time the query
was run, there were just under 20MB (2,524*8\1,024) of dirty pages in the People database:

Database Dirty Pages
People 2524
Tempdb 61
Master 1

These dirty pages will be written back to the database fi le periodically whenever the free buffer list
is low or a checkpoint occurs. SQL Server always tries to maintain a number of free pages in cache
in order to allocate pages quickly, and these free pages are tracked in the free buffer list.

Whenever a worker thread issues a read request, it gets a list of 64 pages in cache and checks
whether the free buffer list is below a certain threshold. If it is, it will try to age-out some pages in
its list, which causes any dirty pages to be written to disk.

Another thread called the lazywriter also works based on a low free buffer list.

Lazywriter

The lazywriter is a thread that periodically checks the size of the free buffer list. When it’s low, it
scans the whole data cache to age-out any pages that haven’t been used for a while. If it fi nds any
dirty pages that haven’t been used for a while, they are fl ushed to disk before being marked as free
in memory.

The lazywriter also monitors the free physical memory on the server and will release memory from
the free buffer list back to Windows in very low memory conditions. When SQL Server is busy, it will
also grow the size of the free buffer list to meet demand (and therefore the buffer pool) when there
is free physical memory and the confi gured Max Server Memory threshold hasn’t been reached. For
more on Max Server Memory see Chapter 2.

84289c01.indd 1784289c01.indd 17 11/23/09 4:11:25 PM11/23/09 4:11:25 PM

18 ❘ CHAPTER 1 SQL SERVER ARCHITECTURE

Checkpoint Process

A checkpoint is a point in time created by the checkpoint process at which SQL Server can be sure
that any committed transactions have had all their changes written to disk. This checkpoint then
becomes the marker from which database recovery can start.

The checkpoint process ensures that any dirty pages associated with a committed transaction will
be fl ushed to disk. Unlike the lazywriter, however, a checkpoint does not remove the page from
cache; it makes sure the dirty page is written to disk and then marks the cached paged as clean in
the page header.

By default, on a busy server, SQL Server will issue a checkpoint roughly every minute, which is
marked in the transaction log. If the SQL Server instance or the database is restarted, then the
recovery process reading the log knows that it doesn’t need to do anything with log records prior to
the checkpoint.

The time between checkpoints therefore represents the amount of work that needs to be done to roll
forward any committed transactions that occurred after the last checkpoint, and to roll back any
transactions that hadn’t committed. By checkpointing every minute, SQL Server is trying to keep the
recovery time when starting a database to less than one minute, but it won’t automatically check-
point unless at least 10MB has been written to the log within the period.

Checkpoints can also be manually called by using the CHECKPOINT T-SQL command, and can occur
because of other events happening in SQL Server. For example, when you issue a backup command,
a checkpoint will run fi rst.

Trace fl ag 3502 is an undocumented trace
fl ag that records in the error log when a
checkpoint starts and stops. For example,
after adding it as a startup trace fl ag and
running a workload with numerous writes,
my error log contained the entries shown
in Figure 1-8, which indicates checkpoints
running between 30 and 40 seconds apart.

ALL ABOUT TRACE FLAGS

Trace fl ags provide a way to change the behavior of SQL Server temporarily and are
generally used to help with troubleshooting or for enabling and disabling certain
features for testing. Hundreds of trace fl ags exist but very few are offi cially docu-
mented; for a list of those that are and more information on using trace fl ags have a
look here: http://msdn.microsoft.com/en-us/library/ms188396.aspx

FIGURE 1-8

84289c01.indd 1884289c01.indd 18 11/23/09 4:11:25 PM11/23/09 4:11:25 PM

The Life Cycle of a Query ❘ 19

Recovery Interval

Recovery Interval is a server confi guration option that can be used to infl uence the time between
checkpoints, and therefore the time it takes to recover a database on startup — hence, “recovery
interval.”

By default the recovery interval is set to 0, which allows SQL Server to choose an appropriate inter-
val, which usually equates to roughly one minute between automatic checkpoints.

Changing this value to greater than 0 represents the number of minutes you want to allow between
checkpoints. Under most circumstances you won’t need to change this value, but if you were more
concerned about the overhead of the checkpoint process than the recovery time, you have the
option.

