
3

CHAPTER

About Flex 4

IN THIS CHAPTER
Understanding the

fundamentals of Flex

Getting to know Flex
applications

Developing in Flex versus Flash

Using Flex with object-
oriented programming

Understanding the Flash Player

Learning the history of the
Flash Player

Making the most of Flex 4
development tools

Getting help

Flex 4 is the most recent version of a platform for developing and
deploying software applications that run on top of Adobe Flash Player
for the Web and Adobe AIR for the desktop. While such tools have

existed for many years, the most recent set from Adobe Systems enables pro-
grammers with object-oriented backgrounds to become productive very
quickly using the skills they already have learned in other programming lan-
guages and platforms.

Since the release of Flex 2, the Flex development environment has encouraged
a development workflow similar to that used in desktop development environ-
ments such as Visual Studio, Delphi, and JBuilder. The developer writes source
code and compiles an application locally and then, for applications designed
for deployment from the Web, uploads the finished application to a Web
server for access by the user. That isn’t how Flex started, however.

Flex was originally released by Macromedia as a server-based application
deployment and hosting platform. In the early versions of the Flex product
line, an MXML/ActionScript compiler was included in a Java-based Web
application hosted on a Java Enterprise Edition (JEE) server. Application
source code was stored on the server. When a user made a request to the
server, the application was compiled “on request” and delivered to the user’s
browser, and hosted by the Flash Player.

This server-based compilation and application deployment model is still
available in a component now known as the Flex Web Tier Compiler. But
the version of the compiler that’s delivered in the Web Tier Compiler isn’t
always the same as the one that’s included in both the Flex 4 Software
Developers Kit (SDK) and the newly renamed Flash Builder 4. And most
developers find it simpler to use the primary “local compilation” develop-
ment model.

06_488959-ch01.indd 306_488959-ch01.indd 3 3/5/10 2:18 PM3/5/10 2:18 PM

CO
PYRIG

HTED
 M

ATERIA
L

Part I: Flex Fundamentals

4

In this chapter, I describe the nature of Flex applications, the relationship between Flex applica-
tions and Adobe Flash Player, and how Flex leverages the nearly ubiquitous distribution of Flash
Player on multiple operating systems. I also describe how Flex applications can be packaged for
deployment as desktop applications using Adobe AIR.

Learning the Fundamentals of Flex
The Flex product line enables developers to deploy applications that run on Flash Player as Web
applications and on Adobe AIR as native desktop applications. The compiled applications that you
create with Flex are in the same format as those produced by the Adobe Flash authoring environ-
ment (such as Adobe Flash CS4), but the process of creating the applications is very different.

Getting to know Flex applications
A Flex application is built as a Flash-based software presentation that you create with the Flex 4
SDK. Most Flex developers create their applications using the Flash Builder 4 integrated develop-
ment environment product line (formerly named Flex Builder). And a new product from Adobe,
Flash Catalyst, helps to bridge the gap between developers who use Flash Builder and designers
who use Photoshop or Illustrator to create application designs.

One major difference between the Flex SDK and Flash Builder is that the SDK on its own is free and
mostly open source, while Flash Builder is available only through a license that you purchase from
Adobe Systems. But in addition to the Flex SDK that’s at the core of Flash Builder, the complete
development environment includes many tools that will make your application development more
productive and less error-prone than working with the SDK and another editing environment.

Web Resource
The release version of the Flex SDK is bundled with Flash Builder 4, but you can download and use more
recent builds of the SDK from Adobe’s open-source Web site at http://opensource.adobe.com/wiki/
display/flexsdk/Flex+SDK. n

Flash Builder 4 Premium (the more complete and expensive of the available Flash Builder editions)
also includes a set of components known as the Data Visualization components that aren’t licensed
in the open-source Flex SDK. The Data Visualization components include the charting components
for presenting data as interactive visual charts and a couple of advanced interactive data-centric
components called the AdvancedDataGrid and OlapDataGrid that present relational data
with groups, summaries, multicolumn sorting, and other advanced features.

Note
The Flex Data Visualization components were available as a separately licensed product in the Flex 2 product
line. With the release of Flex 3, they became available only as part of the Flex Builder 3 Professional license.
The license model for the data visualization components has stayed the same in Flash Builder 4 Premium. n

06_488959-ch01.indd 406_488959-ch01.indd 4 3/5/10 2:18 PM3/5/10 2:18 PM

Chapter 1: About Flex 4

5

Flex programming languages
Flex applications are written using three programming languages — ActionScript 3, MXML, and
FXG (Flash XML Graphics):

l ActionScript 3. The most recent version of the ActionScript language to evolve in the
Flash authoring environment over the lifetime of the product. A complete object-oriented
language, ActionScript 3 is based on the ECMAScript Edition 4 draft language specifica-
tion. It includes most of the elements of object-oriented languages, including class defini-
tion syntax, class package structuring, strong data typing of variables, and class
inheritance.

l MXML. A pure XML-based markup language that is used to define a Flex application and
many of its components. Most of the elements in MXML correspond to an ActionScript 3
class that’s delivered as part of the Flex class library.

l FXG. A new XML-based language that enables you to represent graphic objects as XML
markup. The new Adobe Flash Catalyst application generates projects that describe func-
tional applications and their graphic presentations in a combination of MXML, FXG, and
ActionScript. You can then develop these projects further in Flash Builder 4. MXML
includes many vector graphic drawing tags that enable you to declare low-level graphic
objects in your Flex applications. These tags are designed to follow the FXG markup lan-
guage’s syntax and element and attribute names. You can also treat complete FXG files as
graphical images.

In February 2008, Adobe Systems released the Flex SDK as an open-source project, licensed under the
Mozilla Public License (MPL), version 1.1. This license enables you to modify and extend source code
and to distribute components of the code (or the entire SDK). You must make any changes that you
make to the ActionScript files that are part of the Flex SDK available to other developers. This does not
affect your own proprietary code. You still own the MXML and ActionScript code you write for your
own applications. To get a copy of the MPL, visit www.mozilla.org/MPL/.

