
Part I

Getting Acquainted
with Design Patterns

and PHP

Chapter 1: Understanding Design Patterns

Chapter 2: Using Tools Already In Your Arsenal

c01.indd 1c01.indd 1 7/17/09 12:17:41 PM7/17/09 12:17:41 PM

CO
PYRIG

HTED
 M

ATERIA
L

c01.indd 2c01.indd 2 7/17/09 12:17:43 PM7/17/09 12:17:43 PM

 Understanding Design
Patterns

 Usually when I pick up a book and see a chapter longer than five pages about a topic that I ’ m not
the most familiar with, I tend to get scared. More than five pages may see me dropping the book
and running away, flailing my arms and shouting about how tough these computers are! While
this chapter may be longer than five pages, don ’ t be discouraged. The term Design Pattern is just a
fancy name for something that is not all that complex. A good portion of this chapter is taking
what you may already know and use regularly and refining it to a more concise definition. So, let ’ s
jump in and see what Design Patterns really are.

 What Are They?
 The story of Steve that follows helps describe Design Patterns in a real - world context. I ’ m hoping
that you ’ re not too familiar with this story!

 An All Too Common Example
 Steve works at a large insurance firm. His most recent task was developing a way to show customer
information to the call center representatives over a web interface. He designed a complex system
that would allow the reps to search for a customer, enter call logs, update customer coverage
information, and process payments. The system went into place smoothly, minus the few bumps
and hiccups that a new installation in a production environment always runs into. Steve is happy,
relaxed, and ready to sit back in the break room sipping his free coffee.

 Overnight, the insurance company triples in size from its most recent investment. Not only is Steve
called back to work on providing new scalability and enhancements to the call center software but
there has also been buzz about adding some new features to the corporate site to support the new
acquisition ’ s customers. Steve ’ s department is also increased to include two new developers, Andy
and Jason.

c01.indd 3c01.indd 3 7/17/09 12:17:43 PM7/17/09 12:17:43 PM

Part I: Getting Acquainted with Design Patterns and PHP

4

 The news comes down from the vice president that the corporate site needs to allow customers to
process their payments after they have completed a successful, secure user log in. Additionally, the
system needs to show how many times the customer has called in to the call center. Finally, it needs to
show an audit log of every change the call center has made to the customer ’ s account.

 Steve knows that he can easily update the call center software to provide the audit log and then copy
over the code, tweak it, and make use of the payment processing. However, the new programmers need
to be tasked without much time to get up to speed on the new system. Steve ’ s boss has assigned them
the portions of the project that Steve is most familiar with. Since Steve is the rock - star PHP programmer
with the most experience, his boss needs him to work on the other portions of the corporate site as soon
as possible after which he ’ ll then come around and make use of the new programmers ’ changes to the
auditing on the call center software. In the end, it will be his responsibility to provide hooks for the new
payment - processing portion of the user login screen.

 Steve ’ s code isn ’ t bad, but it seems to be taking Jason a bit longer to follow through and port the
payment - processing portion into the corporate site. Instead, he determines he could finish faster by
writing it in his own method. He mentions this to Steve and continues on his way. Andy is also
struggling. Since his Master ’ s in computer science is newly acquired, he hasn ’ t had much time to gain
experience with the jumbled code that sometimes supports existing enterprises.

 Through much struggle and late nights, the team is successful and deploys the new code changes. Andy
feels like everything could have been architected better. Steve thinks that if the other programmers
would have just copied and pasted his code, things would have gone must faster; Jason and Andy just
needed to make a few tweaks and it would have been solid. Jason mentioned that he was confused about
why some functionality was implemented in one way in one section of the code and in a different way in
a different piece. That is what threw him off.

 As the website continues to gain more visitors, the performance begins to suffer. Steve ’ s boss suggests
that the team take a few days and look at the code for optimization.

 Jason discovers that the method that he wrote for payment processing is nearly the same as Steve ’ s. Jason
combines and tweaks the methods into one class. Steve is starting to see similarities between the
authentication code that he wrote for the call center site and the classes he authored for the corporate
site ’ s user login. Andy is realizing that every PHP page they create has the same set of function calls at the
top of it. He creates a bootstrap type class to bring this all into one location to reduce code duplication.

