
Patrick c01.tex V3 - 09/18/2009 12:15pm Page 1

Building Web Applications
in WebLogic

Web applications are an important part of the Java Enterprise Edition (Java EE) platform because
the Web components are responsible for key client-facing presentation and business logic. A poorly
designed web application will ruin the best business-tier components and services. In this chapter,
we review key web application concepts and technologies and their use in WebLogic Server,
and we provide a number of recommendations and best practices related to web application design
and construction in WebLogic Server.

This chapter also provides the foundation for the discussion of recommended web application archi-
tectures in Chapter 2 and the construction and deployment of a complex, realistic web application
in Chapters 3, 4, and 5.

Java Servlets and JSP Key Concepts
In this section we review some key concepts related to Java servlets and JavaServer Pages. If you
are unfamiliar with these technologies, or if you need additional background material, you should
read one of the many fine books available on the subject. Suggestions include Head First Servlets
and JSP: Passing the Sun Certified Web Component Developer Exam by Bryan Basham et. al. (O’Reilly &
Associates, 2008), Java Servlet Programming Bible by Suresh Rajagopalan et. al. (John Wiley & Sons,
2002), and Java Servlet Programming by Jason Hunter (O’Reilly & Associates, 2001).

Characteristics of Servlets
Java servlets are fundamental Java EE platform components that provide a request/response inter-
face for both Web requests and other requests such as XML messages or file transfer functions. In
this section, we review the characteristics of Java servlets as background for a comparison of servlets
with JavaServer Pages (JSP) technology and the presentation of best practices later in the chapter.

CO
PYRIG

HTED
 M

ATERIA
L

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 2

Chapter 1: Building Web Applications in WebLogic

Servlets Use the Request/Response Model
Java servlets are a request/response mechanism: a programming construct designed to respond to
a particular request with a dynamic response generated by the servlet’s specific Java implementa-
tion. Servlets may be used for many types of request/response scenarios, but they are most often
employed in the creation of HyperText Transfer Protocol (HTTP) responses in a web application.
In this role, servlets replace other HTTP request/response mechanisms such as Common Gateway
Interface (CGI) scripts.

The simple request/response model becomes a little more complex once you add chaining and
filtering capabilities to the servlet specification. Servlets may now participate in the overall
request/response scenario in additional ways, either by preprocessing the request and passing it
on to another servlet to create the response or by postprocessing the response before returning it
to the client. Later in this chapter, we discuss servlet filtering as a mechanism for adding auditing,
logging, and debugging logic to your web application.

Servlets Are Pure Java Classes
Simply stated, a Java servlet is a pure Java class that implements the javax.servlet.Servlet inter-
face. The application server creates an instance of the servlet class and uses it to handle incoming
requests. The Servlet interface defines the set of methods that should be implemented to allow the
application server to manage the servlet life cycle (discussed later in this chapter) and pass requests
to the servlet instance for processing. Servlets intended for use as HTTP request/response mecha-
nisms normally extend the javax.servlet.http.HttpServlet class, although they may implement
and use the Servlet interface methods if desired. The HttpServlet class implements the Servlet
interface and implements the init(), destroy(), and service() methods in a default manner. For
example, the service() method in HttpServlet interrogates the incoming HttpServletRequest
object and forwards the request to a series of individual methods defined in the HttpServlet class
based on the type of request. These methods include the following:

❑ doGet() for handling GET, conditional GET, and HEAD requests

❑ doPost() for POST requests

❑ doPut() for PUT requests

❑ doDelete() for DELETE requests

❑ doOptions() for OPTIONS requests

❑ doTrace() for TRACE requests

The doGet(), doPost(), doPut(), and doDelete() methods in HttpServlet return a BAD_REQUEST
(400) error as their default response. Servlets that extend HttpServlet typically override and
implement one or more of these methods to generate the desired response. The doOptions()
and doTrace() methods are typically not overridden in the servlet. Their implementations
in the HttpServlet class are designed to generate the proper response, and they are usually
sufficient.

A minimal HTTP servlet capable of responding to a GET request requires nothing more than
extending the HttpServlet class and implementing the doGet() method.

2

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 3

Chapter 1: Building Web Applications in WebLogic

WebLogic Server provides a number of useful sample servlets showing the basic approach for
creating HTTP servlets. These sample servlets are located in the samples/server/examples/
src/examples/webapp/servlets subdirectory beneath the WebLogic Server home directory, a
directory we refer to as $WL_HOME throughout the rest of the book.

Creating the HTML output within the servlet’s service() or doXXX() method is very tedious.
This deficiency was addressed in the Java EE specification by introducing a scripting technology,
JavaServer Pages (JSP), discussed later in this chapter.

Servlets Must Be Registered in the Application
Servlets will only be invoked by the application server if they have been registered in the applica-
tion and associated with a specific URL or URL pattern. The standard mechanism for registering a
servlet involves <servlet> and <servlet-mapping> elements within the application’s web.xml file
as shown here:

<servlet>
<servlet-name>SimpleServlet</servlet-name>
<servlet-class>
professional.weblogic.ch01.example1.SimpleServlet

</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>SimpleServlet</servlet-name>
<url-pattern>/simple</url-pattern>

</servlet-mapping>

When a user accesses the specified URL, /simple, the application server will invoke the doGet(),
doPost(), or other doXXX() method on the servlet class.

WebLogic Server provides an alternate annotation-based technique for registering servlets and
specifying the mapped URL pattern: The @WLServlet annotation. The following annotation, placed
at the top of the SimpleServlet source file, eliminates the need for web.xml entries for this servlet:

@WLServlet (
name = "SimpleServlet",
mapping = {"/simple"}

)
public class SimpleServlet extends HttpServlet
{
...
}

The @WLServlet annotation syntax includes all of attributes available in the web.xml technique,
including loadOnStartup, initParams, and runAs values. This annotation technique represents a
viable, if non-standard, approach for registering and configuring servlets in your application.

Servlets Have a Life Cycle
A servlet is an instance of the Servlet class and has a life cycle similar to that of any other Java
object. When the servlet is first required to process a request, the application server loads the servlet

3

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 4

Chapter 1: Building Web Applications in WebLogic

class, creates an instance of the class, initializes the instance, calls the servlet’s init() method, and
calls the service() method to process the request. In normal servlet operation, this same instance
of the Servlet class will be used for all subsequent requests.

Servlets may be preloaded during WebLogic Server startup by including the <load-on-startup>
element in the web.xml file for the web application or by including the loadOnStartup attribute
in the @WLServlet annotation block in the servlet’s class definition. You can also provide
initialization parameters in the web.xml file using <init-param> elements or by including them
in the @WLServlet annotation block. WebLogic Server will preload and call init() on the servlet
during startup, passing the specified initialization parameters to the init() method in the
ServletConfig object.

An existing servlet instance is destroyed when the application server shuts down or intends to
reload the servlet class and create a new instance. The server calls the destroy() method on the
servlet prior to removing the servlet instance and unloading the class. This allows the servlet to
clean up any resources it may have opened during initialization or operation.

Servlets Allow Multiple Parallel Requests
Servlets are normally configured to allow multiple requests to be processed simultaneously by a
single servlet instance. In other words, the servlet’s methods must be thread-safe. You must take
care to avoid using class- or instance-level variables unless access is made thread-safe through
synchronization logic. Typically, all variables and objects required to process the request are created
within the service() or doXXX() method itself, making them local to the specific thread and request
being processed.