As described previously, not all components in the Flex SDK are available in the open-source package.
Some components, such as the Flex charting components and the advanced data presentation controls,
are available only through commercial licenses. Also, Flash Builder is available only through a license
that you purchase from Adobe.

The open-source Flex SDK is managed through the Web site at http://opensource.adobe.com/
wiki/display/flexsdk/. Additional information and ongoing discussions of the Flex open-source
project are available at these Web sites:

l http://flex.org/

l http://forums.adobe.com/community/opensource/flexsdk/general

Flex as Open Source

06_488959-ch01.indd 506_488959-ch01.indd 5 3/5/10 2:18 PM3/5/10 2:18 PM

Part I: Flex Fundamentals

6

New Feature
FXG (Flash XML Graphics) was created by Adobe as a language that represents graphical objects in a Flex
application. Its capabilities closely follow the rendering model of Adobe Flash Player 10. There are many simi-
larities between FXG and SVG (Scalable Vector Graphics), another XML language that represents graphics
that’s been available for many years. In fact, the Adobe development team first considered using SVG, but
decided to create a new language because the existing SVG didn’t match how graphics are rendered in Flash
Player. Many Adobe Creative Suite products are able to export graphics as FXG markup, including Photoshop,
Illustrator, and Fireworks. n

When you compile a Flex application, your MXML code is rewritten in the background into pure
ActionScript 3. MXML can be described as a “convenience language” for ActionScript 3 that makes
it easier and faster to write your applications than if you had to code completely in ActionScript.

Note
Beginning with Flash CS3 Professional, ActionScript 3 also is used in the Flash authoring environment for logi-
cal code, creating class definitions, and other programming tasks. Unlike Flex, which uses only version 3 of
ActionScript, you can create Flash documents in Flash that use older versions of the language, such as
ActionScript 2. n

The diagram in Figure 1.1 describes the relationship between the Flex SDK’s command-line
compiler, Flex Builder, the MXML and ActionScript programming languages, and the Flash
Player and AIR.

MXML versus ActionScript 3
You can use MXML and ActionScript interchangeably in many situations. MXML is commonly
used to declare visual layout of an application and many objects, but it’s frequently your choice as
a developer as to when to use each language.

In these examples, I’m declaring an instance of an ActionScript class named Label and setting
some properties and styles. The Label class is part of the Flex 4 class library that’s included with
both the Flex SDK and Flash Builder 4. Its purpose is to present simple text in a Flex application.

New Feature
The Label control used in these examples is a member of a new component collection named the Spark com-
ponents. (Controls and containers used in Flex 2 and 3 are now known as the MX components.) The Spark
Label and two other new controls named RichText and RichEditableText are designed to replace the
MX Label and Text controls. n

Declaring objects in MXML
The Label control is represented in MXML as a tag named <s:Label/>. To create an instance
of the Label control using MXML and set its text property to a value of Hello from MXML,
declare the tag and set the property as an EXtensible Markup Language (XML) attribute. The follow-
ing example also sets the fontWeight and fontSize styles to affect the control’s appearance.

<s:Label id=”myMXMLText” text=”Hello from MXML”
 fontSize=”18” fontWeight=”bold”/>

06_488959-ch01.indd 606_488959-ch01.indd 6 3/5/10 2:18 PM3/5/10 2:18 PM

Chapter 1: About Flex 4

7

 FIGURE 1.1

The Flex SDK and Flash Builder both compile source code in MXML and ActionScript, producing execut-
able applications that are hosted by the Flash Player on the Web or the AIR on the desktop.

Programming Languages

Runtime Platforms

Development Tools

MXML and FXG
(XML-based markup languages)

ActionScript 3
(Based on ECMAScript)

Adobe Flash Player
(Web applications)

Adobe AIR
(Desktop applications)

Flex SDK
(Free)

Flash Builder
(Commercial license)

Flash Catalyst
(Commercial license)

Cross-Reference
The XML namespace prefix s: refers to the new Spark namespace that’s declared at the top of all new Flex 4
applications:

xmlns:s=”library://ns.adobe.com/flex/spark”

I describe this and other new Flex 4 namespaces in Chapter 4. n

Declaring objects in ActionScript 3
You can instantiate and add Label and other controls to the application’s layout using
ActionScript 3. When using this coding model, you first declare the object as a variable. If you
want the reference to the object to persist, you declare it outside of any functions. You then instan-
tiate the object using the class’s constructor method and set its properties and styles, and add the
object to the application’s content group so it becomes visible.

06_488959-ch01.indd 706_488959-ch01.indd 7 3/5/10 2:18 PM3/5/10 2:18 PM

Part I: Flex Fundamentals

8

You can set the control’s properties and styles anytime after creating the object:

import mx.events.FlexEvent;
import spark.components.Label;
protected var myActionScriptText:Label;
protected function creationCompleteHandler(event:FlexEvent):void
{
 myActionScriptText = new Label();
 myActionScriptText.text = “Hello from ActionScript”;
 myActionScriptText.setStyle(“fontSize”, 18);
 myActionScriptText.setStyle(“fontWeight”, “bold”);
 this.contentGroup.addElement(myActionScriptText);
}

The preceding ActionScript code accomplishes exactly the same steps as the MXML code in the
first example. Notice that it takes many lines of ActionScript, some inside a custom function, to
replace the MXML declaration. This difference in the amount of code needed to accomplish any
particular task is one of the reasons MXML exists. MXML can significantly reduce the amount of
code in your application without compromising its features or performance.