 From outside this example, you can objectively see many things. Steve ’ s code could have benefited from
commonality in its approach. Andy ’ s formal education in software design made him sometimes question
PHP ’ s ability to accomplish the tasks and question the architecture. Jason couldn ’ t easily understand
Steve ’ s payment system, so he opted to create his own, causing code duplication. Finally, after the
software analysis, the team started discovering patterns in their seemingly jumbled code base. This is
the beginning of this team ’ s foray into Design Patterns.

 Design Patterns Are Solving the Same Problem
 In the previous example, Steve ’ s team stumbled into the first important part of the Design Pattern
concept. Patterns are not intentionally created in software development. They are more often discovered
through practice and application in real - world situations. The payment application system and the
bootstrap type calls being consolidated into classes are examples of identifying patterns in programming.

c01.indd 4c01.indd 4 7/17/09 12:17:44 PM7/17/09 12:17:44 PM

Chapter 1: Understanding Design Patterns

5

 It was once said that every single piece of music that could be written already has been. Now, new music
creation is just the rearranging of those particular sets of notes to different tempos and speeds. It ’ s the
same with general software development, barring a few major groundbreaking exceptions. The same
problems come up repeatedly and require common solutions. This is exactly what Design Patterns
are: reusable solutions for these common problems.

 No book mentioning Design Patterns would be complete without the reference to the Gang of Four : Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides, authors of the original Design Patterns book.
After a considerable amount of time in the field, they started noticing particular patterns of design
emerging from various development projects. Collectively, they gathered these ideas together to form the
initial Design Patterns concept. Recognizing these as templates for future development, they were able to
put them into an easy - to - understand reference with digestible segments for large, complex programming
concepts.

 While Design Patterns can encompass many things — from interface design to architecture, and even
marketing and metrics — this particular book will focus on development language construction using
Object Oriented Programming.

 A problem in software design consists of three parts:

 The “ what ” is considered the business and functionality requirements.

 The “ how ” is the particular design that you use to meet those requirements.

 The “ work ” is the actual implementation, or the “ how ” put into actual application and practice.

Design Patterns fit into the “ how ” of this process, and as a result, this book describes the “ how ” of
solving these problems as well as portions of the “ work ” necessary to make these solutions successful.
You can picture PHP as the vehicle behind the “ why ” of the problem solving. Once you know “ what ”
the software needs to do, and you ’ ve designed “ how ” it can do it, the “ work ” becomes a lot easier with a
lot less refactoring.

 I can ’ t stress this enough: the PHP language, your grasp of it and the way you understand its intricacies
is not the focus of this book. Instead, I bring common, time tested methodologies into focus, describe
them, and relate them to PHP.

 Patterns naturally start to come out of software development, as you saw in the example. However,
having a full playbook that references existing patterns can make the architecture planning faster and the
choices better. As an added bonus, programmers coming from different software realms may recognize
the pattern and just have to adapt to the specifics of the language. Having a clear set of patterns in your
application may also help new members of your team grasp your project, lowering your ramp - up time.

 Design Patterns Are Around You All the Time
 You ’ ve seen how Steve ’ s team was able to grasp basic patterns in their software and create reusable
items. You may also be able to draw parallels to your own software development now. How many times
have you created the same user login and authentication system using your user class? Do you have a
 db() function sitting around somewhere that you favor? These are examples of how you ’ ve already
been using patterns.

❑

❑

❑

c01.indd 5c01.indd 5 7/17/09 12:17:44 PM7/17/09 12:17:44 PM

Part I: Getting Acquainted with Design Patterns and PHP

6

 Even more detailed and closer to the root patterns are examples found in your favorite PEAR or other
framework libraries. For example, using PEAR DB is an example of putting a Design Pattern into use
(notably the factory method). The Zend Framework also uses various different patterns such as the
Singleton and the Adapter patterns.

 The Common Parts of a Design Pattern
 The Gang of Four pioneered a documentation standard for describing Design Patterns. They used this in
their book for each of the patterns that they mentioned. Authors after them have copied this exact format
and continued to propagate this form of documentation. I was a little bit less verbose with you because
I felt a lot of the sections either reiterated the sections above them or were just there for structure ’ s sake.
The introduction to this book mentions the four main parts of each pattern ’ s documentation: the name, the
problem and solution, the Universal Modeling Language (UML) diagram, and the code example.

 The Name
 The name is actually more important in Design Patterns than you may initially guess it is. Proper
descriptive naming conventions can go a long way toward explaining the behavior and relationship of
the pattern to the project and other patterns.

