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Arguably, the most important method for electronic structure calculations in
intermediate- and large-scale atomic or molecular systems is density functional
theory (DFT). In this introductory chapter we discuss fundamental theoretical
aspects underlying this framework. Our aim is twofold. First, we briefly explain
our view on several aspects of DFTs as we understand them. Second, we discuss
the fundamentals underlying applications of DFT to transport problems. Here, we
offer a derivation of the salient equations which is based on single-particle scat-
tering theory; the more standard approach relies on the nonequilibrium Green’s
function (or Keldysh) technique.

More practical aspects of applying DFT to large systems such as nanoparticles,
liquids, large molecules, and proteins are described in Chapter 2 (using atomic
basis sets) and Chapter 3 (using plane-wave basis sets). Other recent reviews
of basic application procedures by Kümmel and Kronik1 and Neese2 are also
available. Chapters 11 to 19 focus on applications, introducing extensions of the
basis methods when required.

1.1 EQUILIBRIUM THEORIES

The interacting N -electron problem is a formidable challenge for the theoretical
disciplines of physics and chemistry. It is formulated in terms of a Hamiltonian,
Ĥ , which has the general structure

Ĥ =
∑

i

[ε(p̂i ) + vex(r̂ i)] + 1

2

∑
ij

u(r̂ i − r̂j ) (1.1)

Computational Methods for Large Systems: Electronic Structure Approaches for Biotechnology
and Nanotechnology, First Edition. Edited by Jeffrey R. Reimers.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

3



4 PRINCIPLES OF DENSITY FUNCTIONAL THEORY

Here we have introduced the following notation: vex describes the system-specific
time-independent external potential, which is generated, for example, due to the
atomic nuclei. ε(p) denotes the dispersion of the free particle, establishing the
relation between the momentum of the particle and its energy in free space (i.e.,
in the absence of vex and the third term in u). For example, a single free particle
with mass m has a dispersion ε(p) = p2/2m. The third term introduces the two-
particle interactions [e.g., u(r) = e2/|r| for the Coulomb case]. (We indicate an
operator by Ô to distinguish it from its eigen- or expectation values.)

Density functional theory in its simplest incarnation serves to calculate several
ground-state (GS) properties of this interacting many-body system. For example,
one obtains the GS particle density, n(r), the GS energy, E0, or the workfunction
(ionization energy), W. DFT owes its attractiveness to the fact that all of this can
be obtained, in principle, by solving an optimization problem for the GS density
alone without going through the often impractical explicit calculation of the GS
wavefunction, �0, of the Hamiltonian (1.1). The actual task is to find a density
profile, n(r), so that the functional inside the brackets,

E0 = min
ñ(r)

[
F [ñ] +

∫
drvex(r)ñ(r)

]
(1.2)

is invariant under small variations, δñ(r). Here F is a certain functional of the
test density ñ(r) that depends on the free dispersion, ε(p), and the type of two-
particle interactions, but not on the (static) environment, vex(r). [The explicit
definition of F is given in Eq. (1.10)]. The optimizing density coincides with the
GS density and the optimum value of the functionals inside brackets delivers the
GS energy.

1.1.1 Density as the Basic Variable

At first sight, the very existence of a formalism that allows us to obtain the GS
properties mentioned without evaluating �0 itself may perhaps be surprising.
After all, the particle density appears to involve a lot fewer degrees of freedom
than �0, which is the canonical starting point for calculation of the expectation
values of the observables. Indeed, �0(r1, . . . , rN) is a complex field that depends
on the individual coordinates of each of the N particles. By contrast, the density
is an expectation value of the density operator:

n̂(r) =
N∑

i=1

δ(r − r̂ i ) (1.3)

which may be obtained by integrating out most of the coordinates (“details”) of
�0:

n(r) =
∑

i

∫
dr1 · · · drN δ(r − ri)|�0(r1, . . . , rN)|2 (1.4)

n(r) is a real field depending on a single coordinate only.
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At a second glance, however, the essential concepts underlying DFT are quite
naturally understood. From a certain perspective, most of the information content
of the ground state �0 is redundant.

To see why this is a case, we discuss an example. Consider all thermody-
namic properties of a system described by the Hamiltonian (1.1). Each property
corresponds to calculating some ratio of expectation values:

O = Tr[Ôe−βĤ ]

Tr[e−βĤ ]
(1.5)

with an inverse temperature, β = 1/kT , and Ô denoting the operator correspond-
ing to the observable of interest. The important thing to notice is that the system
characteristics enter the average only via Ĥ . Therefore, within a given set of
systems with members sharing the same kinetic energy and two-body interac-
tion (“universality class”), all system specifics (i.e., observables) are determined
uniquely by specifying the external potential , so O is a functional of vex: O[vex].
This simple observation already implies that within such a universality class,
the system behavior can be reconstructed from knowledge of a scalar field [here
vex(r)], and in this sense most of the information content of �0 is redundant.

In the Schrödinger theory, the classifying scalar field is the external poten-
tial. DFT amounts to a change of variables that replaces vex(r) → n(r). Such a
transformation is feasible because the density operator and the external potential
vex enter Ĥ as a product,

∑N
i=1 vex(r̂ i) = ∫

drvex(r)n̂(r). Therefore, the average
density and vex are conjugate variables and a relation

n(r) = ∂E0[vex]

∂vex(r)
(1.6)

holds true. Under the assumption that Eq. (1.6) can be inverted (at least “piece-
wise”), we can employ a Legendre transformation to facilitate the change in
variables from vex to n:

F [n] = E0[vex] −
∫

dr n(r)vex(r) (1.7)

where the external potential is now the dependent variable given by

vex(r) = −∂F [n]

∂n(r)
(1.8)

Thus, it is suggested that the density n can also be considered the fundamental
variable, so that observables are functionals thereof. The ground-state energy is
an example of this.

Summarizing: Underlying DFT is the insight that within a given universality
class, each physical system can be identified uniquely either by the belonging
“environment,” vex(r), or by its GS density, n(r). Therefore, in principle, knowing
just the ground-state density is enough information to determine any observable
(equilibrium) quantity of a many-body system.
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Remarks

• A formal proof that the density can act as the fundamental variable was
presented by Hohenberg and Kohn3; see Section 1.1.1.

• A generalization of DFT to spin or current DFT may be indicated for
systems with degeneracies. Then additional fields such as magnetization
and current density are needed to distinguish among the system states.

1.1.2 Variational Principle and Levy’s Proof

Just the mere statement that equilibrium expectation values of observables can
be calculated from some functionals once the GS density, n , is known, is not
very helpful. For DFT to be self-consistent, also needed is a procedure to obtain
this GS density by not referring to anything other than the functionals of n itself.
This is where the variational principle kicks in, which says that the GS has a
unique property in that it minimizes the system’s total energy. This implies, in
particular, that the GS has a density that minimizes (for a fixed environment vex)
the functional E0[n]. Hence, we can find n by solving the optimization problem
(1.2), involving only variations of the density.

A particularly instructive derivation of Eq. (1.2) has been given by Levy.4 We
summarize the essential logical steps, to remind ourselves that the connection
between the variational principle and DFT is actually deep and not related only
to practical matters. In fact, Levy’s proof starts with the variational principle
for the GS. It implies that there is a configuration space, C, of totally anti-
symmetric functions, �̃, with the normalization property N = ∫

dr 〈�̃|n̂(r)|�̃〉),
together with a functional E[�̃] = 〈�̃|Ĥ |�̃〉 defined on this space, which is
optimized by the GS, �0, with the GS energy, E0, being the optimum value;
explicitly,

E[�̃] = 〈�̃|T̂ + Û |�̃〉 +
∫

dr vex(r)ñ(r) (1.9)

where T̂ abbreviates the kinetic energy and Û the interaction energy appearing
in Eq. (1.1), and ñ is the particle density associated with �̃. The trick in Levy’s
argument is to organize the minimum search in two steps. In the first step the total
configuration space, C, is subdivided into subspaces such that all wavefunctions
inside a given subspace have identical density profiles ñ = 〈�̃|n̂(r)|�̃〉. Next,
within each subspace a search is launched for the elements that minimize E.
Thus, a submanifold, Mpreopt, is identified which contains a set of “preoptimized”
elements. By construction, each element �ñ of Mpreopt is uniquely labeled by the
associated density profile ñ (see Fig. 1.1). In the second step, the minimum
search is continued, but it can now be restricted to finding the one element, �0,
of Mpreopt that minimizes E.

The motivation behind this particular way of organizing the search is the
following: The division procedure in step 1 has been constructed such that the
second term in Eq. (1.9) does not contribute to preoptimizing; within a given
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~n3

~n1

~n2

preopt

Fig. 1.1 (color online) Schematic Al representation of the constraint search strategy
in C space. One sorts the space of all possible (i.e., antisymmetrized, normalizable)
wavefunctions into submanifolds. By definition, wavefunctions belonging to the same
submanifold generate the same density profile, ñ(r). Each submanifold has a wavefunction
�[ñ(r)] (at fixed external potential vex), which has the lowest energy. These wavefunctions
sit on a hypersurface (a “line”) in the configuration space which is parameterized by ñ(r).
The surface is continuously connected if the evolution of �[ñ(r)] with the density profile
is smooth (i.e., if degenerate shells with more than one optimum state � do not exist).
(We identify with each other states that differ only by a spatially homogeneous phase.)
Typically, for every external potential, vex, there is exactly one such surface. The ground-
state energy is found by going over the surface and searching for the global energy
minimum.

subspace it is just a constant. In this step, only the first term is minimized, with
an extremal value,

F [ñ] ≡ 〈�ñ|T̂ + Û |�ñ〉 (1.10)

The important observation is that by construction the functional F [ñ] is universal
(i.e., independent of external conditions , vex). (This statement is contained in the
Hohenberg–Kohn theorem.3) Therefore, F is found by preoptimizing once and
for all.

After F has been identified, the calculation of system-specific properties
(depending on vex), which was described in Eq. (1.2), requires only a restricted
search within the submanifold Mpreopt. The benefit is tremendous, since the
volume to be searched, Mpreopt, is tiny compared to the original wavefunction
space C.

Remarks

• F [n] has the exact property

∂F [ñ]

∂ñ(r)

∣∣∣∣
ñ=n

+ vex(r) = μ
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Proof: The ground-state density, n , is an extremal point by construction
under the constraint N = ∫

dr ñ(r). Introducing a Lagrange parameter, μ,
we can release the constraint and perform an unrestricted search minimiz-
ing F [ñ] + μN + ∫

dr[vex(r) − μ]ñ(r). The claim follows after functional
differentiation.

• The minimum search in Eq. (1.2) is in a space of scalar functions ñ, which
have the property that they are “�-representable”: For a given ñ(r) there
is at least one element of C with the property ñ(r) = 〈�̃|n̂(r)|�̃〉. This
implies, for example, positivity: ñ ≥ 0.