New Feature
The new Flex 4 Application container referenced with the <s:Application> tag places its child objects
in a Group, which is addressed by the container’s contentGroup property. This new Application con-
tainer is also a member of the new Spark component collection. n

Note
Assuming that the previous ActionScript code is in a main application file, the prefix this in the method call
this.contentGroup.addElement()refers to the application itself. If the same code were in an MXML
component or ActionScript class, this would refer to the current instance of that component or class. n

Flex versus Flash development
The line separating the terms Flex and Flash has changed over the years. As I described previously,
Flex originally referred to the entire product line: the class library, compilers, development tool,
and server environment. The original Flex server is now named LiveCycle Data Services, and the
development tool formerly known as Flex Builder is now named Flash Builder, because it’s used to
create and edit ActionScript code by both Flash and Flex developers. In this discussion, I use the
term Flash to refer to the visual authoring environment known as Flash Professional, and not the
recently renamed Flash Builder. And I use the term Flex to refer primarily to the Flex 4 SDK.

Developers tend to use Flex instead of Flash when they want to create software applications that
have these characteristics:

l Projects built by multi-developer teams

l High level of interactivity with the user

06_488959-ch01.indd 806_488959-ch01.indd 8 3/5/10 2:18 PM3/5/10 2:18 PM

Chapter 1: About Flex 4

9

l Use of dynamic data with application servers such as ColdFusion, PHP, or JEE

l Highly scaled applications in terms of the number of views, or screens, from which the
user can select

In contrast, developers tend to use Flash when they are creating documents with these characteristics:

l Documents whose main purpose is to present visual animation

l Marketing presentations

l Hosting of Web-based video

Many applications that are built in Flash can be built in Flex, and vice versa. Your choice of devel-
opment tools is frequently driven by your background and existing skill set.

Developing in Flash
As I described earlier, developers who use Flash are frequently focused on presenting animation,
hosting video, and the like. Flash is generally considered superior for animation work because of
its use of a timeline to control presentations over a designated period of time. Flash supports a
variety of animation techniques that make use of the timeline, including:

l Frame by frame animation

l Motion tweening

l Shape tweening

l Inverse kinematics

Flash also enables you to create animations using pure ActionScript code, but that approach also
can be used in Flex. If you come from a graphic design background and are used to thinking visu-
ally, you will appreciate the precision and visual feedback that the Flash development environment
provides.

The format of the primary source document used in Flash, the FLA file, is binary rather than text-
based. As a result, it doesn’t work well in multi-developer environments, where source-code man-
agement systems are commonly use to manage code. You can’t easily diff, or discover differences
between, different versions of a binary file. In these environments, it’s common to move as much
ActionScript code to external text-based files as possible, even when a project’s primary format is
built in Flash. In Flash CS5 Professional and Flash Builder 4, Adobe has now made it much easier
to move between the products. And starting with Creative Suite 5, Flash Builder 4 is now included
with the Web Premium software bundle that also includes Dreamweaver, Fireworks, and other
Web-based development tools.

Developing in Flex
Developers who use Flex to build applications frequently have a background in some other pro-
gramming language. Presentations can be created and made useful in Flash without any program-
ming, but a Flex application is almost entirely code-based. Animations are created entirely through
ActionScript, because neither the Flex SDK nor Flash Builder has a timeline as part of their devel-
opment toolkits.

06_488959-ch01.indd 906_488959-ch01.indd 9 3/5/10 2:18 PM3/5/10 2:18 PM

Part I: Flex Fundamentals

10

Flex also has superior tools for handling large-scale applications that have dozens or hundreds of
views, or screens. Flash CS3 had a screen document feature, but the feature didn’t receive the
development attention from Adobe that would have been required to make it a compelling archi-
tectural choice for these “enterprise” applications. The feature was removed in Flash CS4.

Finally, Flex applications are built in source code, which is stored in text files. These text files are
easy to manage in source-code control applications such as Subversion. As a result, multi-developer
teams who are dependent on these management tools find Flex development to be a natural fit to
the way they already work.

Flash Builder’s design view feature has become increasingly friendly and useful to graphic design-
ers, but it isn’t always intuitive to a designer who’s used to “real” graphic design tools like Adobe’s
Photoshop, Illustrator, and Fireworks. The introduction of Adobe Flash Catalyst, a new graphic
design application that supports creation of graphically rich compositions for Flex applications,
now enables graphic designers to participate as full partners in Flex application development.

Table 1.1 describes some of the core differences between Flex and Flash development.

 TABLE 1.1

Differences Between Flex and Flash Development
Task Flex Flash

Animation Flex uses ActionScript classes called
Effects to define and play animations.
There is no timeline.

The Flash timeline allows animation
frame-by-frame or tweening, and also
supports programmatic animation
with ActionScript.

Working with data Flex has multiple tools for working with
data and application servers, including
the RPC components (HTTPService,
WebService, and RemoteObject). It is
also a natural fit for use with LiveCycle
Data Services.

Flash can communicate with the same
application servers as Flex, but its pro-
gramming tools aren’t as intuitive or
robust.

Design Flash Builder has a design view for
WYSIWYG (What You See Is What You
Get) application layout but doesn’t have
visual tools for creating graphic objects
from scratch. The new Adobe Flash
Catalyst enables designers to import com-
positions from PhotoShop and Illustrator
and transform them into Flex applications
that can be developed further in Flash
Builder.

Flash has very good graphic design
tools, although not as complete a tool-
kit as Illustrator. However, it has
excellent tools for importing and using
graphics created in Photoshop and
Illustrator.

06_488959-ch01.indd 1006_488959-ch01.indd 10 3/5/10 2:18 PM3/5/10 2:18 PM

Chapter 1: About Flex 4

11

Task Flex Flash

Programming
languages

Flex 4 and Flash Builder 4 support
ActionScript 3 and MXML for component
definition and instantiation, and FXG to
declare low-level graphics.

Flash Professional CS4 supports all
versions of ActionScript (but only one
version per Flash document) but does
not support MXML.

Code management Flex applications are created as source
code in text files, which are completely
compatible with source-code manage-
ment systems.

Flash documents are binary, which
presents problems when building
applications in multi-developer envi-
ronments that require source-code
management tools.