Best Practice
Servlets that allow multiple parallel requests must be thread-safe. Do not share
class- or instance-level variables unless synchronization logic provides thread
safety.

Servlets may be configured to disallow multiple parallel requests by defining the servlet class as
implementing the SingleThreadModel interface:

...
public class TrivialSingleThreadServlet

extends HttpServlet implements SingleThreadModel
{

public void init(ServletConfig config) throws ServletException
{

super.init(config);
System.out.println("Here!");

}
...

This simple change informs the application server that it may not process multiple requests through
the same servlet instance simultaneously. Although WebLogic Server continues to implement this
mechanism for enforcing single-threaded servlets, the Servlet 2.4 specification has deprecated its

4

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 5

Chapter 1: Building Web Applications in WebLogic

use. The specification encourages developers to protect critical sections of servlet code using syn-
chronization logic. Of course, using synchronization logic around non-thread-safe code comes
with a price — it invariably creates bottlenecks and latency in high volume systems as threads
wait for their turn to execute the protected code. If the code within the critical section takes too
long to execute, overall performance and scalability of your system will suffer. Avoid using the
SingleThreadModel interface in your applications. Design your servlets be thread-safe and mini-
mize their use of synchronization blocks.

Best Practice
Avoid using single-threaded servlets. Design your servlets be thread-safe and
minimize their use of synchronization blocks to avoid potential performance
issues.

Servlets May Access Request Data
The HttpServletRequest parameter passed in to the service() or doXXX() method contains a
wealth of information available to the servlet during the processing of the request. Useful data in
the HttpServletRequest is summarized in Table 1-1.

This is not an exhaustive list of the methods available on the HttpServletRequest class or its super-
class, ServletRequest. Refer to the servlet documentation at Link 1-1 in the book’s online Appendix
at http://www.wrox.com or a good reference book on servlets for a complete list including parame-
ter types, return types, and other details.

Servlets Use Session Tracking
A servlet is a request/response mechanism that treats each incoming request as an independent
processing event with no relationship to past or future requests. In other words, the processing
is stateless. The HTTP protocol is also a stateless protocol: Each request from the web browser is
independent of previous or subsequent requests. Linking current requests to previous requests
from the same client requires a mechanism for preserving context or state information from request
to request. A number of HTML-based techniques exist for preserving context or state information:

❑ Cookies may be set in responses and passed back to the server on subsequent requests.

❑ URL-rewriting may be used to encode small amounts of context information on every
hyperlink on the generated page.

❑ Hidden form fields containing context information may be included in forms.

These techniques all have limitations, and none provides the robust data types and flexibility needed
to implement true state management. Fortunately, the session tracking capability defined in the Java
EE servlet model provides an excellent solution.

Session tracking provides a flexible hashtable-like structure called an HttpSession that can be used
to store any serializable Java object and make it available in subsequent requests. To identify the
specific client making the request and look up its session information, session tracking uses a cookie
or URL-encoded session ID passed to the server on subsequent requests. In WebLogic Server, this

5

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 6

Chapter 1: Building Web Applications in WebLogic

session ID has the name JSESSIONID by default and consists of a long hash identifying the client
plus creation-time and cluster information. The format of the session ID is

JSESSIONID=SESSION_ID!PRIMARY_JVMID_HASH!SECONDARY_JVM_HASH!CREATION_TIME

Table 1-1: Information Available in the HttpServletRequest

Type of Information Access Methods

Parameters passed in the query string or
through form input fields

getParameterNames(),
getParameter(),
getParameterValues(),
getQueryString()

Server information getServerName(),
getServerPort()

Client characteristics getRemoteAddr(),
getRemoteHost(),
getAuthType(),
getRemoteUser()

Request information getContentType(),
getContentLength(),
getProtocol(),
getScheme(),
getRequestURI()

HTTP headers getHeaderNames(),
getHeader(),
getIntHeader(),
getDateHeader()

Cookies sent by browser getCookies()

Session information getSession(),
getRequestedSessionId(),
isRequestedSessionIdValid(),
...

WebLogic Server uses exclamation marks to separate portions of the session ID. The first portion is
used by the session tracking implementation in WebLogic Server to look up the client’s HttpSession
object in the web application context. Subsequent portions of the session ID are used to identify pri-
mary and secondary servers for this client in a WebLogic Server cluster and to track the creation time
for this session. Chapter 12 discusses WebLogic Server clustering in detail as part of the discussion
of administration best practices.

Using session tracking in a servlet is as simple as calling the getSession() method on the passed-
in HttpServletRequest object to retrieve or create the HttpSession object for this client and then
utilizing the HttpSession interface to get and set attributes in the session.

6

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 7

Chapter 1: Building Web Applications in WebLogic

WebLogic Server supports several forms of session persistence, a mechanism for providing ses-
sion failover. The two most commonly used forms are in-memory replication and JDBC persis-
tence. When using these types of session persistence, be careful not to place very large objects
in the HttpSession. WebLogic Server tracks changes to the session object through calls to the
setAttribute() method. At the end of each request, the server will serialize each new or mod-
ified attribute, as determined by the arguments to any setAttribute() calls, and persist them
accordingly.

Recognize that persisting a session attribute will result in WebLogic Server serializing the entire
object graph, starting at the root object placed in the HttpSession. This can be a significant amount
of data if the application stores large, coarse-grained objects in the session. Multiple fine-grained
objects can provide superior performance, provided that your application code updates only a sub-
set of the fine-grained objects (using setAttribute) in most cases. We talk more about in-memory
session replication and clustering in Chapter 12.

Best Practice
Use session tracking to maintain state and contextual information between servlet
requests. When using session persistence, avoid placing large objects in the session
if your application tends to update only a small portion of these objects for any
particular request. Instead, use multiple fine-grained objects to reduce the cost of
session persistence.

To summarize, servlets are a reliable pure Java mechanism for processing HTTP requests. It can be
tedious to generate the HTML response through the simple println() methods available on the
response Writer object, however. As we discuss in Chapter 2, servlets are better suited for process-
ing incoming requests and interacting with business objects and services than for the generation of
HTML responses.

If servlets are a tedious way to create HTML, what is available in the Java EE specification for effi-
ciently creating HTML responses? JavaServer Pages technology, the subject of the next section of
this chapter, is specifically design to be a powerful tool for creating HTML.

Characteristics of JavaServer Pages
JavaServer Pages (JSP) technology was introduced in the Java EE platform to provide an alternative
to servlets for the generation of server-side HTML content. Although a detailed discussion of JSP
technology is beyond the scope of this book, some key concepts and characteristics are worth a
brief review.

JSP Is a Scripting Technology
Recall that one of the important characteristics of servlets is their pure Java nature. Servlets are
Java classes that are written, compiled, and debugged much like any Java class. JavaServer Pages,
on the other hand, are a script-based technology similar to Microsoft’s Active Server Pages (ASP)
technology or Adobe’s Cold Fusion scripting language. Like these scripting languages, special tags
and script elements are added to a file containing HTML to produce a combination of static and
dynamic content. In the case of JSP, these added elements are Java code or special JSP tags that
interact with JavaBeans and other Java EE components in the application.