• We presented Levy’s argument for ground-state DFT. It is obvious, however,
that the restriction to GS and the collective mode “density” was not crucial.
Only the variational principle and a linear coupling of an environmental
field to some collective mode (e.g., density, spin density, current density)
should be kept. Therefore, generalizations of ground-state DFT to many
other cases have been devised: for example, (equilibrium) thermodynamic
DFT at nonzero temperature, magnetic properties (spin DFT and current
DFT), and relativistic DFTs.

Moreover, it has been shown that certain excited states can also be cal-
culated exactly with a ground-state (spin) DFT. This happens when the
Hamiltonian, Ĥ , exhibits symmetries, such as spin rotational invariance.
Then the Hilbert space decomposes into invariant subspaces each carrying
its own quantum number(s), q: for example, a spin multiplicity. The mini-
mum search may then proceed in every subspace, separately, giving a sep-
arate functional Fq for each of them. The local q-minima thus obtained are
valid eigenstates of the full Hamiltonian (Gunnarsson–Lundqvist theorem5).

1.2 LOCAL APPROXIMATIONS

The precise analytical dependency of the energy functional F [n] on the density
n(r) is not known, of course. Available approximations employ knowledge, ana-
lytical and computational, about homogeneous interacting Fermi gases (i.e., the
case vex = const). Indeed, it turns out that the homogeneous system also provides
a very useful starting point to build up a zeroth-order description in the inhomo-
geneous environments that are relevant for describing atoms and molecules.

1.2.1 Homogeneous Electron Gas

Homogeneous gases are relatively simple. The particle density, n , is just a param-
eter and all functionals, which in general involve multiple spatial integrals over
expressions involving n(r) at different positions in space (nonlocality property),
turn into functions of n . Analytical expressions for them can usually be derived
from perturbative treatments of E0(n), which are justified in two limiting cases:
where a control parameter, rs , is either very large or very small.

For the homogeneous electron gas, rs can easily be identified: It is the ratio of
two energies. The first energy is the typical strength of the interaction that two
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particles feel in the electron gas in three-dimensional space: (e2/ε0)n
1/3. To see

whether or not this energy is actually sizable, one should compare it to another
energy. The correct energy scale to consider will be a measure of the kinetic
energy of the particles.

The average kinetic energy of a fermion depends on the gas density, n . To
derive an explicit expression, we recall that due to the Pauli principle, all par-
ticles that share the same spin state must be in different momentum states, |p〉.
Therefore, when filling up the volume, higher and higher momentum states, up
to a maximum momentum value, pF, will be occupied. The kinetic energy of the
particles occupying the highest-energy (Fermi energy) states, εF(n) ≡ ε(pF), will
be a good measure for the typical kinetic energy of a gas particle.

The situation is best visualized recalling the familiar quantum mechanical
textbook problem of “a particle in a box” with box size L. The energy levels
of the box can be ordered according to the number of nodes exhibited by the
corresponding wavefunctions. The spatial distance between two nodes gives half
the wavelength, λ/2, with an associated wavenumber k = 2π/λ and momentum
p = �k. The maximum wavelength reached by N particles (with spin 1

2 ) filling
the box is λF/2 = L/(N/2) = 2/n, giving rise to a maximum wavenumber, the
Fermi wavenumber kF = πn/2, and a maximum momentum pF = �kF. In three
dimensions, similar considerations yield πk3

F/3 = (2π)3(n/2).
Employing these results, our dimensionless parameter can now be specified

as rs ∼ e2n1/3/ε0εF(n), which conventionally is cast into the form

4π

3
r3
s = 1

na3
0

stipulating a parabolic dispersion ε(p) = p2/2m (ε0: effective dielectric constant;
a0 = 4πε0�

2/me2 ≈ 0.529 Å: Bohr’s radius). Analytical expansions of E0(n) are
available in the limiting cases 1/rs 	 1 or rs 	 1. Typically, in particular with
molecular systems, one has the marginal case rs 
 1. Here, computational meth-
ods such as quantum Monte Carlo calculations (see Chapter 4) help to interpolate
the gap.

Motivated from the weakly interacting limit (rs 	 1), conventionally we con-
sider the following splitting of the GS energy per unit volume†:

ε̆0(n) = 2
∑

|k|≤kF(n)

ε(k) + vXC(n) (1.11)

†For homogeneous densities, the Hartree term reads n
∫
dr′ u(r − r′). Since the spatial summation

over the Coulomb potential, ∼1/r , does not converge, the integral makes a contribution to the energy
balance which is formally infinite. This divergency is an artifact of modeling the interacting electron
gas without taking into consideration the (positive) charge of those atomic nuclei (“counter charges”)
that provide the source of the electrons to begin with. The physical system is always (close to) charge
neutral, so that (on average) nnuclei = −nelectrons. This implies that the nuclei provide a “background”
potential, nnuclei

∫
dr′ u(r − r′), that leads to an exact cancellation of the divergent contribution in the

Hartree term. Therefore, this particular term should be ignored when dealing with the homogeneous
electron system (the Jellium model).
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where the factor of 2 accounts for the electron spin. The first term comprises the
kinetic energy of the free gas. Its dependency on the density is regulated via the
Fermi wavenumber, kF(n). The second term includes the remaining correlation
effects and therefore has a weak coupling expansion. For the Coulomb case, the
leading term is ∼1/rs with subleading corrections,6

vXC(n) = −n
0.9163

rs

+ n[−0.094 + 0.0622 ln rs + 0.018rs ln rs + O(rs)] (1.12)

in Rydberg units (ERy = EHartree/2 ≈ 13.6 eV).

1.2.2 Local Density Functional

The information taken from homogeneous systems for constructing functionals
describing inhomogeneous systems is the dependency of the GS energy per vol-
ume on the particle density, ε̆0(n). A leading-order approximation for the general
F -functional is obtained by

F [n] =
∫

drε̆0(n(r)) (1.13)

This approximation is valid if the inhomogeneous system is real-space separable,
meaning that it can be decomposed into a large number of subsystems that (1)
still contain sufficient particles to allow for treatment as an electron gas with a
finite density, (2) are already small enough to be nearly homogeneous in density,
and (3) have negligible interaction with each other. Systems exhibiting a relative
change of density, which is large even on the shortest length scale available, the
Fermi wavelength λF, do not satisfy (1) and (2) simultaneously. So a minimal
condition for the applicability of Eq. (1.13) is

λF∇n

n 	 1
(1.14)

Remarks

• Condition (3) implies that the interaction is short range, ideally u(r − r′) ∼
δ(r − r′). For the Coulomb case, we separate from the 1/|r − r′|-interaction
a long-range term, which is then treated by introducing an extra term, the
Hartree potential.

• Since the Fermi wavelength itself depends on the density, λF ∼ n−1/d , rela-
tion (1.14) is satisfied typically only in the large n-limit. There, the main
contribution to the energy (1.13) stems from the kinetic term in Eq. (1.11).
Therefore, the leading error in the local functional (1.14) usually comes
from the fact that the Thomas–Fermi approximation [kF(r) ≡ kF(n(r))]

〈T̂ 〉 ≈ 2
∫

dr
∑

|k|≤kF(r)

ε(k) (1.15)
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gives only a very poor estimate of the kinetic energy of an inhomogeneous
electron gas, even for noninteracting particles.

• The failure of the Thomas–Fermi approximation is the main reason that
orbital-free DFT has a predictive power too limited for most practical
demands. The search for more accurate representations of the kinetic energy
in terms of n-functionals is at present an active field of research.7,8

1.3 KOHN–SHAM FORMULATION

Better estimates for the kinetic energy can be obtained within the Kohn–Sham
formalism .9 One addresses the optimization problem (1.2) by reintroducing an
orbital representation of the density with single-particle states,

n(r) =
Ñ∑

�=1

|φ�(r)|2 (1.16)

called the Kohn–Sham or molecular orbitals . The orbitals φ� are sought to be
ortho-normalized; the parameter Ñ is free, in principle. However, with an eye
on approximating the kinetic energy of the interacting system by the energy of
the free gas, Ñ is usually chosen to be equal to the number of particles, Ñ = N .
With this choice, the optimization problem formally reads

1

2

∂

∂φ∗
�(r)

[E0[n(r)] − ε�(〈φ�|φ�〉 − 1)] = 0 (1.17)

featuring the Kohn–Sham energies (or molecular orbital energies), ε�, which play
the role of Lagrange multipliers ensuring normalization. Equation (1.17) can be
cast conveniently into a form reminiscent of a Schrödinger equation of N single
particles:

[ε(p) + vs(r)]φ�(r) = ε�φ�(r) (1.18)

where we have employed a substitution (p = −i�∂x),

1

2

∂

∂φ∗
�(r)

E0[n(r)] = [ε(p) + vs(r)]φ�(r) (1.19)

which is merely a definition of an auxiliary quantity, the effective potential vs(r).
The set of N equations given by Eq. (1.18) constitutes the Kohn–Sham equations .

Remarks

• The Kohn–Sham (KS) formalism should give a much improved description
of the kinetic energy, because by construction it reproduces exactly the
kinetic energy of the inhomogeneous, noninteracting gas.
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• The fictitious KS particles live in an effective potential which modulates
their environment such that their density and all related properties coincide
with those of a true many-body system.

• The potential term has a decomposition

vs(r) = vex(r) + vH(r) + vXC(r) (1.20)

where the second term includes the Hartree interaction, which for a specific
two-body interaction potential u(r − r′) reads vH(r) = ∫

dr′ u(r − r′)n(r′).
The third term, the exchange–correlation potential , incorporates all the
remaining, more complicated many-body contributions. In particular, we
have also lumped the difference between the free and interacting kinetic
energies into this term.

• Solving the KS equations requires diagonalization of a KS-Hamiltonian:

ĤKS = ε(p̂) + vs(r̂) (1.21)

The dimension of the corresponding Hilbert space, Nφ, usually exceeds the
particle number substantially: Nφ � N. Therefore, occupied (real) eigen-
states that finally enter the construction of the density [Eq. (1.16)] need
to be distinguished from unoccupied (virtual) ones. The selection process
follows the variational principle.

• Similar to the Hartree theory and in pronounced contrast to the Schrödinger
equation for a single particle, the KS equations pose a self-consistency prob-
lem: The potential vs(r) is a functional of n(r), so it needs to be determined
“on the fly.” We emphasize that even though the functional vs[n](r) may
exhibit a very complicated—in particular, nonlocal —dependency on the
ground-state particle density, the effective potential that finally is felt by the
KS particles is perfectly local in space. It provides an effective environment
for the KS particles, so that the many-body density can be reproduced.

• The self-consistent field (SCF) problem in DFT is much easier to solve than
the Hartree–Fock (HF) equations, which are nonlocal in space and, what is
much worse, even orbital dependent. As a consequence of the orbital depen-
dency of the Fock operator, a real HF orbital interacts with N − 1 other
real orbitals, whereas a virtual orbital interacts with N real orbitals. The sit-
uation in DFT is much simpler in the sense that occupied and unoccupied
orbitals all feel the same effective potential vs[n](r). Notice, however, that
this computational advantage comes at the expense of the derivative discon-
tinuity , an unphysical feature of exact exchange correlation functionals (see
Section 1.5.3) that is very difficult to implement in efficient approximation
schemes.