Note
Flash-based applications built for desktop deployment with Adobe AIR can be created in either Flash Builder
with the Flex SDK or in Flash Professional. AIR applications can be created from any compiled Flash document
or from HTML-based content. n

Flex and object-oriented programming
Flex application development is especially compelling for developers who are already acquainted
with object-oriented programming (OOP) methodologies. Object-oriented programming is a set of
software development techniques that involve the use of software “objects” to control the behavior
of a software application.

OOP brings many benefits to software development projects, including:

l Consistent structure in application architectures

l Enforcement of contracts between different modules in an application

l Easier detection and correction of software defects

l Tools that support separation of functionality in an application’s various modules

You’ll find no magic bullets in software development: You can create an application that’s difficult
to maintain and at risk of collapsing under its own weight in an OOP language just as easily as you
can create one that primarily uses procedural programming. But a good understanding of OOP
principles can contribute enormously to a successful software development project.

And because ActionScript 3 is a completely object-oriented language, it serves Flex developers well
to understand the basic concepts of OOP and how they’re implemented in Flex development.

OOP is commonly supported by use techniques known as modularity, encapsulation, inheritance,
and polymorphism.

06_488959-ch01.indd 1106_488959-ch01.indd 11 3/5/10 2:18 PM3/5/10 2:18 PM

Part I: Flex Fundamentals

12

Modularity
Modularity means that an application should be built in small pieces, or modules. For example, an
application that collects data from a user should be broken into modules, each of which has a par-
ticular purpose. The code that presents a data entry form, and the code that processes the data
after it has been collected, should be stored in distinct and separate code modules. This results in
highly maintainable and robust applications, where changes in one module don’t automatically
affect behavior in another module.

The opposite of modularity is monolithic. In monolithic applications such as the example in Listing
1.1, all the code and behavior of an application are defined in a single source-code file. These
applications tend to be highly “brittle,” meaning that changes in one section of the application run
a high risk of breaking functionality in other areas. Such applications are sometimes referred to as
spaghetti code because they tend to have code of very different purposes wrapped around each
other.

 LISTING 1.1

A monolithic Flex application

<?xml version=”1.0” encoding=”utf-8”?>
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 xmlns:mx=”library://ns.adobe.com/flex/mx”>
 <fx:Script>
 <![CDATA[
 import mx.collections.ArrayCollection;
 [Bindable]
 private var myData:ArrayCollection;
 ...additional ActionScript code...
]]>
 </fx:Script>
 <s:VGroup>
 <mx:DataGrid dataProvider=”{myData}”>
 <mx:columns>
 <mx:DataGridColumn/>
 <mx:DataGridColumn/>
 <mx:DataGridColumn/>
 </mx:columns>
 </mx:DataGrid>
 <mx:Form>
 <mx:FormItem label=”First Name:”>
 <s:TextInput id=”fnameInput”/>
 </mx:FormItem>
 <mx:FormItem label=”Last Name:”>
 <s:TextInput id=”lnameInput”/>
 </mx:FormItem>
 <mx:FormItem label=”Address:”>

06_488959-ch01.indd 1206_488959-ch01.indd 12 3/5/10 2:18 PM3/5/10 2:18 PM

Chapter 1: About Flex 4

13

 <s:TextInput id=”addressInput”/>
 </mx:FormItem>
 </mx:Form>
 </s:VGroup>
</s:Application>

In the previous application, all the application’s functionality is mixed together: data modeling,
data collection, and logical scripting. Although the application might work, making changes with-
out introducing bugs will be difficult, especially for a multi-developer team trying to work together
on the application without constantly disrupting each other’s work.

A modular application such as the version in Listing 1.2 breaks up functionality into modules,
each of which handles one part of the application’s requirements. This architecture is easier to
maintain because the programmer knows immediately which module requires changes for any par-
ticular feature.

 LISTING 1.2

A modular Flex application

<?xml version=”1.0” encoding=”utf-8”?>
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 xmlns:valueObjects=”valueObjects.*”
 xmlns:views=”views.*”
 xmlns:forms=”forms.*”>
 <fx:Script source=”scriptFunctions.as”/>
 <valueObjects:AValueObject id=”vo”/>
 <views:ADataGrid id=”grid”/>
 <forms:AForm id=”form”/>
</s:Application>

Flex implements modularity through the use of MXML components and ActionScript classes that
together implement the bulk of an application’s functionality.

Encapsulation
Encapsulation means that a software object should hide as much of its internal implementation
from the rest of the application as possible, and should expose its functionality only through pub-
licly documented members of the object. A class definition that’s properly encapsulated exposes
and documents these object members to enable the application to set properties, call methods,
handle events, and refer to constants. The documentation of the object members is known as the
application programming interface (API) of the class.

06_488959-ch01.indd 1306_488959-ch01.indd 13 3/5/10 2:18 PM3/5/10 2:18 PM

Part I: Flex Fundamentals

14

In the Flex class library, class members include:

l Constants. Properties whose values never change.

l Events. Messages the object can send to the rest of the application to share information
about the user’s actions and/or data it wants to share.

l Methods. Functions you can call to execute certain actions of the object.

l Properties. Data stored within the object.

l Skin Parts. A part of a Spark component that displays a part of the component and can be
modified in a custom skin.

l Skin States. A view state that a component reacts to by displaying, hiding, or changing
parts of the component’s visual presentation.

l Styles. Visual characteristics of an object that determine its appearance.

In Flex, encapsulation is fully implemented in ActionScript 3. Each member that you define in a class
can be marked using an access modifier to indicate whether the particular method or property is
public, private, protected, or internal. A public method, for example, enables any part
of the application to execute functionality that’s encapsulated within the class, without the program-
mer who’s calling the method having to know the details of how the action is actually executed.