7

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 8

Chapter 1: Building Web Applications in WebLogic

JSP Pages Are Converted to Servlets
The key to understanding JSP pages is to recognize that the JSP file itself is simply the input for
a multistep process yielding a servlet. In the key processing step, the JSP page is parsed by the
application server and converted to the equivalent pure Java servlet code. All text that is not
part of JSP tags and scripting elements is assumed to be part of the HTTP response. This text is
placed in output writing calls within the generated servlet method that processes requests. All Java
scripting elements and tags become additional Java code in the servlet. The generated servlet is
then compiled, loaded, and used to process the HTTP request in a manner identical to a normal
servlet.

Figure 1-1 depicts this process for a trivial JSP page with a small amount of scripted Java
code embedded on the page. The sample.jsp page is converted to the equivalent pure Java
servlet code, compiled into a servlet class, and used to respond to the original and subsequent
HTTP requests.

sample.jsp

<html>
<head>
<title>A Sample Servlet</title>
</head>
<body>
<H1>A Sample JSP Page</H1>
<H2>Counting Fun</H2>
<% for (int jj=1; jj<=10; jj++) { %>
 <%= jj %>

<% } %>
</body>
</html>

<html>
. . .
<H2>Counting Fun</H2>
 1

 2

. . .
</html>

_sample.java

_sample.class

Servlet Source Code

Servlet Class

HTTP Response

HTTP Request
from Browser

Figure 1-1: JSP page is converted to a servlet.

The parsing, conversion, compiling, and classloading steps required to accomplish this transforma-
tion are handled by the application server. You don’t have to perform any of these steps ahead of
time or register the resulting servlet — all of this is done automatically by the server. Note that the
processing and compiling can be done prior to deployment using utilities provided by WebLogic
Server, a technique known as precompiling the JSP pages.

In WebLogic Server, the resulting servlet is a subclass of weblogic.servlet.jsp.JspBase by
default. JspBase is a WebLogic-provided class that extends HttpServlet and forwards service()
calls to a method called _jspService(). You may also create a custom base class for JSP-generated
servlets to replace the default JspBase class.

Many Tags and Scripting Elements Are Available
JSP technology provides a rich set of scripting elements and tags for creating dynamic content.
Table 1-2 lists some of the important elements available.

8

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 9

Chapter 1: Building Web Applications in WebLogic

Table 1-2: JSP Syntax Elements

Element Syntax Description

Scriptlet <% scriptlet code %> Java code placed directly in
_jspservice() method at this location.

Declaration <%! declaration %> Java code placed within the generated
servlet class above the _jspservice()
method definition. This usually defines
class-level methods and variables.

Expression <%= expression %> Java expression evaluated at run time and
placed in the HTML output.

page <%@ page
attribute=’’value’’ ... %>

Controls many page-level directive
attributes and behaviors. Important
attributes include import, buffer,
errorPage, and extends.

include <%@ include
file=’’filename’’ %>

Inserts the contents of the specific file in
the JSP page and parses/compiles it.

taglib <%@ taglib uri=’’...’’
prefix=’’...’’ %>

Defines a tag library and sets the prefix
for subsequent tags.

jsp:include <jsp:include
page=’’...’’/>

Includes the response from a separate
page in the output of this page.

jsp:forward <jsp:forward
page=‘‘...’’/>

Abandons the current response and
passes the request to a new page for
processing.

jsp:useBean <jsp:useBean id=‘‘...’’
class=‘‘...’’
scope=‘‘...’’/>

Declares the existence of a bean with the
given class, scope, and instance name.

Many more elements and tags are available. A detailed discussion of these elements is beyond the
scope of this book. Consult one of the books listed at the beginning of this chapter for a complete
list of JSP elements and tags, or browse Sun’s JSP area at Link 1-2 for more information.

All Servlet Capabilities Are Available
Because JSP pages are converted to servlets, all of the capabilities and techniques available in
servlets are also available in JSP pages. The HttpServletRequest and HttpServletResponse param-
eters are available, along with a number of predefined variables available in the JSP page, as listed
in Table 1-3.

JSP scriptlet code may access these implicit objects directly because all scriptlet code is placed in
the generated _jspService() method code below the definition of these objects. Nevertheless, the

9

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 10

Chapter 1: Building Web Applications in WebLogic

direct use of implicit objects in JSP scriptlet code is considered poor form. The JavaServer Pages
Standard Tag Library (JSTL), discussed later in this chapter, provides access to data stored within
these implicit objects — and many others — in a much safer and more standard way.

Table 1-3: JSP Implicit Objects

Object Type Description

request javax.servlet.http.HttpServletRequest Provides access to request
information and attributes set at the
request scope.

response javax.servlet.http.HttpServletResponse Reference to the response object
being prepared for return to the
client.

pageContext javax.servlet.jsp.PageContext Provides access to attributes set at
the page scope.

session javax.servlet.http.HttpSession Session object for this client;
provides access to attributes set at
the session scope.

application javax.servlet.ServletContext Application context; provides
access to attributes set at the
application scope.

out javax.servlet.jsp.JspWriter PrintWriter object used to place text
output in the HTTP response.

config javax.servlet.ServletConfig Reference to the servlet
configuration object set during
initialization; provides access to
initialization parameters.

Session tracking is available by default in JSP pages. If your application is not using session tracking,
you should disable it to avoid unnecessary session persistence. Although there is no explicit way
to disable session tracking for the entire web application, servlets will not create sessions unless
the servlet code calls the getSession() method. JSP pages may disable sessions using the page
directive:

<%@ page session="false" %>

Even if your JSP does nothing with the session information, WebLogic Server must persist the last
access time for the session at the end of the request processing. It is best to disable session tracking
explicitly in JSP pages that do not use it.

10

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 11

Chapter 1: Building Web Applications in WebLogic

Best Practice
Disable session tracking in JSP pages that do not require this feature to avoid
unnecessary session persistence.

Like servlets, JSP pages are normally multithreaded and may process multiple requests simultane-
ously. The same thread-safety restrictions that apply to servlets also apply to JSP pages unless the
JSP is configured to be single threaded. In a JSP page a special page directive is used to configure
this attribute:

<%@ page isThreadSafe="false" %>

If the isThreadSafe attribute is set to false, the resulting servlet will implement the
SingleThreadModel interface. This technique, like the related servlet technique, is deprecated in
the Servlet 2.4 specification and should be avoided.

Best Practice
Avoid declaring JSP pages to be single threaded. Code that is not thread-safe
should be encapsulated in some other Java class and controlled using synchro-
nization blocks.

JSP Response Is Buffered
As we said, servlets and JSP pages are request/response mechanisms: An HTTP request is made
by the browser, and an HTML response is generated by the servlet or JSP page. In both cases, this
response is normally buffered, or held in memory on the server temporarily, and sent back to the
calling browser at the end of the processing.

By default, output created in the generated servlet code is buffered, along with HTTP head-
ers, cookies, and status codes set by the page. Buffering provides you with these important
benefits:

❑ Buffered content may be discarded completely and replaced with new content. The
jsp:forward element relies on this capability to discard the current response and forward
the HTTP request to a new page for processing. Note that the errorPage directive uses
jsp:forward to send the processing to the error page if an error is caught in the JSP page,
so buffering is also required for proper error page handling.

❑ Buffering allows the page to add or change HTTP headers, cookies, and status codes after
the page has begun placing HTML content in the response. Without buffering, it would
be impossible to add a cookie in the body of the JSP page or change the response to be a
redirect (302) to a different page once output is written because the headers and cookies
have already been sent.