 In the example for this chapter, you saw how Jason mentioned to Steve that he was going to rewrite a
portion of the payment - processing system. Since Steve was the senior programmer, he may not have
necessarily agreed with the approach that Jason was using, but he certainly could have suggested some
patterns to be used in that rewrite ’ s architecture. This way, the entire team would both be familiar with
the underlying concepts of the payment system, with Jason specializing in the exact implementation.

 Problem and Solution
 As mentioned previously, Design Patterns are what emerge from solving the same problem with the
same general solution. This section of the description covers the main problem or problems in your
project and then shows how this particular Design Pattern is one of the better solutions.

 As you may have noticed, I didn ’ t use the phrase “ the best solution ” because no one can say this
definitively. Even if you find what you believe is the best Design Pattern for a particular problem, you ’ re
going to have to apply a certain amount of tweaking to it in order for it to fit perfectly into your project.

 UML Diagram
 The UML diagram will show the general structure of the pattern. In some cases, it may be necessary to
generate more than one diagram to show additional implementations of the pattern or to illustrate a
complex concept in easier - to - understand segments.

 What is UML?
 Unified Modeling Language (UML) diagrams should be a staple in your programming
arsenal. UML is a standard way to diagram programming actions, objects and use
cases. This helps communicate your design when building complex software in PHP.
For a quick refresher on UML, visit the http://Wikipedia.org/wiki/Unified_
Modeling_Language page on Wikipedia .

c01.indd 6c01.indd 6 7/17/09 12:17:45 PM7/17/09 12:17:45 PM

Chapter 1: Understanding Design Patterns

7

 You may find that the building blocks for generating your own UML diagrams for your project can be
loosely based on these generic pattern diagrams. Of course, your method names, class names, and
attributes will vary and be more complex than those in the example.

 The Code Example
 Hands - on PHP programmers are finally rejoicing: the code examples. These are going to be relatively
simple examples of the Design Pattern concept put into PHP code. The bonus here in having a PHP -
 based Design Patterns book is that you don ’ t necessarily need to know another language to see an
example of this pattern. (Other books focusing on Enterprise Design Patterns have used Java or C
examples, somewhat taking away the effectiveness of the example to a sole - language programmer.)

 I continue to reiterate: the code examples are simply that. They are not meant to be plug and play. They
may not contain error logging or handling, auditing, or wholly secure programming techniques. This is
not to say that I don ’ t appreciate high - quality, secure programming (previous teammate programmers of
mine can confirm that I ’ m a stickler for details), but it would distract from the main concept that I ’ m
trying to explain.

 What Design Patterns Are Not
 It ’ s important to rein in the explanation of Design Patterns by also talking about what they don ’ t
encompass. Up until now, you may have noticed that I ’ ve created a pretty large umbrella of coverage for
the Design Pattern definition.

 Design Patterns Are Not Plug and Play
 If you ’ re expecting to flip to the Design Pattern pages of this book and see full examples that you can
quickly copy and paste for your next project, you will be sadly disappointed. Design Patterns are not just
a simple plug and play solution to your programming project.

 Design Patterns are not the actual implementation or even the algorithm for solving the problem. For
example, you may create a design such that every house you construct has windows in the south to let in
more heat and light. You are not actually doing the constructing with exact measurements and locations
of the windows. You just hand over your design to the builder (programmer in our case), and they
implement it.

 Another analogous way to view Design Patterns is to compare them to musical notes on a scale. You
may know all the notes in a minor scale, but playing them exactly in order and in the same tempo does
not make an enjoyable song. You can ’ t open up a scale book, grab the scale, play it on guitar, and expect
everyone to think you ’ re an amazing song writer. It would be quite boring and wouldn ’ t solve the
problem your music is made for: to demonstrate a specific set of emotions via art. In this way, Design
Patterns are like those scales in the book. While they are the building blocks of a great solo, it is up to
you to apply them, tweak them, and create a great song.

c01.indd 7c01.indd 7 7/17/09 12:17:45 PM7/17/09 12:17:45 PM

Part I: Getting Acquainted with Design Patterns and PHP

8

 Design Patterns are Maintainable But Not Always
Most Efficient

 Design patterns don ’ t always lend themselves to the greatest efficiency and speed in applications either.
The goal of a Design Pattern is to help you design a solution in an easily repeatable and reusable way.
This means the Pattern may not be specifically tailored to your situation but will have greater code
maintainability and understandability.