For example, imagine a class that knows how to display a video in the Flash Player and allows the
developer to start, stop, and pause the video, and control the video’s audio volume. The code that
executes these functions will have to know a lot about how video is handled in Flash and the par-
ticular calls that will need to be made to make the audio louder or softer. The API of the class,
however, could be extremely simple, including methods to execute each of these actions with very
simple calls from the main application, like this:

public class VideoPlayer()
{
 public function VideoPlayer(videoFile:String):void
 { ... call video libraries to load a video ... }
 public function start():void
 { ... call video libraries to play the video ... }
 public function stop():void
 { ... call video libraries to stop the video ... }
 public function setVolume(volume:int):void
 { ... call video libraries to reset the volume ... }
}

The application that instantiates and uses the class wouldn’t need to know any of the details; it just
needs to know how to call the methods:

var myVideoPlayer:VideoPlayer = new VideoPlayer(“myvideo.flv”);
myVideoPlayer.start();
myVideoPlayer.setVolume(1);

We say, then, that the VideoPlayer class encapsulates complex behavior, hiding the details of the
implementation from the rest of the application.

06_488959-ch01.indd 1406_488959-ch01.indd 14 3/5/10 2:18 PM3/5/10 2:18 PM

Chapter 1: About Flex 4

15

Inheritance
Inheritance refers to the capability of any class to extend any other class and thereby inherit that
class’s properties, methods, and so on. An inheritance model enables you to define classes with
certain members (properties, methods, and so on) and then to share those members with the
classes that extend them.

In an inheritance relationship, the class that already has the capabilities you want to inherit is
called the superclass, base class, or parent class. The class that extends that class is known as the sub-
class, derived class, or child class. Unified Modeling Language (UML) is a standardized visual lan-
guage for visually describing class relationships and structures. In this book, I frequently use UML
diagrams such as the example shown in Figure 1.2 to describe how a class is built or its relation-
ship to other classes.

 FIGURE 1.2

This is an example of a UML diagram that describes a relationship between a base and a derived class.

Animal

Dog

One class can extend a class that in turn extends another. UML diagrams can be extended to
describe these relationships as well. The UML diagram shown in Figure 1.3 describes a three-tier
inheritance relationship between a superclass named Animal and subclasses named Dog and
Poodle.

In Figure 1.2, methods of the superclass Animal are inherited by the subclass Dog. Dog has addi-
tional methods and properties that aren’t shared with its superclass and that can override the
superclass’s existing methods with its own implementations. The same relationship exists between
Dog and Poodle.

Because all versions of Animal sleep in the same way, calling Dog.sleep() or Poodle.
sleep() actually calls the version of the method implemented in Animal. But because Dog has
its own eat() method, calling Dog.eat() or Poodle.eat() calls that version of the method.
And finally, because all dogs bark in a different way, calling Poodle.bark() calls a unique ver-
sion of the bark() method that’s implemented in that particular class.

06_488959-ch01.indd 1506_488959-ch01.indd 15 3/5/10 2:18 PM3/5/10 2:18 PM

Part I: Flex Fundamentals

16

 FIGURE 1.3

This diagram describes a three-part inheritance relationship.

Animal

+ name

+ sleep()
+ eat()

Dog

+ bark()
+ eat()

Poodle

+ bark()

Inheritance enables you to grow an application over time, creating new subclasses as the need for
differing functionality becomes apparent.

In Flex, the ActionScript inheritance model enables you to create extended versions of the compo-
nents included in the Flex class library without modifying the original versions. Then, if an
upgraded version of the original class is delivered by Adobe, a simple recompilation of the applica-
tion that uses the extended class will automatically receive the upgraded features.

Polymorphism
Polymorphism means that you can write methods that accept arguments, or parameters, data typed
as instances of a superclass, but then pass an instance of a subclass to the same method. Because all
subclasses that extend a particular superclass share the same set of methods, properties, and other
object members, the method that expects an instance of the superclass also can accept instances of
the subclass and know that those methods can be called safely.

Polymorphism also can be used with a programming model known as an interface. An interface is
essentially an abstract class that can’t be directly instantiated. Its purpose is to define a set of meth-
ods and other object members and to describe how those methods should be written. But in an
interface such as the one shown in Figure 1.4, the method isn’t actually implemented; it only
describes the arguments and return data types that any particular method should have.

06_488959-ch01.indd 1606_488959-ch01.indd 16 3/5/10 2:18 PM3/5/10 2:18 PM

Chapter 1: About Flex 4

17

 FIGURE 1.4

This UML diagram describes the relationship between an interface and an implementing class.

<<interface>>

Animal

+ move()
+ eat()
+ sleep()

+ move()
+ eat()
+ sleep()

Dog

A class “implements” an interface by creating concrete versions of the interface’s methods that actu-
ally do something. As with the relationship between super- and subclasses, a method might be
written that accepts an instance of the interface as an argument. At runtime, you actually pass an
instance of the implementing class.

For example, you might decide that Animal should be abstract; that is, you would never create an
instance of an Animal, only of a particular species. The following code describes the interface:

public interface Animal
{
 public function sleep()
 {}
}

The interface doesn’t actually implement these methods. Its purpose is to define the method names
and structures. A class that implements the interface might look like this:

public class Dog implements Animal
{
 public function sleep()
 { ... actual code to make the dog sleep ... }
 public function bark()
 { ... actual code to make the dog bark ... }
}

Notice that a class that implements an interface can add other methods that the interface doesn’t
require. This approach is sometimes known as contract-based programming. The interface consti-
tutes a contract between the method that expects a particular set of methods and the object that
implements those methods.

06_488959-ch01.indd 1706_488959-ch01.indd 17 3/5/10 2:18 PM3/5/10 2:18 PM

Part I: Flex Fundamentals

18

Flex supports polymorphism both through the relationship between superclasses and subclasses
and through creation and implementation of interfaces in ActionScript 3.

Understanding Adobe Flash Player
Flex applications are executed at runtime by Adobe Flash Player or by Adobe AIR. In either case,
they start as applications compiled to the SWF file format.

When you deploy a Flex application through the Web, it’s downloaded from a Web server at run-
time as a result of a request from a Web browser. The browser starts Adobe Flash Player, which in
turn runs the application.