11

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 12

Chapter 1: Building Web Applications in WebLogic

When the buffer fills, the response is committed, and the first chunk of information is sent
to the browser. Once this commit occurs, the server will no longer honor jsp:forward,
HTTP header changes (such as redirects), or additional cookies. The server will generate an
IllegalStateException if any of these operations is attempted after the buffer fills and the
response is committed.

The default size of the JSP output buffer is 8KB in WebLogic Server, which you can control using
the page directive in each JSP page:

<%@ page buffer="32kb" %>

Output buffering may also be turned off using this directive by specifying none for a size, but this
practice is not recommended.

Output buffers should be set to at least 32KB in most applications to avoid filling the buffer and
committing the response before the page is complete. The minor additional memory requirement
(32KB times the number of threads) is a small price to pay for correct error page handling and the
ability to add cookies and response headers at any point in large pages.

Best Practice
Always use output buffering in JSP pages. Increase the size of the buffer to at least
32KB to avoid redirect, cookie, jsp:forward, and error page problems.

JSP Pages Have Unique Capabilities
Unique capabilities are available in JSP pages that are not present in servlets. The most important of
these is the ability to embed custom XML tags within the JSP page.

Custom tags provide a mechanism to interact with a custom developed Java class that encapsulates
business logic, presentation logic, or both. Custom tag elements are placed in the JSP page by the
developer and then parsed and preprocessed by the application server during the conversion from
JSP to servlet. The tag elements are converted by the server to the Java code required to interact
with the tag class and perform the desired function. Later in this chapter we discuss custom tags
and commonly used tag libraries in more detail and present best practices for their use in WebLogic
Server.

To summarize, JavaServer Pages technology is a scripting language used to create HTML responses.
JSP pages are converted to pure Java servlets by the application server during processing, and they
can perform nearly any task a pure Java servlet can perform. JSP pages also have unique directives,
features, and customization capabilities unavailable to servlets.

Why not use JSP for everything and forget servlets completely? Although it is possible to do
so, servlets often provide a better mechanism for implementing presentation-tier business
logic. Chapter 2 addresses this issue in detail and provides guidance for the proper use of each
technology.

12

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 13

Chapter 1: Building Web Applications in WebLogic

Web Application Best Practices
Now that you have reviewed some of the key concepts related to web applications in WebLogic Server,
it’s time to dig in and discuss best practices. So many options are available to designers and developers of
Java EE web applications that it would require an entire book to list and explain all of the web application
best practices we could conceivably discuss. In this section, we’ve attempted to discuss the best practices
we feel are applicable to the widest variety of development efforts or are most likely to improve the
quality or performance of your WebLogic Server web applications.

The best practices contained in this chapter cover everything from recommended techniques for using
custom tags to proper packaging of your web application to caching page content for performance.
They are presented in no particular order of importance, because the importance of a given best practice
depends greatly on the particular application you are building.

Ensure Proper Error Handling
Unhandled exceptions that occur during the execution of a servlet or JSP-generated servlet cause the
processing of that page to stop. Assuming the response has not been committed, the JSP output buffer
will be cleared and a new response generated and returned to the client. By default, this error response
contains very little useful information apart from the numeric error code.

What you need is a friendly, informative error page containing as much information as possible to help
during debugging. Fortunately, there is a built-in mechanism for specifying a custom error page for use
in handling server errors during processing.

First, you construct an error page to present the error information to the user in a friendly fashion. At
a minimum, it should display the exception information and a stack trace. To be more useful during
debugging, it can display all request and HTTP header information present using the methods available
on the HttpServletRequest object. Portions of an example error page are shown in Listing 1-1. The entire
page is available on the companion web site located at http://www.wrox.com/.

Listing 1-1: ErrorPage.jsp.

<%@ page isErrorPage="true" %>
<html>
<head><title>Error During Processing</title></head>
<body>
<h2>An error has occurred during the processing of your request.</h2>
<hr>
<h3><%= exception %></h3>
<pre>
<%

ByteArrayOutputStream ostr = new ByteArrayOutputStream();
exception.printStackTrace(new PrintStream(ostr));
out.print(ostr);

%>
</pre>

Continued

13

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 14

Chapter 1: Building Web Applications in WebLogic

Listing 1-1: ErrorPage.jsp. (continued)

<hr>
<h3>Requested URL</h3>
<pre>
<%= HttpUtils.getRequestURL(request) %>
</pre>

<h3>Request Parameters</h3>
<pre>
<%
Enumeration params = request.getParameterNames();
while(params.hasMoreElements()){

String key = (String)params.nextElement();
String[] paramValues = request.getParameterValues(key);
for(int i = 0; i < paramValues.length; i++) {

out.println(key + " : " + paramValues[i]);
}

}
%>
</pre>

<h3>Request Attributes</h3>
<pre>
...
</pre>

<h3>Request Information</h3>
<pre>
...
</pre>

<h3>Request Headers</h3>
<pre>
...
</pre>

Second, place a <%@ page errorPage=" . . . " %> directive on all JSP pages in the application specifying
the location of this error JSP page. Listing 1-2 presents a simple example JSP page that declares the error
page explicitly. Normally, you would do this through a common include file shared by all pages rather
than including the directive on every page.

Listing 1-2: ErrorCreator.jsp.

<%@ page errorPage="ErrorPage.jsp" %>
<html>
<head></head>
<body>
<!-- Do something sure to cause problems -->
<% String s = null; %>
The string length is: <%= s.length() %><p>
</body>
</html>

14

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 15

Chapter 1: Building Web Applications in WebLogic

Accessing the ErrorCreator.jsp page from a browser now causes a useful error message to be displayed
to the user. The page could conform to the look and feel of the site itself and could easily include links to
retry the failed operation, send an email to someone, or go back to the previous page.

As an alternative to specifying the errorPage on each individual JSP page, a default error-handling page
may be specified for the entire web application using the <error-page> element in web.xml:

<error-page>
<error-code>500</error-code>
<location>/ErrorPage.jsp</location>

</error-page>

These two mechanisms for specifying the error page may look very similar but are, in fact, implemented
quite differently by WebLogic Server. The <%@ page errorPage=" . . . " %> directive modifies the generated
servlet code by placing all JSP scriptlet code, output statements, and other servlet code in a large try/catch
block. Specifying the error page in web.xml does not affect the generated servlet code in any way. Instead,
uncaught exceptions that escape the _jspService() method in the original page are caught by the web
container and forwarded to the specified error page automatically.

Which technique is best? Unless the target error page must differ based on the page encountering the
error, we recommend the <error-page> element in web.xml for the following reasons:

❑ A declarative and global technique has implicit benefits over per-page techniques. Individual
pages that require different error pages can easily override the value in web.xml by including the
page directive.

❑ The information describing the original page request is more complete if the <error-page>
element is used rather than the page directive. Specifically, calling request.getRequestURL()
in the error page returns the URL of the original page rather than the URL of the error page,
and additional attributes are placed on the request that are not present if the page directive is
employed.

Best Practice
Create a friendly and useful error page, and make it the default error page for all server
errors using the <error-page> element in web.xml. Override this default error page
using the page directive in specific pages, if necessary.