However, the recovery interval is usually set only in test and lab environments where it’s set ridicu-
lously high in order to effectively stop automatic checkpointing for the purpose of monitoring some-
thing or to gain a performance advantage.

Unless you’re chasing world speed records for SQL Server you shouldn’t need to change it in a real-
world production environment.

SQL Server evens throttles checkpoint I/O to stop it from impacting the disk subsystem too much,
so it’s quite good at self-governing. If you ever see the SLEEP_BPOOL_FLUSH wait type on your server,
that means checkpoint I/O was throttled to maintain overall system performance. You can read all
about waits and wait types in Chapter 3.

Recovery Models

SQL Server has three database recovery models: Full, bulk-logged, and simple. Which model you
choose affects the way the transaction log is used and how big it grows, your backup strategy, and
your restore options.

Full

Databases using the full recovery model have all of their operations fully logged in the transaction
log and must have a backup strategy that includes full backups and transaction log backups.

Starting with SQL Server 2005, Full backups don’t truncate the transaction log. This is so that the
sequence of transaction log backups isn’t broken and gives you an extra recovery option if your full
backup is damaged.

SQL Server databases that require the highest level of recoverability should use the Full Recovery
Model.

Bulk-Logged

This is a special recovery model because it is intended to be used only temporarily to improve the
performance of certain bulk operations by minimally-logging them; all other operations are fully-
logged just like the full recovery model. This can improve performance because only the information
required to roll back the transaction is logged. Redo information is not logged which means that
you also lose point-in-time-recovery.

84289c01.indd 1984289c01.indd 19 11/23/09 4:11:25 PM11/23/09 4:11:25 PM

20 ❘ CHAPTER 1 SQL SERVER ARCHITECTURE

These bulk operations include:

BULK INSERT ➤

Using the bcp executable ➤

SELECT INTO ➤

CREATE INDEX ➤

ALTER INDEX REBUILD ➤

DROP INDEX ➤

Simple

When the simple recovery model is set on a database, all committed transactions are truncated from
the transaction log every time a checkpoint occurs. This ensures that the size of the log is kept to a
minimum and that transaction log backups are not necessary (or even possible). Whether or not that
is a good or a bad thing depends on what level of recovery you require for the database.

If the potential to lose all the changes since the last full or differential backup still meets your busi-
ness requirements then simple recovery might be the way to go.

THE SQLOS (SQL OPERATING SYSTEM)

So far, this chapter has abstracted the concept of the SQLOS to make the fl ow of components through
the architecture easier to understand without going off on too many tangents. However, the SQLOS
is core to SQL Server’s architecture so you need to understand why it exists and what it does to com-
plete your view of how SQL Server works.

In summary, the SQLOS is a thin user-mode layer (Chapter 2) that sits between SQL Server and
Windows. It is used for low-level operations such as scheduling, I/O completion, memory manage-
ment, and resource management.

To explore exactly what this means and why it’s needed, you fi rst need to understand a bit about
Windows.

Windows is a general purpose OS and is not optimized for server-based applications, SQL Server in
particular. Instead, the goal for the Windows development team is to make sure that any application
written by a wide-range of developers inside and outside Microsoft will work correctly and have
good performance. Windows needs to work well for these broad scenarios so the dev teams are not
going to do anything special that would be used in less than 1% of applications.

For example, the scheduling in Windows is very basic because things are done for the common
cause. Optimizing the way that threads are chosen for execution is always going to be limited
because of this broad performance goal but if an application does its own scheduling then there is
more intelligence about who to choose next. For example, assigning some threads a higher priority
or deciding that choosing one thread for execution will prevent other threads being blocked later on.

84289c01.indd 2084289c01.indd 20 11/23/09 4:11:25 PM11/23/09 4:11:25 PM

The SQLOS (SQL Operating System) ❘ 21

Scheduling is the method by which units of work are given time on a CPU to
execute. See Chapter 5 for more information.

In a lot of cases SQL Server had custom code to handle a lot of these areas already. The User Mode
Scheduler (UMS) was introduced in SQL Server 7 to handle scheduling and SQL Server was manag-
ing its own memory even earlier than that.