• Our derivation of the Kohn–Sham equations was tacitly assuming the
following: The density of any electron system, including the interacting
systems, can be represented in the manner of Eq. (1.16), where the orbitals
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φ� are normalizable solutions of a (single-particle) Schrödinger equation. Is
this really true? The answer is: Not always. That is, systems with degenerate
ground states may exhibit a particle density that can only be represented
as a sum of independent contributions coming from a number g of sin-
gle Slater determinants. A general statement that is valid for all practical
purposes is that any fermionic density may be represented uniquely as a
weighted average of g degenerate ground-state densities of some effective
single-particle Schrödinger problem [Eq. (1.18)].10,11

1.3.1 Is the Choice of the KS–Hamiltonian Unique?

For an interacting many-body system, splitting between kinetic and potential
energy as suggested in Eqs. (1.19) and (1.20) is not as unique as it may appear
at first sight. To give a straight argument, recall that the dispersion relation of
the free particles, ε(p), can be altered substantially by interaction effects. For
example, the mass of the electron describes how the particle’s energy depends
on its momentum. In the presence of interactions, an electron always moves
together with its own screening cloud, brought about by the presence of other
electrons. Although this does not change the wavelength (i.e., the momentum)
of the electron, it does change its velocity. It tends to make it slower, so that
the “effective” mass increases. Such interaction effects on parameters such as the
mass, the thermodynamic density of states, and the magnetic susceptibility are
called Fermi-liquid renormalizations .

Having this in mind, one could easily imagine another splitting featuring
a renormalized kinetic energy, ε∗(p), which would describe a more adapted
description of the dispersion of charged excitations (e.g., the propagation of
screened electrons) in the interacting quantum liquid.12 A remaining, residual
interaction , V res

XC, would appear to be designed so that the ground-state density
produced by this effective system would also coincide with the true density. Such
a renormalized splitting is rarely employed in practice, perhaps because a good
approximation for the residual functionals is not available.

For the effective single-particle problem that yields the exact ground-state
density, we conclude that various choices are possible, the choices differing
from one another in the dispersion ε(p) that enters the kinetic part of the KS-
Hamiltonian. Very few restrictions on the possible functional forms of ε(p) exist;
the parabolic shape and the trivial form ε ≡ 0 (with proper readjustments of vXC)
are just two choices out of many.

1.4 WHY DFT IS SO SUCCESSFUL

The precise dependency of the exchange–correlation potential vXC on the density
n(r) is not known. In the simplest approximation, the local density approxi-
mation (LDA), one takes for vXC the result obtained from the homogeneous
electron gas [Eq. (1.12)], but replacing the homogeneous density with n(r) (see
Section 1.2.2).
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Remarks

• The universal success of DFT in chemistry and condensed matter physics
came with the empirical finding that the combination of KS theory with
LDA (and its close relatives) works in a sufficiently quantitative way to
make it possible to calculate ground-state energies (and hence to determine
molecular and crystal structure) even outside the naive regime of the validity
of LDA as given by relation (1.14). This is due to a cancellation of errors in
the kinetic and exchange correlation part of the KS-Hamiltonian (1.21).13

• In analogy with Hartree–Fock theory, a fictitious “KS–ground state” wave-
function, �, is often considered. It is constructed by building a Slater
determinant from the real KS orbitals. In contrast to HF, this state is
not optimal in an energetic sense. It does, however, reproduce the exact
particle density. In the same spirit, KS energies are often interpreted as
single-particle energies, even though from a dogmatic point of view there
is no (close) connection between the Lagrange multipliers and the true
many-body excitations; indeed, to the best of our knowledge, a precise jus-
tification of this practice has never been given. Still, the pragmatic approach
has established itself widely, since it often gives semiquantitative estimates
for Fermi-liquid renormalizations, which are important, for example, in band
structure calculations.

• The implementation of efficient codes is much easier in DFT than in HF
theory, due to the fact that functionals are only density and not orbital
dependent. For this reason, many powerful codes are readily available in
the marketplace.

• At present, because of the virtues noted above, DFT is by far the most
widely used tool in electronic structure theory (lattice structures, band
structures) and quantum chemistry (molecular configurations), with fur-
ther applications in many other fields, such as nuclear physics, strongly
correlated systems, and material science.

1.5 EXACT PROPERTIES OF DFTs

Since there is no analytic solution of the general interacting many-body problem,
it is not surprising that exact statements about exchange correlation functionals are
scarce. Precise information is, however, available in the presence of an interface
to the vacuum.

Imagine a situation in which a molecule or a piece of material is embedded in
a vacuum. The material is associated with an attractive KS potential “well,” vs ,
which binds N electrons to the nuclei (or atomic ion cores). Outside the material,
the binding potential and the particle density rapidly approach their asymptotic
zero values. Exact information is available about how the asymptotic value is
approached.
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1.5.1 Asymptotic Behavior of vXC

Consider the Hartree term

vH(r) =
occ∑
�′=1

∫
dr′ u(r − r′)|φ�′(r′)|2 (1.22)

in the KS equations

[ε(p̂) + vex(r) + vH(r) + vXC(r)]φ�(r) = ε�φ�(r) (1.23)

It contains at �′ = � a piece u(r − r′)|φ�(r′)|2, which incorporates an interaction
of a particle in the occupied orbital φ� with its own density. This spurious,
nonphysical interaction is known as a self-interaction error . In principle, it should
be eliminated by an counterpiece contained in the exchange part of vXC.† The
construction and application of empirical corrections for this effect are the subject
of Chapter 14.

The Hartree term is known exactly in the asymptotic region. This is the reason
that it is possible to draw a rigorous conclusion about vXC. To be specific, we
consider the case of Coulomb interactions. In the asymptotic regime a distance
r away from the materials center, where the particle density is totally negligible,
all spurious contributions made by an occupied orbital add up to e2/r . To cancel
this piece we must have

vXC(r) →
r→∞ −e2

r
+ −αN−1

2r4
+ · · · (1.24)

whenever the particle density vanishes. The correction term, which we have
also given here, describes the polarizability, αN−1, of the many-body system
(with N − 1 particles). This term incorporates the interactions with the fluctuating
charge density of the mother system that particles feel when they explore the
asymptotic region.

†This cancellation may be seen explicitly within the Hartree–Fock approximation. That is, the
interaction term reads

∑
σ′=↑,↓

∑
�′

∫
dr′ u(r − r′)φ∗

�′σ′ (r′)[φ�′σ′ (r′)φ�σ(r) − δσσ′φ�′σ′ (r)φ�σ(r′)]

so that the piece with l′ = l, σ′ = σ in the first (Hartree) term is eliminated by a corresponding piece
in the second (Fock) term.
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Remarks

• A more intuitive way to rationalize the leading asymptotics of vXC is to
recall that an electron that makes a virtual excursion from its host material
into vacuum still interacts with the hole that it leaves behind. The first term
in Eq. (1.24) describes the interaction with this virtual hole.

• Both terms appearing in Eq. (1.24) are not recovered in local approximation
schemes, such as LDAs and generalized-gradient approximations (GGAs),
which stipulate the form vXC(r) ≈ vXC(n(r), ∇n(r), . . .). The statement is
obvious, because the density is exponentially small in the asymptotic region
(see Section 1.5.2), whereas the potential (1.24) is not. This defect has
very serious consequences, since the van der Waals dispersion interactions,
vXC ∼ −αN−1/r4, ignored in LDAs and GGAs, provide the dominating
intermolecular forces that prevail, for example, in biochemical environ-
ments. To address this problem, Grimme14 has proposed an ad hoc empir-
ical procedure that adds a long-range term to standard energy functionals.
The functional contains specific parameters, essentially modeling the local
polarizability of single atoms or molecular groups chosen so that a rough
description of the van der Waals interaction is retained.

1.5.2 Workfunction

Now, consider the KS potential well in its ground state with N occupied bound
orbitals φ. Generically, every such orbital contributes to the particle density n(r)
at a point r unless it happens that φ has a node there: φ(r) = 0. This is also true
in the asymptotic region far away from the well’s center. However, in this region
the state φHOMO with the largest KS energy [highest occupied molecular (or
material) orbital (HOMO)] gives the dominating contribution almost everywhere
(i.e., at all points where |φHOMO(r)|2 > 0). It is easy to see why this is. In the
asymptotic region vs(r) decays in a power-law manner with the distance r from
the well’s center (Fig. 1.2). Therefore, the KS equations read

− �
2

2m
∂2
r (rφ�) = ε�(rφ�) (1.25)

where ε� < 0 denotes the ionization energy of a bound KS state. The solution is

φ� ∼ 1

r
e−

√
2m|ε�|/�2r (1.26)

so that generically the HOMO orbital has the smallest KS energy by modulus,
|εHOMO|. At large enough distances, it will give the only relevant contribution.
[Exceptions to the rule occur only in the case of a vanishing prefactor not written
in Eq. (1.26).] For this reason, the KS energy of the highest occupied molec-
ular level is actually a physical observable; it gives the ionization energy or
workfunction (Janak’s theorem15,16).
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−|εHOMO|

−e2/r 

r
0

W

vs

Fig. 1.2 Effective potential (solid line) near a surface of a simple metal. Surface atoms
(dark balls) and the electron liquid (light background) are also indicated.

1.5.3 Derivative Discontinuity

The derivative discontinuity17,18 (DD) is perhaps one of the less intuitive prop-
erties that an exact XC potential must exhibit. We discuss it here in some detail,
since the fact that local approximations are not capable of capturing it even qual-
itatively often leads to very important artifacts in the KS spectra which are not
a genuine feature of DFT itself but, rather, of the LDA.

We will see that the DD is related intimately to the fact that the N (real)
particles in a many-body system interact with only N − 1 partners, while an
infinitesimal test (virtual) charge in such a system would interact with N (i.e.,
all the other particles). Since vXC[n] has access to the total density only, it
cannot easily distinguish real and virtual orbitals with their different interacting
environments (as HF does). It turns out that the way DFT implements such
behavior is via a very sharp (i.e., nonanalytic) behavior of vXC[n] on the particle
density n(r).

1.5.3.1 Isolated System Consider an isolated quantum dot, such as a single
atom or a molecule, with N electrons. The corresponding KS system exhibits
a number of N KS particles that occupy the N lowest-lying KS states. It is
important to recall that each KS particle interacts with the total charge density,
vXC[nN ], only, including the density contribution that comes from itself. In this
respect, KS particles are fundamentally different from physical particles, which
do not interact with themselves, of course.