Use JSTL Tags to Reduce Scriptlet Code
The JavaServer Pages Standard Tag Library (JSTL) is a custom tag library that encapsulates many core
functions required within JSP pages and virtually eliminates the need for JSP scriptlet code. Common
constructs, such as conditionals, loops, accessing request or session data, placing data in the response
HTML output, formatting output, displaying language-sensitive strings, and many other functions, are
implemented in the JSTL library in a standard way. JSTL represents a huge improvement over the old
jsp:useBean and jsp:getProperty techniques.

Custom tags can be difficult to create, but no knowledge of their construction is required to use them
successfully. All you need is a good reference on the tag library you are trying to use and a basic
understanding of the syntax for calling custom tags within your JSP pages.

15

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 16

Chapter 1: Building Web Applications in WebLogic

Calling Custom Tags in JSP Pages
Custom tags are invoked within JSP pages by embedding the appropriate XML tags in your page using
the syntax

<prefix:tagname attribute1="value1" . . . attributeN="valueN" />

or

<prefix:tagname attribute1="value1" . . . attributeN="valueN" >
...

</prefix:tagname>

The prefix represents the short name you gave a particular library when it was declared in your page, the
tagname is the specific tag or function identifier within the library, and the attribute/value pairs are the
data or settings needed by the tag for proper operation.

For example, if you’ve declared the JSTL core library using a prefix c with a taglib directive
like this:

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

you would invoke the out tag within the JSTL core library to display the contents of the request parame-
ter employeeNum using the following syntax:

<c:out value="${requestScope.employeeNum}"/>

The equivalent scriptlet code, for comparison purposes, might look like this:

<%= request.getParameter("employeeNum") %>

Although this JSTL example does not appear to be significantly shorter or simpler than using
scriptlet code in this trivial example, the difference becomes much larger with more complex
operations.

Using Expression Language in JSTL Calls
The JSTL libraries support the use of Expression Language (EL) within many of the attribute/value pairs
supplied to the custom tags. To understand the difference between an invocation with and without EL
support, consider the following two calls to the out tag in the core JSTL library:

<c:out value="requestScope.employeeNum" />

<c:out value="${requestScope.employeeNum}" />

The first call passes a simple string to the tag implementation via the value attribute. This string is
simply placed in the output response being generated by the JSP, and the users would see the string
requestScope.employeeNum on their web page.

The second call informs the custom tag implementation that it is using the EL syntax by including
${ . . . } characters within the value attribute passed to the tag. The tag sees this syntax and treats the

16

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 17

Chapter 1: Building Web Applications in WebLogic

string within the braces as an expression that should be parsed and treated as a request for data from
some source available to the page.

By specifying requestScope in the expression, we are indicating that the tag should look only in the
HttpServletRequest object, and by specifying employeeNum we are telling the tag which parameter or
attribute we want from the request object. The tag will find the object located in the request under this
key, invoke toString() on it, and place the result in the output. The users will, hopefully, see a valid
employee number on their web page.

As a second example, consider the following tag invocation:

<c:out value="${employee.myAddress.line1}" />

This example does not specify a source scope (requestScope, sessionScope, and so on), and has
three parts. The tag implementation will perform the following steps as it parses and processes this
expression:

❑ It will first search within all of the scopes available to it (starting with pageScope and ending
with applicationScope) for some attribute stored using employee as the key. Let’s assume it
finds an object of the class CompanyEmployee located in the HttpSession stored with this key.

❑ The tag will then examine the retrieved CompanyEmployee object and attempt to invoke a get
method based on the next identifier in the expression. In this case the method attempted would
be getMyAddress(). Assuming such a method exists, the underlying Address object is extracted
and the processing continues.

❑ The tag will next attempt to invoke getLine1() on the Address object and extract the resulting
object, most likely a simple String object in our example.

❑ Finally, the tag will invoke toString() on the object returned by getLine1() to obtain the text
that should be placed in the HTML response output.

This chaining of identifiers using the dot operator is very common in JSTL attribute values. It allows
access to specific nested properties within objects stored on the request or session with a simple,
compact syntax.

Entries in a List or Map object can be accessed with the same dot operator or through the use of an
alternate bracket syntax as shown in these two equivalent tag invocations:

<c:out value="${sessionScope.stateNames.NY}" />

<c:out value="${sessionScope.stateNames["NY"]}" />

Hard-coding the map’s key into the JSP page is clearly of limited value, and it too can be replaced by an
expression that returns the key to be used in the Map lookup. The following example replaces the fixed
value of NY with the value passed in through a request parameter called stateCode:

<c:out value="${sessionScope.stateNames[param.stateCode]}" />

In this example we look in the session for the Map, and look in the passed-in request parameters for
the key. These are two examples of implicit objects that are available within the Expression Language.
Table 1-4 presents a complete set of these implicit objects.

17

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 18

Chapter 1: Building Web Applications in WebLogic

Table 1-4: JSP Implicit Objects

Identifier Description

pageScope Map containing page-scoped attributes

requestScope Map containing request-scoped attributes

sessionScope Map containing session-scoped attributes

applicationScope Map containing application-scoped attributes

param Map containing the primary values of the request parameters

paramValues Map containing all values of the request parameters as
String arrays

header Map containing the primary values of the request headers

headerValues Map containing all values of the request headers as String
arrays

cookie Map containing all cookies accompanying the request

initParam Map containing the context initialization parameters of the
web application

pageContext The PageContext instance for the page, providing access to
all JSP implicit objects

Although the Expression Language syntax is very powerful, it can be a bit confusing at times. Find a
good reference on JSTL, including the EL, and refer to it often until you get the hang of it. You’ll find that
95% or more of your custom tag invocations will use the EL syntax for one or more of the attributes in
the tag, because it is the only recommended way to pass dynamic data into the tags.

Above all, resist the temptation to use the old-style scriptlet code in your JSP pages. With a little exper-
imentation, you’ll find there is very little you can do in scriptlet code that you cannot accomplish with
JSTL and the Expression Language syntax.

Best Practice
Master the Expression Language (EL) syntax and use it extensively in the JSTL tags
within your JSP pages. Use expressions in a clear and consistent manner to improve
readability, choosing appropriate operators and constructs. Avoid JSP scriptlet code if
at all possible.

18

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 19

Chapter 1: Building Web Applications in WebLogic

JSTL Contains Five Tag Libraries
The JavaServer Pages Standard Tag Library (JSTL) contains the following tag libraries:

❑ The JSTL core library contains tags for common operations such as flow control (conditionals,
looping), generating output, setting variables, and creating standard HTML links. Nearly every
application makes use of the core library.

❑ The JSTL fmt library contains tags that perform formatting operations such as looking up and
displaying localized messages, generating formatted output using templates, parsing text, and
so on. Many applications use this library.

❑ The JSTL sql library provides a tag-based approach for executing SQL statements from within
JSP pages. Because this is rarely a good idea, this library is rarely used.

❑ The JSTL XML library provides tags that query and display elements and attributes within XML
documents using the XPath syntax. It can be a viable alternative to using complex XSLT transfor-
mations when trying to display XML data as HTML output.

❑ The JSTL functions library contains tags that reproduce the String functions available in Java
code. The use of this library should be avoided in favor of performing text-related searches, sub-
strings, or other functions in Java code prior to invoking the JSP page.

A detailed look at the tags, attributes, and correct usage of each of these JSTL libraries is beyond the scope
of this book. The example web application built in subsequent chapters will make extensive use of the
core and fmt libraries within its JSP pages, and there will be ample opportunity at that time to highlight
the important tags and their correct usage.