Adobe AIR includes Flash Player as one of its critical components. Other components include a Web
browser kernel to execute HTML (Hypertext Markup Language), CSS (Cascading Style Sheets), and
JavaScript, and APIs for local file access and persistent data storage. The version of Flash Player that’s
included with AIR is the same as the one that runs on users’ systems as a Web browser plug-in or
ActiveX control. As a result, any functionality that you include in a Flex application should work the
same regardless of whether the application is deployed to the Web or the desktop.

The diagram shown in Figure 1.5 describes the architectural difference between Flash Player’s
deployment in a Web browser versus AIR.

 FIGURE 1.5

Flash Player installed with a Web browser versus AIR

Web browser

Web deployment model

Flash
Player

Flash Player called as ActiveX or plug-in

Flash Player and Web browser
integrated into runtime

Flash
Player

Web
browser

Adobe Integrated Runtime (AIR)

Desktop deployment model

06_488959-ch01.indd 1806_488959-ch01.indd 18 3/5/10 2:18 PM3/5/10 2:18 PM

Chapter 1: About Flex 4

19

Learning a little Adobe Flash Player history
FutureWave Software originally created a product called Future Splash Animator, which in turn
evolved from a product called SmartSketch. The player for the animations was Java-based and was
the ancestor of the current Adobe Flash Player. After its purchase by Macromedia, the product was
renamed and released in 1996 as Macromedia Flash 1.0.

The product went through a steady evolution, starting with basic Web animation and eventually
becoming a full-featured programming environment with rich media (video and audio) hosting
capabilities.

During its time with Macromedia, Flash (the authoring tool) was packaged as part the Studio bun-
dle and was integrated with other Studio products such as Dreamweaver and Fireworks.
Macromedia positioned Flash MX and MX 2004 as development environments for what the com-
pany began to call rich internet applications (RIAs). Although the development environment that
was Flash never fully satisfied the requirements of application developers (see the discussion of
issues that are commonly encountered in Flash when developing true applications in the section
on Flex versus Flash development in this chapter), Flash Player continued to grow in its capability
to host the finished applications, however they were built.

After Adobe Systems purchased Macromedia, Flash became a part of the Adobe Creative Suite 3
(CS3) product bundles. Along with this rebundling came increased integration with other Creative
Suite products such as Illustrator and Photoshop. Other Adobe products such as After Effects and
Premiere include new export features that enable their video-based output files to be integrated
into Flash-based presentations. First introduced with Flash Professional CS4 in 2008, Flash Player
10 offers many new features, along with improved runtime performance.

Table 1.2 describes the major milestones in the history of Adobe Flash Player.

 TABLE 1.2

Flash Player History
Version Year New Features

Macromedia Flash Player 1 1996 Basic Web animation

Macromedia Flash Player 2 1997 Vector graphics; some bitmap support; some audio sup-
port; object library

Macromedia Flash Player 3 1998 The movieclip element; alpha transparency, MP3
compression; stand-alone player; JavaScript plug-in
integration

Macromedia Flash Player 4 1999 Advanced ActionScript; internal variables; the input field
object; streaming MP3

Macromedia Flash Player 5 2000 ActionScript 1.0; XML support; Smartclips (a compo-
nent-based architecture); HTML 1.0 text formatting

continued

06_488959-ch01.indd 1906_488959-ch01.indd 19 3/5/10 2:18 PM3/5/10 2:18 PM

Part I: Flex Fundamentals

20

 TABLE 1.2 (continued)

Version Year New Features

Macromedia Flash Player 6 2002 Flash remoting for integration with application servers;
screen reader support; Sorenson Sparc video codec

Macromedia Flash Player 7 2003 Streaming audio and video; ActionScript 2; first version
associated with Flex

Macromedia Flash Player 8 2005 Graphical user interface (GIF) and portable network
graphic (PNG) loading; ON VP6 video codec; faster per-
formance; visual filters including blur and drop shadow;
file upload and download; improved text rendering; new
security features

Adobe Flash Player 9 2006 ActionScript 3; faster performance; E4X XML parsing;
binary sockets; regular expressions

Adobe Flash Player 9 Update 3
(version 9.0.28)

2007 H.264 video; hardware-accelerated full-screen video
playback

Adobe Flash Player 10 2008 3D effects; custom filters and effects; advanced text ren-
dering; dynamic sound generation; vector data type;
dynamic streaming; Speex audio codec; enhanced file
upload and download APIs; color correction

Adobe Flash Player 10.1 2010 The first release as part of the Open Screen Project. First
version on cell phones to support ActionScript 3. HTTP
Streaming, advanced video delivery.

Each new product bundling and relationship has increased the capabilities of Flash Player. As a
result, the most recent version of Flash Player as of this writing (version 10.1) has all the features
I’ve described:

l Web-based animation

l Object-oriented programming with ActionScript 3

l Rich media hosting and delivery

Note
In addition to the version of Flash Player that’s delivered for conventional computers, Macromedia and Adobe
have released Flash Lite for hosting Flash content on devices such as cell phones and PDAs (Personal Digital
Assistants). Beginning with Flash CS5 Professional, Adobe Systems Flash Player 10.1 will work on most small
devices such as cell phones and support ActionScript 3. In addition, Flash CS5 will enable you to compile Flash
presentations as native iPhone applications.