Next, add one additional particle, the excess charge, δN = 1; to be specific,
put it into the lowest unoccupied molecular orbital (LUMON ). The new XC func-
tional of the “anion” will be vXC[nN+1]. What are the consequences of charging
for the KS energies? Due to the change nN → nN+1, every original particle inter-
acts with one more charge, δN , the excess particle in the LUMON . Therefore,
the energy of every one of the first N orbitals shifts by the amount U , which
measures the interaction with the excess particle (see Fig. 1.3). Notice also that
the energy of the LUMON (now, better, HOMON+1) has shifted by U after it was
occupied. This is because in KS theory, all orbitals, occupied and unoccupied,
are calculated in the same effective potential.
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LUMON

U

HOMON

HOMON+1

Fig. 1.3 Evolution of the energy of KS-frontier orbitals with increasing electron number
from N (left) to N + 1 (right). The KS-LUMON jumps upon occupation by an amount U .
By contrast, in Hartree–Fock (HF) energy the HF-LUMON is already calculated antic-
ipating an interaction with one more particle (as compared to HF-HOMON ). Therefore,
such a jump does not occur in HF theory.

So far, no peculiarities have appeared. To see that there is indeed something
looming on the horizon, now add a fractional excess charge, say an infinitesimally
small one, δN ≪ 1, rather than an integer charge. Then the original KS orbitals
should remain invariant by definition, since the perturbation is infinitesimally
small so that the charge density is not disturbed. But, what are the energy and
shape of the newly occupied orbital? The salient point is that a real particle does
not interact with itself. Therefore, the energy of a physical orbital should not be
sensitive to its occupation. Hence, the workfunction of an atom with a fractionally
occupied HOMO is the same as that of one with an integer occupation.

We conclude that the fractionally occupied orbital must have the energy
HOMON+1, which exceeds the energy of the empty orbital LUMON by the
amount U . So evolution of the energy of HOMON+δN with δN is not smooth;
an arbitrarily small change in the density, δN , must result in a finite reaction of
vXC[n] if the particle number, N , is near integer values:

�XC(r) = δEXC[n]

δn(r)

∣∣∣∣
N+δN

− δEXC[n]

δn(r)

∣∣∣∣
N−δN

(1.27)

This is the (in)famous derivative discontinuity (DD).

1.5.3.2 Coupled Subsystems (Partial Charge Transfer) To illustrate the impor-
tance of the DD, we now give a typical example where fractional charge occurs.
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Consider two subsystems, which are partially decoupled in the sense that elec-
tronic wavefunctions interact only weakly. Such could be, for example, two
functional groups in the same molecule or two neighboring molecules in a biolog-
ical environment. To be specific, we imagine here the atom from Section 1.5.3.1
and a second many-body system, a metal surface.

Each system has its own workfunction: for example, WN+1
A >WS . Let us bring

the atom into the vicinity of the surface, but keeping their distance d extremely
large. Since only the total particle number N = NA + NS is conserved, there
will be a net exchange of charge, δN , between S → A. This implies that the
atomic orbitals acquire a finite broadening, �, which however is small, � 	
|WN+1

A − WS |, since d is large. In this situation and in the absense of ionization,
the net particle flow from S → A is exponentially small. As a consequence, the
HOMON+1

A fills up, but only with a very small fraction of an electron.
To describe correctly how the HOMON+1

A fills upon approach of the two
subsystems, it is crucial that the piece of the XC functional describing A indeed
reacts to the flow, so that the LUMON

A of the coupled atom is shifted upward
against the uncoupled atom by U . If U is on the order of the mean level spacing
or even bigger—as it tends to be for nanoscopic systems such as atoms and small
molecules—this shift is important for understanding charge transfer in DFT. On a
qualitative level, the DD suppresses charge fluctuations between weakly coupled
subsystems.

Remarks

• The spatial modulation of vXC induced by the DD reflects the differences in
the workfunction seen in different charge states of the isolated subsystems
before they have been coupled. Therefore, quantitative estimates about the
size of the DD-induced modulations can be obtained by calculating work-
functions of the constituting subsystems and their anions/cations.

• The DD enters in a crucial way the DFT-based description of the gate depen-
dence of the charge inside a quantum dot. Without DD, the width of the
Coulomb oscillations is U rather than max(�, T ) and therefore qualitatively
wrong.19

• In LDA-type approximations the DD is missing, since by construction the
potentials evolve smoothly when an infinitesimal probing charge is added.
Currently, attempts are under way to design orbital-dependent functionals
which can take the DD into account (in a spirit similar to HF theory).
Kümmel and Kronik1 have compiled a review about the most recent devel-
opments in this direction.

1.6 TIME-DEPENDENT DFT

Since the 1980s, attempts have been made to generalize equilibrium theory into
time dependent phenomena. A detailed account of its foundations may be found
in recent monographs.20,21 We discuss only those most basic aspects which are



20 PRINCIPLES OF DENSITY FUNCTIONAL THEORY

important to shed some light on the connection between TDDFT and transport
calculations.

Consider the time-dependent Schrödinger equation

i�∂t�(t) =
[
T̂ + Û + V̂ex +

∫
dr φex(rt)n̂(r)

]
�(t) (1.28)

where T̂ and Û abbreviate the kinetic and interaction energies given explicitly
in Eq. (1.2) and, again,

V̂ex =
∫

dr vex(r)n̂(r)

describes the electrostatic environment. The time evolution of all observables
is fixed by (1) the time-dependent external potential φex(rt) and (2) the initial
conditions (i.e., the wavefunction �i at the initial time t = 0). This suggests that
the response of all those systems, which have been prepared in an identical way
and therefore share the same initial state, is dictated by a single scalar field vex(t).
In this respect, the situation is very reminiscent of the equilibrium case.

To prove also that for time-dependent phenomena the density may serve as the
fundamental variable, one should demonstrate that an invertible relation analog to
Eq. (1.6) exists, at least in principle, which allows reconstruction of the probing
potential φex(t) from knowledge of n(t) (and �i) at all times t ≥ 0. A proof that
this indeed is the case for a wide class of potentials φex(t) was constructed first
by Runge and Gross22 and corroborated by many later authors, in particular by
van Leeuwen.23

1.6.1 Runge–Gross Theorem

The Runge–Gross theorem emphasizes that the time evolution of the density
n(t) is a unique characteristic of the probing potential φex(t): Two probing fields,
which differ by more than a homogeneous shift in space, invoke two different
density evolutions. This insight is then later used to argue that a density profile,
n(rt), that is driven in one system with interaction Û by φex(t) can also be seen
in another system with a different interaction Û ′ after φex(t) has been replaced
by the appropriate modulation φ′

ex(t). In particular, Û ′ can also be zero, which
is the foundation of the time-dependent DFT.

We offer a proof of these statements which relies on the familiar fact that a
solution of a partial differential equation (here in time) is unique once the initial
situation and the evolution law have been specified.

Proof The strategy is to relate the probing field φex to the second time deriva-
tives n̈. For the first time derivative, Heisenberg’s equation of motion tells us
that

ṅ(rt) = 1

i�
〈�(t)|[n̂(r), T̂ ]|�(t)〉 (1.29)
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because all other terms in Û , V̂ex, and φex commute with the density operator
n̂(r). By comparing with the continuity equation,

ṅ(rt) + ∂r〈�(t)|ĵ (r)|�(t)〉 = 0 (1.30)

one may identify the proper definition of a current density operator, ĵ(r). The
procedure is familiar from elementary textbooks on quantum mechanics. The
second derivative reads

n̈(rt) =
(

1

i�

)2

〈�(t)

∣∣∣[[n̂(r), T̂ ], Ĥ (t)
]∣∣∣ �(t)〉 (1.31)

where Ĥ (t) is the Hamiltonian driving the time evolution in Eq. (1.28). This
equation is readily recast into the shape

δn̈(rt) = −
∫

dr′�(rt, r′t)∂r′φex(r′t) (1.32)

where we have introduced a correlator,

�(rt, r′t) = i

�
〈�(t)

∣∣∣[ĵ(r′), n̂(r)
]∣∣∣�(t)〉 (1.33)

and the abbreviation

δn̈(rt) = n̈(rt) + 1

i�
∂r〈�(t)

∣∣∣[ĵ(r), T̂ + Û + V̂ex

]∣∣∣ �(t)〉 (1.34)

The second term appearing in this expression describes the internal relaxation of
the electron system (“gas” or “liquid”; e.g., due to viscoelastic forces).

The equal-time commutator in Eq. (1.33) is closely related to the density
matrix; in terms of fermionic field operators, one has

n(rt, r′t) = 1
2 〈�(t)|ψ̂†(r)ψ̂(r′) + ψ̂†(r′)ψ̂(r)|�(t)〉

so that

�(rt, r′t) = 1

m
[n(rt, r′t)∂r′δ(r − r′) − δ(r − r′)∂r′n(rt, r′t)] (1.35)

Feeding this expression back into Eq. (1.32) and recalling that n(rt, rt) ≡ n(rt),
we recover Newton’s third law,

δn̈(rt) = 1

m
∂r n(rt)∂rφex(rt) (1.36)

as we should. Clearly, a spatially homogeneous part of the probing potentials
can never be recovered from the density evolution, since such potentials do not
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exert a force. By contrast, the inhomogeneous piece can be reconstructed from
its accelerating effect on the density.† Technically speaking, Eq. (1.36) represents
a linear, first-order (in space) differential equation for the probing field φex(t).
Combining with the Schrödinger equation (1.28),

i�∂t�(t) = Ĥ (t)�(t)

one obtains a system of two linear equations, which are local in time and readily
integrated starting from the initial time t = 0.

This is how, in principle, the probing field may be reconstructed (up to a
homogeneous constant), if only n(rt) is known: n(rt) → φex(rt). Since the other
direction, φex(rt) → n(rt), is provided trivially by the Schrödinger equation, we
readily conclude that

φex(rt) ↔ n(rt)

Extension So far we have shown how the probing potential φex(rt) can be
calculated if the density evolution and the initial state are given. It is also tacitly
understood here that the Hamiltonian (i.e., the dispersion, T̂ , the electrostatic
environment, V̂ex, and the interaction, Û ) are known. Their structure cannot be
reconstructed with n(rt).

In conjunction with Eq. (1.36), this last observation has an important impli-
cation. Consider, for example, two systems with two different interactions, Û

and Û ′, and two different initial states, �i and � ′
i , that both satisfy the con-

dition that their initial density n(rti ), together with the time derivative ṅ(rti ),
coincide. Under this condition, for both systems an equation of the type (1.36)
holds true, since the derivation made no special assumption about the structure
of Û . Therefore, for any (reasonable) interaction Û we can find a time-dependent
single-particle potential such that the density of the many-body system follows
a predefined time evolution n(rt).