Best Practice
Plan to use the JSTL core and JSTL fmt libraries in all of your web applications. These
two libraries provide the most generally useful tags and will be required for all but the
simplest JSP pages.

Use Custom Tags for Selected Behaviors
Custom tags are a powerful mechanism for extending the basic JSP tag syntax to include custom devel-
oped tags for interacting with Java components, modifying response content, and encapsulating page
logic. The JSTL tag libraries discussed previously are good examples of custom tags that can reduce or
eliminate the need for scriptlet code in the JSP page and improve maintainability.

The power of custom tags comes with a cost, of course: complexity. Custom tags add an entirely new
layer to the architectural picture and require a strictly defined set of classes and descriptor files to
operate. Although a detailed description of the steps required to create custom tags is beyond the
scope of this text, it is instructive to review the key concepts to frame the recommendations we will
be making.

19

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 20

Chapter 1: Building Web Applications in WebLogic

Custom Tag Key Concepts
Custom tags require a minimum of three components:

❑ The Tag Handler Class is a Java class implementing either the javax.servlet.jsp.tagext.Tag
or BodyTag interfaces. The tag handler class defines the behavior of the tag when invoked in the
JSP page by providing set methods for attributes and implementations for key methods such as
doStartTag() and doEndTag().

❑ The Tag Library Descriptor (TLD) file contains XML elements that map the tag name to the tag
handler class and provide additional information about the tag. This file defines whether the tag
contains and manipulates JSP body content, whether it uses a tag extra information class, and the
name of the library containing this tag.

❑ JSP Pages contain <%@ taglib . . . %> declarations for the tag library and individual tag elements
in the page itself to invoke the methods contained in the tag handler class.

Custom tags may also define a Tag Extra Information (TEI) class, extending javax.servlet.jsp.
tagext.TagExtraInfo, that defines the tag interface in detail and provides the names and types of
scriptlet variables introduced by the tag. During page generation, the JSP engine uses the TEI class to
validate the tags embedded on the page and include the correct Java code in the generated servlet to
introduce variables defined by the custom tag.

Custom Tags are Different from Tag Files
Don’t confuse custom tags with the new tag files functionality added in the JSP 2.0 specification: They are
quite different in both intent and implementation.

As stated above, custom tags provide a powerful mechanism for extending the basic JSP tag syntax to
include custom developed tags for interacting with Java components. They efficiently and safely replace
the use of scriptlet code required to call methods on these Java components.

Tag files, on the other hand, provide a new way to include shared pieces of JSP-generated output within
a main page. They are essentially an alternative to the use of <jsp:include> actions or <%@ include
file="..." %> directives, and provide no direct access to utility Java classes or other Java components.
Shared JSP pages and page fragments previously located with other JSP content are renamed to end with
a .tag suffix and moved to a special tags directory below WEB-INF. These shared pages and fragments
are then included in the main page content using new custom tags.

Apart from simplifying the passing of parameters to a shared JSP page, and providing the ability for the
called tag file to control when the body of the calling tag is evaluated and inserted in the output, it is
difficult to find any advantage that would pay for the complexity tag files add to an application. If you
find the older, simpler methods for sharing JSP pages and fragments unable to accommodate your needs,
consider using the new tag files mechanism, but don’t convert simple JSP pages and fragments to tag
files without a good reason.

We will not be covering the creation or use of tag files in this book, nor will we be using them in the
example programs.

20

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 21

Chapter 1: Building Web Applications in WebLogic

Best Practice
The JSP 2.0 tag files mechanism provides a new approach for sharing and including JSP
pages and page fragments that might make sense if the older <jsp:include> action and
<%@include file="..." %> directive do not meet your needs. Be sure there is sufficient
value in changing to the new approach since it represents additional complexity.

Custom Tag Use Is Easy — Development Is Complex
It is important to keep the appropriate goal firmly in mind when evaluating a new technology or feature
for potential use on your project. In the case of technologies such as custom tags, the goal is to improve
the readability and maintainability of the JSP pages. The assumption is that by reducing or eliminating
scriptlet code the page will be easier to understand and maintain, which is true enough, but the JSP pages
are only one part of the total system being developed. The beans and custom tags are part of the system as
well, and any improvement in maintainability of the JSP pages must be weighed against the complexity
and maintenance requirements of the beans and tags themselves.

Custom tag development, in particular, is complex. The complexity is not evident until the tasks being
performed become more realistic, perhaps requiring TEI classes, body content manipulation, handling
of nested tags, or other more advanced behaviors. Examine the source code for some tag libraries avail-
able in the open source community to get a sense of the requirements for a realistic, production-ready
tag library. Is your development team ready to tackle this level of development? Are the people being
earmarked for maintenance of the application capable of maintaining, extending, or debugging problems
in the tag library? These are valid questions you should consider when making your decision to build a
custom tag library.

Using custom tags, on the other hand, is relatively easy. As you saw in the discussion of the JSTL libraries,
it requires a simple declaration at the top of the JSP page and a few straightforward XML elements in the
page to invoke a custom tag and produce the desired behavior.

In the end, the decision comes down to the benefits of using custom tags versus the effort to develop
and maintain the custom tags. Clearly a tag that is developed once and used on many pages may pay for
itself through the incremental benefits accrued across multiple uses. Taken to the limit, the most benefit
will come from a tag used in many pages that is acquired rather than internally developed, eliminating
all development and maintenance effort on the tag itself. This should be your goal: Use custom tags, but
don’t develop them.

Best Practice
Custom tags are easy to use but difficult to develop and maintain, so make every effort
to locate and use existing tag libraries from reputable sources rather than developing
your own custom tags.

21

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 22

Chapter 1: Building Web Applications in WebLogic

Table 1-5: Custom Tag Sources

Location Description

http://jakarta.apache.org/taglibs This source has a number of open source tag
libraries, providing everything from string
manipulation to regular expression handling to
database access. It also hosts an implementation of
the JSTL specification.

http://jakarta.apache.org/struts Struts is a model-view-controller framework that
includes a number of useful tag libraries.

http://www.servletsuite.com/jsp.htm This commercial vendor, with more than 350
different tag libraries, offers free binary download
and evaluation.

In additional to the standard JSTL tag libraries packaged in WebLogic Server, useful tag libraries are
available from various vendors and open source communities. Table 1-5 provides a short list to get you
started in your search.

We will be using selected custom tags from the Spring MVC framework in the example application
in Chapters 3 and 4 to create HTML form elements with automatic handling of posted data during
processing.

Use Servlet Filtering for Common Behaviors
Servlet filtering, a feature of servlets introduced in the Servlet 2.3 specification, provides a declarative
technique for intercepting HTTP requests and performing any desired preprocessing or conditional
logic before the request is passed on to the final target JSP page or servlet. Filters are very useful for
implementing common behaviors such as caching page output, logging page requests, providing debug-
ging information during testing, and checking security information and forwarding to login pages.
Figure 1-2 illustrates the basic components of the filtering approach and shows the incoming HTTP
request passing through one or more Filter classes in the FilterChain collection defined for this
page request.

Filter Chain
Servlet

Filter 1
HTTP Request

HTTP Response

Filter 2

Figure 1-2: Servlet filtering.