The idea for SQLOS (which was fi rst implemented in SQL Server 2005) was to take all of these
things developed by different internal SQL Server development teams to provide performance
improvements on Windows and put them in a single place with a single team that will continue to
optimize these low-level functions. This then leaves the other teams to concentrate on challenges
more specifi c to their own domain within SQL Server.

DEFINING DMVS

Dynamic Management Views (DMVs) allow much greater visibility into the work-
ings of SQL Server than in any version prior to SQL Server 2005. They are basi-
cally just views on top of the system tables, but the concept allows Microsoft to
provide a massive amount of useful information through them.

The standard syntax starts with sys.dm,_which indicates that it’s a DMV (there
are also Dynamic Management Functions but DMV is still the collective term in
popular use) followed by the area about which the DMV provides information, for
example, sys.dm_os_for SQLOS, sys.dm_db_for database, and sys.dm_exec_for
query execution.

The last part of the name describes the actual content accessible within the view;
sys.dm_db_index_usage_stats and sys.dm_os_waiting_tasks are a couple of
examples and you’ll come across many more throughout the book.

Another benefi t to having everything in one place is that you can now get better visibility of what’s
happening at that level than was possible prior to SQLOS. You can access all this information through
dynamic management views (DMVs). Any DMV that starts with sys.dm_os_ provides an insight
into the workings of SQLOS. For example:

sys.dm_os_schedulers: ➤ Returns one row per scheduler (there is one user scheduler per core) and
shows information on scheduler load and health. See Chapters 3 and 5 for more information.

sys.dm_os_waiting_tasks: ➤ Returns one row for every executing task that is currently waiting
for a resource as well as the wait type. See Chapter 3 for more information.

sys.dm_os_memory_clerks: ➤ Memory clerks are used by SQL Server to allocate memory.
Signifi cant components within SQL Server have their own memory clerk. This DMV shows
all the memory clerks and how much memory each one is using. See Chapter 2 for more
information.

84289c01.indd 2184289c01.indd 21 11/23/09 4:11:25 PM11/23/09 4:11:25 PM

22 ❘ CHAPTER 1 SQL SERVER ARCHITECTURE

Relating SQLOS back to the architecture diagrams seen earlier, many of the components will make
calls to the SQLOS in order to fulfi ll low-level functions required to support their roles.

Just to be clear, the SQLOS doesn’t replace Windows. Ultimately, everything ends up using the
documented Windows system services; SQL Server just uses them in such a way as to optimize for
its own specifi c scenarios.

SQLOS is not a way to port the SQL Server architecture to other platforms
like Linux or MacOS so it’s not an OS abstraction layer. It doesn’t wrap all the
OS APIs like other frameworks such as .NET, which is why it’s referred to as a
“thin” user-mode layer. Only the things that SQL Server really needs have been
put into SQLOS.

SUMMARY

In this chapter you learned about SQL Server’s architecture by following the fl ow of components
used when you issue a read request and an update request. You also learned some key terminology
and processes used for the recovery of SQL Server databases and where the SQLOS fi ts into the
architecture.

The key takeaways from this chapter are:

The Query Optimizer’s job is to fi nd a good plan in a reasonable amount of time; not the ➤

best plan.

Anything you want to read or update will need to be read into memory fi rst. ➤

Any updates to data will be written to the transaction log on disk before being updated in ➤

memory so transaction log performance is critical; the update isn’t written directly to the
data fi le.

A database page that is changed in memory but not on disk is known as a dirty page. ➤

Dirty pages are fl ushed to disk by the checkpoint process and the lazywriter. ➤

Checkpoints occur automatically, roughly every minute and provide the starting point for ➤

recovery.

The lazywriter keeps space available in cache by fl ushing dirty pages to disk and keeping only ➤

recently used pages in cache.

When a database is using the Full recovery model, full backups will not truncate the transac- ➤

tion log. You must confi gure transaction log backups.

The SQLOS is a framework used by components in SQL Server for scheduling, I/O, and memory
management.

84289c01.indd 2284289c01.indd 22 11/23/09 4:11:25 PM11/23/09 4:11:25 PM