We can even go a step further. In fact, we have shown how to calculate
Û -depending single-particle potentials, vs, such that systems with different inter-
actions can exhibit the same time-dependent density. This means, in particular,
that we can model the time evolution n(rt) of interacting systems driven by
φex(rt) by studying a reference system of noninteracting particles that experi-
ence a particular driving field vs(rt). This field can be constructed from the
(invertible) mapping

φex(rt)
Û↔

Eq. (1.28)
n(rt)

Û ′ = 0↔
Eq. (1.36)

vs(rt) (1.37)

at least in principle. Some of the conclusions, which we have arrived at here,
were presented earlier by van Leeuwen24 based on the same equations but with
somewhat different arguments.‡

†This statement is true in those spatial regions where the particle density is nonvanishing n(r) ≥ 0.
‡We thank G. Stefanucci for bringing Ref. 24 to our attention and for a related discussion.
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Remarks

• By including in addition to the scalar probing potential φex(t) a vector prob-
ing potential, Aex(t), and keeping the current density explicit as a second
collective field, one can generalize the argument presented above to derive
a time-dependent current DFT. A proof in the spirit of van Leeuwen24 has
been given by Vignale.25

• Exactly the same arguments that have been presented for the case of a single
wavefunction �(t) also apply to an ensemble of wavefunctions character-
ized by a statistical operator ρ̂ with only minor modifications: (1) quantum
mechanical expectation values turn into ensemble averages, and (2) the
Schrödinger equation is replaced by the von Neumann equation

ρ̂ = i

�
[ρ̂, Ĥ (t)] (1.38)

This prompts a generalization of TDDFT to finite temperatures.

• In principle, one can in this way also consider systems with a coupling
to a heat bath (e.g., bosons). The only essential modification occurs in
Newton’s law, which now needs to account, for example, for a change
in the effective dispersion 1/m due to the electron–boson coupling. First
attempts to develop a TDDFT for a system coupled to reservoirs have been
reported.26–28

• Notice that the appearance of the gradients in Eq. (1.36) is due to par-
ticle number conservation. The reason is that symmetric correlators of
the type

〈�(t)|[[n̂(r), Ô], n̂(r′)]|�(t)〉

vanish after integration over one of the spatial coordinates if Ô commutes
with the total particle number operator, [Ô, N̂ ] = 0. Indeed, in Eq. (1.31)
this is the case, because any term in the Hamiltonian commutes with the
total particle number operator N̂ . Hence, such correlators have vanishing
(real space) Fourier components at zero wavenumbers, q = 0. Assuming
analyticity, we can say that the correlator is proportionate to the product
of two wavenumbers, q and q′, and for this reason two gradients appear in
Eq. (1.36).

• The validity of time-dependent DFT is based on three elementary observa-
tions all of which relate to the fact that (quantum) mechanics is governed
by linear differential equations in time:
1. The total force can be deduced from its action on the particle density.
2. This force can be split into an external and internal component; the

internal component acting at time t can be calculated knowing just �(t).
3. To calculate �(t), only forces acting prior to t and the initial conditions

have to be known.
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1.6.2 Dynamical Kohn–Sham Theory

The Runge–Gross theorem and its extensions teach us that there is a reference
system of noninteracting particles living in a potential vs(rt) [Eq. (1.37)], so
that at t > 0 its density evolves in time in exactly the same way that it does for
many-body system. The dynamics of this reference system are governed by an
effective Schrödinger-type equation, the dynamic Kohn–Sham equations. With
the decomposition vs = vex + vH + vXC + φex, they read

i

�
∂tφ�(r) = [ε(p̂) + vex(r) + φex(rt) + vH(rt) + vXC(rt)]φ�(r) (1.39)

where φex(rt) is the time-dependent probing field and

n(r, t) =
N∑

�=1

|φ�(rt)|2

vH[n](rt) =
∫

dr′u(r − r′)n(r′t) (1.40)

The functional vXC[n](rt) is the piece of vs[n](rt) that accommodates the interac-
tions beyond the mean field (Hartree) type. It depends on the time-dependent par-
ticle density, including its history. Moreover, as a first-order differential equation,
Eq. (1.39) needs to be complemented with an initial condition. Part of this is, of
course, that n(r, t = 0) coincides with the density of the many-body system at
t = 0. However, in addition, the functional vXC will in general also depend on the
many-body wavefunction of the initial state, �I ≡ �(t = 0), which may—but
does not have to be—an equilibrium state.

1.6.3 Linear Density Response

Consider a situation where the many-body system is in thermal equilibrium at
times t < 0 before the probing field φex(rt) is switched on. Moreover, assume
that the perturbation is going to be very weak, so that the requirements for the
application of the linear response theory are met. Under this condition, an explicit
expression for the XC-functional vXC is readily written down.

Indeed, there is a matrix χ(rt, r′t ′), the density susceptibility, which relates
the probing field to the (linear) system response, �n = n − neq:

�n(rt) =
∫

dt ′
∫

dr′ χ(rt, r′t ′)φex(r
′t ′) (1.41)

The matrix χ(t, t ′) is an equilibrium correlation function of the system, and it
therefore depends only on the time differences t − t ′. We can use its inverse,
χ−1, to define an operator kernel fXC via the decomposition

χ−1 = χ−1
KS − fH − fXC (1.42)
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The operator χKS describes the density response of the equilibrium KS system,
ignoring the feedback of φex(t) into vH and vXC [Eq. (1.39)]; explicitly,

χKS(rr′z) = 1

�

∑
�,�′

〈�|n̂(r)|�′〉〈�′|n̂(r′)|�〉f (ε�) − f (ε�′)

ε�′ − ε� − z

where |�〉, |�′〉 and ε�,�′ denote the unperturbed (φex ≡ 0) KS orbitals and KS
energies and z = ω + iη lies in the complex plane. The feedback is then taken
into account by fH = u(r − r′) for the Hartree term vH and by fXC for the
exchange correlation potential, vXC, in Eq. (1.39).

From this point of view it is obvious how to construct the dynamic correction
of the XC functional to the equilibrium functional:

vXC[n](rt) = v
eq
XC[neq](r) +

∫
dt ′

∫
dr′fXC(r, r′; t − t ′)�n(r′t ′) (1.43)

Remarks

• We have just constructed a single-particle theory, which has the property
that it gives the correct linear dynamical response of the many-body system.
The procedure relies on the familiar notions of linear response theory only
and does not make reference to the underpinnings of the time-dependent
DFT. It is emphasized here that the genuine statements of time-dependent
DFT, when applied to systems that are in equilibrium at t < 0, reside in
the claim that an effective single-particle description exists even outside the
linear regime.

• Much of the recent improvement29 in quantitative calculations of optical
spectra of single molecules is due to including the terms fH and in particular
fXC into the analysis (in addition to χKS), which have often been ignored
before. In this way the single-particle spectrum of the bare Kohn–Sham
system is dressed so as to produce the correct many-body excitations. Often,
the success of this procedure is attributed to the time-dependent DFT. This
is misleading, however, since it is merely the consequence of a proper
application of the standard theory of linear responses.

• The best used approximation on fXC is the adiabatic LDA (ALDA). It
comprises two steps. First is the adiabatic approximation,

f ad
XC(rt, r′t ′) = ∂v

eq
XC[n](r′)
∂n(r)

∣∣∣∣∣
n(rt)

δ(t − t ′) (1.44)

This step, by definition, erases all memory effects, so a δ-function in time
appears. The complete absence of memory suggests one more approxima-
tion, which also eliminates nonlocal correlations in space. This is necessary,
because signal propagation occurs with a finite velocity and therefore always
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has a retardation time. Therefore, density fluctuations in different spatial
regions cannot be correlated instantaneously. This aspect is built into

f ALDA
XC (rt, r′t ′) = dv

eq
XC(n)

dn

∣∣∣∣∣
n(rt)

δ(r − r′)δ(t − t ′) (1.45)

automatically, where in Eq. (1.44) v
eq
XC has been replaced by its LDA

approximant.

1.6.4 Time-Dependent Current DFT

The frequency structure of fXC has been worked out in the hydrodynamic regime
of small wavenumbers and frequencies by Kohn, Vignale, and co-workers.30,31

It is seen explicitly there that severe memory effects indeed exist due to general
conservation laws, which express themselves as singular behavior in correlation
functions with respect to wavenumber and frequency.

As usual, singularities may be partly eliminated by reformulating in terms of
correlation functions of the (generalized) velocities. In the case of the particle
density, one introduces the longitudinal current density,

j�(qω) = −iω

qn(qω)
(1.46)

In this way one absorbs factors q−1, thus removing nonlocal behavior in the
density kernels, which indicates, for example, the slow density relaxation due
to particle number conservation. In this spirit the time-dependent current DFT
(TDCDFT) was developed.30,31

Apart from the fact that it works with current-density kernels, which are more
local than those in TDDFT, TDCDFT offers yet another attraction. In addition
to the density [or j�, Eq. (1.48)] it also features a second independent collective
field, the transverse currents j t. Therefore, TDCDFT can in principle also describe
the orbital response to probing vector potentials (i.e., magnetic fields).

1.6.5 Appendix: Variational Principle

Unlike the case with equilibrium theory, a variational principle is not required in
order to derive the dynamical Kohn–Sham equations. Still, it is desirable to have
a formulation of TDDFT available in terms of an action, for example, because
one may hope to be able to calculate vs by performing a functional derivative.
In this section we investigate the “naive” trial action

A[�̃] =
∫ ∞

0
dt 〈�̃(t)|i�∂t − Ĥ (t)|�̃(t)〉

=
∫ ∞

0
dt 〈�̃(t)|i�∂t − T̂ − Û − V̂ex|�̃(t)〉 −

∫ ∞

0
dt

∫
drφex(rt)ñ(rt)

(1.47)
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which is defined over the space C�I of complex fields �̃(t) with constraints given
by (1) the antisymmetry requirement in all N coordinates r1 · · · rN , and (2) the
initial condition �̃(0) = �I. The solution of the Schrödinger equation for a given
external field φex(rt) is the one element �(t) of C�I that optimizes A[�̃].

In full analogy to the equilibrium case, the functional equation (1.47) can be
used as a basis to find an action functional of the density alone by preoptimizing.
We first perform a decomposition of C�I into subsets; the elements of each subset
have the same evolution ñ(rt). Second, we find within each one of these subsets
those states �ñ(rt) that are optimal with respect to A[�̃]. These states form the
ensemble Mpreopt of preoptimized fields.†

In this way we arrive at an action functional, which is defined on Mpreopt:

S�I [ñ] =
∫ ∞

0
dt 〈�ñ(t)|i�∂t − T̂ − Û |�ñ(t)〉 (1.48)

S�ñ
is the dynamical analog of F [Eq. (1.37)]. The Schrödinger time evolution

of the density, n(rt), is the single one that optimizes the full action,

A�I [vex, ñ] = S�I [ñ] −
∫ ∞

0
dt[vex(r) + φex(rt)]ñ(rt) (1.49)

The variational space associated with this action is spanned by all those ñ(rt)
which are �̃-representable: There is at least one element �̃(t) of C�I such that
ñ(rt) = 〈�̃(t)|n̂(r)|�̃(t)〉.