Placing a filter in the path of a particular servlet or JSP request is a simple two-step process: Build a class
that implements the javax.servlet.Filter interface, and register that class as a filter for the desired

22

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 23

Chapter 1: Building Web Applications in WebLogic

pages and servlets using either entries in the web.xml descriptor file or annotations in the filter class. To
illustrate this process, we will build and deploy a simple but useful filter that intercepts servlet and JSP
requests and logs HttpServletRequest information before passing the request on to the intended JSP
page or servlet.

Building a Simple SnoopFilter Filter Class
The first step is the construction of a filter class called SnoopFilter that implements the
javax.servlet.Filter interface and performs the desired logging of request information. Sim-
ply put, the doFilter() method writes information from the HttpServletRequest object to System.out
before forwarding to any additional filters in the filter chain or to the final destination page itself. The
source for SnoopFilter is available from the companion web site (http://www.wrox.com/).

Registering SnoopFilter in the Application
Registering a filter normally requires a set of elements in the web application descriptor file, web.xml.
These elements declare the filter class and define the pages or servlets to which the filter should be
applied. In this simple example, you want all pages and servlets in the application to be filtered through
SnoopFilter, and the web.xml file includes the following elements:

<filter>
<filter-name>SnoopFilter</filter-name>
<display-name>SnoopFilter</display-name>
<description></description>
<filter-class>
professional.weblogic.ch01.example1.SnoopFilter

</filter-class>
</filter>

<filter-mapping>
<filter-name>SnoopFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

The <url-pattern>/*</url-pattern> element declares that all pages and servlets in the applica-
tion should be filtered using SnoopFilter, so every page request will go through the filter before
normal processing begins. The server’s stdout stream will therefore contain detailed request
information for every page request, which is potentially very useful during development and
debugging.

Clearly the same general logging capability could have been placed in a helper class, custom tag, or
simple scriptlet included in each JSP page or servlet, but the ability to control the specific pages or groups
of pages using the SnoopFilter in a declarative manner (via <url-pattern> elements) has significant
advantages.

WebLogic Server also supports an annotation-based approach for registering a filter and specifying the
URL pattern. The following @WLFilter syntax is equivalent to the web.xml entries shown above:

@WLFilter (
name = "SnoopFilter",
mapping = {"/*"}

23

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 24

Chapter 1: Building Web Applications in WebLogic

)
public class SnoopFilter implements Filter
{

...
}

Although this is obviously a simple example, SnoopFilter illustrates the value of filters for prepro-
cessing activities such as logging, auditing, or debugging in Java EE web applications. Filters are not
limited to writing output to stdout; they can easily write information to separate log files, insert rows
in database tables, call EJB components, add or modify request attributes, forward the page request
to a different web application component, or perform any other desired behavior unconditionally
or based on specific request information. They are a very powerful tool in the Java EE servlet
specification.

Best Practice
Use filters to implement common behaviors such as logging, auditing, and security
verification for servlets and JSP pages in your web applications.

Response Caching Using the CacheFilter
WebLogic Server includes a filter called CacheFilter that provides page-level response caching for web
applications. This filter operates at the complete page level rather than surrounding and caching only
a section of JSP content in a page. The CacheFilter may also be used with servlets and static content,
unlike the related wl:cache custom tag, which works only in JSP pages.

The CacheFilter is registered like any other servlet filter. Define the filter in the web.xml file, and
specify the <url-pattern> of the page or pages to cache. Use initialization parameters in the filter
registration to define timeout criteria and other cache control values. For example, to cache the
response from a specific JSP page for 60 seconds, register the CacheFilter using elements similar to
the following:

<filter>
<filter-name>CacheFilter1</filter-name>
<filter-class>weblogic.cache.filter.CacheFilter</filter-class>
<init-param>
<param-name>timeout</param-name>
<param-value>60</param-value>

</init-param>
</filter>
...
<filter-mapping>

<filter-name>CacheFilter1</filter-name>
<url-pattern>CacheFilterTest1.jsp</url-pattern>

</filter-mapping>

The CacheFilterTest1.jsp page will execute the first time the URL is accessed by any client, and the
content of the HTTP response will be cached by the filter and used for all subsequent access requests for
60 seconds.

24

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 25

Chapter 1: Building Web Applications in WebLogic

Additional initialization parameters for the CacheFilter include the following:

Name The name of the cache. It defaults to the request URI.

Timeout Timeout period for the cached content. It defaults to seconds, but it may be specified in
units of ms (milliseconds), s (seconds), m (minutes), h (hours), or d (days).

Scope The scope of the cached content. Valid values are request, session, application, and cluster.
Note that CacheFilter does not support page scope. It defaults to application scope.

Key The names of request parameters, session attributes, and other variables used to differenti-
ate cached content. The key is supplied using a scope.name syntax, with possible scope values of
parameter, request, application, and session. Multiple keys can be supplied, separated by commas.

Vars The names of variables used or calculated by the page that should be cached alongside the
HTTP output. When the cached version of the page is retrieved and used, these cached variables
will be placed in their respective scopes as if the page had executed again. It uses the same syntax
as the key parameter.

Size The maximum number of unique cache entries based on key values. It defaults to unlimited.

Max-cache-size The maximum size of a single cache entry. It defaults to 64k.

Very simple JSP pages or servlets may be cacheable using only a timeout setting as long as the output
does not depend on any request or session variables. Most pages, however, will require the use of the
key initialization parameter to create multiple cached versions of the page, one for each value of the key
specified in this setting.

The CacheTest2.jsp example program in Listing 1-3 is an example of a page that depends on a single
request parameter, howmany, and will require a different cached version of the output for each value of
that parameter.

Listing 1-3: CacheTest2.jsp.

<HTML>
<BODY>
<%
int jj = Integer.parseInt(request.getParameter("howmany"));
System.out.println("Inside JSP page with howmany of " + jj);
%>
<H2>We’re going to count from 1 to <%= jj %><H2>
<%
for (int ii = 1; ii <= jj; ii++) {

out.print(ii + "
");
}
%>
</BODY>
</HTML>

The CacheFilter would be registered to cache this page content with a dependency on the howmany
request parameter as follows:

<filter>
<filter-name>CacheFilter2</filter-name>

25

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 26

Chapter 1: Building Web Applications in WebLogic

<filter-class>weblogic.cache.filter.CacheFilter</filter-class>
<init-param>
<param-name>timeout</param-name>
<param-value>60</param-value>

</init-param>
<init-param>
<param-name>key</param-name>
<param-value>parameter.howmany</param-value>

</init-param>
</filter>
...
<filter-mapping>

<filter-name>CacheFilter2</filter-name>
<url-pattern>CacheFilterTest2.jsp</url-pattern>

</filter-mapping>

Accessing this page with a specific value of howmany in the query string causes the entire page to be
executed one time. Subsequent page hits with the same howmany parameter value will return the same
content without executing the page. Supplying a different value for howmany will cause the page to be exe-
cuted for that value and the contents cached using that key value. In other words, if you hit the page five
times with different howmany values, you’ve created five different cached versions of the HTTP response
using the howmany value as the key. This technique is very slick and very powerful for improving site
performance.

WebLogic Server also includes a wl:cache custom tag that provides a very similar caching capability
for any JSP content placed in the body of the custom tag. It has the ability to cache based on key values,
like CacheFilter, and can cache small portions of a JSP page rather than an entire page. However, the
CacheFilter approach has an obvious advantage over the wl:cache technique: Caching is performed
using a declarative technique rather than embedding custom tags in the page itself. This defers the def-
inition of caching behavior to deployment time and allows easier control of the caching parameters and
scope using the web.xml descriptor elements.