The Flex development team isn’t far behind. The Flex Mobile SDK will enable you to create applications for
mobile deployment using the Flex application architecture. For more information on this effort, visit the Flex
Mobile Web page: http://labs.adobe.com/technologies/flex/mobile/. n

06_488959-ch01.indd 2006_488959-ch01.indd 20 3/5/10 2:18 PM3/5/10 2:18 PM

Chapter 1: About Flex 4

21

Understanding Flash Player penetration statistics
One of the attractions of Flash Player is its nearly ubiquitous penetration rate in the Web. Each
new version of Flash Player has achieved a faster rate of installation growth than each version
before it; version 9 is no different. As of December 2009 (according to statistics published on
Adobe’s Web site), the penetration rate for Flash Player versions 7, 8, and 9 was 98 percent or
greater (including in emerging markets), and Flash Player 10 already had a penetration rate of 93
percent or greater. Of course, these rates change periodically; for the most recent Flash Player pen-
etration rates, visit:

www.adobe.com/products/player_census/flashplayer/

Penetration rates are important to organizations that are deciding whether to build applications in
Flex, because the availability of Flash Player 10 (required to run the most recently published Flex
applications and Flash documents) determines whether a Flex application will open cleanly or
require the user to install or upgrade the Player prior to running the application. If a user needs to
install the Flash Player, however, there are many ways to get the job done.

Using the debug version of Flash Player
The debug version of Flash Player differs from the production version in a number of ways. As I
describe in the following section, you can install the debug version of the Flash Player from install-
ers that are provided with Flex Builder 4 and the Flex 4 SDK.

The debug version of Flash Player includes these features:

l Integration with fdb, the command-line debugger that’s included with the Flex SDK

l Capability to process and report logging messages issued with the trace() function

l Integration with Flash Builder debugging tools such as breakpoints

l Other debugging tools

To ensure that you’re running the Flash Debug Player, navigate to this Web page in any browser
that you think has the Flash Player installed:

www.adobe.com/go/tn_19245

As shown in Figure 1.6, you should see a Flash document that tells you which version of the Flash
Player is currently installed. When you load this document with the Flash Debug Player, it displays
a message indicating that you have the Content Debugger Player. This tool also tells you whether
you’re running the ActiveX or Plugin Player and which version.

06_488959-ch01.indd 2106_488959-ch01.indd 21 3/5/10 2:18 PM3/5/10 2:18 PM

Part I: Flex Fundamentals

22

 FIGURE 1.6

Discovering your Flash Player version

Flash Player installation
As of this writing, Flash Player 10 is available for these operating systems:

l Windows

l Mac OS X

l Linux

l Solaris

For up-to-date information about current operating system support, including minimum browser
and hardware requirements, visit this Web page:

www.adobe.com/products/flashplayer/systemreqs/

Flash Player can be installed on a user’s computer system in a variety of ways:

l As an integrated Web browser plug-in

l As a stand-alone application

l As part of Adobe AIR

06_488959-ch01.indd 2206_488959-ch01.indd 22 3/5/10 2:18 PM3/5/10 2:18 PM

Chapter 1: About Flex 4

23

Note
Regardless of how you install Flash Player, users who install Flash Player must have administrative access to
their computer. On Microsoft Windows, this means that you must be logged in as an administrator. On Mac
OS X, you must have an administrator password available during the installation. n

Uninstalling Flash Player
Before installing Flash Player, make sure any existing installations have been removed. The process
for uninstalling Flash Player differs from one operating system to another, but in all cases you must
close any browser windows before trying to uninstall the Flash Player.

On Windows XP, use operating system’s standard tools for uninstalling any software: the Control
Panel’s Add or Remove Programs feature on Windows XP or Windows Vista’s Uninstall or change
a program screen (shown in Figure 1.7).

On Mac OS X, use the uninstaller application that’s available for download from this Web page:

www.adobe.com/go/tn_14157

 FIGURE 1.7

Windows Vista’s Uninstall or change a program feature, listing both the plug-in and ActiveX versions
of the Flash Player

Flash Player 10 ActiveX and plug-in versions

06_488959-ch01.indd 2306_488959-ch01.indd 23 3/5/10 2:18 PM3/5/10 2:18 PM

Part I: Flex Fundamentals

24

Installation with Flash Builder
When you install Flash Builder 4, the debug version of Flash Player is installed automatically. To
ensure that this part of the installation succeeds, make sure that you’ve closed any browser win-
dows before you start the installation. If the installation detects open browser windows, it prompts
you to close those windows before continuing the installation process.

Using Flash Builder installation files
If you need to reinstall the debug version of the Flash Player, you should use the version that’s
included with Flash Builder or the Flex SDK. If you’ve installed Flash Builder, you can find the
installation files in a subfolder within the Flash Builder installation folder. On Windows, the
default folder is named:

C:\Program Files\Adobe\Flash Builder 4\Player\Win

This folder has three files:

l Install Flash Player 10 Plugin.exe. The plug-in version for Firefox, Safari, and other
browsers.

l Install Flash Player 10ActiveX.exe. The ActiveX control for Internet Explorer.

l FlashPlayer.exe. The stand-alone player (does not require installation — just run it!).

Installing Flash Player from the Web
You also can get the Flash Player from the Adobe Web site. Select a download location, depending
on whether you want the production or debug version of the player.

Downloading the production Flash Player
End users who want to run Flex applications and other Flash-based content can download the
Flash Player installer from this Web page:

http://get.adobe.com/flashplayer/

When you see the page shown in Figure 1.8, you should see a link to download the Flash Player
that’s appropriate for your operating system and browser.

Caution
The version of Flash Player that you download from this page is the production version, rather than the debug
version. If you have the production version installed, you can test your applications, but you can’t take advan-
tage of debugging tools such as tracing, breakpoints, and expressions evaluation. n

06_488959-ch01.indd 2406_488959-ch01.indd 24 3/5/10 2:18 PM3/5/10 2:18 PM

Chapter 1: About Flex 4

25

Tip
The Flash Player Download Center might include a link to download the Google toolbar or other content. You
do not have to download and install this unrelated content to get all the features of the Flash Player. n

 FIGURE 1.8

Downloading Flash Player from Adobe.com

Downloading the debug version of Flash Player
You can download the debug version of Flash Player from this Web page:

www.adobe.com/support/flashplayer/downloads.html

As shown in Figure 1.9, you should see links for all versions of Flash Player, including both debug
and production versions, for a variety of operating systems and browsers.