Remarks

• Preoptimizing is a constrained minimum search in the subspace of possible
wavefunctions that satisfy the initial condition (2). Therefore, each initial
condition carries its own functional: S�I [n].

• By construction, the search over �-representable densities leads to a vari-
ational equation,

δS�I [ñ]

δñ(rt)

∣∣∣∣
ñ(rt)=n(rt)

= φex(rt) + vex(r) (1.50)

Its solution, n(rt), defines the Schrödinger dynamics for the density corre-
sponding to a given probing field φex(rt). A more explicit expression for the
left-hand side may be obtained by taking the time derivative and comparing
with Eq. (1.36).

†With every optimum �ñ(t), the related function eiϕ(t)�ñ(t) with ϕ(0) = 0 is an optimum, which
differs by a time-dependent, spatially homogeneous phase shift. The shift merely reflects the necessity
to fix the zero of energy. We identify all those states with one another that differ only by a spatially
homogeneous phase ϕ(t).
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• Consider to generate all possible solutions of Eq. (1.50) by scanning
through the space of all allowed (i.e., sufficiently smooth) probing fields
φex(rt). This subset of the �-representable variational space is called
v-representable. An arbitrary element of the variational space ñ(rt) is
certainly �-representable but may not be v-representable.

• The Schrödinger dynamics is unitary: N = ∫
dr n(rt) is an invariant of

motion. v-representable states obey unitarity, but �-representable states may
not.

• By taking a functional derivative,

∂

∂n(rt)
δS�I [ñ]

δñ(rt ′)

∣∣∣∣
ñ=n

= ∂φex(r′t ′)
∂n(rt)

= χ−1(r′r, (t ′ − t)) (1.51)

a relation to the reciprocal of the density correlation function is derived.
Note that the ∂ derivative relates to density differences within the set of all
n(rt) that are v-representable. Our notation emphasizes this difference with
the earlier δ derivative [Eq. (1.50)].

• The right-hand side of Eq. (1.51) is subject to causality; the density n(rt)
indicates changes in the probing potential φex(rt ′) only at later times, t > t ′.
Equation (1.51) pays respect to this asymmetry, since the ∂ and δ derivatives
must not be interchanged.

• The causality issue noted above makes it very obvious that an action prin-
ciple should not be based solely on the variational space of v-representable
histories n(rt). This issue has been discussed in detail by van Leeuwen.23,32

In response, this author derives an action S employing the Keldysh formal-
ism. The procedure by itself does appear to lead to fundamentally new
insights. However, it has the charming feature against the naive start-
ing point [Eq. (1.47)] that only one (enlarged) variational space for n(rt)
appears. In addition, there is an important conceptual advantage, since—in
principle—within this approach it is clear how one can calculate vXC in a
systematical perturbation theory.

1.7 TDDFT AND TRANSPORT CALCULATIONS

In this section we discuss the application of TDDFT in the context of charge
transport. The focus will be on the dc limit. There are various ways how to for-
mulate the transport problem; we shall elaborate on the consequences from linear
response and scattering approaches. We concentrate on the presentation of those
elementary facts that are specific of a treatment of transport within the framework
of TDDFT. An attempt is being made to be as self-contained as possible.

1.7.1 Linear Current Response

One way to establish a current flow in a system, which initially is in a thermo-
dynamic equilibrium, is to switch on an electric field Eex(rt). This field is not
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the one that an electron feels when it accelerates. The accelerating (local) field,
E, also contains an induced component,

E = Eex + Eind (1.52)

We restrict ourselves to initial situations that respect time-reversal invariance.
Then the induced field is generated by a shift of charges, e �n, under the influence
of Eex; we have

Eind(rt) = −∂r

∫
dr′u(r − r′) �n(r′t) (1.53)

By definition, the conductivity matrix, σij , relates only the total field, E, to the
linear response of the current density by

ji(rω) =
∫

dr′σij (r, r′, ω)Ej (r′ω) (1.54)

To make contact to TDDFT, we decompose j into a longitudinal (curl free) piece,
j�, and a transverse (source free) field, jt .

1.7.1.1 Magnetization (Transverse) Currents By construction, jt incorporates
the orbital ring currents that may be understood as a local magnetization density
defined via jt (rt) = c∂r × m(rt), where c denotes the velocity of light. Non-
vanishing magnetizations occur in equilibrium systems only in the presence of
(spontaneously) broken time-reversal invariance. In these cases, the current DFT
(CDFT) has to be employed, where the magnetization is explicitly kept as a
second collective field in addition to the particle density. We consider here only
systems that are invariant under time reversal. Then, ring currents vanish in
the initial state, jt = 0. In such systems transverse currents can emerge in the
presence of external driving fields.† Since they are not accompanied by density
fluctuations, TDDFT does not monitor them. This implies, in particular, that the
transverse currents of the time-dependent KS system do not, in general, coincide
with the physical magnetization currents.

1.7.1.2 Longitudinal Currents The continuity equation connects j� with the
time dependency of the particle density. Therefore, the physical longitudinal
current density and the longitudinal KS currents coincide. Hence, it makes sense
to introduce a conductivity of the KS particles via

ji(r, ω) =
∫

dr′ σKS,ij (r, r′, ω)[Eex + Eind + EXC]j (r′, ω) (1.55)

†As an example we mention a ring current flowing in a perfectly conducting cylinder that closes
around a time-dependent magnetic flux.
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Just like physical particles, KS particles do not react to the external field but,
rather, to the local field. This field contains the same Hartree-type term that
originates from vH in Eq. (1.39) and that was already present for the physical
particles [Eq. (1.53)]. However, for KS particles not only vH but also vXC acquires
a correction with a change in the density since

fXC(r, r′, t − t ′) = ∂vXC[n](rt)
∂n(r′t ′)

(1.56)

does not vanish [see Eq. (1.43)]. The resulting excess force EXC from this con-
tribution reads

EXC(rω) = −∂r

∫
dr′ fXC(r, r′,ω) �n(r′,ω) (1.57)

in full analogy with Eq. (1.53).

Remark

• The exchange–correlation field EXC comprises a piece that originates
from the adiabatic term given in Eq. (1.44). On the level of the ALDA,
we have

EALDA
XC (rω) = −∂r

dv
eq
XC(n)

dn

∣∣∣∣∣
neq(r)

�n(r,ω) (1.58)

In addition, EXC also comprises a second piece, which brings in the vis-
coelastic properties of the correlated electron liquid. This piece is usually
ignored in TDDFT, because it is very difficult to formulate in a purely
density-based language. This is not surprising, because the viscosity is inti-
mately related to shear forces within the liquid that derive from mixed terms
∂jx/∂y typical of transverse current patterns. Such forces are more naturally
described within time-dependent current DFT.30,31

1.7.1.3 Quasi-One-Dimensional Wire We consider as an illustrative example
the dc response of a quasi-one-dimensional wire of length L to an electric field
in longitudinal direction, E(r) = ezE(z). The dc current, I , is given by

I =
∫ L

0
dz′ gKS(z, z′)[Eex + Eind + EXC](z′) (1.59)

gKS(z, z′) =
∫ ∫

dr′
⊥ dr⊥ σKS(r, r′) (1.60)

where it was assumed that the longitudinal field components have negligible vari-
ation in the perpendicular wire direction r⊥. Since any configuration of driving
fields has as an associated dc current I that is the same for all observation points
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z, we conclude that the kernel (1.60) is independent of its arguments and define
a KS conductance: GKS = gKS(z, z′).

I = GKS

∫ L

0
dz′ [Eex + Eind + EXC](z′) (1.61)

The first two terms in the integral add up to the physical voltage drop, V , along the
wire. The appearance of the third term indicates that the KS particles experience
another voltage, which differs by the amount

VXC =
∫ L

0
dz′ EXC(z′) (1.62)

Remarks

• The ALDA contribution to the effective driving field is conservative, so it
may be written as a gradient of a potential,

∫ L

0
dz′ EALDA

XC (z′) = −v
eq
XC(n(z))

∣∣n(L)

n(0)

As long as observation times are considered such that the effect of the
charge transfer on the local charge density is still negligibly small (long
wire limit), we can take n(L) = n(0), so that the ALDA contribution
vanishes (for macroscopically homogeneous wires). Nonzero contributions
to VXC come from the viscous term. The viscosity tends to reduce the
response of the electron liquid to external forces. Density functional theo-
ries take this behavior into account by “renormalizing” the true forces with
EXC.

• On a very qualitative level, the viscous forces tend to hinder the current
flow through narrow constrictions with “sticky” walls. For this reason, their
effect has been investigated in the context of current flows through sin-
gle molecules.33 However, as pointed out previously19 (and what underlies
the debate34,35), borrowing concepts from hydrodynamics to apply them
on the molecular scale is not straightforward—for example, the viscos-
ity: This describes how much momentum is transferred per time from a
fast-moving stream to a neighboring one that flows into the same direc-
tion but with a lower speed. On a microscopic level, momentum exchange
is mediated via collisions between the flowing particles. Therefore, it is
clear that a description in terms of the macroscopic parameter “viscosity”
can be valid only on length and time scales that substantially exceed the
interparticle scattering length and time. Both scales become very large in
fermion systems at low temperature, and in particular can easily exceed
the dimensions of those atomistic or molecular systems that one would like
to treat. Applications in mesoscopic semiconductors enjoy a much better
justification.



32 PRINCIPLES OF DENSITY FUNCTIONAL THEORY

1.7.2 Scattering Theory

The linear response theory is a framework for calculating the dynamical reaction
to linear order in the probing field of any many-body system. Its advantage is that
it is completely generally applicable. For the same reason, situations are easily
identified, where alternative formalisms are better adapted and therefore allow a
simpler and more transparent analysis.

In this section we consider an example thereof—the dc transport through a
quantum dot (e.g., a molecule) which has been wired to a left and a right reservoir
(see Fig. 1.4). We consider quasi-one-dimensional well-screened wires, so that
particles inside the wire do not interact with each other. The traveling waves
along the wire are categorized by scattering states . Each such state is equipped
with a continuous longitudinal degree of freedom associated with a wavenumber,
k, a discrete transverse degree, the channel index n [which should not be confused
with the particle density n(r)], and a dispersion relation En(k). In this language
the current flowing through the wire is described by a superposition of scattering
states.

How the particles that enter the wire from a reservoir distribute over the
available scattering states is dictated by distribution functions, fL,R(E), which
are properties solely of the left and right reservoirs. The specifics of the quantum
dot enter the construction of the scattering states in terms of the reflection and
transmission coefficients, r̃nn′(E,E′) and t̃nn′(E,E′). They describe the proba-
bility amplitude for a particle that approaches the quantum dot with energy E in
channel n to be either reflected or transmitted into the channel n′ with energy E′.