Best Practice
Use the CacheFilter instead of wl:cache tags for page-level response caching when-
ever possible to provide better flexibility during deployment.

Note that a JSP page included using the <jsp:include> action is considered a separate page for the
purposes of caching. It can therefore be configured to cache independently from the parent page, which
may be helpful. Recognize, however, that this included page will not be invoked if the parent page
execution is skipped due to caching. Plan accordingly!

Creating Excel Files Using Servlets and JSP Pages
Creating spreadsheets using servlets and JSP pages is a useful way to provide users with results they
can sort, manipulate, and print using Microsoft Excel or other spreadsheet applications. Servlets are the
preferred mechanism, but JSP pages can also be used if you take steps to avoid unintended newline
characters in the output stream.

26

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 27

Chapter 1: Building Web Applications in WebLogic

To create a spreadsheet using a servlet, build the servlet in the normal manner but set the content type to
application/vnd.ms-excel in the response header to indicate that the response should be interpreted
as a spreadsheet. Data written to the response Writer object will be interpreted as spreadsheet data,
with tabs indicating column divisions and newline characters indicating row divisions. For example, the
SimpleExcelServlet servlet in Listing 1-4 creates a multiplication table using simple tabs and newlines
to control the rows and columns in the result.

Listing 1-4: SimpleExcelServlet.java.

package professional.weblogic.ch01.example2;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SimpleExcelServlet extends HttpServlet
{

public static final String CONTENT_TYPE_EXCEL =
"application/vnd.ms-excel";

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws IOException
{

PrintWriter out = response.getWriter();
response.setContentType(CONTENT_TYPE_EXCEL);

out.print("\t"); // empty cell in upper corner
for (int jj = 1; jj <= 10; jj++) {

out.print("" + jj + "\t");
}
out.print("\n");

for (int ii = 1; ii <= 10; ii++) {
out.print("" + ii + "\t");
for (int jj = 1; jj <= 10; jj++) {

out.print("" + (ii * jj) + "\t");
}
out.print("\n");

}
}

}

Normal registration of this servlet in web.xml is all that is required in most cases.

<servlet>
<servlet-name>SimpleExcelServlet</servlet-name>
<servlet-class>
professional.weblogic.ch01.example2.SimpleExcelServlet

</servlet-class>
</servlet>

<servlet-mapping>

27

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 28

Chapter 1: Building Web Applications in WebLogic

<servlet-name>SimpleExcelServlet</servlet-name>
<url-pattern>/simpleexcel</url-pattern>

</servlet-mapping>

As noted earlier, WebLogic Server supports a @WLServet annotation for registering servlets and
specifying URL patterns. In this case, the SimpleExcelServlet source file could include the following
@WLServlet annotation to eliminate the need for web.xml entries:

@WLServlet (
name = "SimpleExcelServlet",
mapping = {"/simpleexcel"}

)
public class SimpleExcelServlet extends HttpServlet
{

...
}

In both registration approaches, users accessing the /simpleexcel location will be presented with a
spreadsheet embedded in their browser window. The servlet may also be registered for a <url-pattern>
that includes an .xls file extension to assist the users by providing a suitable default file name and type
if they choose to use Save As... from within the browser:

<servlet-mapping>
<servlet-name>SimpleExcelServlet</servlet-name>
<url-pattern>/multitable.xls</url-pattern>

</servlet-mapping>

Simple tab- and newline-based formatting may be sufficient in many cases, but you can achieve addi-
tional control by building HTML tables and using HTML formatting options such as and <i> in the
generated output. Because the content type was specified as ms-excel, these HTML tags are interpreted
by the browser and spreadsheet application as equivalent spreadsheet formatting options.

The FancyExcelServlet example servlet in Listing 1-5 builds the same multiplication table as
SimpleExcelServlet but uses HTML to control formats and cell sizes.

Listing 1-5: FancyExcelServlet.java.

package professional.weblogic.ch01.example3;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class FancyExcelServlet extends HttpServlet
{

public static final String CONTENT_TYPE_EXCEL =
"application/vnd.ms-excel";

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws IOException

28

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 29

Chapter 1: Building Web Applications in WebLogic

{
PrintWriter out = response.getWriter();
response.setContentType(CONTENT_TYPE_EXCEL);

out.print("<table border=1>");
out.print("<tr>");
out.print("<td> </td>"); // empty cell in upper corner
for (int jj = 1; jj <= 10; jj++) {

out.print("<td>" + jj + "</td>");
}
out.print("</tr>");

for (int ii = 1; ii <= 10; ii++) {
out.print("<tr>");
out.print("<td>" + ii + "</td>");
for (int jj = 1; jj <= 10; jj++) {

out.print("<td>" + (ii * jj) + "</td>");
}
out.print("</tr>");

}
out.print("</table>");

}
}

You can also use JSP pages to create spreadsheets with one complication: The output of a JSP page often
contains many unintended newline characters caused by extra whitespace around directives and script-
let tags, making it difficult to control the spreadsheet formatting when using simple tab and newline
techniques. HTML formatting similar to the FancyExcelServlet works better in JSP pages used to create
spreadsheets. Listing 1-6 presents the JSP equivalent to the FancyExcelServlet.

Listing 1-6: FancyExcelPage.jsp.

<% response.setContentType("application/vnd.ms-excel"); %>
<html>
<body>
<table border=1>
<tr>

<td> </td>
<% for (int jj = 1; jj <= 10; jj++) { %>
<td><%= jj %></td>

<% } %>
</tr>
<% for (int ii = 1; ii <= 10; ii++) { %>

<tr>
<td><%= ii %></td>
<% for (int jj = 1; jj <= 10; jj++) { %>

<td><%= (ii * jj) %></td>
<% } %>

</tr>
<% } %>
</table>
</body>
</html>

29

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 30

Chapter 1: Building Web Applications in WebLogic

Viewing Generated Servlet Code
Viewing the servlet code generated for a particular JSP page can be instructive while learning JSP tech-
nology and useful during the testing and debugging process. Often the error report received during the
execution of the JSP page indicates the line in the generated servlet code, but finding the JSP scriptlet
code or tag that caused the error requires inspection of the Java code.

Generated Java servlet code will be kept alongside the generated servlet class files if the keepgenerated
parameter is set to true in the <jsp-descriptor> section of the weblogic.xml descriptor file. The equiv-
alent option for keeping the generated Java code for JSP pages compiled using the weblogic.appc utility
or wlappc Ant task is keepgenerated placed on the command line or within the Ant task invocation.

By default, the generated servlet classes and Java code will be placed in a temporary directory struc-
ture located under the domain root directory. The name of this temporary directory depends on the
names of the server, enterprise application, and web application, and it typically looks something like
servers/myserver/tmp/_WL_user/_appsdir_myapp_dir/wx8qxk/jsp_servlet. This default location
may be overridden using the <working-dir> option in the weblogic.xml descriptor file.

Chapter Review
In this chapter we reviewed the key concepts related to web applications in WebLogic Server and pre-
sented a number of important best practices designed to improve the quality and performance of your
web applications.

Most of this chapter has been at the detailed design and implementation level, the trees, in a sense. In the
next two chapters we step back and look at the forest for a few minutes by examining the importance of
the overall web application architecture, the selection of a suitable presentation template technique, and
the application of a model-view-controller pattern and framework for form and navigation handling.

30