Tip
You might find an even more recent version of the Flash Player on the Adobe Labs Web page at http://
labs.adobe.com. Adobe Labs hosts projects that are still in development, but that are far enough along that
Adobe is sharing the current code with the community. n

06_488959-ch01.indd 2506_488959-ch01.indd 25 3/5/10 2:18 PM3/5/10 2:18 PM

Part I: Flex Fundamentals

26

 FIGURE 1.9

The Adobe Flash Player Support Center

Flex 4 Development Tools
Flex developers have many development tools to choose from: Flash Builder 4, the Flex 4 SDK,
and Flash Catalyst.

Understanding Flash Builder 4
Flash Builder 4, formerly known as Flex Builder, is an integrated development environment (IDE) for
building Flex applications. This is the tool that most developers use to build Flex applications. I
describe Flash Builder 4 in detail in Chapter 2.

Using the Flex 4 SDK
The Flex class library and command-line tools you need to build Flex applications are completely
free. As long as you don’t need to use Flash Builder or certain components that require a license,
you can download the Flex SDK from Adobe and build and deploy as many applications as you
want. The obvious benefit is the cost. The drawback to this approach is that you’ll have to select a
text editor, such as Emacs or a version of Eclipse without the Flash Builder plug-in that doesn’t
have the specific support for Flex application development that you get with Flash Builder.

You can download the most recent version of the Flex 4 SDK from this Web page:

http://opensource.adobe.com/wiki/display/flexsdk/Download+Flex+4

06_488959-ch01.indd 2606_488959-ch01.indd 26 3/5/10 2:18 PM3/5/10 2:18 PM

Chapter 1: About Flex 4

27

The SDK is delivered in a zipped archive file that can be extracted to any platform.

The SDK includes most of the class library you use to build Flex applications. The following
components, however, require a license for deployment:

l Flex Data Visualization components, including charting and other advanced visual
controls

l Application profiling tools

As shown in Figure 1.10, if you decide to use the Data Visualization components without a license,
any instances of the components are displayed in your application with a watermark, indicating
that you are using an evaluation version of the component.

 FIGURE 1.10

A watermarked charting component

In addition to the Flex class library, the Flex 4 SDK includes these command-line tools:

l adl. The AIR debug application launcher.

l adt. The AIR developer tool.

06_488959-ch01.indd 2706_488959-ch01.indd 27 3/5/10 2:18 PM3/5/10 2:18 PM

Part I: Flex Fundamentals

28

l acompc. The AIR component compiler.

l amxmlc. The AIR application compiler.

l asdoc. A tool to extract documentation from ActionScript classes and generate HTML file
sets known as ASDocs.

l compc. A compiler for building component libraries, Runtime Shared Libraries (RSLs),
and theme files.

l fcsh. The Flex Compiler Shell, which you can use to execute multiple compilation tasks
without the overhead of having to launch a new Java Virtual Machine (JVM) for each task.

l fdb. A debugger to debug applications.

l mxmlc. A compiler for building Flex applications.

l optimizer. A tool for reducing ActionScript compiled file size and creating a “release ver-
sion” of an application, component, or RSL.

Detailed information about how to use each of these command-line tools is available in Adobe’s
documentation.

Using MXMLC, the command-line compiler
To compile a Flex application with mxmlc, the command-line compiler, it’s a good idea to add the
location of the Flex 4 SDK bin directory to your system’s path. This enables you to run the com-
piler and other tools from any folder without having to include the entire path in each command.

Tip
When you install Flash Builder 4 on Microsoft Windows, the installer provides a menu choice that opens a
command window and adds all directories containing Flex 4 components to the current path. To use this tool,
choose All Programs ➪ Adobe ➪ Adobe Flex 4 SDK Command Prompt from the Windows Start menu. n

To compile an application from the command line, switch to the folder that contains your main
application file:

cd /flex4bible/myfiles

Assuming this directory contained a file called HelloWorld.mxml, to compile the application,
you would run this command:

mxmlc HelloWorld.mxml

After compilation is complete, your directory will contain a new file called HelloWorld.swf.
This is the compiled application that you deploy to your Web server.

Tip
The command-line compiler has many options for tuning your application. For complete details on how to use
the compiler, see the Adobe documentation. n

06_488959-ch01.indd 2806_488959-ch01.indd 28 3/5/10 2:18 PM3/5/10 2:18 PM

Chapter 1: About Flex 4

29

Getting Help
Documentation for Flash Builder 4 and Flex 4 is available from the Adobe Web site at:

http://help.adobe.com/en_US/Flex/4.0/UsingFlashBuilder/index.html

The most current version of the ActionScript 3.0 Language Reference in for the Flex 4 SDK is avail-
able at:

http://help.adobe.com/en_US/Flex/4.0/langref/

The documentation also is delivered in the new Adobe Community Help application with Flash
Builder 4. I describe how to explore and use this version of the documentation in Chapter 2.

Summary
In this chapter, I gave an introduction to the world of application development with Adobe Flex.
You learned the following:

l Flex applications are built as source code and compiled into Flash documents.

l Flex applications are built in three programming languages: MXML, FXG, and
ActionScript.

l Flex applications can be run as Web applications with Adobe Flash Player, delivered
through a Web browser.

l Flex applications also can be run as cross-operating system native desktop applications,
hosted by the Adobe AIR.

l The Flex 4 SDK is free and available as an open-source project that’s managed by Adobe
Systems.

l Flash Builder 4 is a commercial integrated development environment for building Flex
applications.

l Flash Catalyst is a new application that enables graphic designers to create working proto-
types of graphically rich Flex applications and define graphical skins for Flex components.

l Flex developers tend to have a background in object-oriented software development,
but anyone who’s willing to invest the time can become proficient in Flex application
development.

06_488959-ch01.indd 2906_488959-ch01.indd 29 3/5/10 2:18 PM3/5/10 2:18 PM

06_488959-ch01.indd 3006_488959-ch01.indd 30 3/5/10 2:18 PM3/5/10 2:18 PM