1.7.2.1 Landauer Theory The scattering description is particularly convenient
if scattering is elastic, so in each single scattering process the state of the quantum
dot is preserved; in particular, each scattering event conserves the energy of the
incoming particle, E = E′. Under this specific condition, the current is simply
given by the Landauer formula,

I =
∫

dE T (E)[fL(E) − fR(E)] (1.63)

n n′

k′
rk

k
t

Fig. 1.4 (color online) Wiring a molecule to source and drain reservoirs: scattering
states description with longitudinal (k) and transverse (n) quantum numbers.
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with a transmission function

T (E) =
∑
nn′

|tn′n(E)|2 ≡ Tr t t† (1.64)

where tn′n = t̃ν′ν(vν/vν′)1/2, with vν = ∂εν(k)/∂k being the group velocity of
particles traveling in channel n with energy E. Here we follow the common con-
vention that each reservoir acts as a thermal bath characterized by a temperature
and an electrochemical potential, μL,R. Then the distributions fL,R are simply
Fermi functions with bath parameters.

1.7.2.2 Scattering Theory and TDDFT: Relaxation Problem Scattering the-
ory describes a nonequilibrium situation that is (quasi-)stationary in time. Even
though a current flows, expectation values of local (intensive) operators, in par-
ticular of ĵ (r) and n̂(r), are time independent.† By contrast, TDDFT has been
developed to describe the time evolution of the density, n(rt), under the action
of a time-dependent potential, φex(t), away from some initial condition. Both
approaches may apply simultaneously if in the course of time evolution a qua-
sistationary nonequilibrium situation develops.36–38

This can happen if the superposition of φex(t) and the induced field, vind(t),
shifts the electrochemical potentials of the two reservoirs against each other:

[vex(rt) + vind(rt)]R
L →

t�τtrans
μR − μL (1.65)

Then, after waiting a time τtrans in which transient dynamic phenomena have
died out due to internal relaxation processes, a flow may establish that indeed it
is quasistationary. The current will be monitored properly by TDDFT, since it
equals the flux of particles out of one of the reservoirs: I = ṄL = −ṄR.

In this quasistationary regime, by definition the particle and current densities
are time independent. One might then suspect that the KS potentials should also
have become stationary. This point is perhaps not quite as obvious as it might
look. Namely, the fact that the density is time independent by itself does not
always imply that the Hamiltonian is stationary. For example, homogeneous ring
systems that close around time-dependent fluxes can exhibit time-dependent ring
currents that leave the density completely invariant. To exclude such artifacts,
one can operate with probing fields φex(t) that couple to the density itself and
that become time independent after switching on. Then, at least in the linear
response regime, functionals are guaranteed to become time independent, since
they derive from linear-response kernels [Eq. (1.43)] (see the remark below).

Once we accept that potentials become stationary, we may define scattering
states. However, whether this concept is useful or not depends on whether one

†We are assuming here that the reservoirs are ideal. They remain in thermodynamic equilibrium with
fixed temperature, chemical potential, and so on, even in the presence of a current flow. In reality,
this condition requires a separation of scales: macroscopic reservoirs and microscopic currents.
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can identify the rules pertaining to how the physical current should be constructed
from them. Whether or not the same rules apply for the KS scattering states of
TDDFT that work for the truly noninteracting case is not a priori clear, however.

Indeed, after switching on the bias voltage, V , the workfunction of each reser-
voir shifts against the vacuum level. Apart from this effect, each reservoir stays
in complete thermal equilibrium due to their macroscopic size each all the time.
According to the general principles of the DFT outlines in earlier sections, the
distribution function of KS particles inside each reservoir should still be given by
fL,R with the appropriate chemical potentials μL,R and eV = μL − μR, as usual.
This was the point of view that has been adopted elsewhere.36

However, this conclusion is not fully consistent with a result that we derived
above. Namely, as we have seen in the linear response theory, the KS voltage does
not in general coincide with the difference of the reservoir workfunctions. This
effect has been incorporated37,38 using Fermi functions with chemical potentials
that do not coincide with physical values. Here it remains an open question as to
how this finding could be reconciled with the requirement that each reservoir must
stay in its own equilibrium. This apparent inconsistency of DFT-based scattering
theory at the moment is seemingly unresolved.

Remarks

• The precise conditions under which a nonequilibrium current flows in a
quasistationary manner are very difficult to state. That flow at small enough
currents is always quasistationary is supported by linear response analy-
sis. It suggests (1) that linear responses to a sufficiently weak field never
mix frequencies (i.e., they simply follow the external stimulus in time).
Furthermore, (2) slow-enough driving fields, ωτtrans 	 1, signalize the dc
behavior. So, combining (1) and (2), one concludes that the linear regime
should always be quasistationary.

• A breakdown of the quasistationary regime at sufficiently large currents is
suggested by analogy to hydrodynamics as described by the Navier–Stokes
equations. Here it is known that a laminar (i.e., quasistationary) regime
should be separated from turbulence that develops at larger currents. Since
at least on a qualitative level, the micro- or nanoscopic flow of the electron
liquid is also a hydrodynamic phenomenon, a “turbulent” regime could exist
here as well. This is also supported from the observation that the TDDFT
equations are nonlinear in the density and therefore should host chaotic
regimes.

1.8 MODELING RESERVOIRS IN AND OUT OF EQUILIBRIUM

1.8.1 External and Internal Hilbert Spaces

Scattering theory operates in a basis of scattering states; that is, it uses those
quantum numbers that reflect the behavior of wavefunctions in the asymptotic
(i.e., free of scattering potential) region of space (the external Hilbert space).
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HRHL

HC

HC

u u

Fig. 1.5 (color online) Partitioning of the scattering zone near a molecule or quantum
dot underlying the Hamiltonian equation (1.66).

For some applications, this representation is suboptimal. From a computational
perspective, this can happen if the Hilbert space of states in the vicinity of the
scatterer (the internal or microscopic Hilbert space) is very large or compli-
cated, so that computations do not allow us to keep explicit track of additional
degrees of freedom. For example, if one is to describe the current flow through a
molecule (molecular electronics)or a quantum dot, one can keep molecular states
that incorporate the molecule itself plus the states of a few lead atoms. The
entire contact, which encompasses 1023 atoms, can certainly not be dealt with in
a computer.

In more technical terms, we consider a partitioning of the system into left
and right asymptotic regions, which are connected by a center region as given in
Fig. 1.5 and detailed in the Hamiltonian

H =
⎛
⎝HL u† 0

u HC v

0 v† HR

⎞
⎠ (1.66)

The matrices HL,R comprise all the leads and are macroscopic, whereas HC

describes only the scattering region and therefore should have a microscopic
size. If HC is still very complicated, a formulation is desired that does not refer
explicitly to the external, macroscopic Hilbert space (leads and reservoirs) but
just focuses on the internal space. Roughly speaking, one would like to convert
the trace over the external, channel degrees of freedom [Eq. 1.64] into another
trace, which is only over the internal space of the molecule or quantum dot.

A formal way to derive such a representation employs the Keldysh technique,
also referred to as the nonequilibrium Green’s function method .39 For noninter-
acting particles it yields predictions for physical observables which are identical
to the scattering theory. Similar to earlier authors,40 we employ the latter method
here to derive the key formulas that underlie a great many applications of ab
initio transport calculations for nanostructures.

1.8.2 Born Approximation, T̂ -Matrix, and Transmission Function

Consider the situation where the left and the right leads are decoupled, u = v = 0
at t = 0. As before, we denote their eigenstates by a pair of indices |nk〉 (left) and
|n′k′〉 (right). When contact is established at t = 0, an initial state |nk〉 becomes
unstable. It can decay into the state |n′k′〉. The rate for this process is given
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to lowest order by the Born approximation, which is equivalent to the familiar
“golden rule” when applied to the scattering problem:

�τ−1
n′n(En(k)) = 2πδ(En(k) − En′(k′))|〈n′k′|T̂ (En(k)|nk〉|2 (1.67)

Here, we have already refined the bare expression by introducing the T̂ -matrix ,
which makes it formally exact. How to relate T̂ to the original Hamiltonian,
(1.66), will be shown in Section 1.8.3.

The right-going current injected in this way from a left-hand-side wire state
|nk〉 into the right lead is just

∑
n′

∫
dk′ τ−1

n′n(En(k))fL(En(k))(1 − fR(En′(k′)))

where fL(En(k)) is the occupation of the initial state and 1 − fR(En′(k′)) is a
measure of the available space in the final state. The total current is the difference
between all right- and left-flowing components:

I = e
∑
n′n

∫
dk dk′τ−1

n′n(En(k))[fL(En(k)) − fR(En′(k′))] (1.68)

Comparing this expression with the Landauer formula, Eq. (1.63), we conclude
that

T (E) =
∑
n′n

∫
dk dk′ δ(E − En(k))τ−1

n′n(E) (1.69)

= (2π)2
∑
n′n

∫
dk dk′ δ(E − En(k))δ(E − En′(k′))|〈n′k′|T̂ (E)|nk〉|2

(1.70)

=
∑
n′n

(2π)2

|vnvn′ | |〈n
′k′|T̂ (E)|nk〉|2 (1.71)

where the last line should be complemented with E = En(k) = En′(k′). Keeping
Eq. (1.64) in mind, we have the identification (up to a phase factor)

tn′n = 2π√|vnvn′ | 〈n
′k′|T̂ (E)|nk〉 (1.72)

Equation (1.70) has a compact notation if one introduces separate traces TrL,R,C

over the Hilbert spaces of HL,R,C:

T (E) = (2π)2TrR[δ(E − HR)T̂ (E)δ(E − HL)T̂ †(E)] (1.73)
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1.8.3 T̂ -Matrix and Resolvent Operator

We now specify how to relate T̂ to the original Hamiltonian, H , detailed in
Eq. (1.66). Our derivation starts with the observation that all information about
transport across the center region is encoded in the resolvent operator ,

G(z) = 1

z − H
(1.74)

Retarded (advanced) operators are defined via Gret(E) = G(E + iη)[Gav(E) =
G(E − iη)]; the matrix elements 〈x|Gret,av(E)|x′〉 define the Green’s functions.†

Actually, we care only for transfer processes, so only those matrix elements
〈n′k′|G(z)|nk〉 are of interest that connect states in the left and right leads. The
corresponding off-diagonal sector of the full resolvent matrix may be obtained
from an elementary matrix inversion. Its matrix elements have the property

〈n′k′|G(z)|nk〉 = 〈n′k′|gR(z)[v†GC(z)u]gL(z)|nk〉 (1.75)

The matrix product that appears here inside 〈· · ·〉 has the form familiar from the
Dyson equation in T -matrix notation41:

G = G0 + G0T̂ G0 (1.76)

where G−1
0 = z − H0 is the bare Green’s function in the absence of an interlead

coupling, u, v = 0. In Eq. (1.75) the first term in the Dyson equation is missing,
since the off-diagonal matrix elements that connect different leads vanish if there
is no transmission.