 Design Patterns are a Vehicle, Not a Refactoring End
 A particular supervisor of mine just finished reading a book by Joshua Kerievsky and came to me with
his newly acquired knowledge. He told me that we need to refactor our code base to use all Design
Patterns. We had a discussion about what refactoring really meant, especially in our context.

 While respecting Kerievsky and not disagreeing, I do feel that a greater distinction should be maintained
when coupling Design Patterns to refactoring. Refactoring approaches both creating a more efficient
code base and improving the maintainability and clarity of the code. Design Patterns are a great vehicle
for your refactoring approach, but shouldn ’ t be the destination. While I ’ m in favor of starting a project
with a highly detailed set of Design Pattern architecture specs, I don ’ t want to force something into a
pattern for patterns ’ sake. Imagine if the first rock bands in existence threw a piano into the mix just
because everyone else in music was doing it, and they thought they had to. You wouldn ’ t have that
classic guitar - driven rock music that we ’ ve come to love!

 Design Pattern Demonstration
 Most examples of Design Patterns historically have been very sparse and theoretical so as not to have the
reader confuse the core concepts with language - agnostic features. Readers who have studied Design
Patterns, or even Object Oriented Programming before will be very familiar with the ever - present
square, circle, and oval object examples.

 The debate rages on about Design Pattern books using simple objects like squares or people in their
examples. Purists say you should detail the Design Pattern concepts and practice and give the
simplest examples possible so as not to distract from the actual implementation of the pattern.
(These are the people that hated story problems in math class because of all the extra information!) In my
experience, self - taught PHP programmers prefer to see more thorough examples of the concept in code
form. (They probably learned a lot by copy and paste coding when they first started.)

 The Design Patterns in this book do contain small to medium - sized examples of PHP code to
demonstrate the pattern. This dual - phased approach combines the actual conceptual explanation of the
pattern for those who need that particular structure with the example - based pattern demonstration for
those who are more hands - on learners.

 The reference pages of this book will be more satisfying to the purists, while the case study section at the
end will satisfy the code - example - hungry readers. For more information on the references pages, skip to
the next section to see how they will be laid out.

c01.indd 8c01.indd 8 7/17/09 12:17:46 PM7/17/09 12:17:46 PM

Chapter 1: Understanding Design Patterns

9

 Why Use Design Patterns in PHP?
 PHP has a very easy beginner ’ s learning curve with the backing of an enterprise - ready engine. Chances
are that you ventured into PHP by inserting a few lines of code into an existing HTML document. Simply
change the extension from .html to .php , add your quick snippet of code, deploy it to a PHP server, and
you ’ re a bona - fide PHP programmer. Up until the advent of the Zend Certified Engineer (ZCE)
certification, there was no real measurement of a PHP programmer ’ s prowess. Even after becoming a
ZCE, programmers can still lack some of the essentials for developing enterprise - ready, architecturally
sound application software.

 As if the example in the beginning of the chapter weren ’ t enough encouragement, more business - class
players are coming on board with PHP. PHP ’ s humble roots have left it somewhat devoid of the
limelight of major enterprise - level programming languages. However, the hard work of Zend as well as
the adoption of PHP by large Internet companies (such as Yahoo! and Amazon) has shown that PHP is
enterprise ready. With the introduction of enterprise - level software requirements, enterprise - level
methodology is to follow.

 PHP now has support for a lot of the building blocks behind the concepts you ’ re going to study. Perhaps
during the era of PHP3 or PHP/FI, applying these styles of patterns may have been more difficult if not
impossible. Don ’ t get me wrong; there are always patterns in language; it ’ s just that this book and its
examples wouldn ’ t have been nearly as useful!

 Summary
 This chapter discussed the prevalence of patterns in your normal programming by using an everyday
programming example. By extending your understanding of patterns, you can make correlations to
actual Design Patterns. Examining the realm that Design Patterns encompass, and what they do not,
provided a more concise definition. Finally, the case was made for using Design Patterns in PHP by
pointing out PHP ’ s support for building base Design Patterns as well as mentioning PHP ’ s position
among some of the greater enterprise partners.

 Now that you have an understanding of what Design Patterns are, let ’ s move on to discovering what
PHP already has available to help you out.

c01.indd 9c01.indd 9 7/17/09 12:17:46 PM7/17/09 12:17:46 PM

c01.indd 10c01.indd 10 7/17/09 12:17:46 PM7/17/09 12:17:46 PM