Thus it is clear that the desired relation is just

T̂ (z) = v†GC(z)u (1.77)

with the resolvent operators of the central region and the leads

GC(z) = 1

z − HC − 	R − 	L
(1.78)

gR,L(z) = 1

z − HR,L
(1.79)

and self-energies

	L(z) = ugL(z)u† 	R(z) = vgR(z)v† (1.80)

†The infinitesimal parameter η in Eq. (1.74) shifts the poles of G into the complex plane. In this way
it is ensured that the density of states, −(1/π)�G(E + iη), becomes a smooth function of energy.
Otherwise, the Hamiltonian (1.66) could not model metallic reservoirs, which by definition have a
smooth, nonvanishing density of states near the Fermi energy.
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Notice that G and 	R,L act on the Hilbert space of HC only, whereas gR,L acts
on the spaces of HR,L.

With this result, we can rewrite Eq. (1.73),

T (E) = TrC[�LGret
C (E)�RGav

C (E)] (1.81)

where we have introduced

�L = 2πuδ(E − HL)u† �R = 2πvδ(E − HR)v† (1.82)

so that �R,L = −2�	ret
R,L.† Equation (1.81) is the desired relation. The leads

appear only implicitly in the self-energies, 	L,R; they have been “integrated out.”

Remarks

• Formula (1.81) is most useful whenever (1) one can give recursive algo-
rithms, so 	 can be calculated without having to deal with the full Hilbert
space at a time, or (2) one can design approximations for 	 so that it is not
necessary to deal with the Hilbert space of the leads at all. One can argue
that simple but highly accurate approximations can indeed be given if HC

is “large enough”, (i.e., comprises a sufficiently large part of the leads).

• Almost all scientific works that perform a channel decomposition begin by
rewriting Eq. (1.81), which employs the matrix

τ = �
1/2
L GC�

1/2
R (1.83)

so that by construction, T (E) = TrCττ†. Authors interpret τ as a transmis-
sion matrix and hence identify the eigenvectors of ττ† as the transmission
channels. We wish to point out here that this widespread practice has to be
taken with a grain of salt.
1. The trace in Eq. (1.81) is over the states of the central region and not

over the (transverse) Hilbert space of the leads. Ironically, this is why
we have derived it in the first place. Therefore, the matrix product in
TrC[· · ·] acts on a Hilbert space that is disconnected from the transverse
lead space, where the product t t† that appears in the Landauer formula,
Eq. (1.63), lives. Hence, the channels of the leads and the eigenvectors
of ττ† have nothing to do with each other.

2. In particular, τ should not be confused with the true transfer matrix t ,
given in Eq. (1.72).

3. One of the irritating artifacts that an uncontemplated adoption of this
practice may prompt is related to the fact that the size of the cen-
tral Hilbert space is a matter of convention. For this reason, the com-
mon channel analysis produces results that cannot be, in general, model

†We have used δ(E) = (i/2π)[G(E + iη) − G(E − iη)].
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independent. For example, the number of transmitting states (evanes-
cent and propagating ones) may increase with the Hilbert space size.
A more detailed discussion of this and related issues can be found
elsewhere.42,43

1.8.4 Nonequilibrium Density Matrix

So far, we have used scattering theory to describe the current flow through
a nanojunction or molecule. A very similar analysis allows us to derive even
a slightly more general object, the density matrix, ρ(x, x′), in the presence of
nonequilibrium. It is a matrix representation of the operator

ρ̂ =
∑

n

∫
dk |nk〉r r〈nk|fL(En(k)) +

∑
n′

∫
dk′ |n′k′〉l l〈n′k′|fR(En′(k′)) (1.84)

where |nk〉r (|n′k′〉l) denote the right (left)-going states emerging from the left
(right) electrodes. The diagonal elements are of particular importance, since they
give the particle density, n(x) = ρ(x, x), at any position x:

ρ(x, x) =
∑

n

∫
dk |〈x|nk〉r|2fL(En(k))

+
∑
n′

∫
dk′ |〈x|n′k′〉l|2fR(En′(k′)) (1.85)

In this section we repeat what we did in the previous section for the Landauer
formula, but now for the density matrix. We derive an expression that relates
those elements of ρ̂ from the central Hilbert space only, in terms of GC and 	L,R

alone.
Indeed, consider the expression for the equilibrium density per spin inside the

central region:

neq(x) =
∫

dE 〈x|δ(E − H)|x〉f eq(E) (1.86)

Employing a series of standard transformations, which rely upon nothing but the
definitions given in the preceding section, we may cast it into a form that is
already similar to Eq. (1.85):

neq(x) = − 1

2iπ

∫
dE〈x|Gret

C (E) − Gav
C (E)|x〉f eq(E) (1.87)

= − 1

π

∫
dE 〈x|Gret

C (E)
[�	ret

L + �	ret
R

]
Gav

C (E)|x〉f eq(E) (1.88)

= 1

2π

∫
dE 〈x|Gret

C (E) [�L + �R] Gav
C (E)|x〉f eq(E) (1.89)
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=
∑

n

∫
dk |〈x|Gret

C (En(k))u|nk〉|2f eq(En(k))

+
∑
n′

∫
dk′ |〈x|Gret

C (En′(k′))v|n′k′〉|2f eq(En′(k′)) (1.90)

The states |nk〉 (|n′k′〉) denote the eigenstates of the left (right) lead in the absence
of a coupling, u, v = 0. Comparing Eq. (1.90) with the equilibrium limit of Eq.
(1.85), f eq = fL = fR, suggests the identification

〈x|nk〉r = 〈x|Gret
C (En(k))u|nk〉 (1.91)

〈x|n′k′〉l = 〈x|Gret
C (En′(k′))v|n′k′〉 (1.92)

for point x inside the central region. The educated reader may recognize the rela-
tions above as an incarnation of the well-known Lippmann–Schwinger equation.
Thus equipped, we rephrase the original expression for the density operator in
the following way:

ρ̂ =
∫

dE

2π
[Gret

C �LGav
C fL(E) + Gret

C �RGav
C fR(E)] (1.93)

which is valid inside the central region (matrix notation suppresses the argument
energy, E). This equation is the main result of the present section. Needless
to say, by differentiating off-diagonal elements of ρ̂, the current density and
therefore also the Landauer formula may be rederived.

1.8.5 Comment on Applications

By far the largest fraction of the vast body of DFT-based transport literature
employs scattering theory in the formulation of the preceding section. The logic
is that one solves the KS equations (1.39) with a particle density, n(x), which is
calculated from the nonequilibrium density operator (1.93), which also takes the
reservoirs into account. The KS-Hamiltonian is then used, in turn, to construct the
central Green’s function and finally, also, the transmission function, (1.81), and
the current, (1.63). In this final section we comment briefly on several general
aspects of this research. Also, practical aspects of applications in spintronics and
molecular electronics are highlighted in Chapters 18 and 19, respectively.

Transmission functions, T (E), are of interest mostly near the Fermi energy,
EF, since one has for the zero-bias conductance, G = T (EF). In this region,
T (E) usually is dominated by the resonances originating from just two (trans-
port) frontier orbitals. Calculations should yield the positions EHo, Lu and the
broadenings �Ho, Lu of the resonances.

In the case of resonances that do not interfere with others (isolated reso-
nances), these parameters may be extracted by simply fitting a Breit–Wigner
(Lorentzian) lineshape to T (E). Sometimes more complicated situations exist,
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where electrons can flow through the molecule via different paths that interfere
with each other.44 In this case the lineshape is not just a Lorentzian, but may,
for example, be of the Fano type. Also, this structure is characterized by very
few parameters only, which may be extracted from a suitable fit.

The numerical accuracy of both types of parameters, resonance positions and
line widths, that one can get from the DFT-transport calculation depends on the
approximations made in the underlying exchange correlation (XC) functional,
of course. In transport calculations additional complications arise due to the
presence of the electrodes (or reservoirs), which make it necessary to find a good
approximation for the self-energies 	R,L.

1.8.5.1 Self-Energies �R,L The self-energies are crucial for the calculation of
the resonance width. This is obvious, since without them, 	R,L = 0, there would
be no level broadening at all: Each transport resonance would be arbitrarily sharp.
Therefore, care is needed with the construction of these objects.

However, quite in contrast to a widespread perception in the scientific commu-
nity, it is not necessary—and in practice not even always helpful—to perform
an exact construction of 	R,L along the lines of Eq. (1.80). This point has been
made earlier19,45,46 and we rephrase it here.

Consider the KS equation of the central region in the presence of a coupling
to the electrodes:

[E − HC − 	L(E) − 	R(E)]|�〉 = 0 (1.94)

The Hermitian sector of 	 adds to the Hamiltonian HC and therefore shifts the
bare eigenvalues of HC. The anti-Hermitian sector, �L,R, leads to a violation of
the continuity equation; it shifts eigenvalues away from the real axis into the
complex plane, thus providing a finite lifetime.

The physics that is incorporated in this way is transparent: Any traveling
wave that moves toward the interface between the central region and the left
and right electrodes will just penetrate it without being backscattered. From the
viewpoint of the central system, the interface is absorbing. It is well known since
the early days of nuclear physics that proper modeling of absorbing boundaries
is via optical (i.e., non-Hermitian) potentials. This is exactly what the self-energy
does.

With this picture in mind, it is obvious that an interface modeling of �L,R with
the property that incident waves are fully absorbed will give the same values for
positions and lifetimes of transport resonances. Therefore, as long as the boundary
of the central region does not itself hinder the current flow, a modeling of � in
terms of an optical potential will give accurate results. All the material specifics
that are contained in the exact �L,R matrices can readily be ignored. To meet
the condition for simple modeling, in practical terms the central region should
comprise pieces of the electrodes that are large enough. Then complete absorption
may be achieved with a leakage rate per interface site η that is still sufficiently
small, to prevent feedback into the resonance energies.
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1.8.5.2 System-Size Dependency: Separation of Scales To the best of our
knowledge, all prominent DFT-based transport codes work with approximated
self-energies. Unfortunately, a systematic check of quantitative results on the
approximation scheme used is still not a standard procedure. If optical potentials
with strength η are employed, the transmission resonances, �, that we would
ultimately like to calculate should be invariant under a change of η by a factor
of 10 or more.

The existence of such an invariance is a consequence of a separation of scales.
The transport resonances reflect the lifetime of a state located in that subregion
(“bottleneck”) of the central region, which determines the resistance (see Fig. 1.5).
If the particle has escaped this region, it vanishes into the leads once and for
all—in reality. To catch this aspect, the modeling parameter η has just to be big
enough to prevent the model particle from returning to the bottleneck. If the size
of the central region is taken sufficiently large, much larger than the bottleneck,
one can allow for η 	 �, and a separation of scales has been achieved.

Remark

• Self-energies, 	, offer a rich toolbox for including effects of reservoirs with
precision without keeping a large number of degrees of freedom explicit
in the calculations. Recent applications of the principle describe systems
with an inhomogeneous magnetization.47 Also in this context, working with
model self-energies rather than (formally) exact expressions proves reason-
ably accurate and highly useful.48
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